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Abstract. The ASSISTment online tutoring system was used by over 600 students during the 

school year 2004-2005. Each student used the system as part of their math classes 1-2 times a 

month, doing on average over 100+ state-test items, and getting tutored on the ones they got 

incorrect.  The ASSISTment system has 4 different skill models, each at different grain-size 

involving 1, 5, 39 or 106 skills.  Our goal in the paper is to develop a model that will predict 

whether a student will get correct a given item. We compared the performance of these models on 

their ability to predict a student state test score, after the state test was “tagged” with skills for the 

4 models.  The best fitting model was the 39 skill model, suggesting that using finer-grained skills 

models is useful to a point.  This result is pretty much the same as that which was achieved by 

Feng, Heffernan, Mani, & Heffernan (in press), who were working simultaneously, but using 

mized-effect models instead of Bayes networks.  We discuss reasons why the finest-grained model 

might not have been able to predict the data the best. Implications for large scale testing are 

discussed. 

 

Keywords: Machine Learning, Bayesian Networks, Fine-Grained Skill Models, Inference, 

Prediction, MATLAB. 

INTRODUCTION 

Most large standardized tests (like the SAT or GRE) are what  psychometricians call “unidimensional” 

in that they are analyzed as if all the questions are tapping a single underlying knowledge component  (i.e., skill). 

However, cognitive scientists such as Anderson & Lebiere (1998), believe that students are learning individual 

skills, and might learn one skill but not another. Among the reasons psychometricians analyze large scale tests in 

a unidimensional manner is that student performance on different skills is usually highly correlated, even if there 

is no necessary perquisites relationship between these skills. Another reason is that students usually do a small 

number of items in a given sitting (39 items for the 8th grade Massachusetts Comprehensive Assessment System 

math test). We are engaged in a effort to investigate if we can do a better job of predicting a large scale test by 

modeling individual skills.  We consider 4 different skill models
1
, one that is unidimensional, WPI-1, one that 

has 5 skills we call the WPI-5, one that has 39 skills called the WPI-39 and our most fine-grained model has 106 

skills we call the WPI-106. In all cases, a skill model is a matrix that relates questions to the skills needed to 

solve the problem [Note: we assume that students must know all of the skills associated with a question in order 

to be able to get the question correct.  We do not model more than one way to solve a problem.]  The WPI-1, 

WPI-5, WPI-39, and WPI-106 models are structured with an increasing degree of specificity as the number of 

skills goes up. The skills of the WPI-5 are far more general than those of the WPI-106. The measure of model 

performance is the accuracy of the predicted MCAS test score based on the assessed skills of the student. 

Modeling student responses data from intelligent tutoring systems has a long history (Corbett, 

Anderson, & O’Brien, 1995; Draney, Pirolli, & Wilson, 1995) and different skill models have been developed. 

Our collaborators (Ayers and Junker, 2006, in submission) are also engaged in using a compensatory skill model 

to predict the state test scores using the same data set that we use in this paper. Though different approaches 

have been adopted to develop skill models and thus model students’ responses, as far as we know little effort has 

been put to the comparison of different grain-sized skill models in the intelligent tutoring system area. One might 

think that were would be a great deal of related work in education, but we know of only one study where others 

                                                           
1
 A skill-model is referred to as a “Q-matrix” by some AI researchers (Barnes, 2005) and psychometricians 

(Tatsuoka, 1990), while other call them “cognitive models” (Hao, Koedinger & Junker, 2005) and yet other  

call them “transfer models” (Croteau, Heffernan & Koedinger, 2004). 

Pardos, Z. A., Heffernan, N. T., & Anderson, B., Heffernan, C. L. (accepted). Using Fine-Grained Skill Models to Fit Student 

Performance with Bayesian Networks. Workshop in Educational Data Mining held at the Eight International Conference on 

Intelligent Tutoring Systems. Taiwan. 2006. 
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Figure 1. An ASSISTment showing the original question 

and the first two scaffolding questions. 

have tried to do something similar; Yun, Willett and Murnane (2004) showed that they could get a better fit to 

state test data by using an alternative skill-model that the state government provided.  

Bayesian Networks 

Bayesian Networks have been used in many intelligent tutoring systems such as Murray, VanLehn & 

Mostow (2005), Mislevy, Almond, Yan & Steinberg (1999), Zapata-Rivera, D & Greer, (2004) to name just a 

few instances. One of the nice properties of Bayesian Nets is that they can help us deal with the credit/blame 

assignment problem. That is, if an item is tagged with two skills, and a student gets the item wrong, which skill 

should be blamed?  Intuitively, if the student had done well on one of the skills previously, we would like to 

have most of the blame go against the other skill.  Bayesian Nets allow for an elegant solution and give us the 

desired qualitative behavior. 

