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Abstract 
Most assessments, like the math subtest of the SAT or the 
GRE, are unidimensional, in that they treat all questions on 
the test as sampling a single underlying “skill”.  Can we 
predict state tests scores better if we tag the questions with 
fine-grained models the skills needed?  Psychometricians 
don’t do this presumably because they don’t get better 
fitting model, for a variety of reasons.  We are investigating 
if we can do better prediction with finer-grained skill 
models. Our result gave a confirmative answer to this 
question. 

Introduction   
Most large standardized tests (like the math-subtest of the 
Graduate Record Examination (GRE)) are what 
psychometricians call “unidimensional” in that they are 
analyzed as if all the questions are tapping a single 
underlying knowledge component (i.e., skill). It is this 
assumption of unidimensionality that makes computer 
adaptive testing possible for the GRE. However, cognitive 
scientists such as Anderson & Lebiere (1998), believe that 
students are learning individual skills, and might learn one 
skill but not another. Among the reasons that 
psychometricians analyze large scale tests in a 
unidimensional manner is that students’ performance on 
different skills are usually highly correlated, even if there 
is no necessary prerequisites relationship between these 
skills. Another reason is that students usually do a small 
number of items in a given setting (39 items for the 8th 
grade math Massachusetts Comprehensive Assessment 
System test). We are engaged in an effort to investigate if 
we can do a better job of predicting a large scale test by 
modeling individual skills in a finer grain size. We 
consider 3 different skill models1, one that is 
unidimensional, which we will call the “WPI-1”, one that 
has 5 skills we call the “WPI-5”, and our most fine-grained  
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1 What we refer to as a “skill model” is referred to as “Q-Matrix” by some 
AI researchers (Barnes, 2005) and psychometricians (Tatsuoka, 1990); 
and in Hao, Koedinger & Junker (2005), they used the term “cognitive 
model”, while Croteau, Heffernan & Koedinger (2004) used the term 
“transfer model”.  

model has 78 skills we call the “WPI-78”. In all cases, a 
skill model is a matrix that relates questions to the skills 
needed to solve the problem. The WPI-1, WPI-5, and WPI-
78 models are structured with an increasing degree of 
specificity as the number of skills goes up. The measure of 
model performance is the accuracy of the predicted MCAS 
test score based on the assessed skills of the students.  
 Given that the WPI-78 composed of 78 skills, people 
might think the WPI-78 would naturally fit the data better 
than the skill models that contain far less skills. Moreover, 
they may even worry about that we were overfitting our 
data by fitting a model with so many free parameters. 
However, we were not evaluating the effectiveness of the 
skill models over the same online ASSISTment data based 
on which the models will be constructed. Instead, we used 
totally different data (from the external, paper-and-pencil 
based state test) as the testing set. Hence, we argue that 
overfitting would not be a problem in our approach. 
 Modeling student responses data from intelligent 
tutoring systems has a long history (Corbett, Anderson, & 
O’Brien, 1995; Draney, Pirolli, & Wilson, 1995). Corbett 
and Anderson did show that they could get better fitting 
models to predict student performance in LISP 
programming by tracking individual production but their 
system never asked questions that were tagged with more 
than one production, which is the sort of data we have 
(described below).  Our collaborators (Ayers and Junker, 
2006, in press) are engaged trying to allow multi-mapping2 
using a version of the WPI-78 but report their LLTM 
model does not fit well. Anozie & Junker (2006, in press), 
are looking at this same data set, also trying to predict the 
same state test scores we will describe below, but they are 
not using skills at all, and in that since, their method is 
unidimensional, in one sense representing the more 
traditional psychometric approach. This paper will not be 
able to compare the results of these different approaches 
and models, as we are all using slightly different versions 
of the same data set. 
 Others, in the psychometrics field, have developed 
multi-dimensional Item Response Theory models but these 
models have generally not allowed multi-mapping. These 
models permit student performance to be measured by 

                                                 
2 A “multi-mapping” skill model, in contrast to a “single-mapping” or a 
“non-multi-mapping” model, allows one item to be tagged with more than 
one skills.  



comparisons within items. For instance, Bock, Gibbons, 
and Muraki (1988) developed a multidimensional IRT 
model that identifies the dimensions that are needed to fit 
test data, similar to an exploratory factor analysis. Though 
different approaches have been adopted to develop skill 
models and thus model students’ responses, as we have 
known, little effort has been put in that compares of 
different grain-sized skill models in the intelligent tutoring 
system area. The few that have done this is in a non-multi-
mapped manner (Corbett, Anderson, & O’Brien, 1995; 
Draney, Pirolli, & Wilson, 1995).  While we come to this 
work from the point of view of an intelligent tutoring 
system’s researchers, in the education field more broadly, 
researchers want to fit students data collected in the 
traditional paper-and-pencil method. Unfortunately, the 
only work we are aware of that shows that by building 
fine-grained skill models, researchers could build better 
fitting models is by Yun, Willett and Murnane (2004).   

