

Transport
Layer

 Computer Networks

Term B10

Kurose’s Chapter 3 Outline

 Computer Networks Transport Layer 2

 3.1 Transport-layer
services

 3.2 Multiplexing and
demultiplexing

 3.3 Connectionless
transport: UDP

 3.4 Principles of
reliable data transfer

 3.5 Connection-oriented
transport: TCP
– segment structure

– reliable data transfer

– flow control

– connection management

 3.6 Principles of
congestion control

 3.7 TCP congestion
control

Transport Services and Protocols

 provide logical communication
between app processes
running on different hosts

 transport protocols run in
end systems

– send side: breaks app

messages into segments,

passes to network layer

– rcv side: reassembles

segments into messages,

passes to app layer

 more than one transport
protocol available to apps

– Internet: TCP and UDP

application
transport
network
data link
physical

application
transport
network
data link
physical

Computer Networks Transport Layer 3

Internet Transport Layer Protocols

 reliable, in-order
delivery (TCP)
– congestion control

– flow control

– connection setup

 unreliable, unordered
delivery: UDP
– no-frills extension of

“best-effort” IP

 services not available:
– delay guarantees

– bandwidth guarantees

application
transport
network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

application
transport
network
data link
physical

Computer Networks Transport Layer 4

Kurose’s Chapter 3 Outline

 Computer Networks Transport Layer 5

 3.1 Transport-layer
services

 3.2 Multiplexing and
demultiplexing [Brief
Look]

 3.3 Connectionless
transport: UDP

 3.4 Principles of
reliable data transfer

 3.5 Connection-oriented
transport: TCP
– segment structure

– reliable data transfer

– flow control

– connection management

 3.6 Principles of
congestion control

 3.7 TCP congestion
control

Connection-Oriented Demux

 TCP socket identified
by 4-tuple:
– source IP address

– source port number

– dest IP address

– dest port number

 receiving host uses all
four values to direct
segment to appropriate
socket.

 Server host may support
many simultaneous TCP
sockets:
– each socket identified by

its own 4-tuple

 Web servers have
different sockets for
each connecting client.
– non-persistent HTTP will

have different socket for

each request.

Computer Networks Transport Layer 6

 Computer Networks Transport Layer 7

Client

IP:B

P1

client
 IP: A

P1 P2 P4

server
IP: C

SP: 9157
DP: 80

SP: 9157
DP: 80

P5 P6 P3

D-IP:C
S-IP: A
D-IP:C

S-IP: B

SP: 5775
DP: 80

D-IP:C
S-IP: B

Connection-Oriented Demux

 Computer Networks Transport Layer 8

Connection-Oriented Demux

Client

IP:B

P1

client
 IP: A

P1 P2

server
IP: C

SP: 9157
DP: 80

SP: 9157
DP: 80

P3

D-IP:C
S-IP: A
D-IP:C

S-IP: B

SP: 5775
DP: 80

D-IP:C
S-IP: B

P4

Threaded Web Server

Kurose’s Chapter 3 Outline

 Computer Networks Transport Layer 9

 3.1 Transport-layer
services

 3.2 Multiplexing and
demultiplexing

 3.3 Connectionless
transport: UDP

 3.4 Principles of
reliable data transfer

 3.5 Connection-oriented
transport: TCP
– segment structure

– reliable data transfer

– flow control

– connection management

 3.6 Principles of
congestion control

 3.7 TCP congestion
control

UDP: User Datagram Protocol [RFC 768]

 “no frills,” “bare bones”
Internet transport protocol

 “best effort” service, UDP
segments may be:

– lost

– delivered out of order

to app

 connectionless:

– no handshaking

between UDP sender,

receiver

– each UDP segment

handled independently

of others.

Why is there a UDP?
 no connection

establishment (which can
add delay)

 simple: no connection state
at sender, receiver

 small segment header

 no congestion control: UDP
can blast away as fast as
desired.

Computer Networks Transport Layer 10

UDP Details

 often used for streaming
multimedia apps

– loss tolerant

– rate sensitive

 other UDP uses
– DNS

– SNMP

 reliable transfer over
UDP: add reliability at
application layer

– application-specific

error recovery!

source port # dest port #

32 bits

Application
data

(message)

UDP segment format

length checksum

Length, in
bytes of UDP

segment,
including

header

Computer Networks Transport Layer 11

UDP Checksum

Sender:
 treat segment contents

as sequence of 16-bit
integers

 checksum: addition (1’s
complement sum) of
segment contents

 sender puts checksum
value into UDP checksum
field

Receiver:
 compute checksum of

received segment

 check if computed checksum
equals checksum field value:

– NO - error detected

– YES - no error detected.

