WORCESTER POLYTECHNIC INSTITUTE CS577/ECE537 ADVANCE COMPUTER NETWORKS KERBEROS AUTHENTICATION PROTOCOL

Murad Kaplan <u>mkaplan@wpi.edu</u>

What is Kerberos?

- Network Authentication Protocol
- Uses private-key Cryptography
- Built on Needam/Schroeder Scheme
- Protects Against
 - Eavesdropping
 - Replay Attacks
- Trusted third part is required
- Developed before public-key methods

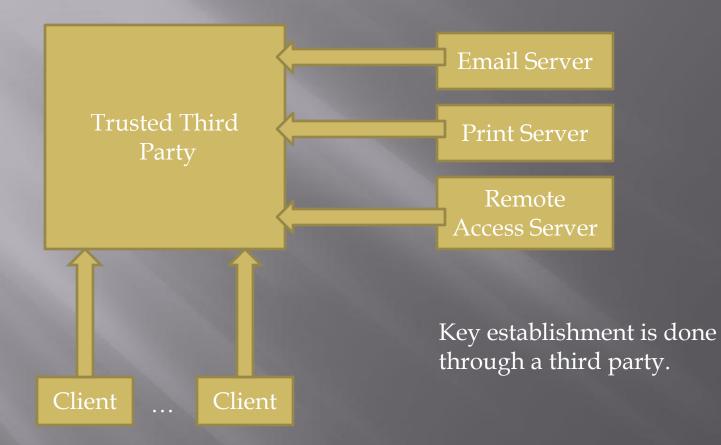
History

- Developed at MIT out of Athena Project
 Athena is a distributed file sharing project
 Developed based on other protocols with the addition of a timestamp to prevent replay attacks.
- Implementations
 - MIT
 - Heimdal
 - Sun
 - Microsoft

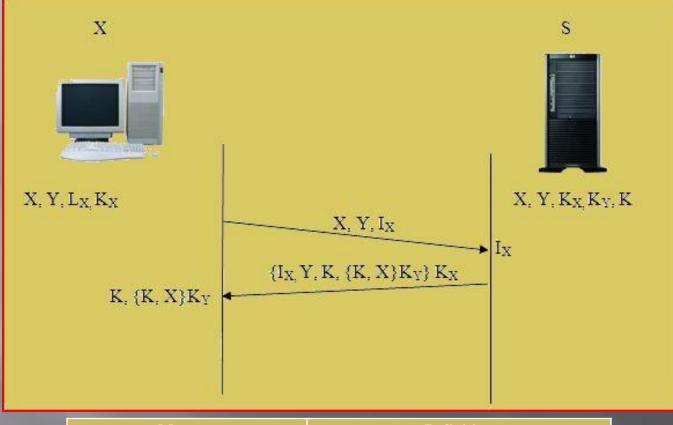
How did it get its name?

 Kerberos is the three headed dog in Greek mythology (also known as Cerberus)

Three Heads

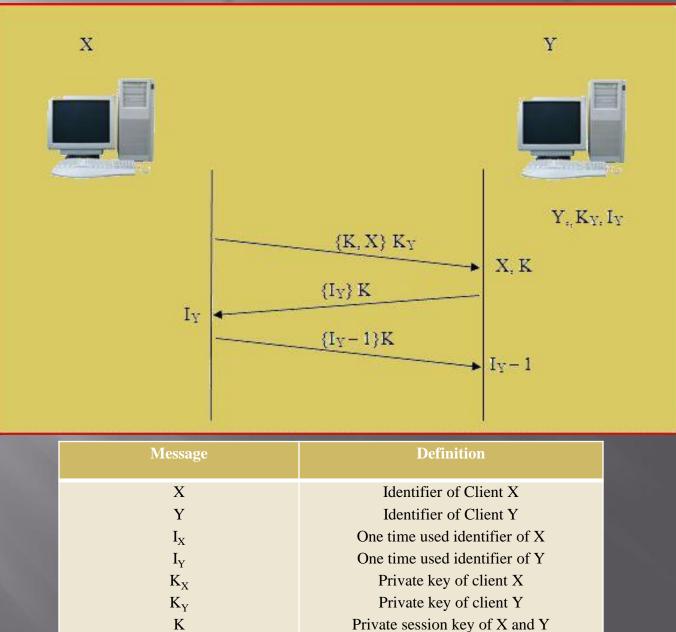

- Authentication
 - The users must be able to prove who they are..
- Authorization
 - The user must have access to the resource it is trying to get.
- Accounting
 - The user cannot deny accessing something, these resources are accounted for.