The Massachusetts Comprehensive Assessment 
System (MCAS) 
MCAS is a Massachusetts state administered standardized 
test that produces tests for English, math, science and 
social studies for grades 3 to 10. We focused on only 8th 
grade mathematics. Our work is related to the MCAS in 
two ways. First we built out content based upon released 
items. Secondly, we evaluate our models using the 8th 
grade 2005 test, which we will refer to as the state test. 
Predicting students’ scores on this test will be our gauge of 
model performance. The state test consists of 5 open 
response, 4 short answer and 30 multiple choice (out of 4) 
questions. Only the multiple choice and short answer 
questions are used in our prediction with regard to the fact 
that currently open response questions are not supported in 
our system. This makes a full score of 34 points with one 
point earned for a correct response on an item. For the 
students in our data set, the mean score out of 34 points 
was 17.9 (standard deviation=7.1). 

Background on the ASSISTment Project  
The ASSISTment system is an online tutoring system that 
is about 2 years old. In the 2004-2005 school year some 
600+ students used the system about every two weeks. 8 
math teachers from two schools would bring their students 
to the computer lab, at which time students would be 
presented with randomly selected MCAS test items. In 
Massachusetts, the state department of education has 
released 8 years (1998-2005) worth of MCAS test items, 
over 300 items, which we have turned into ASSISTments 
by adding “tutoring”. If students got the item correct they 
were given a new one. If they got it wrong, they were 
provided with a small “tutoring” session where they were 
forced to answer a few questions that broke the problem 
down into steps. The key feature of ASSISTments is that 
they provide instructional assistance while assessing 
students. Razzaq & Heffernan (2006, in press) addressed 
student learning due to the instructional assistance, while 

this paper is focused on skill model evaluation by assessing 
students’ performance on a state test. 
 Each ASSISTment consists of an original question and a 
list of scaffolding questions. The original question usually 
has the same text as in MCAS test while the scaffolding 
questions were created by our content experts to coach 
students who fail to answer the original question. An 
ASSISTment that was built for item 19 of the 2003 MCAS 
is shown in Figure 1. In particular, Figure 1 shows the state 
of the interface when the student is partly done with the 
problem. The first scaffolding question appears only if the 
student gets the item wrong. We see that the student typed 
“23” (which happened to be the most common wrong 
answer for this item from the data collected). After an 
error, students are not allowed to try the item further, but 
instead must then answer a sequence of scaffolding 
questions (or “scaffolds”) presented one at a time. Students 
work through the scaffolding questions, possibly with 
hints, until they eventually get the problem correct. If the 
student presses the hint button while on the first scaffold, 

The original question
a. Congruence
b. Perimeter
c. Equation-Solving

The 1st scaffolding question
Congruence

The 2nd scaffolding question
Perimeter

A buggy message

A hint message

The original question
a. Congruence
b. Perimeter
c. Equation-Solving

The 1st scaffolding question
Congruence

The 2nd scaffolding question
Perimeter

A buggy message

A hint message

Figure 1. An ASSISTment shown just before a student hits the 
“Submit” bottom, showing 2 scaffolding questions, one buggy 
message and a hint message that can occur at different points. 



the first hint is displayed, which would be the definition of 
congruence in this example. If the student hits the hint 
button again, the second hint appears which describes how 
to apply congruence to this problem. If the student asks for 
another hint, the answer is given. Once the student gets the 
first scaffolding question correct (by typing “AC”), the 
second scaffolding question appears. Buggy messages will 
show up if the student types in a wrong answer as expected 
by the author. Figure 1 shows a buggy messages that 
appeared after the student clicked on “½*x(2x)” suggesting 
he might be thinking about area. Once the student gets this 
question correct he will be asked to solve 2x+x+8=23 for 
5, which is a scaffolding question that is focused on 
equation-solving. So if a student got the original question 
wrong, what skills should be blamed? This example is 
meant to show that the ASSISTment system has a better 
chance of showing the utility of fine-grained skill modeling 
due to the fact that we can ask scaffolding questions that 
will be able to tell if the student got the question wrong 
because they did not know congruence versus not knowing 

perimeter, versus not being able to set up and solve the 
equation. As a matter of logging, the student is only 
marked as getting the item correct if they answered the 
questions correctly before asking for any hints or 
encountering scaffolding. 