But maybe errors

nonetheless? More later

….

Goal: detect “errors” (e.g., flipped bits) in transmitted
segment

Computer Networks Transport Layer 12

Internet Checksum Example
 Note

– When adding numbers, a carryout from
the most significant bit needs to be
added to the result

 Example: add two 16-bit integers

1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0
1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 0 0
1 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1

wraparound

sum

checksum

 Computer Networks Transport Layer 13

Kurose’s Chapter 3 Outline

 3.1 Transport-layer
services

 3.2 Multiplexing and
demultiplexing

 3.3 Connectionless
transport: UDP

 3.4 Principles of
reliable data transfer

 3.5 Connection-oriented
transport: TCP
– segment structure

– reliable data transfer

– flow control

– connection management

 3.6 Principles of
congestion control

 3.7 TCP congestion
control

Computer Networks Transport Layer 14

We will use Tanenbaum’s Data Link Layer
Treatment to study this in place of K&R’s
Transport Layer Discussion.

Principles of Reliable Data Transfer

 important in application, transport, and data link layers

 top-10 list of important networking topics!

 characteristics of unreliable channel will determine
complexity of reliable data transfer protocol (rdt)

Computer Networks Transport Layer 15

Principles of Reliable Data Transfer

 characteristics of unreliable channel will determine
complexity of reliable data transfer protocol (rdt)

Computer Networks Transport Layer 16

 important in application, transport, and data link layers

 top-10 list of important networking topics!

Principles of Reliable Data Transfer

 characteristics of unreliable channel will determine
complexity of reliable data transfer protocol (rdt).

Computer Networks Transport Layer 17

 important in application, transport, and data link layers

 top-10 list of important networking topics!

Reliable Data Transfer: Getting Started

send
side

receive
side

rdt_send(): called from above,
(e.g., by app.). Passed data to

deliver to receiver upper layer

udt_send(): called by rdt,
to transfer packet over

unreliable channel to receiver

rdt_rcv(): called when packet
arrives on rcv-side of channel

deliver_data(): called by
rdt to deliver data to upper

Computer Networks Transport Layer 18

TCP Segment Structure

source port # dest port #

32 bits

application
data

(variable length)

sequence number

acknowledgement number

Receive window

Urg data pointer checksum

F S R P A U
head
len

not
used

Options (variable length)

URG: urgent data
(generally not used)

ACK: ACK #
valid

bytes
rcvr willing
to accept

counting
by bytes
of data
(not segments!)

Internet
checksum
(as in UDP)
{needed now
for error
detection}

Computer Networks Transport Layer 19

WARNING

Explanation of

 Reliable Data Transport

will now be explained using the

Data Link Layer

 Computer Networks Transport Layer 20

Reliable data transfer: getting started

We’ll:

 incrementally develop sender, receiver sides
of reliable data transfer protocol (rdt)

 consider only unidirectional data transfer
– but control info will flow on both directions!

 use finite state machines (FSM) to specify
sender, receiver

state
1

state
2

event causing state transition

actions taken on state transition

state: when in this
“state” next state

uniquely determined
by next event

event

actions

Computer Networks Transport Layer 21

Rdt1.0: Reliable Transfer over a Reliable Channel

 underlying channel perfectly reliable
– no bit errors

– no loss of packets

 separate FSMs for sender, receiver:
– sender sends data into underlying channel

– receiver read data from underlying channel

Wait for

call from

above packet = make_pkt(data)

udt_send(packet)

rdt_send(data)

extract (packet,data)

deliver_data(data)

Wait for

call from

below

rdt_rcv(packet)

sender receiver

Computer Networks Transport Layer 22

Rdt2.0: Channel with Bit Errors

 underlying channel may flip bits in packet
– checksum to detect bit errors

 the question: how to recover from errors:
– acknowledgements (ACKs): receiver explicitly tells

sender that pkt received OK.

– negative acknowledgements (NAKs): receiver explicitly

tells sender that pkt had errors.

