

A Performance Comparison of Multi-Hop Wireless Ad Hoc Network Routing Protocols

By Josh Broch, David A. Maltz, David B. Johnson, Yih-Chun Hu, Jorjeta Jetcheva

Presentation by:

Michael Molignano Jacob Tanenbaum John Vilk

SECTION 1: INTRODUCTION

Introduction

MANET (Mobile Ad-Hoc NETworks)

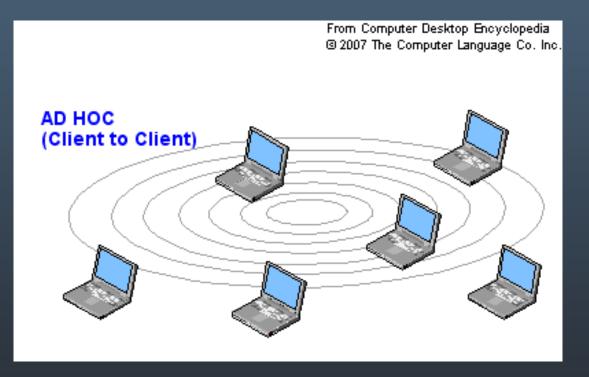
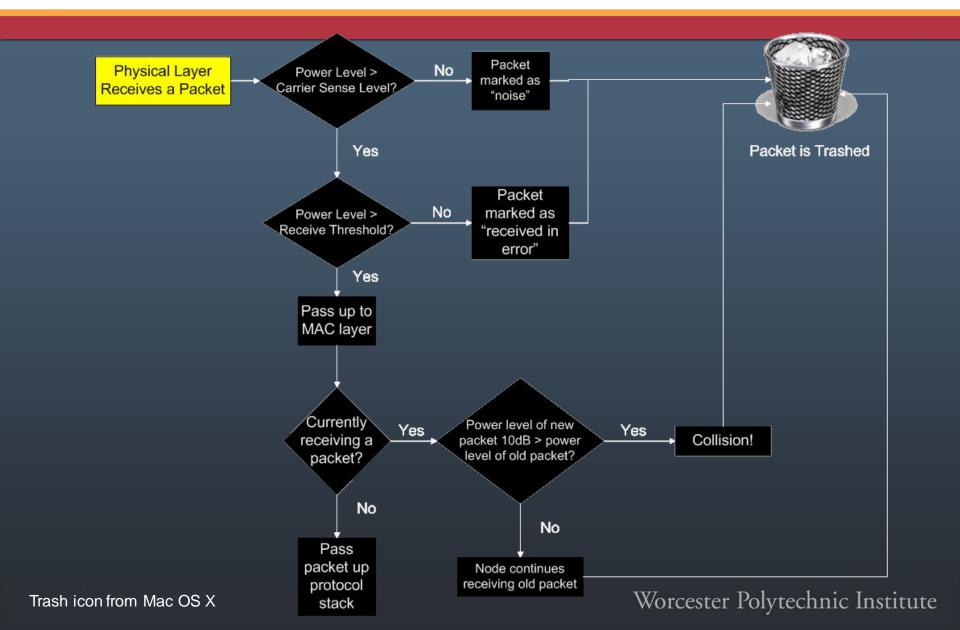


Image from: http://www.yourdictionary.com/images/computer/WMESH1.GIF

SECTION 2: SIMULATOR DETAILS

Simulator: Layers

- Network Layer
 Routing protocols!
- Data Link Layer
 MAC sublayer
 Collisions
- Physical Layer
 - Attenuation
 - Node movement


Simulator Details

Physical Characteristics

- Nodes can have:
 - Position
 - Velocity
 - Elevation (not used)

$Attenuation = \begin{cases} \frac{1}{r^2} \text{ if } r \leq 100m \\ \frac{1}{r^4} \text{ if } r > 100m \end{cases}$

Simulator: Receiving a Packet

Uses **DCF** (Distributed Coordination Function)

- Physical Carrier Sense
- Virtual Carrier Sense RTS/CTS (Request-To-Send/Clear-To-Send)
- Positive Acknowledgement
- Broadcast packets are special
 - Waits for physical/virtual channel to be clear
 - Not preceded by a RTS/CTS

• IP addresses used at network layer

 ARP used to translate MAC addresses to IP addresses

 ARP requests are broadcast

NIC has a 50 packet drop-tail buffer

 On Demand protocols have an additional 50 packet buffer

SECTION 3: ROUTING PROTOCOLS

Routing Protocols

Tested Four Routing Protocols: -DSDV -TORA -DSR -AODV

General improvements for all protocols:

- Periodic broadcasts/broadcast responses
 delayed randomly from 0-10 milliseconds
- Routing packets inserted **first** in NIC buffer!
 - Other types of packets (ARP, data) queued at the end of buffer
- Used MAC layer link breakage detection
 - Not used in DSDV