Figure 2 shows the original question of another 
ASSISTment built for item 27 of 1999 MCAS test. The 
ASSISTment provides two scaffolding questions. The first 
one asked “What is the length of one side of a square in the 
figure?” and the second says “Now you have enough 
information to find the perimeter of the figure. What do 
you think it is?” In the “WPI-78”, the original question was 
tagged with 2 skills: “Perimeter” and “Area”; the first 
scaffolding question is associated with “Perimeter” and the 
second one “Area”.   

How was the Skill Models Created? 
In April, 2005, we staged a 7 hour long “coding session”, 
where our subject-matter expert, Cristina Heffernan, with 
the assistance of the 2nd author set out to make up skills 
and tag all of the existing 8th grade MCAS items with these 
skills.3 There were about 300 released test item for us to 
code. Because we wanted to be able to track learning 
between items, we wanted to come up with a number of 
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to use an automatic technique such as LFA (Hao, Koedinger & Junker, 
2005) or Q-matrices (Barnes, 2005) for topic construction. 

skills that were somewhat fine-grained but not too fine-
grained such that each item had a different skill. We 
therefore imposed upon our subject-matter expert that no 
one item would be tagged with more than 3 skills. She was 
free to make up whatever skills she thought appropriate. 
We printed 3 copies of each item so that each item could 
show up in different piles, where each pile represented a 
skill. Although we have English names for the skills, those 
names are just a handy tag; the real meaning of a skill must 
be divined by the questions with which it is associated. The 
name of the skill served no-purpose in our computerized 
analysis. When the coding session was over, we had 6 foot-
long tables covered with 106 piles of items. We wound up 
with about 106 skills, but not every skill that was created 
was eventually involved in the data source used by this 
work so we call this model the WPI-784. To create the 
coarse-grained models, such as the WPI-5, we used the 
fine-grained model to guide us. We decided to use the 
same 5 categories that both the National Council of 
Teachers of Mathematics uses, as well as the 
Massachusetts Department of Education. These categories 
are named 1) “Patterns, Relations and Algebra”, 2) 
“Geometry”, 3) “Data Analysis, Statistics and Probability”, 
4) “Number Sense and Operations” and 5) “Measurement”. 
The Massachusetts Department of Education actually tags 
each item with exactly one of the 5 categories, but our 
mapping was not the same as the states’.  Furthermore, we 
allowed multi-mapping, i.e. allow an item to be tagged 
with more than one skill. An interesting piece of future 
work would be to compare our fit with the classification 
that the state uses. After the students had taken the 2005 
state test, the state released the items in that test, and we 
had our subject-matter expert tag up these items in WPI-5 
and WPI-78.  
 The WPI-1 and WPI-5 models are derived from the 
WPI-78 model by nesting a group of fine-grained skills 
into a single category. Table 1 shows the hierarchal nature 
of the relationship among WPI-78, WPI-5, and WPI-1. The 
first column lists 10 of the 78 skills in the WPI-78 skill 
model. In the second column we see how the 5 skills in 
WPI-78 are nested inside of “Patterns, Relations and 
Algebra”, which itself is one piece of the 5 skills that 
comprise the WPI-5 skill model. 
 Consider the item 19 from 2003 MCAS test (See Figure 
1). In the WPI-78 skill model, the first scaffolding question 
is tagged with “congruence”, the second tagged with 
“perimeter”, the third tagged with “equation-solving”. In 
the WPI-5, the questions were therefore tagged 
correspondingly with “Geometry”, “Measurement” and 
“Patterns, Relations and Algebra”, and just one skill of 
“math” at the WPI-1. Similarly, the original question of the 
item 27 from 1999 MCAS test shown in Figure 2 is tagged 
“Perimeter” and “Area”, and therefore it is tagged with 
“Measurement” in the WPI-5, and then again “math” in the 
WPI-1. 
                                                 
4 In Pardos, Heffernan, Anderson & Heffernan (2006, in press) we called 
this model the WPI-106 because they used a data set that included 
additional items.  