Why do we need protocols?


Benefits of Kerberos

- Single sign-on capability
 - * the user doesn't have to authenticate him/herself for every interaction
 - Passwords never get sent across the network.
- Replay Attacks are not possible
 - This builds upon previous protocols vulnerabilities

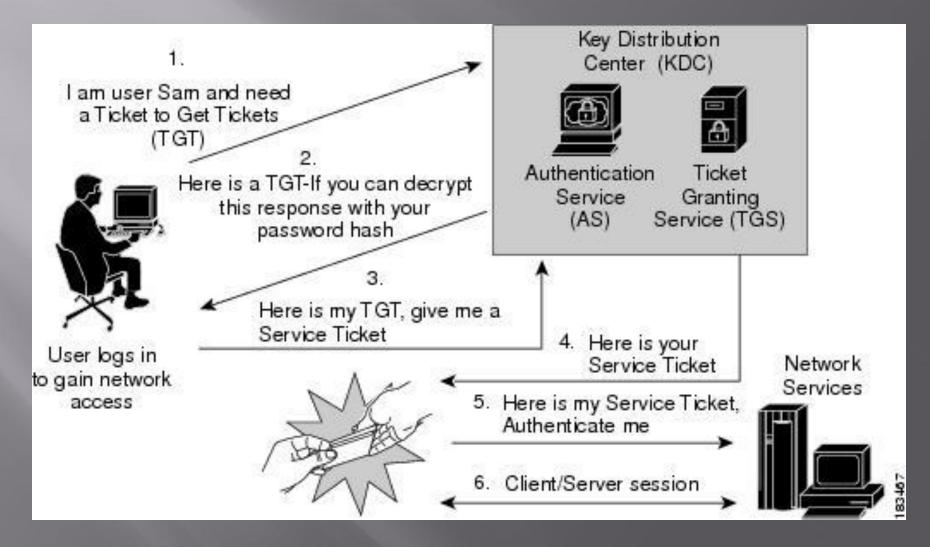
Organization



Needam/Schroeder

Message	Definition
Х	Identifier of Client X
Y	Identifier of Client Y
I _X	One time used identifier of X
I_Y	One time used identifier of Y
K _X	Private key of client X
K _Y	Private key of client Y
K	Private session key of X and Y

Needham/Schroeder (con't)



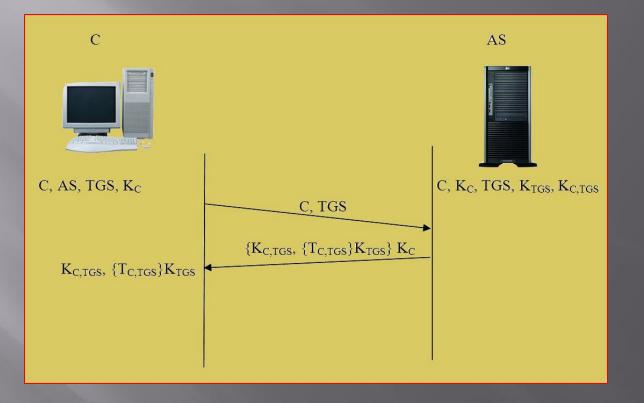
Κ

Kerberos

What is new?
Timestamp
TGS

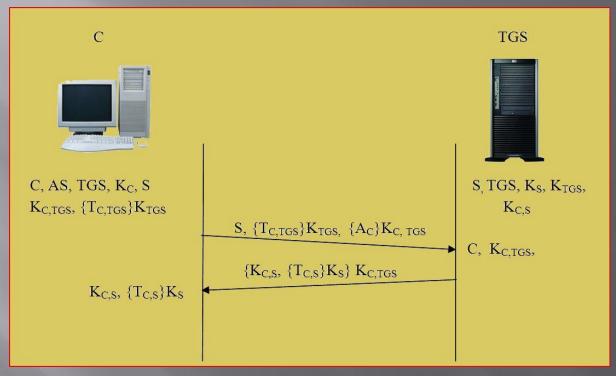
Authentication (Ticket Exchange)

