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Goals of Paper

• Distributed Denial of Service Attacks 
(DDoS)
– Categorize different forms of attacks
– Overview of some DDoS tools

• Defense based on Class Based Routing
– Defend clusters of Web servers
– Still allow normal traffic during attack 

(“automatic traffic shaping”)
• Performance tests of presented solution
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Denial of Service (DoS)

• “… an attack designed to render a 
computer or network incapable of 
providing normal services” (WWW 
Security FAQ)

• To be an “attack”, must be intentional
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Distributed Denial of Service 
(DDoS)

• Carried out via networks
• Many computers against target(s)
• Hosts as unwitting accomplices
• Master program initiates attack
• Bandwidth attack: use all available 

network resources
• Connectivity attack: consume target’s 

resources 
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DoS and DDoS Attack 
Classification

• System attacked
– Router connecting web server to ISP (cut off 

Internet access of service)
– Firewall system (bottleneck so good target)
– Load balancer (another bottleneck)
– Web servers  (many so higher effort)
– Services, e.g. database (behind firewall so 

difficult)

8



DoS and DDoS Attack 
Classification (continued)

• Part of system attacked
– Ethernet link
– Operating system of a host or router
– TCP/IP stack of a host or router
– Application services (database, etc.)
– Hardware (network card, CPU)
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DoS and DDoS Attack 
Classification (continued)

• Bug exploitation
– More severe in effects
– Fix quickly provided by vendors
– Diligent administration necessary

• Overload
– Components function according to specs
– DDoS attack overloads beyond specs
– Harder to cope with
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Example: Cisco 7xxx routers

• IOS/700 Software Version 4.1(1) or 4.1(2)
• Bug: long password in telnet buffer 

overflow
• Subsequent reboot
• Attacked system is a router
• Part of system under attack is OS
• Exploits bug

11



Example: Jolt2

• Attack targeting Microsoft Windows OS
• Continuous stream of 

ICMP_ECHO_REPLY fragments
• Specially tuned parameters
• CPU and memory usage raises to 100%
• Attack on any resource that uses OS

– Web servers, Load balancers, Firewalls
• Exploits bug
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Example: Microsoft IIS

• Version 4.0 and 5.0 had URL parsing bug
• Inefficient implementation of escape 

sequence decoding
• Long strings with escape characters 

effectively stopped web server
• Attack against web server application
• Exploits implementation bug (in IIS)
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Example: Smurf attack

• Uses amplifier sites to multiply traffic
• Send ICMP_ECHO_REQUEST packets 

with spoofed sender address, to one or 
several subnet broadcast addresses

• Stations on subnet reply to the packets, to 
spoofed address

• Congestion in target’s network connection
• Attacks web servers (usually), routers, etc.
• No bug exploiting, perhaps faulty config
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Example: SYN flood attacks
• Send SYN packets to target
• Do not reply to SYN-ACK packets
• Spoofed source addresses of non-existent or 

inactive hosts
• Leaves half-open connections that fills queue
• Stops ordinary clients from connecting
• Attacks web servers or load-balancers
• Exploits 3-way handshake in TCP
• Implementation bug? Design flaw?
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Example: Apache web servers

• Apache MIME flooding
• Apache Sioux Attack
• Specially formatted HTTP requests could 

make web server use up huge amounts of 
memory, taking down server

• Target a specific web server software
• Exploits implementation bug
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DDoS attack architecture

• Architecture of DDoS attack tools similar
• DDoS attack carried out by “daemons”
• Daemons controlled by a handler
• Client tools to activate handler
• Handlers and daemons must be installed 

onto compromised computers
• Intrusion of these computers follows 

typical pattern
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Intrusion to install handlers and 
daemons

• Stolen account used to setup repository
– Scanning tools
– Attack tools (e.g., buffer overrun)
– Root kits
– Sniffers
– DDoS handler and daemon programs
– Lists of vulnerable and compromised hosts
– Etc.
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Intrusion to install handlers and 
daemons (continued)

• Scan on large ranges of network blocks, to 
identify potential targets.  Targets would 
include:
– Systems running services known to have 

remotely exploitable buffer overflow security 
bugs

– Wu-ftpd, RPC services for cmsd, statd, ttdb-
serverd, amd, etc.
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Intrusion to install handlers and 
daemons (continued)

• Use list of vulnerable systems to create 
script that performs the exploit
– Set up command shell that runs under root 

account
– Script listens on a TCP port
– Connect to this port to confirm the success of 

the exploit (i.e., conform that script was 
successfully installed on the compromised 
system) 
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Intrusion to install handlers and 
daemons (continued)

• Subsets with desired architecture selected 
from compromised systems

• Automated script generated to install 
handlers programs and DDoS daemons

• Optionally “root kit” installed to hide 
presence of malicious programs
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Example of DDoS: Trinoo

• First DDoS tool widely known
• Uses UDP flooding as attack strategy
• Access to handlers done via remote TCp

connection to the master host
• Master communicates with daemons usnig

plain UDP packets
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Example of DDoS: Tribe Flood 
Network

• Written 1999, adds to Trinoo’s UDP 
flooding

• TCP SYN ICMP flood, smurf attacks
• Handlers accessed using standard TCP 

connections (telnet, ssh)
• Communication between handler and 

daemons with ICMP_ECHO_REPLY 
packets (harder to detect than UDP and 
can pass firewall systems)
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Example of DDoS: TFN2K
• Successor to TFN
• Encrypted communication between components (harder 

to detect by scanning network)
• Handlers and daemons communicate using either ICMP, 