 
Figure 2. The original question of item 27 of 1999 MCAS test 



Research Questions 
Specifically, the research questions we try to answer can be 
formulated as below:  
Research Question 1 (We will refer to as RQ1): Would 
adding response data to scaffolding questions help us do a 
better job of tracking students’ knowledge and thus more 
accurately predicting state test scores, compared to only 
using the original questions?  
 We think that that getting an answer to RQ1 would help 
us properly evaluate the second and more important 
research question. 
Research Question 2 (We will refer to as RQ2): How does 
the finer-grained skill model (WPI-78) do on estimating 
external test scores comparing to the skill model with only 
5 categories (WPI-5) and the one even with only one 
category (WPI-1)?  
 We think that an answer to RQ2 that said that finer-
grained models allow for better modeling/prediction would 
have important societal implications (e.g. regarding to 
tracking student performance.)  
 Comparing the capability of student knowledge tracking 
of different grain-sized skill models is the main goal of this 
work. Though, since we were using the accuracy of the 
predicted MCAS test score as the gauge of model 
performance, we extended our goal a little bit towards 
building predictive models and brought up the third 
research question as below.  
Research Question 3 (We will refer to as RQ3): Does 
introducing item difficulty information help to build a 
better predictive model and thus more precisely estimate 
students’ score on the external test?  
 We observed that items tagged with similar skills vary 
on their difficulty due to different reasons such as the 
context, is the question asked directly or indirectly or what 
are the numbers involved in the problem. Therefore, we 
hypothesize that using item difficulty as a covariate may 
help us to improve our model and thus predict students’ 
performance on the external test more accurately.  

Approach 

Data Source 
We collected data of 4975 students who used our system 
from Sep. 17, 2004 through May 16, 2005 for on average 
7.3 days (one period per day)6. All these students have 
worked on the system for at least 6 days. We excluded data 
from the students’ first day of using the system considering 
the fact they were learning how to use the system at that 
time. The item-level state test report was available for all 
these 497 students so that we were able to construct our 
predictive models on these students’ data and evaluate the 
accuracy on state test score prediction. 
 The original data set, corresponding to students’ raw 
performance (before applying any “credit-and-blame” 
strategies as described below and not inflated due to the 
encoding used for different skill models), includes both 
responses to original questions and to scaffolding 
questions. It contains about 138 thousand data points, 
among which around 43 thousand come from original 
questions. On average, each student answered 87 MCAS 
(original) questions and 189 scaffolding questions.  
 The data is organized in the way that there can be one or 
multiple rows for every student response to each single 
question depending on what’s the skill model we are 
interested in and how many skills the question is “tagged” 
with in that particular skill model. For instance, suppose a 
question is tagged with 2 skills in a model, then for each 
response made to the question there would be 2 rows in the 
data set, with skill names listed in a separate column. 
Students’ exact answers are not included. Instead, we use a 
binary column to represent whether the student answered 
                                                 
5 The amount of data is limited by the maximum memory allowed by the 
open source statistical package we used.   
6 Given the fact that the state test was given on May 17, 2005, it would be 
inappropriate to use data after that day for the purpose of predicting state 
scores. Therefore those data was not included in our data set. 

Table 1. Hierarchical relationship among skill models 
WPI-78 WPI-5 WPI-1 

Inequality-Solving 
Equation-Solving 
Equation-Concept 

… 
Plot Graph 
X-Y-Graph 

Patterns, Relations 
and Algebra 

… … 
Congruence 

… 
Similar-Triangles 

Geometry 

Perimeter 
Circumference 

… 
Area 

Measurement 

The skill 
of 

“Math” 