- Hop-by-hop distance vector protocol
- Loop freedom!
- Each node has a sequence number
- Routes on routing table:
 - Next hop to destination
 - Sequence number of destination
 - Metric

- Nodes advertise even sequence numbers
 Numbers *increase* over time
- Greater sequence numbers = newer data

 Route with greatest sequence number is used
 Ties determined by metric
- Odd sequence number advertised for broken routes with infinite metric
 - Bad news will travel fast
 - Link Layer link breakage not needed

DSDV: Flavors

DSDV-SQ (Used for paper results)

- New sequence numbers trigger updates
- Broken links detected faster
 - Increases packet delivery ratio
- More overhead

DSDV

- New metrics trigger updates
- Less overhead
- Broken links not detected as fast
 - Decreased packet delivery ratio

Temporally-Ordered Routing Algorithm (TORA)

- Distributed routing protocol based on "link reversal" algorithm
- Quickly discover routes on demand
- Algorithm focused to minimized communication overhead

- Layered on IMEP (Internet MANET Encapsulation Protocol)
 - Provides reliable and in-order control message delivery
 - Periodic BEACON / HELLO packets

- Links between each nodes measured in "heights"
- Direction of link goes from **higher** \rightarrow **lower** heights
- As the nodes move, the heights between each node changes, causing new routes
- Node sends a QUERY with destination address
- UPDATE sent back from destination or intermediate node
 Contains height from node to destination
- Each node receiving UPDATE sets its height greater than neighbor it received from
- Creates a graph of directed links from source to destination

• **IMEP** queues objects to allow aggregation

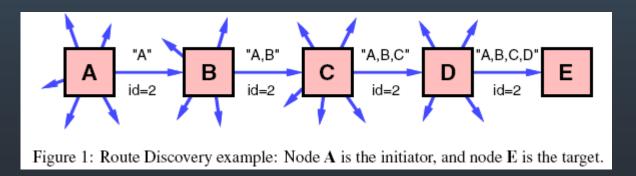
- Reduce overhead
- Only aggregate HELLO and ACK packets

BEACON period	1 s
Time after which a link is declared down if no BEACON or HELLO packets were exchanged	3 s
Time after which an object block is retransmitted if no acknowledgment is received	500 ms
Time after which an object block is not retransmitted and the link to the destination is declared down	1500 ms
Min HELLO and ACK aggregation delay	150 ms
Max HELLO and ACK aggregation delay	250 ms

Table II Constants used in the TORA simulation.

Constants were chosen through experimentation

- Uses *source routing* instead of hop-by-hop routing
 - Each packet carries complete route in header
- Designed for multi-hop wireless ad hoc networks


• Advantages:

- Intermediate nodes do not need to maintain up-to-date routing information
- Eliminates need of periodic route advertisements
- Eliminates need of periodic neighbor detection
- Requires two mechanisms: Route Discovery and Route Maintenance

DSR Route Discovery

- Node looking for route broadcasts ROUTE REQUEST
 - Packet is *flooded* through network
- ROUTE REPLY sent back from destination or intermediate node
- Each node maintains cache of routes
- Source route put in header

- Used to detect change in network topology causing route to fail
- Node is notified with ROUTE ERROR packet
 - Uses valid route from cache
 - Invoke Route Discovery

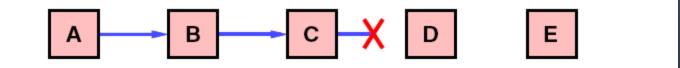


Figure 2: Route Maintenance example: Node C is unable to forward a packet from A to E over its link to next hop D.

- Required use of *Bidirectional* links
 ROUTE REPLY uses reverse of ROUTE REQUEST route
- Nodes listen to all packets
 - Hear ROUTE ERROR packets
 - Used to cache additional routes
 - Create potentially better routes

Table III	Constants used in the DSR simulation.
-----------	---------------------------------------

Time between retransmitted ROUTE REQUESTs (exponentially backed off)	500 ms
Size of source route header carrying n addresses	4n + 4 bytes
Timeout for nonpropagating search	30 ms
Time to hold packets awaiting routes	30 s
Max rate for sending gratuitous REPLYs for a route	1/s

- Combination of DSR and DSDV
- Broadcasts ROUTE REQUEST
- Receives ROUTE REPLY with routing
 information
- Nodes remember only the next hop
- HELLO msgs maintain link state

