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Abstract. Many models in computer education and assessment take into 

account difficulty. However, despite the positive results of models that take 

difficulty in to account, knowledge tracing is still used in its basic form due to 

its skill level diagnostic abilities that are very useful to teachers. This leads to 

the research question we address in this work: Can KT be affectively extended 

to capture item difficulty and improve prediction accuracy? There have been a 

variety of extensions to KT in recent years. One such extension was Baker's 

contextual guess and slip model. While this model has shown positive gains 

over KT in internal validation testing, it has not performed well relative to KT 

on unseen in-tutor data or post-test data, however, it has proven a valuable 

model to use alongside other models. The contextual guess and slip model 

increases the complexity of KT by adding regression steps and feature 

generation. The added complexity of feature generation across datasets may 

have hindered the performance of this model. Therefore, one of the aims of our 

work here is to make the most minimal of modifications to the KT model in 

order to add item difficulty and keep the modification limited to changing the 

topology of the model. We analyze datasets from two intelligent tutoring 

systems with KT and a model we have called KT-IDEM (Item Difficulty Effect 

Model) and show that substantial performance gains can be achieved with this 

minor modification that incorporates item difficulty. 

Keywords: Knowledge Tracing, Bayesian Networks, Item Difficulty, User 
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1 Introduction 

Many models in computer education and assessment take into account difficulty. Item 

Response Theory (IRT) [1] is one such popular model. IRT is used in Computer 

Adaptive Testing (CAT) and learns a difficulty parameter per item. This makes IRT 

models very powerful for predicting student performance; however the model 

learning processes is expensive and is not a practical way of determining when a 

student has learned a particular skill. Despite the predictive power of IRT, the 

Cognitive Tutors [2] employ standard Knowledge Tracing (KT) [3] to model 

students’ knowledge and determine when a skill has been learned. Knowledge 

Tracing is used because it is a cognitively diagnostic form of assessment which is 
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beneficial to both student and teacher. The parameters for a KT model need only be 

learned once, typically at the beginning of the school year (based on the past year’s 

data) and the inference of individual student’ knowledge of a skill can be executed 

with very little computation. Models like IRT that take into account item difficulty are 

strong at prediction, and model such as KT that infer skills are useful for their 

cognitively diagnostic results. This leads us to our research question: Can KT be 

affectively extended to capture item difficulty and improve predictive?  

There have been a variety of extensions to KT in recent years. One such extension 

was Baker's contextual guess and slip model [4]. While this model has shown positive 

gains over KT in internal validation testing, it has not performed well relative to KT 

on unseen in-tutor data or post-test data, however, it has proven a valuable model to 

use alongside other models. Likewise, the contextual slip model [5] also suffered the 

same inadequacies on in-tutor data prediction. The contextual guess and slip model 

increased the complexity of KT by adding regression steps and feature generation. 

The added complexity of feature generation across datasets may have hindered the 

performance of this model. Therefore, one of the aims of our work in this paper was 

to make the most minimal of modifications to the KT model in order to add item 

difficulty and keep the modification limited to slight changes to the topology of the 

model. 

1.1 Knowledge Tracing 

The standard Bayesian Knowledge Tracing (BKT) model, Fig 1, has a set of four 

parameters which are typically learned from data for each skill in the tutor. These 

parameters dictate the model's inferred probability that a student knows a skill given 

that student's chronological sequence of incorrect and correct responses to question of 

that skill thus far. The two parameters that determine a student's performance on a 

question given their current inferred knowledge are the guess and slip parameters and 

these parameters are where we will explore adding question level difficulty. Skills 

that have a high guess rate can be thought of, intuitively, as easy (a multiple choice 

question for example). Likewise, skills that have a low guess or a higher rate of 

mistakes, or a high slip, can be thought of as hard. Based on this intuition we believe 

a questions' difficulty can be captured by the guess and slip parameter. Therefore, we 

aim to give each question its own guess and slip thereby modeling a difficulty per 

item. 



Error! Use the Home tab to apply title to the text that you want to appear here.  3 

 

Figure 1. The standard Knowledge Tracing model 

2 Knowledge Tracing: Item Difficulty Effect Model 

One of our stated goals was to add difficulty to the classical BKT model without 

going outside of the Bayesian topology. To do this we use a similar topology design 

to that which was demonstrated in Pardos & Heffernan's student individualization 

paper [6]. In that work a multinomial node was added to the Bayesian model that 

represented the student. The node(s) containing the parameters which the authors 

wished to individualized were then conditioned base on the student node, thus 

creating a parameter per student. For example, if one wished to individualize the prior 

parameter, the student node would be connected to the first knowledge node since this 

is where the prior parameter's CPT is held. A separate prior could then be set and 

learned for each student. Practically, without the aid of a pre-test, learning a prior for 

every student is a very difficult fitting problem, however, simplifying the model to 

represent only two prior and assigning students to one of those priors based on their 

first response has proven an affective heuristic for improving prediction by 

individualizing the prior.  