Item#19From2003 

Item#27From1999 



the specified item correctly or not. No matter what the 
input type of the item is (multiple-choice or text-input), a 
“1” indicates a correct response while a “0” means a wrong 
answer was given. Additionally, a column is associated 
with each response, indicating the number of months 
elapsed since September 17, 2004 till the time when the 
response was made. Thus the number of months elapsed 
for a response made on September 17th will be zero, and 
the number will 1 for a response made at October 17th, 
2004, and so on. This gives us a longitudinal, binary 
response data set across the school year.   
 Table 2 displays 12 rows of the raw data for one student 
(system ID = 950) who finished the item 19 (shown in 
Figure 1) and item 27 (shown in Figure 2) on two different 
days. The first 7 rows represent the student’ response on 
item 19 (with original item ID7 being 326) and the rest 6 
rows show his response on item 27 (with original item ID 
being 1183). We can see that since the original question of 
item 19 was tagged with 3 skills “Congruence”, 
“Perimeter” and “Equation-Solving”, the student’s 
response was duplicated in row 1 - 3 and so does the 
original question of item 27 as in row 9 and row 10. For 
both items, the student answered the original questions 
wrong (indicated by “0” in the response column of row 1-3 
and row 9-10) and thus was presented the scaffolding 
questions. The student did not do very well on the first 
item. He only gave a correct answer to the second 
scaffolding question (indicated by “1” in the response 
column of row 5), but failed to answer all the other 
scaffolding questions. On contrast, for item 27, though not 
getting the original question right on the first shot, the 
student went through all three scaffolding questions 
correctly. WPI-78 is the skill model being used here.  

The Statistical Model we Fit - Mixed-effects 
Logistic Regression Model 
For dichotomous (binary in our case) response data, 
several approaches adopting either a logistic or probit 
regression model and various methods for incorporating 

                                                 
7 The “itemID” is a number that we used internally in the system to 
uniquely identify a question. It is displayed only for the purpose of 
interpreting the data.  

and estimating the influence of the random effects have 
been developed. Snijders & Bosker (1999, Chapter 14) 
provide a practical summary of the mixed-effects logistic 
regression model and various procedures for estimating its 
parameters. Hedeker & Gibbons (in progress, Chapter 9) 
describes mixed-effects models for binary data that 
accommodate multiple random effects. As these sources 
indicate, the mixed-effects logistic regression model is a 
very popular and widely accepted choice for analysis of 
dichotomous data. It describes the relationship between a 
binary or dichotomous outcome and a set of explanatory 
variables. In this work, we adopted this model and fitted on 
our longitudinal, binary response data.   

As a statistical foundation of the mixed-effects 
generalization of the logistic regression model, we first 
present the simpler fixed-effects logistic regression model. 
Let pi represent the probability of a positive response for 
the ith individual. The probability of a negative outcome is 
then ip−1 . Let ),,,,1( 21 ipiii xxxx K= denote the set of 
covariates and ),,,( 10 ′= pββββ K  be the vector of 
corresponding regression coefficients. Then the logistic 
regression model can be written as: 
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In logistic regression, the logit is called the link function 
because it maps the (0, 1) range of probabilities unto (-∞, 
+∞) range of linear predictors. And by doing this, now the 
logistic regression model is linear in terms of the logit, 
though not in terms of the probabilities.  

Now we generalize the simple logistic regression model 
to the mixed-effects model by introducing the random 
effects. Suppose TIME is the only covariate we care about 
in the model (Skill can be introduced as a factor in the 
model in a similar way). The 2-level representation of the 
model in terms of logit can be written as 
Level-1 (or within-person) model:  

Table 2. Sample Raw Data 
RowID StudentID State Test ID ItemID WPI-78 skills Original? Response Month Elapsed 

1 950 2003-#19 326 Congruence Y 0 1.32 
2 950 2003-#19 326 Perimeter Y 0 1.32 
3 950 2003-#19 326 Equation-Solving Y 0 1.32 
4 950 2003-#19 327 Congruence N 0 1.32 
5 950 2003-#19 328 Perimeter N 1 1.32 
6 950 2003-#19 329 Equation-Solving N 0 1.32 
7 950 2003-#19 330 Equation-Solving N 0 1.32 
9 950 1999-#27 1183 Perimeter Y 0 2.94 

10 950 1999-#27 1183 Area Y 0 2.94 
11 950 1999-#27 1184 Perimeter N 1 2.94 
12 950 1999-#27 1185 Area N 1 2.94 



ijii
ij

ij TIMEbb
p

p
*]

1
log[ 10 +=

−
 

Level-2 (or between-person) model: 
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Where  
 ijp  is the probability of a positive response for student i 
at time j 
 ii bb 10 , denote the two learning parameters for student i. 

ib0  represents the “intercept” and tells how good is the 
student’s initial knowledge; ib1 represents the “slope” and 
tells what’s the change (i.e. learning) rate of student i.  
 10 ,ββ  are the fixed-effects and represent the “intercept” 
and “slope” of the whole population average change 
trajectory.  
 ii vv 10 ,  are the random effects and represent the student-
specific variance from the population mean.  
 Such a model is often referred to as “longitudinal 
model” (Singer & Willett, 2003) since TIME is introduced 
as a predictor of the response variable, which allows us to 
investigate change over time. The fact that this mixed-
effect regression model is linear in terms of logit enables 
us to fit generalized linear mixed models on the data in R8, 
an open-source statistical environment. The models were 
fitted in R using lmer() function and “logit” was used as 
the link function. Below in the box is the sample code we 

ran in R to train a mixed-effects logistic regression model 
using both TIME and WPI-5 skills as covariates.  