<u>http://www.cisco.com/en/US/docs/security/nac/appliance/configuration_guide/412/cas/s_adsso.htm</u>


Implementation - Terminology

Term	Definition
Principle	Each entity that uses the Kerberos system
Client (C)	Entity that request service
Server (S)	Entity that provide service
Authentication Server (AS)	Kerberos server that provides initial authentication service
Ticket-granting Server (TGS)	Kerberos server that grants service tickets
Ticket $(T_{X,Y})$	Identification credential for X to get service from Y
Authenticator (A_X)	One time identification credential generated by X
(K _X)	X's secret key
$(\mathbf{K}_{\mathbf{X},\mathbf{Y}})$	Session key for X and Y

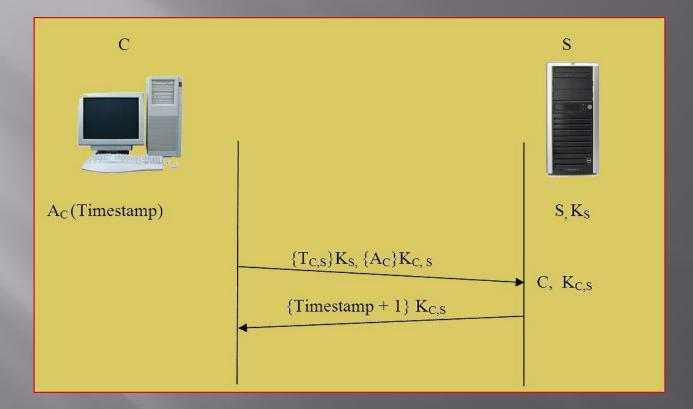
Message Types


Session	Message types	Directions
The Authentication Service Exchange	KRB_AS_REQ	Client to AS
The Authentication Service Exchange	KRB_AS_REP	AS to client
The Ticket Granting Service (TGS) Exchange	KRB_TGS_REQ	Client to TGS
	KRB_TGS_REP	TGS to Client
The Client/Server Authentication	KRB_AP_REQ	Client to Application server
Exchange	KRB_AP_REP	[optional] Application server to client

Authentication Service Exchange

• Client authenticates to the AS once using a longtermed shared secret password and receives a ticket from the AS

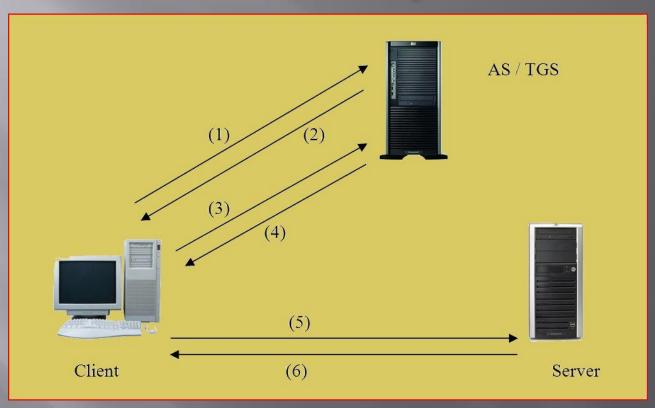
Ticket Granting Exchange



• Client sends the TGS a message composed of the TGT and the name of the requested service.

• The client also sends a message that contains the authenticator, usually a client ID and timestamp

• The TGS decrypts messages using a secret key and sends back a client to server ticket and a client/server session key that is encrypted with the client/TGS session key


Client - Server Exchange

• The client sends the client to server ticket and an authenticator to the Service Server.

• The server checks that everything has been completed correctly and provides the requested service.

Overall Sequence

Number	Message types	Directions
1	KRB_AS_REQ	Client to AS (Authentication Server)
2	KRB_AS_REP	AS to client
3	KRB_TGS_REQ	Client to TGS
4	KRB_TGS_REP	TGS to Client
5	KRB_AP_REQ	Client to Application server
6	KRB_AP_REP	[optional] Application server to client

Environmental Assumptions

- Applications must be tied into the protocol.
- "Denial of service" attacks are not solved with Kerberos.
- Principals must keep their secret keys secret
- "Password guessing" attacks are not solved by Kerberos.
- Each host on the network must have a clock which is "loosely synchronized" to the time of the other hosts.

