
KT-IDEM: Introducing Item Difficulty to the

Knowledge Tracing Model

Zachary A. Pardos, Neil T. Heffernan

Department of Computer Science, Worcester Polytechnic Institute,

100 Institute Road, Worcester, MA 01609 USA
zpardos@wpi.edu, nth@wpi.edu

Abstract. Many models in computer education and assessment take into

account difficulty. However, despite the positive results of models that take

difficulty in to account, knowledge tracing is still used in its basic form due to

its skill level diagnostic abilities that are very useful to teachers. This leads to

the research question we address in this work: Can KT be affectively extended

to capture item difficulty and improve prediction accuracy? There have been a

variety of extensions to KT in recent years. One such extension was Baker's

contextual guess and slip model. While this model has shown positive gains

over KT in internal validation testing, it has not performed well relative to KT

on unseen in-tutor data or post-test data, however, it has proven a valuable

model to use alongside other models. The contextual guess and slip model

increases the complexity of KT by adding regression steps and feature

generation. The added complexity of feature generation across datasets may

have hindered the performance of this model. Therefore, one of the aims of our

work here is to make the most minimal of modifications to the KT model in

order to add item difficulty and keep the modification limited to changing the

topology of the model. We analyze datasets from two intelligent tutoring

systems with KT and a model we have called KT-IDEM (Item Difficulty Effect

Model) and show that substantial performance gains can be achieved with this

minor modification that incorporates item difficulty.

Keywords: Knowledge Tracing, Bayesian Networks, Item Difficulty, User

Modeling, Data Mining

1 Introduction

Many models in computer education and assessment take into account difficulty. Item

Response Theory (IRT) [1] is one such popular model. IRT is used in Computer

Adaptive Testing (CAT) and learns a difficulty parameter per item. This makes IRT

models very powerful for predicting student performance; however the model

learning processes is expensive and is not a practical way of determining when a

student has learned a particular skill. Despite the predictive power of IRT, the

Cognitive Tutors [2] employ standard Knowledge Tracing (KT) [3] to model

students’ knowledge and determine when a skill has been learned. Knowledge

Tracing is used because it is a cognitively diagnostic form of assessment which is

Pardos, Z. A., Heffernan, N. T. Accepted (DRAFT) KT-IDEM: Introducing Item Difficulty to the

Knowledge Tracing Model. In Proceedings of the 19
th

 International Conference on User Modeling,

Adaptation and Personalization. Spain.

2 Zachary A. Pardos, Neil T. Heffernan

beneficial to both student and teacher. The parameters for a KT model need only be

learned once, typically at the beginning of the school year (based on the past year’s

data) and the inference of individual student’ knowledge of a skill can be executed

with very little computation. Models like IRT that take into account item difficulty are

strong at prediction, and model such as KT that infer skills are useful for their

cognitively diagnostic results. This leads us to our research question: Can KT be

affectively extended to capture item difficulty and improve predictive?

There have been a variety of extensions to KT in recent years. One such extension

was Baker's contextual guess and slip model [4]. While this model has shown positive

gains over KT in internal validation testing, it has not performed well relative to KT

on unseen in-tutor data or post-test data, however, it has proven a valuable model to

use alongside other models. Likewise, the contextual slip model [5] also suffered the

same inadequacies on in-tutor data prediction. The contextual guess and slip model

increased the complexity of KT by adding regression steps and feature generation.

The added complexity of feature generation across datasets may have hindered the

performance of this model. Therefore, one of the aims of our work in this paper was

to make the most minimal of modifications to the KT model in order to add item

difficulty and keep the modification limited to slight changes to the topology of the

model.