After the model was constructed, the fixed-effects for 
the whole group (i.e. 10 ,ββ  in the above 2-level model) 
and the random effects for each student (i.e. ii vv 10 , ) were 
extracted and then the two learning parameters “intercept” 
and “slope” (i.e. ib0  and ib1  in the model above) was 
calculated for each individual student (and for each skill if 
skill was introduced as factor into the model). Given this, 
we thus can apply the model on the items in the state test to 
estimate students’ response to each of them.  

Predicting State Test Scores  
After the model is fit, we have skill levels of the students 
based on their online ASSISTment data using the specified 
skill model, we then apply the model on the actual state 
test. All the items in the state tests have been tagged in all 

                                                 
8 http://www.r-project.org/  

of the 3 skill models by our subject matter expert. To 
predict a student’s test score when a particular skill model 
is adopted, we will first find the fractional score the student 
can get on each individual item and then sum the “item-
score” up to acquire a total score for the test. So how did 
we come up with a prediction of their item-score?  
 The first thing we did is identifying what are the skills 
associated with the item in that skill model. Thus, given a 
student’s learning parameters on related skills (and the 
item difficulty level of each item in the state test, 
depending which model was used), for any particular item 
in the state test, we can calculate the probability of positive 
response from the student. In the case that an item was 
tagged with more than one skill (i.e., when WPI-5 and 
WPI-78 was used as the skill model), we picked the lowest 
probability among all the skills that apply to the item9 for 
that student10. In our approach, a student’s probability of 
correct response for an item was used directly as the 
fractional score to be awarded on that item for the student. 
Therefore, once we acquired the probability of correct 
response for all the items, we sum them up to produce the 
total points awarded. For example, if the probability of an 
item marked with Geometry is 0.6, then 0.6 points are 
added to the sum to produce the points awarded. This sum 
of these points is what we use as our prediction of their 
state test score11.  
 For every model, we subtract each student’s real test 
score from his predicted score, took the absolute value of 
the difference and averaged them to get the Mean Absolute 
Difference (MAD). We also calculate a normalized metric 
named % Error by dividing the MAD by 34 to reflect the 
fact that the MAD is out of a full score 34 points. 

Does Adding Scaffolding Questions Help? 

Scaffolding Credit and Partial Blame  
 We started our work examining only students’ response 
to original questions. And then we brought up RQ1, asking 
ourselves that if we can improve our models by including 
students’ response to the scaffolding questions. As 
                                                 
9 We admit that there are other approaches dealing with multi-mapped 
items. For instance, one way can be taking into consideration the 
conjunctive relationship among the skills and “somehow” combining the 
probabilities together to produce a “final” probability for the item. Using 
Bayesian Networks is also a reasonable way to deal with this situation and 
our colleague Pardos, Hefernan, Anderson and Heffernan (2006, in press) 
use this approach and seem to getting similar results that fine grained 
models enable better predictive models. 
10 We consider the skill that had the lowest probability of correct response 
in our model the hardest skill for a student.   
11 We think it might be useful to discuss your model from a more 
qualitative point of view.  Is it the case that if you tag an item with more 
skills, does that mean our model would predict that the item is harder?  
The answer is not , in that sense that if you tagged a bunch of item with a 
easy skill (i.e., one easier then what the item was currently tagged with), 
that would not change our models prediction at all.  This makes 
qualitative sense, in that we believe the probability of getting a question 
correct is given by the probability of getting correct the most difficult skill 
associated with that question. 