The Massachusetts Comprehensive Assessment System (MCAS)  

The MCAS is a Massachusetts state administered standardized test that produces tests for English, 

math, science and social studies for grades 3 to 10.  We are focused on only 8
th

 grade mathematics.  Our work 

related to the MCAS in two ways.  First, we have built out content based upon released items as described 

above.  Secondly, evaluating our models by using the 8
th

 grade 2005 test.  Predicting students’ scores on this test 

will be our gauge of model performance. We have the results from the 2005 MCAS test for all the students who 

used our system. The MCAS test consists of 5 open responses (essay), 5 short answers and 29 multiple choice 

(out of four) questions.  The state released items in June, at which time we had our subject matter expert come 

back to WPI to tag the item before we got individual score reports. 

Background on the ASSISTment 
Project and Skill Mapping 

The ASSISTment system is an e-

learning and e-assessing system that is about 

1.5 years old. In the 2004-2005 school year, 

600+ students used the system about once 

every two weeks. Eight math teachers from 

two schools would bring their students to the 

computer lab, at which time students would be 

presented with randomly selected MCAS test 

items. In Massachusetts, the state department 

of education has released 8 years worth of 

MCAS test items, totaling around 300 items 

which we have turned into ASSISTment 

content by adding “tutoring”. If students 

answered the item correctly they were 

advanced to the next question. If they 

answered incorrectly, they were provided with 

a small “tutoring” session where they were 

asked to answer a few questions that broke the 

problem down into steps. A key feature of an 

ASSISTment is that it provides instructional 

assistance in the process of assessing students; 

the main conference has a paper (Razzaq & 

Heffernan, in press) on student learning due to 

the instructional assistance, while this paper is 

focused on assessing students. 

Each ASSISTment consists of an original 

item and a list of scaffolding questions. An 

ASSISTment that was built for item 19 of the 

2003 MCAS is shown in Figure 1. In 

particular, Figure 1 shows the state of the 

interface when the student is partly done with 

the problem. The first scaffolding question 

appears only if the student gets the item 



wrong. We see that the student typed “23” (which happened to be the most common wrong answer for this item 

from the data collected). After an error, students are not allowed to try a different answer to the item but instead 

must then answer a sequence of scaffolding questions (or “scaffolds”) presented one at a time. Students work 

through the scaffolding questions, possibly with hints, until they eventually get the problem correct. If the 

student presses the hint button while on the first scaffold, the first hint is displayed, which would be the 

definition of congruence in this example. If the student hits the hint button again, the second hint appears which 

describes how to apply congruence to this problem. If the student asks for another hint, the answer is given. 

Once the student gets the first scaffolding question [tagged with the skill in the WPI-106 of Congruence] correct 

(by typing AC), the second scaffolding question appears. Figure 1 shows a “buggy” message that appeared after 

the student clicked on “½*x(2x)” suggesting they might be thinking about area. There is also a hint message in a 

box that gives the definition of perimeter.  Once the student gets this question correct they will be asked to solve 

2x+x+8=23 for 8, which is a scaffolding question that is focused on equation-solving.   So if a student got the 

original item wrong, what skills should be blamed? This example is meant to show that the ASSISTment system 

has a better chance of showing the utility of fine-grained skill modeling due to the fact that we can ask 

scaffolding questions that will be able to tell if the student got the item wrong because they did not know 

congruence versus not knowing perimeter, versus not being able to set up and solve the equation. Most 

questions’ answer fields have been converted to text entry style from the multiple choice style they originally 

appear as in the MCAS test. As a matter of logging, if the student answered an original question correctly or 

incorrectly, the student is only marked as getting the item correct if they answered the questions right before 

asking for any hints or encountering scaffolding.  

 Figure 3 shows the original question and two scaffold questions from the ASSISTment in Figure 1 as 

they appear in our online model. The graph describes that Scaffold question 1 is tagged with Congruence, 

Scaffold question 2 is tagged with Perimeter and the original question is tagged with all three. The ALL gates 

assert that the student must know all skills relating to a question in order to answer correctly. The ALL gate will 

be described further in the Bayesian application section. The prior probabilities of the skills are shown at the top 

and the guess and slip values for the questions are show at the bottom of the graph. These are intuitive values 

that were used, not computed values. A prior probability of 0.50 on the skills asserts that the skill is just as likely 

to be known as not known previous to using the ASSISTment system. It is very likely that some skills are harder 

to learn than others and therefore the actual prior probabilities of the skills should differ. The probability a 

student will answer a question correctly is 0.95 if they know the skill or skills evolved. Due to various factors of 

difficulty and motivation, the priors for various questions should be differ. This is why we will attempt to learn 

the prior probabilities of our skills and question parameters in future papers. 

