
Protecting Web Servers from
Distributed Denial of Service Attacks

Frank Kargl, Joern Maier, Michael Weber
WWW10, May 1-5, 2001, Hong Kong

ACM 1-58113-348-0/01/0005

Presented by Joe Frate

1

Goals of Paper

• Distributed Denial of Service Attacks
(DDoS)
– Categorize different forms of attacks
– Overview of some DDoS tools

• Defense based on Class Based Routing
– Defend clusters of Web servers
– Still allow normal traffic during attack

(“automatic traffic shaping”)
• Performance tests of presented solution

2

Denial of Service (DoS)

• “… an attack designed to render a
computer or network incapable of
providing normal services” (WWW
Security FAQ)

• To be an “attack”, must be intentional

3

Distributed Denial of Service
(DDoS)

• Carried out via networks
• Many computers against target(s)
• Hosts as unwitting accomplices
• Master program initiates attack
• Bandwidth attack: use all available

network resources
• Connectivity attack: consume target’s

resources
4

5

6

7

DoS and DDoS Attack
Classification

• System attacked
– Router connecting web server to ISP (cut off

Internet access of service)
– Firewall system (bottleneck so good target)
– Load balancer (another bottleneck)
– Web servers (many so higher effort)
– Services, e.g. database (behind firewall so

difficult)

8

DoS and DDoS Attack
Classification (continued)

• Part of system attacked
– Ethernet link
– Operating system of a host or router
– TCP/IP stack of a host or router
– Application services (database, etc.)
– Hardware (network card, CPU)

9

DoS and DDoS Attack
Classification (continued)

• Bug exploitation
– More severe in effects
– Fix quickly provided by vendors
– Diligent administration necessary

• Overload
– Components function according to specs
– DDoS attack overloads beyond specs
– Harder to cope with

10

Example: Cisco 7xxx routers

• IOS/700 Software Version 4.1(1) or 4.1(2)
• Bug: long password in telnet buffer

overflow
• Subsequent reboot
• Attacked system is a router
• Part of system under attack is OS
• Exploits bug

11

Example: Jolt2

• Attack targeting Microsoft Windows OS
• Continuous stream of

ICMP_ECHO_REPLY fragments
• Specially tuned parameters
• CPU and memory usage raises to 100%
• Attack on any resource that uses OS

– Web servers, Load balancers, Firewalls
• Exploits bug

12

Example: Microsoft IIS

• Version 4.0 and 5.0 had URL parsing bug
• Inefficient implementation of escape

sequence decoding
• Long strings with escape characters

effectively stopped web server
• Attack against web server application
• Exploits implementation bug (in IIS)

13

Example: Smurf attack

• Uses amplifier sites to multiply traffic
• Send ICMP_ECHO_REQUEST packets

with spoofed sender address, to one or
several subnet broadcast addresses

• Stations on subnet reply to the packets, to
spoofed address

• Congestion in target’s network connection
• Attacks web servers (usually), routers, etc.
• No bug exploiting, perhaps faulty config

14

Example: SYN flood attacks
• Send SYN packets to target
• Do not reply to SYN-ACK packets
• Spoofed source addresses of non-existent or

inactive hosts
• Leaves half-open connections that fills queue
• Stops ordinary clients from connecting
• Attacks web servers or load-balancers
• Exploits 3-way handshake in TCP
• Implementation bug? Design flaw?

15

Example: Apache web servers

• Apache MIME flooding
• Apache Sioux Attack
• Specially formatted HTTP requests could

make web server use up huge amounts of
memory, taking down server

• Target a specific web server software
• Exploits implementation bug

16

DDoS attack architecture

• Architecture of DDoS attack tools similar
• DDoS attack carried out by “daemons”
• Daemons controlled by a handler
• Client tools to activate handler
• Handlers and daemons must be installed

onto compromised computers
• Intrusion of these computers follows

typical pattern
17

Intrusion to install handlers and
daemons

• Stolen account used to setup repository
– Scanning tools
– Attack tools (e.g., buffer overrun)
– Root kits
– Sniffers
– DDoS handler and daemon programs
– Lists of vulnerable and compromised hosts
– Etc.

