Cellular and Mobile Wireless Networks (part 2)

Advanced Computer Networks

Cellular/Mobile Wireless Outline

- . Cellular Architecture
- Cellular Standards
 - GSM, 2G, 2.5G, 3G and 4G LTE
- . Mobile Definitions
 - Agents, addresses, correspondent
- Mobile Architecture
 - Registering
 - Indirect Routing
 - Direct Routing

Cellular Network Architecture

Cellular Networks: The First Hop

- Communications (GSM):
 - 200 kHz frequency bands
 - Each band supports 8 TDM calls.
 - Speech encoded at 12.2 and 13 kbps.

Cellular Standards: Brief Survey

2G Systems: voice channels/digital technology

- . IS-136 TDMA: combined FDM/TDM (North America)
- GSM (Global System for Mobile Communications): combined FDM/TDM
 - most widely deployed **
- . IS-95 CDMA: Code Division Multiple Access

Don't drown in a bowl of alphabet soup: use this for reference only

2G Network Architecture

Advanced Computer Networks Cellular and Mobile Wireless

Cellular Standards: Brief Survey

2.5G systems: voice and data channels {For those who could not wait for 3G service} Provide 2G extensions: push came from Iphone users

- General Packet Radio Service (GPRS)
 - evolved from GSM.
 - data sent dynamically on multiple channels (if available).
 - Data rates up to 115 Kbps.
- Enhanced Data Rates for Global Evolution (EDGE)
 - also evolved from GSM, using enhanced modulation
 - data rates up to 384 Kbps.
- . CDMA-2000 (phase 1)
 - data rates up to 144 Kbps.
 - evolved from IS-95.

2.5G Network Architecture

Cellular and Mobile Wireless

3G (Voice+Data) Network Architecture

data network operates in parallel •

Advanced Computer Networks

Cellular and Mobile Wireless

3G (Voice+Data) Network Architecture

Advanced Computer Networks Cellular and Mobile Wireless

3G Cellular - Brief Overview

3G systems: voice/data with digital technology

- higher data rates than 2.5G
- Universal Mobile Telecommunications Service (UMTS)
 - Leaves the existing 2.5G system in place.
 - data service: High Speed Uplink/Downlink Packet Access (HSDPA/HSUPA) up to 14 Mbps.
- CDMA-2000: CDMA in TDMA slots
 - data service: 1xEVolution Data Optimized (1xEVDO) up to 14 Mbps
 - 1.67 ms slots
 - Wireless AT sends DRC back to BS to adjust sending rate
 - Proportional Fair Scheduler
 - Uses 'turbo code' FEC on multiple slots with 'early completion'.

Many K&R details later in chapter not covered!!

3GPP LTE (Long Term Evolution)

4G LTE == 3GPP LTE

- Uses OFDM on downlink in cellular space.
 Uplink is SC-FDMA (Singular Carrier).
- Has a CP (cyclic prefix) to avoid symbol distortion over a 'slot'.
- LTE frames (10 msec) are divided into 10 1msec subframes which in turn are divided into 2 two slots (0.5 msec).
- Slots consist of 6 or 7 OFDM symbols.

3GPP LTE (Long Term Evolution)

- OFDMA allocates a PRB (Physical Resource Block) to users. A PRB consists of 12 consecutive subcarriers (15 kHz bandwidth) for one slot.
- PRB is then (6 or 7) symbols x 12 subcarriers.
- Instead of PHY preambles (802.11), reference symbols are embedded in the PRB.
- . LTE also employs MIMO.

What is Mobility?

Spectrum of mobility, from the network layer perspective:

Human Analogy: How to Contact a Mobile Friend ?

Consider a friend frequently changing residence addresses. How do you find her?

- Search all phone books?
- Call her parents or her friends?
- Expect her to let you know where he/she now lives?

Mobile Network Architecture

More Mobility Vocabulary

Mobility Approaches

- Let routing handle it: Routers advertise permanent address of mobile-nodes-inresidence via usual routing table exchange.
 - routing tables indicate where each mobile node is located. {use OSPF intradomain & interdomain routing info}
 - no changes to end-systems.
- Let end-systems handle it:
 - indirect routing: communication from correspondent to mobile node goes through home agent, then forwarded to remote network.
 - direct routing: correspondent gets foreign address of mobile node, sends directly to mobile node.

Mobility Approaches

- Let routing handle it: Routers advertise permanent addres f mobile-nodes-inresidence via v not scalable
 - routing table to millions of ere each mobile node is located.
 - no changes to end systems
- Let end-systems handle it:
 - indirect routing: communication from correspondent to mobile node goes through home agent, then forwarded to remote network.
 - direct routing: correspondent gets foreign address of mobile node, sends directly to mobile node.

Mobility 'Registration'

- Foreign agent knows about mobile node.

- Home agent knows location of mobile node.

Mobility via Indirect Routing

Indirect Routing

- Mobile uses two addresses:
 - permanent address: used by correspondent (Hence, mobile location is *transparent* to correspondent.)
 - care-of-address: used by home agent to forward datagrams to mobile node via foreign agent.
- Foreign agent functions may be done by mobile node itself (e.g., use DHCP).
- Triangle routing: correspondent-home-network-mobile
 - inefficient when the correspondent and mobile are in the same network.

Indirect Routing Moving between Networks

- Suppose the mobile node moves to another network:
 - registers with new foreign agent.
 - new foreign agent registers with home agent.
 - home agent updates COA for mobile node.
 - packets continue to be forwarded to mobile node (but with new care-of-address).
- Mobility involving multiple foreign networks is transparent.
 - On-going connections can be maintained!
 - However, potential for datagram loss when disconnection/reattachment time is not short.

Mobility via Direct Routing

Mobility via Direct Routing

- Overcomes the triangle routing problem.
- Non-transparent to correspondent:
 Correspondent must get care-of-address from home agent.
- What if mobile node changes visited network?

Accommodating Mobility with Direct Routing

- Anchor foreign agent: FA in first visited network.
- Data always routed first to Anchor FA.
- When mobile node moves: new FA arranges to have data forwarded from old FA (chaining).

Cellular/Mobile Wireless Summary

- Cellular Architecture
 - FDM/TDM, CDMA
- . Cellular Standards
 - 2G, GSM
 - BSS, BTS, BSC, MSC
 - 2.5G
 - GPRS, EDGE, CDMA-2000
 - 3G
 - UTMS, CDMA-2000 (EVDO)
 - 4G LTE
 - OFDM, MIMO

Cellular/Mobile Wireless Summary

- Mobile Definitions
 - Home and foreign agents, permanent and care-of-addresses, correspondent, home and foreign networks.
- . Mobile Architecture
 - Move routing to edge, use agents.
 - Registering with agents
 - Indirect Routing
 - Triangular routing
 - Direct Routing
 - Anchor foreign agent