In a similar way that Pardos & Heffernan showed how parameters could be 

individualized by student, we individualized the guess and slip parameter by item. 

This involved creating a multinomial item node, instead of a student node, that 

represents all the items of the particular skill being fit. This means that if there are 10 

distinct items in the skill data, the item node can have values ranging from 1 to 10. 

The item node is then connected to the question node (Fig 2), thus conditioning the 

question's guess/slip upon the value of the item node. In the example of the 10 item 

dataset, the model would have 10 guess parameters, 10 slip parameters and a learn 

rate and prior, totaling 22 parameters versus BKT's 4 parameters. It is possible that 

this model will be over parameterized if a sufficient amount of data points per item is 

not met, however, there has been a trend of evidence that models that have equal or 

even more parameters than data points can still be affective such as was shown in the 

Netflix challenge and 2010 KDD Cup on Educational Data Mining. 
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Figure 2. The KT-IDEM topology depicting how the question node (and thus the 

guess/slip) is conditioned on the item node thus adding item difficulty to the model 

 

Figure 2 Illustrates how the KT model has been altered to introduce item difficulty by 

adding an extra node and an arc for each question. By setting a student’s item 

sequence to all 1s, the KT-IDEM model represents the standard KT model, therefore 

the KT-IDEM model, which we have introduce in this paper, can be thought of as 

generalizing KT. This model can also be derived by modifying models created by the 

authors for detecting the learning value of individual items [7].  

3 Datasets 

We evaluate the KT and KT-IDEM models with two datasets from two separate real 

world tutors. The datasets will show how the models perform across a diverse set of 

different tutoring scenarios. The key factor of KT-IDEM is modeling a separate guess 

and slip parameter for every item in the problem set. In these two datasets, the 

representation of an item differs. In the ASSISTments dataset, a problem template is 

treated as an item. In the Cognitive Tutor dataset, a problem is treated as an item. The 

sections bellow provide further descriptions of these systems and the data that were 

used. 

3.1 The ASSISTments Platform 
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Our first dataset consisted 

of student responses from 

ASSISTments [8], a web 

based math tutoring 

platform that is best known 

for its 4th-12th grade math 

content. Figure 3 shows an 

example of a math item on 

the system and tutorial help 

that is given if the student 

answers the question wrong 

or asks for help. The 

tutorial help assists the 

student in learning the 

required knowledge by 

breaking each problem into 

sub questions called 

scaffolding or giving the 

student hints on how to 

solve the question. A 

question is only marked as 

correct if the student 

answers it correctly on the 

first attempt without 

requesting help. 

 

Item templates in 

ASSISTments 
Our skill building dataset 

consists of responses to 

multiple questions 

generated from an item 

template. A template is a 

skeleton of a problem 

created by a content 

developer in our web based 

builder application. For 

example, a template could 

specify a Pythagorean 

Theorem problem, but without the numbers for the problem filled in. In this example 

the problem template could be: “What is the hypotenuse of a right triangle with sides 

of length X and Y?” where X and Y are variables that will be filled in with values 

when questions are generated from the template. The solution is also dynamically 

determined from a solution template specified by the content developer. In this 

example the solution template would be, “Solution = sqrt(X^2+Y^2)”. Ranges of 

values for the variables can be specified and more advance template features are 

available to the developer such as dynamic graphs, tables and even randomly selected 

Figure 3. An example of an ASSISTments 

item where the student answers incorrectly and is 

given tutorial help. 
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cover stories for word problems. Templates are also used to construct the tutorial help 

of the template items. Items generated from these templates are used extensively in 

the skill building problem sets as a pragmatic way to provide a high volume of items 

for students to practice particular skills on.  

Skill building datasets 
Skill building is a type of problem set in ASSISTments that consists of hundreds of 

items, generated from a number of different templates, all pertaining to the same skill, 

or skill grouping. Students are marked as having completed the problem set when 

they answer three items correctly in a row without asking for help. In these problem 

sets items are selected in a random order. When a student has answered 10 items in a 

skill building problem set without getting three correct in a row, the system forces the 

student to wait until the next calendar day to continue with the problem set. The skill 

building problem sets are similar in nature to mastery learning [9] in the Cognitive 

Tutors, however, in the Cognitive Tutors mastery is achieved when a knowledge-

tracing model believes that the student knows the skill with 0.95 or better probability. 