18

Intrusion to install handlers and
daemons (continued)

• Scan on large ranges of network blocks, to
identify potential targets. Targets would
include:
– Systems running services known to have

remotely exploitable buffer overflow security
bugs

– Wu-ftpd, RPC services for cmsd, statd, ttdb-
serverd, amd, etc.

19

Intrusion to install handlers and
daemons (continued)

• Use list of vulnerable systems to create
script that performs the exploit
– Set up command shell that runs under root

account
– Script listens on a TCP port
– Connect to this port to confirm the success of

the exploit (i.e., conform that script was
successfully installed on the compromised
system)

20

Intrusion to install handlers and
daemons (continued)

• Subsets with desired architecture selected
from compromised systems

• Automated script generated to install
handlers programs and DDoS daemons

• Optionally “root kit” installed to hide
presence of malicious programs

21

22

Example of DDoS: Trinoo

• First DDoS tool widely known
• Uses UDP flooding as attack strategy
• Access to handlers done via remote TCp

connection to the master host
• Master communicates with daemons usnig

plain UDP packets

23

Example of DDoS: Tribe Flood
Network

• Written 1999, adds to Trinoo’s UDP
flooding

• TCP SYN ICMP flood, smurf attacks
• Handlers accessed using standard TCP

connections (telnet, ssh)
• Communication between handler and

daemons with ICMP_ECHO_REPLY
packets (harder to detect than UDP and
can pass firewall systems)

24

Example of DDoS: TFN2K
• Successor to TFN
• Encrypted communication between components (harder

to detect by scanning network)
• Handlers and daemons communicate using either ICMP,

UDP, TCP
• Protocol can change for each command, typically

selected randomly
• New attack form: TARGA

– Sends malformed IP packets known to slow down or hangup
TCP/IP network stacks

• MIX attack: mixes UDP, SYN, ICMP_ECH)_REPLY
flooding

25

Example of DDoS: stacheldraht

• Based on early TFN versions, effort to
eliminate some of TFN’s weak points

• Communication between handlers and
daemons is done via ICMP or TCP

• Remote control via simple client with
symmetric key encryption with handler

• Similar to TFN: ICMP, UDP, and TCP SYN
flood attacks

• Performs daemon updates automatically
26

What will be next

• DDoS will evolve (have evolved)
• Better encryption
• More attack forms
• Easier, graphical-based tools
• Integration of distribution phase of handler

and daemon programs in user interface
• More automation (daemons and handlers

get distributed automatically)
27

Defending against DDoS: Bugs or
protocol errors

• Basic security measures
– Compromised system no longer needs network

attacks
• Firewalls to separate interior net, DMZ from

Internet
• Intrusion Detection System to notify of unusual

activities
• Filtering in firewall (ingress and egress filtering)
• Implement countermeasures for known attacks
• Keep security patches up-to-date

28

Defending against DDoS: Overload

• More difficult
– Need to distinguish traffic
– Attack? O r heavy legitimate traffic by many

clients?
• One opinion is that global security needs

to be applied in Internet
– Not happening anytime soon
– Needs co-operation among many entities

• Need defense against DDoS

29

Class Based Queuing (CBQ)

• Function of Linux Kernel
• Setup different traffic queues
• Rules determine which packets go to

which queues
• Stochastic Fairness Queuing (SFQO is

used for queuing discipline, uses less
resources)

30

Traffic Monitor

• Leverages CBQ
• Monitors for DoS attack
• Consists of a manager and a monitor

program
• Monitor runs on the load balancer and all

web servers
• Manager runs on server

31

32

33

Traffic Monitor

Q1: all bandwidth (default)

Q2: 1000 kBit/s

Q3: 600 kBit/s

Q4: 300 kBit/s

Q5: 100 kBit/s

34

Traffic Monitor

Q1: all bandwidth (default)

Q2: 1000 kBit/s

Q3: 600 kBit/s

Q4: 300 kBit/s

Q5: 100 kBit/s

Traffic Monitor

• DDoS traffic is slowed down, or stopped
• Key benefit: normal traffic is still allowed to

go through at a normal (or near-normal)
speed

• “Automatic traffic shaping”

35

Traffic Monitor: Monitor
• Monitor implemented as 3 separate threads
• Thread 1 monitors the network for packets from and to

web server addresses
– Source IP address, length and time of occurrence are noted in

hash table (IP address as key)
• Thread 2 checks hash table every 3 seconds

– Looks for IP addresses emitting or receiving too much traffic
– Looks for packet/size ratio’s under a certain amount
– Flags these IP addresses as potential attacker

• Thread 3 listens to commands from manager
– Polls all monitors at regular intervals for list of potential attackers
– Decides if attacker, if so categorizes and downgrades

36

Traffic Monitor: Attacker classes
• Manager assigns attacking IP’s to a class
• Class 1: IP’s have produced to much traffic with very small packets.