1.1 Knowledge Tracing

The standard Bayesian Knowledge Tracing (BKT) model, Fig 1, has a set of four

parameters which are typically learned from data for each skill in the tutor. These

parameters dictate the model's inferred probability that a student knows a skill given

that student's chronological sequence of incorrect and correct responses to question of

that skill thus far. The two parameters that determine a student's performance on a

question given their current inferred knowledge are the guess and slip parameters and

these parameters are where we will explore adding question level difficulty. Skills

that have a high guess rate can be thought of, intuitively, as easy (a multiple choice

question for example). Likewise, skills that have a low guess or a higher rate of

mistakes, or a high slip, can be thought of as hard. Based on this intuition we believe

a questions' difficulty can be captured by the guess and slip parameter. Therefore, we

aim to give each question its own guess and slip thereby modeling a difficulty per

item.

Error! Use the Home tab to apply title to the text that you want to appear here. 3

Figure 1. The standard Knowledge Tracing model

2 Knowledge Tracing: Item Difficulty Effect Model

One of our stated goals was to add difficulty to the classical BKT model without

going outside of the Bayesian topology. To do this we use a similar topology design

to that which was demonstrated in Pardos & Heffernan's student individualization

paper [6]. In that work a multinomial node was added to the Bayesian model that

represented the student. The node(s) containing the parameters which the authors

wished to individualized were then conditioned base on the student node, thus

creating a parameter per student. For example, if one wished to individualize the prior

parameter, the student node would be connected to the first knowledge node since this

is where the prior parameter's CPT is held. A separate prior could then be set and

learned for each student. Practically, without the aid of a pre-test, learning a prior for

every student is a very difficult fitting problem, however, simplifying the model to

represent only two prior and assigning students to one of those priors based on their

first response has proven an affective heuristic for improving prediction by

individualizing the prior.

In a similar way that Pardos & Heffernan showed how parameters could be

individualized by student, we individualized the guess and slip parameter by item.

This involved creating a multinomial item node, instead of a student node, that

represents all the items of the particular skill being fit. This means that if there are 10

distinct items in the skill data, the item node can have values ranging from 1 to 10.

The item node is then connected to the question node (Fig 2), thus conditioning the

question's guess/slip upon the value of the item node. In the example of the 10 item

dataset, the model would have 10 guess parameters, 10 slip parameters and a learn

rate and prior, totaling 22 parameters versus BKT's 4 parameters. It is possible that

this model will be over parameterized if a sufficient amount of data points per item is

not met, however, there has been a trend of evidence that models that have equal or

even more parameters than data points can still be affective such as was shown in the

Netflix challenge and 2010 KDD Cup on Educational Data Mining.

P(L0)

Model Parameter
P(T[s]) = Individualized P(T)
Node representation
S = Student node
Node states
S = Multi state (1 to N)
(Where N is the number of
students in the training data)

K K K

Q Q Q

P(T[s]) P(T[s])P(L0)

P(G)

P(S)

S

Knowledge Tracing with Individualized P(T)

K K K

Q Q Q

P(T) P(T)

Model Parameters
P(L0) = Initial Knowledge
P(T) = Probability of learning
P(G) = Probability of guess
P(S) = Probability of slip

Nodes representation
K = knowledge node
Q = question node

Node states
K = two state (0 or 1)
Q = two state (0 or 1)

P(L0)

P(G)

P(S)

Knowledge Tracing

P(G)

P(S) P(S)

4 Zachary A. Pardos, Neil T. Heffernan

Figure 2. The KT-IDEM topology depicting how the question node (and thus the

guess/slip) is conditioned on the item node thus adding item difficulty to the model

Figure 2 Illustrates how the KT model has been altered to introduce item difficulty by

adding an extra node and an arc for each question. By setting a student’s item

sequence to all 1s, the KT-IDEM model represents the standard KT model, therefore

the KT-IDEM model, which we have introduce in this paper, can be thought of as

generalizing KT. This model can also be derived by modifying models created by the

authors for detecting the learning value of individual items [7].