– sender retransmits pkt on receipt of NAK.

 new mechanisms in rdt2.0 (beyond rdt1.0):
– error detection

– receiver feedback: control msgs (ACK,NAK) rcvr->sender

Computer Networks Transport Layer 23

rdt3.0: Channels with Errors and Loss

New assumption:
underlying channel can
also lose packets (data
or ACKs)
– checksum, seq. #, ACKs,

retransmissions will be

of help, but not enough

Approach: sender waits
“reasonable” amount of
time for ACK

 retransmits if no ACK
received in this time

 if pkt (or ACK) just delayed
(not lost):

– retransmission will be

duplicate, but use of seq.

#’s already handles this

– receiver must specify seq

of pkt being ACKed

 requires countdown timer

Computer Networks Transport Layer 24

rdt3.0 Sender

sndpkt = make_pkt(0, data, checksum)

udt_send(sndpkt)

start_timer

rdt_send(data)

Wait

for

ACK0

rdt_rcv(rcvpkt) &&

(corrupt(rcvpkt) ||

isACK(rcvpkt,1))

Wait for

call 1 from

above

sndpkt = make_pkt(1, data, checksum)

udt_send(sndpkt)

start_timer

rdt_send(data)

rdt_rcv(rcvpkt)

&& notcorrupt(rcvpkt)

&& isACK(rcvpkt,0)

rdt_rcv(rcvpkt) &&

(corrupt(rcvpkt) ||

isACK(rcvpkt,0))

rdt_rcv(rcvpkt)

&& notcorrupt(rcvpkt)

&& isACK(rcvpkt,1)

stop_timer

stop_timer

udt_send(sndpkt)

start_timer

timeout

udt_send(sndpkt)

start_timer

timeout

rdt_rcv(rcvpkt)

Wait for

call 0from

above

Wait

for

ACK1

L

rdt_rcv(rcvpkt)

L

L

L

Computer Networks Transport Layer 25

Pipelining and Sliding Windows

 Lecture returns back to this point
after Data Link Layer.

 Diagrams from textbook!!

 Computer Networks Transport Layer 26

Pipelined Protocols

Pipelining:: sender allows multiple, “in-flight”,
yet-to-be-acknowledged packets.
– range of sequence numbers must be increased

– buffering at sender and/or receiver

 Two generic forms of pipelined protocols: Go-Back-
N and Selective Repeat

Computer Networks Transport Layer 27

Pipelining increases Utilization

first packet bit transmitted, t = 0

sender receiver

RTT

last bit transmitted, t = L / R

first packet bit arrives

last packet bit arrives, send ACK

ACK arrives, send next

packet, t = RTT + L / R

last bit of 2nd packet arrives, send ACK

last bit of 3rd packet arrives, send ACK

U
sender

=
.024

30.008
= 0.0008

microsecon

ds

3 * L / R

RTT + L / R
=

Increase utilization
by a factor of 3!

 Computer Networks Transport Layer 28

Pipelining Protocols

Go-back-N: overview
 sender: up to N
unACKed pkts in pipeline

 receiver: only sends
cumulative ACKs
– doesn’t ACK pkt if there’s

a gap

 sender: has timer for
oldest unACKed pkt
– if timer expires:

retransmit all unACKed
packets

Selective Repeat: overview
 sender: up to N unACKed
packets in pipeline

 receiver: ACKs individual
pkts

 sender: maintains timer
for each unACKed pkt
– if timer expires: retransmit

only unACKed packet.

Computer Networks Transport Layer 29

Go-Back-N

Sender:
 k-bit seq # in pkt header

 “window” of up to N, consecutive unACKed pkts allowed

 ACK(n): ACKs all pkts up to, including seq # n - “cumulative ACK”

 may receive duplicate ACKs (see receiver)

 timer for each in-flight pkt

 timeout(n): retransmit pkt n and all higher seq # pkts in window.

Computer Networks Transport Layer 30

GBN: Sender Extended FSM

Wait
start_timer

udt_send(sndpkt[base])

udt_send(sndpkt[base+1])

…

udt_send(sndpkt[nextseqnum-1])

timeout

rdt_send(data)

if (nextseqnum < base+N) {

 sndpkt[nextseqnum] = make_pkt(nextseqnum,data,chksum)

 udt_send(sndpkt[nextseqnum])

 if (base == nextseqnum)

 start_timer

 nextseqnum++

 }

else

 refuse_data(data)

base = getacknum(rcvpkt)+1

If (base == nextseqnum)

 stop_timer

 else

 start_timer

rdt_rcv(rcvpkt) &&

 notcorrupt(rcvpkt)

base=1

nextseqnum=1

rdt_rcv(rcvpkt)

 && corrupt(rcvpkt)

L

Computer Networks Transport Layer 31

GBN: Receiver Extended FSM

ACK-only: always send ACK for correctly-received
pkt with highest in-order seq #
– may generate duplicate ACKs

– need only remember expectedseqnum

 out-of-order pkt:
– discard (don’t buffer) -> no receiver buffering!

