Local Area Networks

- Aloha
- Slotted Aloha
- CSMA (non-persistent, 1-persistent, p-persistent)
- CSMA/CD
- Ethernet
- Token Ring

		Network La		Network Layer		
LLC	}	802.2 Logico		Data Link Layer		
MAC	802.3 CSMA-CD	802.5 Token Ring	802.11 Wireless LAN	Other LANs		
Physical Layer	Various Physical Layers					Physical Layer
oyright ©2000 T	The McGraw Hill Con	npanies IEEI	E 802			OSI Figure 6

Copyr

Networks: Local Area Networks

Ethernet

Ethernet [DEC, Intel, Xerox]

- 1-persistent, CSMA-CD with Binary Exponential Backoff.
- Manchester encoding.

Ethernet [operational in 1974]

Initially 3 Mbps baseband coaxial cable (thick Ethernet).

Operational Description

- Ethernet stations sense the channel.
- When the channel is free, the station transmits a frame.
- The stations monitor the 'ether' during the transmission.
- If a collision is detected by any station, the transmission is terminated immediately and a jam signal is sent.
- Upon collision, transmitting stations **backoff** using a local counter and then retransmit.

Collision Detection [worst case]

A begins to transmit at t=0

B begins to

transmit at

 $t=t_{prop}$ - δ ; B detects

collision at

$$t = t_{prop}$$

A detects collision at $t=2 t_{prop}$ - δ

It takes $2 t_{prop}$ to find out if channel has been captured

Copyright ©2000 The McGraw Hill Companies

Leon-Garcia & Widjaja: Communication Networks

Ethernet

Figure 6.23

- A frame seizes the channel after $2 t_{prop}$
- On 1 km Ethernet, t_{prop} is approximately 5 microseconds.
- Contention interval = $\frac{2}{t_{prop}}$
- Interframe gap = 9.6 microseconds
- Modeled as *slotted scheme* with slot = $\frac{2}{t_{prop}}$

Binary Exponental Backoff

- Upon a collision, the sending stations increment a local counter K. The backoff interval is randomly selected using a uniform distribution over the L = 2^K slots.
- K is initially set to 0.
- Thus upon collision, the value of L is doubled locally for each sending station.

Binary Exponential Backoff (BEB)

Slotted ALOHA has been shown to be unstable when

Since Ethernet permits up to 1024 stations, backoff continues until K = 10, $L = 2^{10}$, and $p = 1/2^{10}$

Normally K is incremented up to 10, but BEB is set for 16 retries. After 16 retries, MAC gives up trying to send the frame.

{The IP packet is now considered lost}.

802.3 MAC Frame—

- 0 Single address
- 1 Group address
 - 0 Local address
 - 1 Global address

• Destination address is either single address or group address (broadcast = 111...111)

- Addresses are defined on local or universal basis
- 2⁴⁶ possible global addresses

Leon-Garcia & Widjaja: Communication Networks

Figure 6.52

Ethernet Frame

	7	1	2 or 6	2 or 6	2			4
Preamble	mble	SD	Destination Address	Source Address	Type	Information	Pad	FCS
			Tiddicss	Huaress				

Synch Start frame

64 to 1518 bytes

Copyright ©2000 The McGraw Hill Companies

Leon-Garcia & Widjaja: Communication Networks

Figure 6.53

Figure 1.4 Lineage of Fast Ethernet

Ethernet Evolution

10BASE5

{1983}

- 10 Mbps
- 500 meter segment length
- Signal-regenerating repeaters
- Thick Coax
 - Advantages: Low attenuation, excellent noise immunity, superior mechanical strength
 - Disadvantages: Bulky, difficult to pull, transceiver boxes too expensive
- * Wiring represented a significant part of total installed cost.

MAU device is physically hooked on main cable.

50 meter AUI cable from MAU to station.

Ethernet Evolution

10BASE2 Cheapernet

{1985}

- 10 Mbps
- 185 meter segment length
- Signal-regenerating repeaters
- Transceiver was integrated onto the adapter
- Thin Coax (coax thinner and lighter)
 - Advantages: Easier to install, reduced hardware cost,
 BNC connectors widely deployed → lower installation costs.
 - Disadvantages: Attenuation not as good, could not support as many stations due to signal reflection caused by BNC Tee Connector.

Ethernet Evolution

1BASE5 StarLAN

{ 1987 }

- 1 Mbps
- 250 meter segment length
- Signal-regenerating repeaters
- Transceiver integrated onto the adapter
- Hub-and-Spoke topology (star topology)
- Two pairs of unshielded twisted pair
 - Advantages: Since four or more UTP are <u>ubiquitous</u> in buildings, it is easier to use installed wiring in the walls. Telephone wiring is hierarchical → can use wiring closets.

Ethernet Evolution

10BASET {1990} **Most popular

- 10 Mbps
- 100 meter segment length
- Signal-regenerating repeaters
- Transceiver integrated onto adapter
- Two pairs of UTP
- **Hub-and-spoke topology** {Hub in the closet}
 - Advantages: could be done without pulling new wires.
 Each hub amplifies and restores incoming signal.

The Hub Concept

- Separate transmit and receive pair of wires.
- The repeater in the hub retransmits the signal received from any input pair onto ALL output pairs.
- Essentially the hub emulates a broadcast channel with collisions detected by receiving nodes.

Figure 1.7 10BASE-T Hub-and-Spoke Architecture

Twisted Pair Ethernet

Figure 6.56

WPI

Switched Ethernet

- * Basic idea: improve on the **Hub** concept
- The switch *learns destination locations* by remembering the ports of the associated source address in a table.
- The switch may not have to broadcast to all output ports. It may be able to send the frame **only** to the destination port.
- **a big performance advantage over a hub**, if more than one frame transfer can go through the switch concurrently.

Figure 7.2
Ethernet switching:
(a) switching hub schematic;
(b) switching hub derivative.

Switched Ethernet

- The advantage comes when the **switched Ethernet** backplane is able to repeat more than one frame in parallel (a separate backplane bus line for each node).
 - The frame is relayed onto the required output port via the port's own backplane bus line.
- Under this scheme *collisions are still possible* when two concurrently arriving frames are destined for the same station.
- Note each parallel transmission can take place at 10Mbps!!

Switched Ethernet

Figure 4-20.A simple example of switched Ethernet.

Switched Ethernet Hub

- Since servers are often shared by multiple nodes, one can employ a switching hub with a port which operates at a higher rate than the other ports.
- This requires extra buffering inside the hub to handle speed mismatches.
- Can be further *enhanced* by higher rated port **full-duplex**.

Copyright ©2000 The McGraw Hill Companies

Networks: Ethernet

Leon-Garcia & Widjaja: Communication Networks