3 Datasets

We evaluate the KT and KT-IDEM models with two datasets from two separate real

world tutors. The datasets will show how the models perform across a diverse set of

different tutoring scenarios. The key factor of KT-IDEM is modeling a separate guess

and slip parameter for every item in the problem set. In these two datasets, the

representation of an item differs. In the ASSISTments dataset, a problem template is

treated as an item. In the Cognitive Tutor dataset, a problem is treated as an item. The

sections bellow provide further descriptions of these systems and the data that were

used.

3.1 The ASSISTments Platform

K K K

Q Q Q

K

Q

I I I IItem sequence nodes

0 1 1 1Student’s responses

Knowledge Tracing – Item Difficulty Effect Model

3 1 1 2Student’s item sequence

Error! Use the Home tab to apply title to the text that you want to appear here. 5

Our first dataset consisted

of student responses from

ASSISTments [8], a web

based math tutoring

platform that is best known

for its 4th-12th grade math

content. Figure 3 shows an

example of a math item on

the system and tutorial help

that is given if the student

answers the question wrong

or asks for help. The

tutorial help assists the

student in learning the

required knowledge by

breaking each problem into

sub questions called

scaffolding or giving the

student hints on how to

solve the question. A

question is only marked as

correct if the student

answers it correctly on the

first attempt without

requesting help.

Item templates in

ASSISTments
Our skill building dataset

consists of responses to

multiple questions

generated from an item

template. A template is a

skeleton of a problem

created by a content

developer in our web based

builder application. For

example, a template could

specify a Pythagorean

Theorem problem, but without the numbers for the problem filled in. In this example

the problem template could be: “What is the hypotenuse of a right triangle with sides

of length X and Y?” where X and Y are variables that will be filled in with values

when questions are generated from the template. The solution is also dynamically

determined from a solution template specified by the content developer. In this

example the solution template would be, “Solution = sqrt(X^2+Y^2)”. Ranges of

values for the variables can be specified and more advance template features are

available to the developer such as dynamic graphs, tables and even randomly selected

Figure 3. An example of an ASSISTments

item where the student answers incorrectly and is

given tutorial help.

6 Zachary A. Pardos, Neil T. Heffernan

cover stories for word problems. Templates are also used to construct the tutorial help

of the template items. Items generated from these templates are used extensively in

the skill building problem sets as a pragmatic way to provide a high volume of items

for students to practice particular skills on.

Skill building datasets
Skill building is a type of problem set in ASSISTments that consists of hundreds of

items, generated from a number of different templates, all pertaining to the same skill,

or skill grouping. Students are marked as having completed the problem set when

they answer three items correctly in a row without asking for help. In these problem

sets items are selected in a random order. When a student has answered 10 items in a

skill building problem set without getting three correct in a row, the system forces the

student to wait until the next calendar day to continue with the problem set. The skill

building problem sets are similar in nature to mastery learning [9] in the Cognitive

Tutors, however, in the Cognitive Tutors mastery is achieved when a knowledge-

tracing model believes that the student knows the skill with 0.95 or better probability.

Much like the other problem sets in ASSISTments, skill builder problem sets are

assigned by the teacher at his or her discretion and the problem sets they assign often

conform to the particular math curriculum their district is following.

We selected the 12 skill builder datasets with the most data from school year 2009-

2001, for this paper. The number of students for each problem set ranged from 637 to

1285. The number of templates ranged from 2-4. This meant that there would be at

max 4 distinct sets of guess/slips associated with items in a problem set. Because of

the 10 day question limit, we only considered a student’s first 10 responses per

problem set and discarded the remaining responses. Only responses to original

questions were considered. Not scaffold responses were used.

3.2 The Cognitive Tutor: Mastery Learning datasets

Our Cognitive Tutor dataset comes from the 2006-2007 “Bridge to Algebra” system.

This data was provided as a

development dataset in the 2010

KDD Cup competition [10].

The Cognitive Tutor is designed

differently than ASSISTments.

One very relevant difference to

this work is that the Cognitive

Tutor presents a problem to a

student (Fig 4) that can consist

of questions of many skills.

