

Integrating Wireless Sensor
Networks with the Web

W.Colitti, K. Steenhaut and N. De Caro

Information Processing in

Sensor Networks Conference 2011

Presenter - Bob Kinicki

Internet of Things

Fall 2015

Outline
 Introduction

– REST

 CoAP
– Request/response Layer

– Transaction Layer

 CoAP versus HTTP Power Consumption
Evaluation

 Integrating CoAP-based WSN with
HTTP-based Web Application

 Conclusions and Critique

 Internet of Things CoAP vs HTTP Performance 2

Introduction

 This paper is highly cited because it discusses an early
Contiki implementation of the Constrained Application
Protocol (CoAP) on Tmote Sky sensor motes.

 REpresentationl State Transfer (REST) identifies a
resource (an object) controlled by the server by a URI
(Universal Resource Identifier). {Note – the sensor is
viewed as the server in this abstraction.}

 Majority of REST architectures use HTTP with its
commands: GET, PUT, POST and DELETE.

Internet of Things CoAP vs HTTP Performance 3

REST

 IETF Constrained RESTful environments (CoRE)
Working Group standardized the web service
paradigm into networks of smart objects.

 In the Web of Things (WoT), object
applications are built on top of the REST
architecture.

 The CoRE group defined a REST-based web
transfer protocol called Constrained
Application Protocol (CoAP).

4 Internet of Things CoAP vs HTTP Performance

CoAP
 CoAP manipulates Web resources using the
same methods as HTTP: GET, PUT, POST
and DELETE.

 CoAP is a subset of HTTP functionality re-
designed for low power embedded devices
such as sensors (for IoT and M2M).

 CoAP’s two layers are:
– Request/Response Layer

– Transaction Layer

5 Internet of Things CoAP vs HTTP Performance

CoAP versus HTTP

6 Internet of Things CoAP vs HTTP Performance

 TCP overhead is too high and its flow control is not

appropriate for short-lived transactions.

 UDP has lower overhead and supports multicast.

Called messaging layer

in previous paper.

CoAP

 Request/Response layer :: is responsible for
transmission of requests and responses. This
is where REST-based communication occurs.

– REST request is piggybacked on
Confirmable or Non-confirmable message.

– REST response is piggybacked on the
related Acknowledgement message.

 CoAP uses tokens to match request/response
in asynchronous communications.

7 Internet of Things CoAP vs HTTP Performance

CoAP

 Transaction layer :: handles single
message exchange between end points.

 Four message types:
– Confirmable – requires an ACK.

– Non-confirmable – no ACK needed.

– Acknowledgement – ACKs a Confirmable.

– Reset - indicates a Confirmable message
has been received but context is missing
for processing.

8 Internet of Things CoAP vs HTTP Performance

CoAP

 CoAP provides reliability without using
TCP as transport protocol.

 CoAP enables asynchronous communication.
– e.g, when CoAP server receives a request
which it cannot handle immediately, it first
ACKs the reception of the message and
sends back the response in an off-line
fashion. {Not implemented in this study!}

 The transaction layer also supports
multicast and congestion control.

 9 Internet of Things CoAP vs HTTP Performance

COAP Efficiencies
 CoAP design goals:: small message overhead
and limited fragmentation.

 CoAP uses compact fixed-length 4-byte binary
header followed by compact binary options.

 Typical request with all encapsulation has a
10-20 byte header.

 CoAP implements an observation relationship
whereby an “observer” client registers itself
using a modified GET to the server.

 When resource (object) changes state, server
notifies the observer.

10 Internet of Things CoAP vs HTTP Performance

CoAP vs HTTP
Power Consumption Evaluation

 CoAP server implemented on Tmote
Sky sensor motes running Contiki with
6LowPAN/RPL.
– Asynchronous transactions, observations
and congestion control were missing!

 HTTP server implemented using same
motes.

 In experiments, client requests
temperature and humidity from server
every 10 secs. for 20 minutes.

Internet of Things CoAP vs HTTP Performance 11

Power Consumption Tests

 Both CoAP and HTTP servers respond
using JSON (lightweight text standard)
and not XML.

 Example response from server:

Internet of Things CoAP vs HTTP Performance 12

{"sensor":"0212:7400:0002:0202",

"readings":{"hum":31,"temp":23.1}}

 Lower bytes of IP address

identifies the sensor mote.

Table 1: CoAP vs HTTP Power Usage

13 Internet of Things CoAP vs HTTP Performance

 HTTP transaction bytes are 10 times higher than

CoAP transaction bytes due to 6LoWPAN and

CoAP header compression.

 CoAP packet can be sent in single IEEE802.15.4

frame without fragmentation.

 Less bytes lower power consumption and longer

lifetime for CoAP.

Integrating CoAP in WSN
with Web Application

Internet of Things CoAP vs HTTP Performance 14

 Authors introduce an end-to-end IP based architecture

that integrates CoAP over WSN with HTTP web

application using a gateway.

 System designed for greenhouse monitoring, but only a

prototype implemented here!

Gateway Design and Development

Internet of Things CoAP vs HTTP Performance 15

 Contiki gateway attached to Linux machine via USB.

 As a prototype, application server and CoAP data

collection functionality are in the same machine.

 Web client sends requests for WSN resources to Web

server in gateway using HTTP.

Gateway Design and Development

Internet of Things CoAP vs HTTP Performance 16

 Web server retrieves resource data either
from database (a gateway caching mechanism)
or from the CoAP client.

 Web server either requests ‘fresh’ data from
the WSN or receives data from the CoAP
client (subscribe/publish) triggered by changes
in resource at the CoAP server. {Web server
bypasses database in both cases.}

 Authors use GWT (Google Web Toolkit) to
develop Web application.

Gateway Database

 Since CoAP client receives WSN data in
JSON, storing documents as JSON in
Apache CouchDB provides RESTful API.

 Implementation was NOT tested under
high frequency conditions.

 Authors worry about database caching
mechanism becoming the bottleneck!

Internet of Things CoAP vs HTTP Performance 17

CoAP Client

 libcoap CoAP client communicates with the
WSN.

 Since Contiki support for observations was
not yet available, CoAP client does not
handle publish packets from mote server.

 CoAP client adds timestamp to JSON data
to support historical web server requests.

Internet of Things CoAP vs HTTP Performance 18

Gateway Implementation

 Gateway does not provide proxy
functionality that converts HTTP
requests to CoAP and vica versa.

 Web server invokes CoAP client with
HTTP request parameters gateway
is not transparent to the application
and to the WSN.

 Gateway needs proxy functionality to
support complicated operations such as
observations.

Internet of Things CoAP vs HTTP Performance 19

Conclusions

 Authors provide IoT community with
CoAP vs HTTP measurements that show
power improvements from the µIP stack.

 Prototype gateway is a ‘proof-of-
concept’ that matched the CoAP
functionality built into Contiki in 2011.

 Paper encouraged proxy development.

Internet of Things CoAP vs HTTP Performance 20

Critique

 This is a good short paper IPSN is a
respectable conference in sensor area.

 CoAP explanation is clearer than in
previous paper.

 There are several grammar/typo
mistakes in the paper.

 Performance results could have included
more than just power.

Internet of Things CoAP vs HTTP Performance 21