AODV Implementation

• Removed HELLO messages

- Added link layer feedback
- Called AODV-LL

Shorter timeout for ROUTE REQUEST

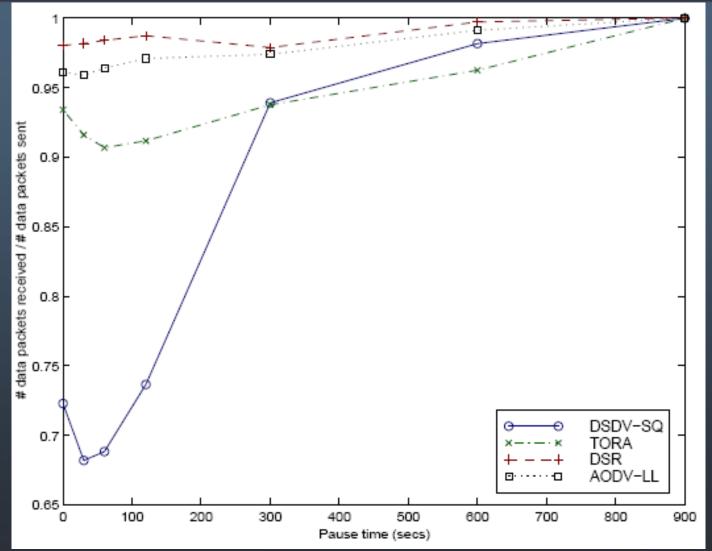
SECTION 4: TESTING & RESULTS

Methodology

- Simulated network
 - Took scenario files as input
 - 210 total scenario files
- 50 wireless nodes
- Flat rectangular area (1500m x300m)
- 900 seconds test time

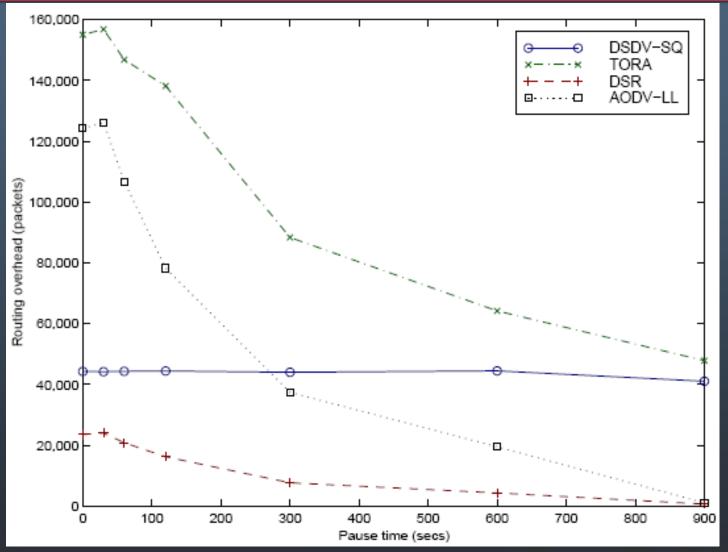
Movement Model and Communication

- 7 different pause times
- Nodes moved with a speed from 0-20m/s
 - Also use simulations with max 1m/s for comparison
- Networks contained 10,20,30 CBR sources
 Did not use TCP
- 4 packets per second
- 64 byte packets
- Connections started uniformly between 0-180s


Metrics

Packet Delivery Ratio

- Loss rate of transport protocols
- Routing Overhead
 - Measures scalability
- Path Optimality
 - Effective use of network resources



Packet Delivery Ratio (function of pause time)