Students may enter their

answers to the various questions

pertaining to the problem in an

answer grid (Fig 5). The

Cognitive Tutor uses

Knowledge Tracing to

Figure 4. A Geometry problem within the

Cognitive Tutor

Error! Use the Home tab to apply title to the text that you want to appear here. 7

determine when a student has mastered a skill. A problem in the tutor can consist of

questions of differing skill. However, once a student has mastered a skill, as

determined by KT, the student no longer needs to answer questions of that skill within

a problem but must answer the other questions which are not associated with the

mastered skill(s).

The number of

skills in this dataset

was substantially

larger than the

ASSISTments

dataset. Instead of

processing all skills,

a random sample of

12 skills were

selected. Some

questions (or steps)

consisted of

multiple skills.

Instead of

separating out each skill, a set of skills associated with a question was treated as a

separate skill. The Cognitive Tutor separates lessons into pieces called Units. A skill

name that appears in one Unit was treated as a separate skill when appearing in a

different Unit. Some skills in the Cognitive Tutor consist of trivial tasks such as

“close-window” or “press-enter”. These types of non-math related skill were ignored.

To maintain consistency with the per student data amount used in the ASSISTments

dataset, the max number of responses per student per skill was also limited to 10.

4 Methodology

A five-fold cross-validation was used to make predictions on the datasets. This

involved randomly splitting each dataset into five bins at the student level. There were

five rounds of training and testing where at each round a different bin served as the

test set, and the data from the remaining four bins served as the training set. The

cross-validation approach has more reliable statistical properties than simply

separating the data in to a single training and testing set and should provide added

confidence in the results since it is unlikely that the findings are a result of a “lucky”

testing and training split.

4.1 Training the models

Both KT and KT-IDEM were trained and tested on the same sets of data. The training

phase involved learning the parameters of each model from the training set data. The

parameter learning was accomplished using the Expectation Maximization (EM)

algorithm. EM attempts to find the maximum log likelihood fit to the data and stops

its search when either the max number of iterations specified has been research or the

log likelihood improvement is smaller than the specified threshold. The max iteration

Figure 5. Answer entry box for the Geometry problem in Fig 2.

8 Zachary A. Pardos, Neil T. Heffernan

count was set to 200 and threshold was set to the BNT default of 0.001. Initial values

for the parameters of the model were set to the following, for both models: () of

0.14, ()of 0.09, ()of 0.50, and () of 0.14.

4.2 Performing predictions

Each run of the cross-validation provided a separate test set. This test set consisted of

students that were not in the training set. Each response of each student was predicted

one at a time by both models. Knowledge tracing makes predictions of performance

based on the parameters of the model and the response sequence of a given student.

When making a prediction on a student’s first response, no evidence was presented to

the network. Since no individual student evidence is presented, predictions of the first

response are based on the model parameters alone. This means that, within a fold, KT

will make the same prediction for all students’ first response. KT-IDEM’s first

response may differ since not all students’ first question is the same. When predicting

the student’s second response, the student’s first response was presented as evidence

to the network, and so on, for all of the student’s responses 1 to N.

5 Results

Predictions made by each model were tabulated and the accuracy was evaluated in

terms of Area Under the Curve (AUC). AUC provides a robust metric for evaluating

predictions where the value being predicted is either a 0 or a 1 (incorrect or correct),

as is the case in our datasets. An AUC of 0.50 always represents the scored achievable

by random chance. A higher AUC score represents better accuracy.

5.1 ASSISTments Platform

The cross-validated model prediction results for ASSISTments are shown in Table 1.

The number of students as well as the number of unique templates in each dataset is

included in addition to the AUC score for each model.