Much like the other problem sets in ASSISTments, skill builder problem sets are 

assigned by the teacher at his or her discretion and the problem sets they assign often 

conform to the particular math curriculum their district is following.  

We selected the 12 skill builder datasets with the most data from school year 2009-

2001, for this paper. The number of students for each problem set ranged from 637 to 

1285. The number of templates ranged from 2-4. This meant that there would be at 

max 4 distinct sets of guess/slips associated with items in a problem set. Because of 

the 10 day question limit, we only considered a student’s first 10 responses per 

problem set and discarded the remaining responses. Only responses to original 

questions were considered. Not scaffold responses were used. 

3.2 The Cognitive Tutor: Mastery Learning datasets 

Our Cognitive Tutor dataset comes from the 2006-2007 “Bridge to Algebra” system. 

This data was provided as a 

development dataset in the 2010 

KDD Cup competition [10]. 

The Cognitive Tutor is designed 

differently than ASSISTments. 

One very relevant difference to 

this work is that the Cognitive 

Tutor presents a problem to a 

student (Fig 4) that can consist 

of questions of many skills. 

Students may enter their 

answers to the various questions 

pertaining to the problem in an 

answer grid (Fig 5). The 

Cognitive Tutor uses 

Knowledge Tracing to 

Figure 4. A Geometry problem within the 

Cognitive Tutor 
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determine when a student has mastered a skill. A problem in the tutor can consist of 

questions of differing skill. However, once a student has mastered a skill, as 

determined by KT, the student no longer needs to answer questions of that skill within 

a problem but must answer the other questions which are not associated with the 

mastered skill(s).  

The number of 

skills in this dataset 

was substantially 

larger than the 

ASSISTments 

dataset. Instead of 

processing all skills, 

a random sample of 

12 skills were 

selected. Some 

questions (or steps) 

consisted of 

multiple skills. 

Instead of 

separating out each skill, a set of skills associated with a question was treated as a 

separate skill. The Cognitive Tutor separates lessons into pieces called Units. A skill 

name that appears in one Unit was treated as a separate skill when appearing in a 

different Unit. Some skills in the Cognitive Tutor consist of trivial tasks such as 

“close-window” or “press-enter”. These types of non-math related skill were ignored. 

To maintain consistency with the per student data amount used in the ASSISTments 

dataset, the max number of responses per student per skill was also limited to 10. 

4 Methodology 

A five-fold cross-validation was used to make predictions on the datasets. This 

involved randomly splitting each dataset into five bins at the student level. There were 

five rounds of training and testing where at each round a different bin served as the 

test set, and the data from the remaining four bins served as the training set. The 

cross-validation approach has more reliable statistical properties than simply 

separating the data in to a single training and testing set and should provide added 

confidence in the results since it is unlikely that the findings are a result of a “lucky” 

testing and training split. 

4.1 Training the models 

Both KT and KT-IDEM were trained and tested on the same sets of data. The training 

phase involved learning the parameters of each model from the training set data. The 

parameter learning was accomplished using the Expectation Maximization (EM) 

algorithm. EM attempts to find the maximum log likelihood fit to the data and stops 

its search when either the max number of iterations specified has been research or the 

log likelihood improvement is smaller than the specified threshold. The max iteration 

Figure 5. Answer entry box for the Geometry problem in Fig 2. 
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count was set to 200 and threshold was set to the BNT default of 0.001. Initial values 

for the parameters of the model were set to the following, for both models:  ( ) of 

0.14,  ( )of 0.09,  (  )of 0.50, and  ( ) of 0.14. 

4.2 Performing predictions 

Each run of the cross-validation provided a separate test set. This test set consisted of 

students that were not in the training set. Each response of each student was predicted 

one at a time by both models. Knowledge tracing makes predictions of performance 

based on the parameters of the model and the response sequence of a given student. 

When making a prediction on a student’s first response, no evidence was presented to 

the network. Since no individual student evidence is presented, predictions of the first 

response are based on the model parameters alone. This means that, within a fold, KT 

will make the same prediction for all students’ first response. KT-IDEM’s first 

response may differ since not all students’ first question is the same. When predicting 

the student’s second response, the student’s first response was presented as evidence 

to the network, and so on, for all of the student’s responses 1 to N. 

5 Results 

Predictions made by each model were tabulated and the accuracy was evaluated in 

terms of Area Under the Curve (AUC). AUC provides a robust metric for evaluating 

predictions where the value being predicted is either a 0 or a 1 (incorrect or correct), 

as is the case in our datasets. An AUC of 0.50 always represents the scored achievable 

by random chance. A higher AUC score represents better accuracy. 