 

[Figure 2. – Directed graph of skill and question mapping in our model] 
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CREATION OF THE FINE-GRAINED SKILL MODEL 

In April of 2005, we staged a 7 hour long “coding session”, where our subject-matter expert, Cristina Heffernan, 

with the assistance of the 2nd author set out to make up skills and tag all of the existing 8th grade MCAS items 

with these skills.  There were about 300 released test item for us to code.  Because we wanted to be able to track 

learning between items, we wanted to come up with a number of skills that were somewhat fine-grained but not 

too fine-grained such that each item had a different skill. We therefore imposed upon our subject-matter expert 

that no one item would be tagged with more than 3 skills.  She was free to make up whatever skills she thought 

appropriate.  We printed 3 copies of each item so that each item could show up in different piles where each pile 

represented a skill.  She gave the skills names, but the real essence of a skill is what items it was tagged.  The 

name of the skill served no-purpose in our computerized analysis.   When the coding session was over, we had 6, 

8 foot-long tables covered with 106 piles of items.2 To create the coarse-grained models, such as the WPI-5, we 

used the fine-grained model to guide us.  We started off knowing that we would have 5 categories; 1) Algebra, 

2) Geometry, 3) Data Analysis & probability, 4) Number Science and 5) Measurement.  Both the National 

Council of Teachers of Mathematics and the Massachusetts Department of Education use these broad 

classifications.  After our 600 students had taken the 2005 state test, the state released the items from that test, 

and we had our subject matter expert tag up the items in that test.  Shown bellow is a graphical representation of 

the skill models we used to predict the 2005 state test items.  The models are for the MCAS test so you will see 

the 1, 5, 39 and 106 skills at the top of each graph and the 29 multiple choice questions of the test at the bottom. 

 

[Fig 3.a – WPI-1 MCAS Model] 

 
 

[Fig 3.b – WPI-5 MCAS Model] 

 
 

[Fig 3.c – WPI-39 MCAS Model] 

 
 

[Fig 3.d – WPI-106 MCAS Model] 

 
 

Figures 3.a and 3.b depict a two layer network where each question node has one skill node mapped to 

it. Figures 3.c and 3.d introduce multi-mapped nodes, where one question node can have up to three skill nodes 

mapped to it. The later figures also introduce an intermediary third layer of ALL nodes. You will notice that in 

the WPI-106 model, many of the skills do not show up on the final test, since each year they decide to test only a 

subset of all the skills taught in 8th grade math.   

The WPI-1, WPI-5 and WPI-39 models are derived from the WPI-106 model by nesting a group of 

fine-grained skills into a single category.  Figure 4 shows the hierarchal nature of the relationship between WPI-

106, WPI39 and WPI-5, and WPI-1. The first column lists just 11 of the 106 skills in the WPI-106.  In the 

second column we see how the first three skills are nested inside of “setting-up-and-solving-equations”, which 

itself is just one piece of “Pattern-Relations-algebra”, which itself is one of the 5 that comprise the WPI-1.   
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 In Feng, Heffernan, Mani & Heffernan (in press) we called this model the WPI-78 because the dataset that was 

used included fewer items.  



[Fig 4 – Skill Transfer Table] 
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Consider the item in Figure 1, which had the first scaffolding question tagged with “congruence”, the 

second tagged with “perimeter”, the third tagged with “equation-solving”.  In the WPI-39, the item was therefore 

tagged with “setting-up-and-solving-equations”, “understanding-and-applying-congruence-and-similarity” and 

using-measurement-formulas-and-techniques”.  The item was tagged with three skills at the WPI-5 level, and 

just one skill of “math” at the WPI-1.   

BAYESIAN NETWORK APPLICATION 

Representing the Skill Models 

Bayesian networks consist of nodes which have conditional probability tables. These tables indicate the 

prior probability of an event, given another event. In our three tier model, skill nodes are mapped to ALL nodes, 

which are mapped to question nodes. Our models allows for a question to be tagged with up to three skills. Any 

skill that a question has been tagged with is determined to be essential to solving the problem. The assertion here 

in the model is that in the case of a question mapped with two skills, both those skills must be known in order for 

the question to be solved by the student. The implementation of this assertion is the ALL gate nodes. The ALL 

gates also help to simplify the Bayesian network by limiting all question node conditional probability tables to a 

guess and slip parameter. 