Table 1. AUC results of KT vs KT-IDEM on the ASSISTments datasets. The

AUC of the winning model is marked in bold

 AUC

Dataset #students #templates KT KT-IDEM

1 756 3 0.616 0.619

2 879 2 0.652 0.671

3 1019 6 0.652 0.743

4 877 4 0.616 0.719

5 920 2 0.696 0.697

6 826 2 0.750 0.750

7 637 2 0.683 0.689

8 1285 3 0.718 0.721

9 1024 4 0.679 0.701

Error! Use the Home tab to apply title to the text that you want to appear here. 9

10 724 4 0.628 0.684

The results from evaluating the models with the ASSISTments datasets are

strongly in favor of KT-IDEM (Table 1) with KT-IDEM beating KT in AUC in 9 of

the 10 datasets and tying KT on the remaining dataset. The average AUC for KT was

0.669 while the average AUC for KT-IDEM was 0.69. This difference was

statistically significantly reliable (p = 0.035) using a two tailed paired t-test.

5.2 Cognitive Tutor

The cross-validated model prediction results for the Cognitive Tutor are shown in

Table 2. The number of students, data points and unique problems in each dataset is

included in addition to the AUC score for each model. The ratio of data points per

problem (the number of data points divided by the number of unique problems) is also

provided to show, on average, how much data there is for each problem, which

represents a separate set of guess/slip parameters.

Table 2. AUC results of KT vs KT-IDEM on the Cognitive Tutor datasets. The

AUC of the winning model is marked in bold

 AUC

Dataset #students #datapoints #probs #data/#probs KT KT-IDEM

1 133 1274 320 3.98 0.722 0.687

2 149 1307 102 12.81 0.688 0.803

3 116 1090 345 3.16 0.612 0.605

4 116 1062 684 1.55 0.694 0.653

5 159 1475 177 8.33 0.677 0.718

6 116 1160 396 2.93 0.794 0.497

7 133 1267 320 3.96 0.612 0.574

8 116 968 743 1.30 0.679 0.597

9 149 1431 172 8.32 0.585 0.720

10 148 1476 177 8.34 0.593 0.626

11 149 1431 172 8.32 0.519 0.687

12 123 708 128 5.53 0.574 0.562

The overall performance of KT vs. KT-IDEM is mixed in this Cognitive Tutor

dataset. The average AUC of KT was 0.6457 while the average AUC for KT-IDEM

was 0.6441, however this difference is not statistically reliably difference (p = 0.96).

As eluded to earlier in the paper, over parameterization is a potential issue when

creating a guess/slip per item. In this dataset the problem becomes apparent due to the

considerably higher number of problems per dataset than templates per dataset in

ASSISTments. Because of this high number of problems, and thus high number of

parameters, the number of data points per problem is a significant statistic to observe.

With these datasets, the data points per problem (dpr) ratio is highly significant. The

five of the twelve datasets with a dpr > 6 were all predicted better by KT-IDEM.

Among these five datasets, the average AUC of KT was 0.6124 and the average AUC

of KT-IDEM was 0.7108. This difference was statistically reliably (p = 0.02).

10 Zachary A. Pardos, Neil T. Heffernan

6 Contribution

With the ASSISTments Platform dataset, KT-IDEM was more accurate than KT in 9

out of the 10 datasets. KT scored an AUC of 0.669 on average while KT-IDEM

scored an AUC of 0.699 on average. This difference was statistically significant at the

p < 0.05 level. With the Cognitive Tutor dataset, Overall, KT-IDEM is not

statistically reliably different from KT in performance prediction. When dpr is taken

into account, KT-IDEM is substantially more accurate (0.10 average gain in AUC

over KT). This improvement when taking into account dpr is also statistically reliable

at the p < 0.05 level.

We have introduced a novel model for introducing item difficulty to the

Knowledge Tracing model that makes very minimal changes to the native topology of

the original mode. This new model, called the KT Item Difficult Effect Model

(IDEM) provided reliably better in-tutor performance prediction on the ASSISTments

Skill Builder dataset. While overall, the new model was not significantly different

from KT in the Cognitive Tutor, it was significantly better than KT on datasets that

provided enough data points per problem.