5.1 ASSISTments Platform 

The cross-validated model prediction results for ASSISTments are shown in Table 1. 

The number of students as well as the number of unique templates in each dataset is 

included in addition to the AUC score for each model. 

Table 1. AUC results of KT vs KT-IDEM on the ASSISTments datasets. The 

AUC of the winning model is marked in bold 

   AUC 

Dataset #students #templates KT KT-IDEM 

1 756 3 0.616 0.619 

2 879 2 0.652 0.671 

3 1019 6 0.652 0.743 

4 877 4 0.616 0.719 

5 920 2 0.696 0.697 

6 826 2 0.750 0.750 

7 637 2 0.683 0.689 

8 1285 3 0.718 0.721 

9 1024 4 0.679 0.701 
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10 724 4 0.628 0.684 

 

The results from evaluating the models with the ASSISTments datasets are 

strongly in favor of KT-IDEM (Table 1) with KT-IDEM beating KT in AUC in 9 of 

the 10 datasets and tying KT on the remaining dataset. The average AUC for KT was 

0.669 while the average AUC for KT-IDEM was 0.69. This difference was 

statistically significantly reliable (p = 0.035) using a two tailed paired t-test. 

5.2 Cognitive Tutor 

The cross-validated model prediction results for the Cognitive Tutor are shown in 

Table 2. The number of students, data points and unique problems in each dataset is 

included in addition to the AUC score for each model. The ratio of data points per 

problem (the number of data points divided by the number of unique problems) is also 

provided to show, on average, how much data there is for each problem, which 

represents a separate set of guess/slip parameters. 

Table 2. AUC results of KT vs KT-IDEM on the Cognitive Tutor datasets. The 

AUC of the winning model is marked in bold 

     AUC 

Dataset #students #datapoints #probs #data/#probs KT KT-IDEM 

1 133 1274 320 3.98 0.722 0.687 

2 149 1307 102 12.81 0.688 0.803 

3 116 1090 345 3.16 0.612 0.605 

4 116 1062 684 1.55 0.694 0.653 

5 159 1475 177 8.33 0.677 0.718 

6 116 1160 396 2.93 0.794 0.497 

7 133 1267 320 3.96 0.612 0.574 

8 116 968 743 1.30 0.679 0.597 

9 149 1431 172 8.32 0.585 0.720 

10 148 1476 177 8.34 0.593 0.626 

11 149 1431 172 8.32 0.519 0.687 

12 123 708 128 5.53 0.574 0.562 

 

The overall performance of KT vs. KT-IDEM is mixed in this Cognitive Tutor 

dataset. The average AUC of KT was 0.6457 while the average AUC for KT-IDEM 

was 0.6441, however this difference is not statistically reliably difference (p = 0.96). 

As eluded to earlier in the paper, over parameterization is a potential issue when 

creating a guess/slip per item. In this dataset the problem becomes apparent due to the 

considerably higher number of problems per dataset than templates per dataset in 

ASSISTments. Because of this high number of problems, and thus high number of 

parameters, the number of data points per problem is a significant statistic to observe. 

With these datasets, the data points per problem (dpr) ratio is highly significant. The 

five of the twelve datasets with a dpr > 6 were all predicted better by KT-IDEM. 

Among these five datasets, the average AUC of KT was 0.6124 and the average AUC 

of KT-IDEM was 0.7108. This difference was statistically reliably (p = 0.02).  
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6 Contribution 

With the ASSISTments Platform dataset, KT-IDEM was more accurate than KT in 9 

out of the 10 datasets. KT scored an AUC of 0.669 on average while KT-IDEM 

scored an AUC of 0.699 on average. This difference was statistically significant at the 

p < 0.05 level. With the Cognitive Tutor dataset, Overall, KT-IDEM is not 

statistically reliably different from KT in performance prediction. When dpr is taken 

into account, KT-IDEM is substantially more accurate (0.10 average gain in AUC 

over KT). This improvement when taking into account dpr is also statistically reliable 

at the p < 0.05 level.  

We have introduced a novel model for introducing item difficulty to the 

Knowledge Tracing model that makes very minimal changes to the native topology of 

the original mode. This new model, called the KT Item Difficult Effect Model 

(IDEM) provided reliably better in-tutor performance prediction on the ASSISTments 

Skill Builder dataset. While overall, the new model was not significantly different 

from KT in the Cognitive Tutor, it was significantly better than KT on datasets that 

provided enough data points per problem. 

We believe these results demonstrate the importance of modeling item difficulty in 

Knowledge Tracing and that the increased accuracy of the model  
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