Assessing Student Skill Levels 

Using MATLAB and the Bayes Net Toolkit as a platform, an architecture was developed to assess the 

skill levels of students in the ASSISTment system and to test the predictive performance of the various models. 

First, the skill model, which has been formatted into Bayesian Interchange Format (BIF), is loaded into 

MATLAB, i.e. bnet39. A student-id and Bayesian model are given as arguments to our prediction program. The 

Bayesian model at this stage consists of skill nodes of a particular skill model which are appropriately mapped to 

the over 2,000 question nodes in our system. This can be referred to as the online model. We then load the user’s 

responses to ASSISTment questions from our log file and then enter his/her responses into the Bayesian network 

as evidence. Using inference, dictated by the CPD tables of the questions, the skill level posterior marginal 

probabilities are calculated using likelihood-weighting inference which is an approximate inference sampling 

engine. 

Scaffold credit compensation 
 When evaluating a student’s skill level, both top level question and scaffold responses are used as 

evidence. Scaffolds and top level questions have the same weight in evaluation. If a student answers a top level 

question incorrectly, it is likely they will also answer the subsequent scaffold questions incorrectly. However, if 

a student answers a top level question correctly, they are only credited for that one question. In order to avoid 

this selection effect, scaffolds of top level questions are also marked correct if the student gets the top level 

question correct. This provides appropriate inflation of correct answers, however, this technique may cause 

overcompensation when coupled with learning separate parameters for the original and scaffold questions. 

Predicting MCAS scores 

After the skill levels of a particular student have been assessed using the specified skill model, we then 

load a model of the actual MCAS test. The MCAS test model looks similar to the training model, with skill 



nodes at top mapped to AND nodes, mapped to question nodes. In this case we take the already calculated 

marginal probabilities of the skill nodes from the online model and import them as soft evidence in to the test 

model. Join-tree exact inference is then used to get the marginal probabilities on the questions. That probability 

is then multiplied by the point value for that question, which is 1 for multiple choice and short answer questions. 

For example, if the marginal on a question marked with Geometry is 0.6, then 0.6 points are tallied for that 

question. The same is done for all 29 questions in the test and then the ceiling is taken of the total points giving 

the final predicted score. 

Prior Probabilities 

Priors are required for the skill and question nodes in both the training and test models. The priors used 

for the skills in the training model are set at 0.50 for each skill in the training model. This makes the assumption 

that it is equally likely a student will know or not know a certain skill when they start using the system. The 

questions in the training model are given a 0.10 guess and 0.05 slip values. That is, if they do not know the 

skill(s), there is a 10% probability that they will get the question correct and a 5% probability that they will get it 

wrong if they do know the skill(s) tagged with the question. For the test model, the questions are given a 0.05 

slip and 0.25 guess. The guess value is increased because the MCAS test questions used are multiple choice, out 

of four. 

Software Implementation 

 The main model evaluation and prediction routine was written in MATLAB by the first author using 

routines from Kevin Murphy’s Bayes Net Toolkit (BNT). Perl scripts were written for data mining and 

organization of user data as well as the conversion of database skill model tables to Bayesian Interchange 

Format (BIF) and then to loadable MATLAB/BNT code. Portions of the BIF to BNT conversion was facilitated 

by Chung Shan’s script. MATLAB was setup and results were run on a quad AMD Opteron system running the 

GNU/Linux platform.  

 

OUTPUT from a single user’s run through the evaluation routine is show bellow: 
[+] Loading bayesian network of transfer model WPI-106 (Cached) 

        - Knowledge Components in model: 106 

        - Questions in model: 2568 

[+] Running User Data Miner to retrieve and organize response data for user 882 

        - Number of items answered by student: 225 

[+] Crediting scaffold items of correctly answered top level questions 

        - Items correct before scaffold credit: 109 

        - Items correct after scaffold credit: 195 

[+] Loading inference engine (likelihood weighting) 

[+] Entering user answers as evidence in bayesian network 

[+] Calculating posterior probability values of Knowledge Components 

[+] Loading bayesian network of MCAS Test model 

        - Knowledge Components in model: 106 

        - Questions in model: 30 

[+] Loading inference engine (jtree) 

[+] Entering posterior probability values as soft evidence in MCAS Test network 

[+] Predicting MCAS Test score from posterior values of question nodes 

[+] Running User Data Miner to tabulate actual MCAS Test score for user 882 

[+] Results: 

        Predicted score: 18 

        Actual score: 16 

        Accuracy: 93% 

RESULTS 

For each student and for each model, we subtract the student’s real test score from our predicted score.  