UDP, TCP
• Protocol can change for each command, typically 

selected randomly
• New attack form: TARGA

– Sends malformed IP packets known to slow down or hangup
TCP/IP network stacks

• MIX attack: mixes UDP, SYN, ICMP_ECH)_REPLY 
flooding
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Example of DDoS: stacheldraht

• Based on early TFN versions, effort to 
eliminate some of TFN’s weak points

• Communication between handlers and 
daemons is done via ICMP or TCP

• Remote control via simple client with 
symmetric key encryption with handler

• Similar to TFN: ICMP, UDP, and TCP SYN 
flood attacks

• Performs daemon updates automatically
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What will be next

• DDoS will evolve (have evolved)
• Better encryption
• More attack forms
• Easier, graphical-based tools
• Integration of distribution phase of handler 

and daemon programs in user interface
• More automation (daemons and handlers 

get distributed automatically)
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Defending against DDoS: Bugs or 
protocol errors

• Basic security measures
– Compromised system no longer needs network 

attacks
• Firewalls to separate interior net, DMZ from 

Internet
• Intrusion Detection System to notify of unusual 

activities
• Filtering in firewall (ingress and egress filtering)
• Implement countermeasures for known attacks
• Keep security patches up-to-date

28



Defending against DDoS: Overload

• More difficult
– Need to distinguish traffic
– Attack? O r heavy legitimate traffic by many 

clients?
• One opinion is that global security needs 

to be applied in Internet
– Not happening anytime soon
– Needs co-operation among many entities

• Need defense against DDoS
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Class Based Queuing (CBQ)

• Function of Linux Kernel
• Setup different traffic queues
• Rules determine which packets go to 

which queues
• Stochastic Fairness Queuing (SFQO is 

used for queuing discipline, uses less 
resources)
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Traffic Monitor

• Leverages CBQ
• Monitors for DoS attack
• Consists of a manager and a monitor 

program
• Monitor runs on  the load balancer and all 

web servers
• Manager runs on server
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Traffic Monitor

Q1: all bandwidth (default)

Q2: 1000 kBit/s

Q3: 600 kBit/s

Q4: 300 kBit/s

Q5: 100 kBit/s



34

Traffic Monitor

Q1: all bandwidth (default)

Q2: 1000 kBit/s

Q3: 600 kBit/s

Q4: 300 kBit/s

Q5: 100 kBit/s



Traffic Monitor

• DDoS traffic is slowed down, or stopped
• Key benefit: normal traffic is still allowed to 

go through at a normal (or near-normal) 
speed

• “Automatic traffic shaping”
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Traffic Monitor: Monitor
• Monitor implemented as 3 separate threads
• Thread 1 monitors the network for packets from and to 

web server addresses
– Source IP address, length and time of occurrence are noted in 

hash table (IP address as key)
• Thread 2 checks hash table every 3 seconds

– Looks for IP addresses emitting or receiving too much traffic
– Looks for packet/size ratio’s under a certain amount
– Flags these IP addresses as potential attacker

• Thread 3 listens to commands from manager
– Polls all monitors at regular intervals for list of potential attackers
– Decides if attacker, if so categorizes and downgrades
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Traffic Monitor: Attacker classes
• Manager assigns attacking IP’s to a class
• Class 1: IP’s have produced to much traffic with very small packets.

– Considered very likely a DDoS, block
• Class 2: Too much bandwidth over a long time

– Downgraded to a lower queue
• Class 3: Too much bandwidth but only for a short time

– Could be peak from ordinary client
– Under suspicion
– Timer started, if behavior continues, put into Class 2

• Class 4: don’t produce or consume much bandwidth but send lots of 
small packets
– Again put under suspicion, timer started

• All queues and filters have associated expiration timers
– After expiration, filter deleted
– After expiration, IP upgraded to next highest queue class

37



Performance Tests
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Performance Tests (continued)

• Eight attack hosts
• One “normal” client (browsing behavior)
• Goal: show that normal client is unaffected 

by DDoS
• Attack hosts could produce 8x input 

capacity of the load balancer
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Performance Tests (continued)

• “http_load” (Jef Poskanzer) to simulate 
attacks
– Runs multiple HTTP fetches
– Reads 100 URL’s from file, fetch randomly
– 64 threads in parallel, try to fetch as many 

pages as possible in 210 seconds
– URL’s include static HTML, CGI scripts
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Performance Tests (continued)

• Other test tools:
– TFN2K
– SYN Flooder

• Performs a heavy SYN-flood attack
• Slightly modified to generate random IP addresses

• “http_load” to simulate normal web client
• Sniffers inserted at 3 positions to measure 

traffic
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Test 1: http-attack using http_load
and static html database

• Without traffic monitor, response degrades 
until unusable

• With traffic monitor, system degrades 
attacking hosts to restricted queues
– Normal client is able to access web server
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Test 2: http-attack using http_load
and CGI-database

• Instead of static HTML documents, serve 
documents generated via a CGI script

• Overall traffic much lower than Test 1
– CGI scripts are CPU intensive
– Single attacker produces less traffic, less than 

threshold to classify as attacker
– Attacker’s aren’t recognized
– No sensor for CPU load in system
– Shows that to react, must be able to distinguish 

attacks from normal behavior
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Conclusions

• Automatic traffic monitoring and shaping is 
a promising approach: allows normal 
traffic to go through

• More work needed to detect intrusions?
• DDoS defense scheme must be part of 

overall security policy
• Paper could have been better done 

(mislabeled figures, etc.)
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