An Implementation and Experimental Study of the eXplicit Control Protocol (XCP)

Yongguang Zhang and Tom Henderson INFOCOMM 2005

Presenter - Bob Kinicki

Outline

- . Overview of XCP Study
- . XCP Implementation Details
- . XCP Experimental Evaluation
- . XCP Sensitivity Study
- Conclusions and Critique

Overview

- The XCP paper involved control theory laws/proofs and ns-2 simulation results.
- This paper involves implementing XCP in Linux and conducting a testbed evaluation.
- While initial validation results match reported simulation results, this paper exposes: implementation challenges, precision and range issues for XCP, and environmental factors that adversely affect XCP performance.

Implementation Details

- . XCP implemented as a TCP option.
- . The use of XCP negotiated on connection setup.
- XCP congestion header encoded as a TCP header option and attached to the outgoing TCP header.

XCP Option Format

Fig. 1. XCP option formats in both directions

- Each of the three XCP congestion header fields are 16 bits.
- H_cwnd and H_feedback measured in packets and represented as split mantissa-exponent.
- H_rtt measured in millisec. and stored as unsigned integer.

XCP functionality from TCP

- XCP implementation retained fast retransmit and cwnd reset to one on timeout.
- TCP slow start and congestion avoidance disabled.
- Advertised window modified to grow by feedback_rcv.
- To address wireless packet losses, XCP implemented with two SACK blocks.

- . XCP Router function divided into:
 - Kernel support and interface
 - XCP congestion control (CC) engine
- . Linux kernel support
 - XCP Router function implemented as a kernel loadable module.
 - Linux network device layer includes generic packet queueing and scheduling mechanism *Qdisc.*
 - Linux tc command used to manage XCP Qdisc.

XCP Router

Fig. 2. Structure of XCP router module w.r.t. networking stack in Linux kernel

XCP CC Engine

- No per-flow state in XCP router.
- Per-link congestion control info stored at c.c. state in XCP Qdisc.
- xcp_do_arrival updates running traffic statistics.
- xcp_do_departure calculates individual packet feedback.
- XCP router engine must do per interval
 (d) processing.

XCP Router

Fig. 2. Structure of XCP router module w.r.t. networking stack in Linux kernel

XCP Implementation Challenges

- Lack of Linux support for double long and floating point in kernel forced careful scaling analysis of variables and XCP parameters to support high-speed networks.
- Changes in bandwidth (capacity) can be fractional → individual packet feedback will be lost to rounding if H_feedback represented as integer number of segments.

Using Mantissa-Exponent Format

Fig. 3. Bandwidth utilization (total goodput of all flows as a ratio of raw bandwidth) comparison when 1, 2, 4, or 8 flows share the same bottleneck.

Implementation details can strongly impact performance!!

XCP Experimental Network

RTT = 500 ms; router queue size = 2*BDP

Fig. 4. Experimental network configuration

13

Figure 5 (top three graphs)

Bandwidth utilization 0.8 xcp tcp/fifo 0.6 tcp/red • 0.40.2 Validation Experiments Router queue length (Kbytes) Run four flows of one type. tcp/fifo tcp/red . Each flow sent from S_i . хср All flows started at the same time. Packet drops (packets/RTT) tcp/fifo tcp/red • хср

Advanced Computer Networks

Figure 5 (bottom two graphs)

Fig. 5. Performance comparison between XCP and TCP.

Figure 6: XCP vs TCP Per-Flow Fairness

Fig. 6. Per-flow utilizations showing fairness between XCP flows (but not between TCP flows) with different start times or different RTTs.

Advanced Computer Networks Experimental Study of XCP 16

XCP Sensitivity Study

- XCP sensitive to 'environmental conditions', i.e., OS configuration and network conditions.
- When receiver buffer too small, difference between actual sent and advertised XCP cwnd treated as spare capacity.
- XCP weakness is determining available capacity.
- XCP has deployment problems with non-XCP queues.

17

Fig. 9. XCP flow cwnd convergence under different parameter tuning.

The Efficiency Controller (EC)

Link capacity estimates affected by low layer overhead (see Figure 7), crossing traffic and media access contending traffic (see Figure 10) and non-congestion wireless packet losses.

Wireless losses are induced 'pre' and 'post' XCP router and along reverse 'ack' path.

Emulating WLAN Packet Loss

20

XCP Deployment

- If the bottleneck router is non-XCP (e.g. DropTail or RED), XCP has no mechanism to react to this congestion.
- Experiments conducted with 'tighter' non-XCP router before (case 2) and after (case 1) XCP router.

Hybrid Network Cases

Non-XCP router has FIFO queue with 100 packet buffer and 5 Mbps capacity.

Case 1: non-XCP queue after an XCP queue

Since XCP assumes all losses due to link impairments, XCP does not respond to FIFO packet drops.

Case 2: non-XCP queue before an XCP queue

Fig. 12. Network configuration for hybrid network experiments

Fig. 13. Results of the non-XCP queue experiment (case 1)

Advanced Computer Networks Ex

Control Theory Discussion

 Fluid flow model expresses XCP feedback as a set of differential equations:

$$\dot{q}(t) = y(t) - c \tag{1}$$

$$\dot{y}(t) = -\frac{\alpha}{d}(y(t-d) - c) - \frac{\beta}{d^2}q(t-d)$$
(2)

where α and β are two control parameter constants.

Control Theory Discussion

- Fluid flow model has 'oversight' in meaning of c.
 - c in equation 1 is attainable capacity
 - c in equation 2 is estimated capacity (a configuration parameter).
- Other deficiency is model assumes q(t) has no bound (i.e., assumes no queue limit).

Control Theory Discussion

Conclusions and Critique

- This research implements XCP as a TCP option and validates XCP simulation results.
- Implementation challenges were encountered due to lack of support in Linux kernel for precision arithmetic and floating point data types.
- XCP has difficulty when available capacity is not fixed.
- With wireless packet losses, XCP performs better with SACK option.

Conclusions and Critique

- When deployed in mixed networks, FIFO bottleneck routers can cause XCP to perform poorly.
- Paper does not really propose anything new or possible solutions. However, experimental performance studies are often this way.
- The value of the research comes from careful experimental methodology that shows clearly performance strengths and weaknesses.

Thanks!

Questions??

Advanced Computer Networks Experimental Study of XCP