We took the absolute value of this number and averaged them to get our Mean Absolute Differences (MAD) for 

each model, shown in Figure 5.  For each model we divided the MAD by the number of questions in the test to 

get a “% Error” for each model.  

 [ Figure 5 – Model Performance Results (30 question test model) ] 

MODEL Mean Average Deviance (MAD) % ERROR   

WPI-39 4.500 15.00 % 

WPI-106 4.970 16.57 % 

WPI-5 5.295 17.65 % 

WPI-1 7.700 25.67 % 



 Does an error rate of 15% on the WPI-39 seem impressive of poor?  What is a reasonable goal to shoot 

for?  Zero percent error?  In Feng, Heffernan & Koedinger (2006a) we reported on a simulation of giving two 

MCAS in a row to the same students and then used one test to predict the other and got an approximate 11% 

error rate, suggesting that a 15% error rate is looking somewhat impressive. 

DISCUSSION 

It appeared that the WPI-39 had the best results, followed by the WPI-106, followed by the WPI-5, 

followed by the WPI-1.  To see if these “% Error” numbers were statistically significantly different for the 

different models we compared each model with each other model. We did paired-t-tests between the “% Error” 

terms for the 600 students.  We found that WPI-39 model is statistically significantly better (p<.001) than all the 

other models, and the WPI-1 is statistically significantly worse than the three other models.  When we compared 

WPI-106 with WPI-5, we got a p-value of 0.17 suggesting that WPI-106 was not as significantly better (at the 

p=.05 level) than the WPI-5, but it might be different if we had more data.    

After doing this testing we realized that had made a mistake by included one short answer question 

along with the other 29 multiple choice questions.  The inclusion of this item was not a conceptual problem, but 

we re-ran our analysis to see if we would get similar results, and it would also serve as a sensitivity analysis.  

Table 6 summarizes the new results  

 

 [ Figure 6 – Model Performance Results (29 question test model) ] 

MODEL Mean Average Deviance (MAD) % ERROR   

WPI-39 4.210 14.52 % 

WPI-5 5.030 17.34 % 

WPI-106 5.187 17.89 % 

WPI-1 7.328 25.27 % 

 

In the 29 question test model the WPI-39 maintains its top standing with a MAD of 4.21 and the WPI-1 

remains the lowest performing model with a MAD of 7.328. The subtraction of the short answer test question 

resulted in slightly better performance of 5.030 for the WPI-5 and slightly lower performance of 5.187 for the 

WPI-106, compared to the 30 question model. The volatility in relative performance of the WPI-5 vs. WPI-106 

reflects the p value of 0.17 calculated above which tells us that these two models’ results can not be claimed as 

statistically different, given these tests.   

CONCLUSION 

It appears that we have found good evidence that fine-grained models can produce better tracking of 

student performance as measured by ability to predict student performance on a state test.  We hypothesized that 

the WPI-106 would be the best model, but that was not the case, and instead the WPI-39 was the most accurate.   

We explain our result by first noting that the WPI-39 is already relatively fine- grained, so we are glad to see that 

by paying attention to skill model we can do a better job.   On the other hand, the finest grained model was not 

the best predictor.  Given that each student did only a few hundred questions, if we have 106 skills, we are likely 

to have only a few data points per skill, so we are likely to be seeing a trade-off between finer-grained modeling 

and a declining accuracy in prediction do to less data per skill.    

We think that this work is important, in that using fine-grained models is hard, but we need to be able to 

show that using them can result in better prediction of things that others care about, such as state test scores.  

The are still several good reasons for psychometricians to stick with their uni-dimensional models, such as the 

fact that most tests have a small number of items, and they don’t have scaffolding questions that can help deal 

with the hard credit-blame assignment problems implicit in allowing multi-mapping (allowing a single question 

to be tagged with more than one skill).  

FUTURE WORK 

We also want to use these models to help us refine the mapping in the WPI-106.  Furthermore, now that 

we are getting reliable results showing the value of these models, we will consider using these models in 

selecting the next best-problem to present a student with.  There are many ways we could improve this 

prediction.  Using “time” would be an obvious extension, since we are treating all students’ answers, whether 

collected in September or one week before the real test in May, equally (See Feng, Heffernan, Koedinger, 

(2006b) for some initial work on using “time”.  Learning parameters of all our models and evaluating 

performance gain could also  be productive as will exploring the best hierarchy configuration for prediction. 
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