## train the model, using WPI-5 skill model 
>> model.growth.WPI.5 <- lmer(response ~ monthElapsed + skills + 
skills * monthElapsed + (monthElapsed | studentID), data= WPI.5, 
family= binomial (link="logit"), control = list(msVerbose = 1,  
usePQL = FALSE)) 
## extract the fixed effects of the model  
>> fix.ef.WPI.5 <- fixef(model.growth.WPI.5) 
## extract random effects for every student 
>> ran.ef.WPI.5 <- ranef(model.growth.WPI.5) 



discussed in Section 1, adding in scaffolding responses 
creates a good chance for us to detect which skills are the 
real obstacles that prevent students from correctly answer 
the original questions. And this would be especially useful 
when we utilize a finer-grained model. 
 Since the scaffolding questions show up only if the 
students answer the original question incorrectly, if a 
student gets an original question wrong, his/her responses 
to the scaffolding questions are explicitly logged. 
However, if a student gets an original question correct, 
he/she is only credited for that one question in the raw 
data. To deal with the “selection effect”, we introduced the 
compensation strategy of “scaffolding-credit”: scaffolding 
questions are also marked correct if the student gets the 
original questions correct.  
 An important thing we need to determine when using a 
multi-mapping model (in which one item is allowed to be 
tagged with more than one skill) is which skills to blame 
when a student answered incorrectly an item tagged with 
multiple skills. Intuitively, the tutor may want to blame all 
the skills involved. However, this would be unfair to those 
relatively easy skills when they are tagged to some 
compound, hard items. To avoid this problem, we adopted  
the “partial blame” strategy: if a student got such an item 
wrong, the skills in that item will be sorted according the 
overall performance of that student on those skills and only 
the one on which that particular student showed the worst 
performance will be blamed.  
 When evaluating a student’s skill levels, both original 
questions and scaffold responses are used in an equal 
manner and they have the same weight in evaluation. 

Results  
Recall that RQ1 asked whether adding response data to 
scaffolding questions can help us do a better job of 
tracking students’ knowledge and thus more accurately 
predicting state test scores. To answer RQ1, we first 
trained mixed-effects logistic regression models using the 
data set that only includes original questions response; one 
regression model for each skill model. Then we replicated 
the training process but used the data set that was 
constructed by including responses to scaffolding questions 
and applying the “credit-and-blame” strategy described as 
above. Again models were trained for all 3 skill models. 
 It turns out that better-fitted models as measured by % 
Error on the state test can always be achieved by using 
scaffolding questions. In particular when using the WPI-1, 
the mean decrease of “% Error” is 2.1% after scaffolding 
questions were introduced; for WPI-5, the number is 3.9%; 

and the number is 5.6% for WPI-78. We then did paired-t-
tests between the “% Error” terms for the 497 students and 
found that the improvements are statistically significant in 
all the three cases as summarized in Table 3. [Please read 
across the columns for an answer to RQ1.  Reading across 
the rows is the answer to RQ2 which we will describe in 
the next section.] 
 This drop-down of %Error (also MAD) makes sense for 
two reasons. One is that by using the response data to 
scaffolding questions we are using more of the data we 
collected. A second reason is that the scaffolding questions 
help us do a better job of dealing with credit-and-blame 
problems. We admit that here we have confounded the 
impacts of simply adding in scaffolding questions response 
data and adopting the credit-and-blame strategies. And we 
want to investigate their effects separately in the near 
future. To get more “identifiability” per skill, in the next 
section we use the “full” response data (with scaffolding 
question responses added in) to try to answer the question 
of whether finer-grained models predict better. 
 Does an error rate of 12.12% on the WPI-78 seem 
impressive of poor? What is a reasonable goal to shoot for?  
Zero percent error? In Feng, Heffernan & Koedinger 
(2006, in press) we reported on a simulation of giving two 
MCAS in a row to the same students and then used one test 
to predict the other and got an approximate 11% error rate, 
suggesting that a 12% error rate is looking somewhat 
impressive. 

Does the Finer Grained Model Predict Better? 

Does WPI-78 Fit Better than WPI-5? How about 
WPI-1? 
To answer RQ2, we compared the three mixed-effects 
regression models (trained on the “full” data set with 
scaffolding questions used) fitted using the 3 different skill 
models. As shown in Table 4 (most content extracted from 
Table 3), the WPI-78 had the best result, followed by the 
WPI-5, and followed by the WPI-1. % Error dropped down 
when a finer-grained model was used, from WPI-1 to WPI-
5 and then from WPI-5 to WPI-78.  