Packet Delivery Ratio

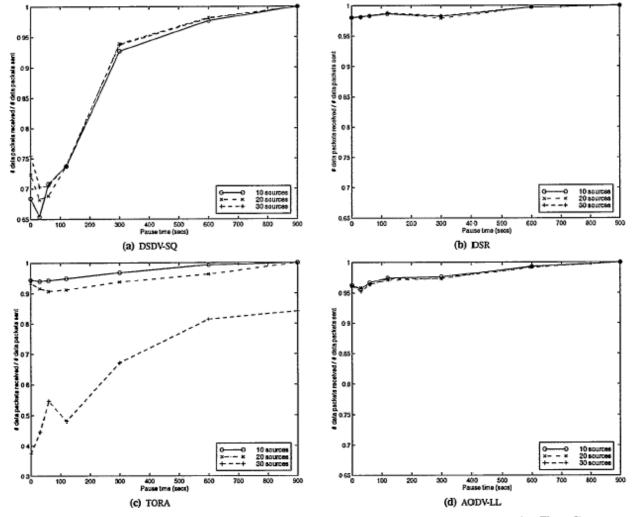
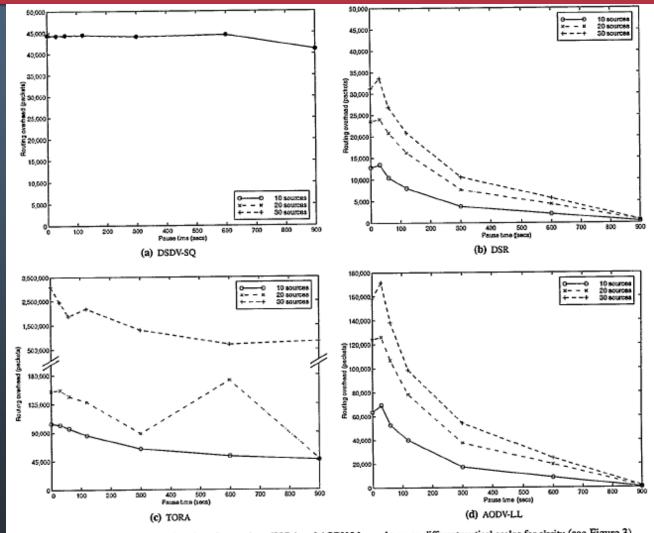
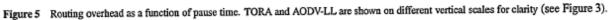
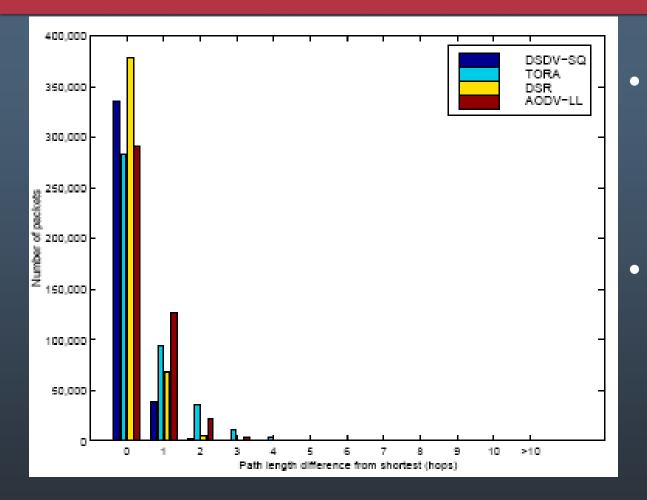
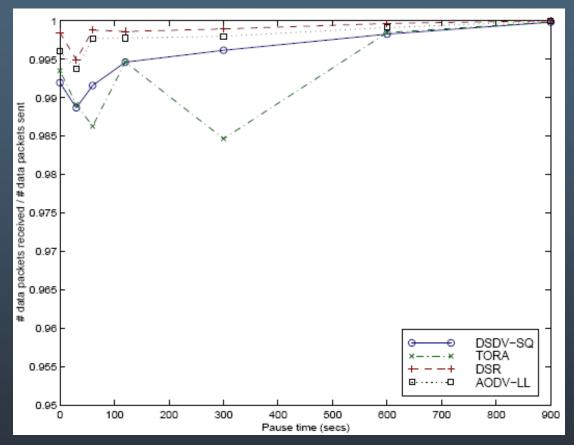
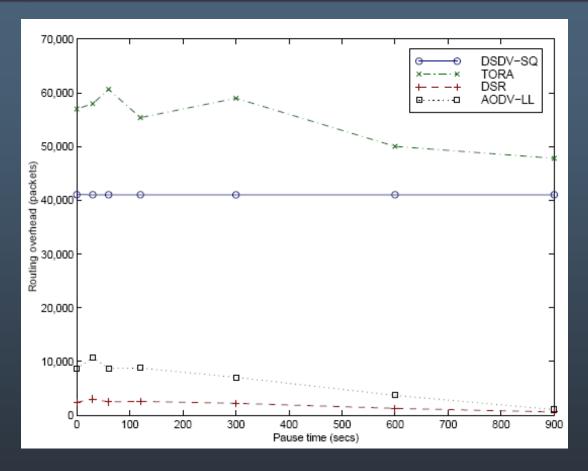




Figure 4 Packet delivery ratio as a function of pause time. TORA is shown on a different vertical scale for clarity (see Figure 2).


Routing Overhead


Path Optimality Details

 DSR and DSDV-SQ close to optimal
 Doesn't take into account pause time


Lower Speed of Node Movement

"application" data successfully delivered as a function of pause time (packet delivery ratio)

Lower Speed of Node Movement

Routing packets sent as a function of pause time (routing overhead)

Conclusions

- *ns* network simulator can now evaluate ad-hoc routing protocols
- DSDV
 - Good with low mobility.
- TORA

- Large overhead; fails to converge with 30 sources

- DSR
 - Very good at all rates + speed, but large packet overhead
- AODV
 - Almost as good as DSR, but has more transmission overhead
 Worcester Polytechnic Institute

Acknowledgements

Thanks to Professor Kinicki for the colored graphs.

Questions?