– Re-ACK pkt with highest in-order seq #

Wait

udt_send(sndpkt)

default

 rdt_rcv(rcvpkt)

 && notcurrupt(rcvpkt)

 && hasseqnum(rcvpkt,expectedseqnum)

extract(rcvpkt,data)

deliver_data(data)

sndpkt = make_pkt(expectedseqnum,ACK,chksum)

udt_send(sndpkt)

expectedseqnum++

expectedseqnum=1

sndpkt =

 make_pkt(expectedseqnum,ACK,chksum)

L

Computer Networks Transport Layer 32

Selective Repeat

 receiver individually acknowledges all correctly
received packets.
– buffers packets, as needed, for eventual in-order

delivery to upper layer.

 sender only resends packets for which ACK not
received.
– sender timer for each unACKed packet

 sender window
– N consecutive sequence #’s

– again limits sequence #s of sent, unACKed packets

Computer Networks Transport Layer 33

Selective Repeat
Sender, Receiver Windows

Computer Networks Transport Layer 34

Selective Repeat

data from above :
 if next available seq # in

window, send pkt

timeout(n):
 resend pkt n, restart timer

ACK(n) in [sendbase,sendbase+N]:

 mark pkt n as received

 if n smallest unACKed pkt,
advance window base to next
unACKed seq #

sender

pkt n in [rcvbase,
rcvbase+N-1]

 send ACK(n)

 out-of-order: buffer

 in-order: deliver (also
deliver buffered, in-order
pkts), advance window to
next not-yet-received pkt

pkt n in [rcvbase-
N,rcvbase-1]

 ACK(n)

otherwise:
 ignore

receiver

Computer Networks Transport Layer 35

Selective Repeat in Action

36

sliding

window

Selective Repeat
 Dilemma

Example:
 seq #’s: 0, 1, 2, 3

 window size=3

 receiver sees no

difference in two
scenarios!

 incorrectly passes
duplicate data as new
in (a)

Q: What is the required
relationship between
seq # size and window
size?

Computer Networks Transport Layer 37

Kurose’s Chapter 3 Outline

 3.1 Transport-layer
services

 3.2 Multiplexing and
demultiplexing

 3.3 Connectionless
transport: UDP

 3.4 Principles of
reliable data transfer

 3.5 Connection-oriented
transport: TCP
– segment structure

– reliable data transfer

– flow control

– connection management

 3.6 Principles of
congestion control

 3.7 TCP congestion
control

Computer Networks Transport Layer 38

TCP Flow Control

 receive side of TCP
connection has a
receive buffer:

 speed-matching
service: matching
send rate to receiving
application’s drain
rate.

 app process may be
slow at reading from
buffer.

sender won’t overflow
receiver’s buffer by

transmitting too much,
 too fast

flow control

IP
datagrams

TCP data
(in buffer)

(currently)
unused buffer

space

application
process

Computer Networks Transport Layer 39

TCP Flow Control: how it works

(suppose TCP receiver
discards out-of-order
segments)

 unused buffer space:
= rwnd

= RcvBuffer-[LastByteRcvd -

LastByteRead]

 receiver: advertises
unused buffer space
by including rwnd value
in segment header

 sender: limits # of
unACKed bytes to rwnd
– guarantees receiver’s

buffer doesn’t overflow.

 rwnd known as the
receiver’s advertised
window.

IP
datagrams

TCP data
(in buffer)

(currently)
unused buffer

space

application
process

rwnd
RcvBuffer

Computer Networks Transport Layer 40

Kurose’s Chapter 3 Outline

 3.1 Transport-layer
services

 3.2 Multiplexing and
demultiplexing

 3.3 Connectionless
transport: UDP

 3.4 Principles of
reliable data transfer

 3.5 Connection-oriented
transport: TCP
– segment structure

– reliable data transfer

– flow control

– connection management

 3.6 Principles of
congestion control

 3.7 TCP congestion
control

Computer Networks Transport Layer 41