– Considered very likely a DDoS, block
• Class 2: Too much bandwidth over a long time

– Downgraded to a lower queue
• Class 3: Too much bandwidth but only for a short time

– Could be peak from ordinary client
– Under suspicion
– Timer started, if behavior continues, put into Class 2

• Class 4: don’t produce or consume much bandwidth but send lots of
small packets
– Again put under suspicion, timer started

• All queues and filters have associated expiration timers
– After expiration, filter deleted
– After expiration, IP upgraded to next highest queue class

37

Performance Tests

38

Performance Tests (continued)

• Eight attack hosts
• One “normal” client (browsing behavior)
• Goal: show that normal client is unaffected

by DDoS
• Attack hosts could produce 8x input

capacity of the load balancer

39

Performance Tests (continued)

• “http_load” (Jef Poskanzer) to simulate
attacks
– Runs multiple HTTP fetches
– Reads 100 URL’s from file, fetch randomly
– 64 threads in parallel, try to fetch as many

pages as possible in 210 seconds
– URL’s include static HTML, CGI scripts

40

Performance Tests (continued)

• Other test tools:
– TFN2K
– SYN Flooder

• Performs a heavy SYN-flood attack
• Slightly modified to generate random IP addresses

• “http_load” to simulate normal web client
• Sniffers inserted at 3 positions to measure

traffic

41

Test 1: http-attack using http_load
and static html database

• Without traffic monitor, response degrades
until unusable

• With traffic monitor, system degrades
attacking hosts to restricted queues
– Normal client is able to access web server

42

43

Test 2: http-attack using http_load
and CGI-database

• Instead of static HTML documents, serve
documents generated via a CGI script

• Overall traffic much lower than Test 1
– CGI scripts are CPU intensive
– Single attacker produces less traffic, less than

threshold to classify as attacker
– Attacker’s aren’t recognized
– No sensor for CPU load in system
– Shows that to react, must be able to distinguish

attacks from normal behavior

44

45

Conclusions

• Automatic traffic monitoring and shaping is
a promising approach: allows normal
traffic to go through

• More work needed to detect intrusions?
• DDoS defense scheme must be part of

overall security policy
• Paper could have been better done

(mislabeled figures, etc.)

46

	Protecting Web Servers from Distributed Denial of Service AttacksFrank Kargl, Joern Maier, Michael WeberWWW10, May 1-5, 200
	Goals of Paper
	Denial of Service (DoS)
	Distributed Denial of Service (DDoS)
	DoS and DDoS Attack Classification
	DoS and DDoS Attack Classification (continued)
	DoS and DDoS Attack Classification (continued)
	Example: Cisco 7xxx routers
	Example: Jolt2
	Example: Microsoft IIS
	Example: Smurf attack
	Example: SYN flood attacks
	Example: Apache web servers
	DDoS attack architecture
	Intrusion to install handlers and daemons
	Intrusion to install handlers and daemons (continued)
	Intrusion to install handlers and daemons (continued)
	Intrusion to install handlers and daemons (continued)
	Example of DDoS: Trinoo
	Example of DDoS: Tribe Flood Network
	Example of DDoS: TFN2K
	Example of DDoS: stacheldraht
	What will be next
	Defending against DDoS: Bugs or protocol errors
	Defending against DDoS: Overload
	Class Based Queuing (CBQ)
	Traffic Monitor
	Traffic Monitor
	Traffic Monitor: Monitor
	Traffic Monitor: Attacker classes
	Performance Tests
	Performance Tests (continued)
	Performance Tests (continued)
	Performance Tests (continued)
	Test 1: http-attack using http_load and static html database
	Test 2: http-attack using http_load and CGI-database
	Conclusions