Functions and Features:

- Authentication (using Kerberos)
- Data integrity
- Anti-replay
- Key generation
- □ IP Packet filtering

Kerberos and IPSec

	IPSec	Kerberos
Authentication	computer-to- computer	user-to-service
Communications	transfer of IP packets	single log-in
OSI Layer	Network Layer	Application Layer

PKINIT

- Public Key based initial authentication in Kerberos
- Used by Microsoft, Cyber safe and Heimdal
 Uses CA
- Obviates the human users' burden to manage strong passwords
- Not recommended for Wireless Networks

Kerberos in Wireless communications

- Susceptible, interception of data in transit and eavesdropping are very easy.
- W-Kerberos
- Energy consumption !

Kerberos in Real World Use

- Open Standard
- Microsoft
- Unix
- Oracle
- □ US army

Real World Use – Army HPC Access

RuTTY Configuration		<u>?</u> ×
Category:		
🖃 Session 🔺	Basic options for your PuTTY session	
Logging Terminal Keyboard Bell Features Window Appearance Behaviour Translation	Specify your connection by host name or IP address Host Name (or IP address) Port testhost.arl.army.mi Protocol: Raw Telnet Rlogin SSH Load, save or delete a stored session Saved Sessions	
Selection Colours Data Proxy Telnet Kerb5 Blogin	Default Settings	•
G SSH — Kex — Auth — X11 ▼	Close window on exit: C Always C Never © Only on clean exit	
About Help	Open Canc	el

The client can access the server remotely.

HPC Access (con't)

📑 Kerbe	ros			
File Help)			
S	Start Time	End Time	Ticket	
No Tic	kets			A P
Name hinmar Chang	n le Password	Passi		MIL Login

Client enters a username and password.

HPC Access (con't)

SAM Authentication		
Challenge for Security Dynamics mechanism		
SecurID Passcode		
OK Cancel		

A code from the SecurID card is entered.The TGS checks the client ID, password and SecurID password for validity.

SecurID Card

The SecurID authentication scheme adds in a hardware or software token that generates an authentication code at fixed intervals using a factory-encoded random key.

HPC Acces (con't)

📑 Ker	beros			
File H	lelp			
	Start Time	End Time	Ticket	
Ticket	Nov 29 10:45	Nov 29 20:45	krbtgt/HPCMP.HP	C.MIL@HPCMP.HPC.MIL (FA
Name hinm	-	Passv 	word	Realm HPCMP.HPC.MIL
Cha	nge Password]	Delete	Login

• A ticket (including timestamp) is issued by the TGS. This is used by the service server when granting services to the client.

Other Authentication Protocols

- Challenge-Handshake Authentication Protocol (CHAP)
 MS-CHAPv2
- NT LAN Manager (NTLM)
 - NTLMv2
- Wi-Fi Protected Access
 - WPA2
- Remote Authentication Dial In User Service (RADIUS)
- Diameter
- Secure Remote Password protocol (SRP)
- Protected Extensible Authentication Protocol (PEAP)
- Terminal Access Controller Access-Control System (TACACS)
 - TACACS+

NTLM

NET LAN Manager
Implemented by Microsoft
Was default until Windows NT Server 4.0

Kerberos v.s NTLM in MS

	NTLM	Kerberos
Cryptographic Technology	Symmetric Key	Basic Kerberos: Symmetric Key Cryptography Kerberos PKINIT: Symmetric and Asymmetric Cryptography
Trusted third party	Domain Controller	Basic Kerberos: Domain controller with KDC service Kerberos PKINIT: domain controller with KDC service and Enterprise CA
Microsoft supported platform	Windows 95, Windows 98, Windows ME, Windows NT4, Windows 2000, Windows XP, Windows Vista, Windows Server 2003, Windows Server 2008	Windows 2000, Windows XP, Windows Vista, Windows Server 2003, Windows Server 2008
Features	Slower authentication because of pass- through authentication No mutual authentication No support for delegation of authentication Proprietary: Microsoft authentication protocol	Faster authentication because of unique ticketing system Mutual authentication Support of authentication Open standard

Weaknesses of Kerberos

Design Problems

- Key Distribution Center (KDC) Vulnerability
 - Brute force attacks
 - Denial Of Service (DOS) attacks
- Protocol Problems
 - Ticket-stealing and replay attacks with multi-user client systems

Implementation Problems

- Client machines and service providers (servers) need to be designed with Kerberos in mind
- Renewing tickets is a must for long-running processes