We believe these results demonstrate the importance of modeling item difficulty in

Knowledge Tracing and that the increased accuracy of the model

Acknowledgements

This research was supported by the National Science foundation via grant “Graduates

in K-12 Education” (GK-12) Fellowship, award number DGE0742503 and the

Department of Education IES Math center for Mathematics and Cognition grant. We

would like to thank the Pittsburg Science of Learning Center for the Cognitive Tutor

datasets and Hanyuan Lu for his data preparation assistance.

References

1. Johns, J., Mahadevan, S. and Woolf, B.: Estimating Student Proficiency using an Item

Response Theory Model, in M. Ikeda. K Ashley and T.-W. Cahn (Eds.): ITS 2006, Lecture

Notes in Computer Science, 4053, pp 453-462, Springer-Verlag Berlin Heidelberg. (2006)

2. Koedinger, K. R., Corbett, A. T.: Cognitive tutors: Technology bringing learning science

to the classroom. In K. Sawyer (Ed.), The Cambridge handbook of the learning sciences

(pp. 61-78). New York: Cambridge University Press. (2006)

3. Corbett, A.T., Anderson, J.R.: Knowledge Tracing: Modeling the Acquisition of

Procedural Knowledge. User Modeling and User-Adapted Interaction, 4, 253-278. (1995)

4. Baker, R.S.J.d., Corbett, A.T., Aleven, V.: More Accurate Student Modeling Through

Contextual Estimation of Slip and Guess Probabilities in Bayesian Knowledge Tracing. In

Proceedings of the 9th International Conference on Intelligent Tutoring Systems, 406-415.

(2008)

5. Baker, R.S.J.d., Corbett, A.T., Gowda, S.M., Wagner, A.Z., MacLaren, B.M., Kauffman,

L.R., Mitchell, A.P., Giguere, S.: Contextual Slip and Prediction of Student Performance

Error! Use the Home tab to apply title to the text that you want to appear here. 11

After Use of an Intelligent Tutor. In Proceedings of the 18th Annual Conference on User

Modeling, Adaptation, and Personalization, 52-63. (2010)

6. Pardos, Z. A., Heffernan, N. T.: Modeling Individualization in a Bayesian Networks

Implementation of Knowledge Tracing. In P. De Bra, A. Kobsa, and D. Chin (Eds.):

UMAP 2010, LNCS 6075, 225-266. Springer-Verlag: Berlin (2010)

7. Pardos, Z., Dailey, M. & Heffernan, N.: Learning what works in ITS from non-traditional

randomized controlled trial data. The International Journal of Artificial Intelligence in

Education, In Press (2011)

8. Razzaq, L., Feng, M., Nuzzo-Jones, G., Heffernan, N.T., Koedinger, K. R., Junker, B.,

Ritter, S., Knight, A., Aniszczyk, C., Choksey, S., Livak, T., Mercado, E., Turner, T.E.,

Upalekar. R, Walonoski, J.A., Macasek. M.A. & Rasmussen, K.P. (2005). The Assistment

project: Blending assessment and assisting, In: C.K. Looi, G. McCalla, B. Bredeweg, & J.

Breuker (Eds.) Proceedings of the 12th Artificial Intelligence in Education, Amsterdam:

ISO Press. pp. 555-562

9. Corbett, A. T. (2001). Cognitive computer tutors: solving the two-sigma problem. In: M.

Bauer, P. Gmytrasiewicz, & J. Vassileva (Eds.) User Modeling 2001. LNCS, vol. 2109, pp.

137--147. Springer Berlin, Heidelberg (2001)

10. Pardos, Z.A., Heffernan, N. T.: Using HMMs and bagged decision trees to leverage rich

features of user and skill from an intelligent tutoring system dataset. To appear in Journal

of Machine Learning Research, Special Issue on Knowledge Discovery and Data Mining

Cup 2010. (2011)