Table 4.  Evaluating the accuracy of skill models 

Skill Model MAD 
95% Confidence 
Interval for MAD 

% Error  
(MAD/34) 

WPI-1 4.552 [4.256, 4.848] 13.39% 
WPI-5 4.343 [4.066, 4.620] 12.77% 
WPI-78 4.121 [3.860, 4.382] 12.12% 

Table 3. The effect of using scaffolding questions 
MAD % Error (MAD/34) 

Skill 
Model Orig. 

Response 
Orig.+ 

Scaffolding Response 
Orig. 

Response 

Orig.+ 
Scaffolding 
Response 

∆%Error p-value of 
paired t-test 

WPI-1 5.269 4.552 15.50% 13.39% 2.11% 0.0043 
WPI-5 5.671 4.343 16.68% 12.77% 3.91% <0.0001 

WPI-78 6.035 4.121 17.75% 12.12% 5.64% <0.0001 



 To see if these “% Error” were statistically significant 
different for the models, we compared each model with 
every other model. We did paired-t-tests between the “% 
Error” terms for the 497 students and found that the WPI-
78 model is statistically significantly better than the WPI-5 
and WPI-1 (p<.0001 in both cases), and WPI-1 is 
statistically significantly worse than the other two models 
(p <.0001 in both cases). This suggested that using finer-
grained skill models was helpful on tracking students’ 
knowledge over time.  
 We want to stress that the main goal of this paper is to 
see if finer-grained skill models track students’ knowledge 
better and we claim the goal was achieved because of the 
result presented in Tables 3 & 4. Therefore, though 
questions such as “Are the improvements in accuracy from 
4.552 to 4.121 meaningful?”, “What is the practical value 
of this improvement?” are interesting, they are beyond the 
scope of this paper.  

Readers may have noticed that when only response data 
on original questions were used, the order reversed: WPI-
78 was doing worse than WPI-5 and WPI-5 led to a higher 
MAD than WPI-1. Our interpretation of this is that when 
only original responses were used, individual skills don’t 
get as much “identifiability”; it only makes sense to make 
fine grained skill models, if you have questions that can be 
tagged with just a single skill. Another reason why finer 
grained model might not fit the data as well would be the 
fact that the finer grained model has fewer data points per 
skill, and thus there is a tradeoff between the number of 
skills you would like, and the precision in the skill 
estimates. Possibly, one reason most tests like the GRE are 
unidimensional is that they might not ask enough questions 
to justify the additional fit them might get. The students in 
our data set completed, on average, over 270 questions. 

How well does the Model WPI-78 Fit the Data?  
 When using logistic regression, the statistical packages 
allow the user to analyze which of the parameters seem to 
have good fitting values. We now turn to do a little more 
analysis on the WPI-78 to see how good a model we have. 
In our model, each skill gets one coefficient indicating the 
skill’s “intercept” and one for the skill’s “slope”.  The first 
of these, the intercept, allows us to model that some skills 
start the year with student knowing them better, while the 
slope allows for the fact that some skills are learned more 
quickly than others. In our model, the easiest skill was 
“Ordering-Numbers” (e.g., “Which of the two numbers is 
larger? -2 or -1”), while the skill that had the hardest 
incoming difficulty was “Pythagorean-theorem”, a skill 
that 8th graders in our district are expected to know at the 
beginning of the year. We also looked at the fits on the 
slopes for each skill. The skill that showed the steepest rate 
of learning during the course for the year was “Sum-of-
Interior-Angles-Triangle” (e.g. “what is the sum of the 
angles inside of a triangle?”). It seems quite plausible that 
students learned a good amount related to this skill as we 
noticed in a classroom a poster that said the “The sum of 
the interior angles in a triangle is 180” clearly indicating 

that this was a skill that teachers were focused on teaching. 
Attentively, the skill that that showed the least learning 
was called “Equation-Concept” (as shown in Figure 3). 
This analysis suggests some future work in refining the 
WPI-78 model; one possible refinement is to merge 
“equation-concept” with “equation-solving” (i.e., delete the 
“equation-concept” skill from the model and map all items 
tagged with “equation-concept” to “equation-solving”). 
This refinement might work better if students’ learning of 
equation-concept should transfer to increase their 
performance on equation-solving and vice-versa.  
 We did a correlation to see if the skills that were poorly 
fit for their slopes were the same skills that had a relatively 
smaller numbers of items, but surprisingly we found that 
the correlation was very weak. In addition, we speculated 
that skills that had less data for them would be more likely 
to be poorly fit. To investigate that we sorted the 78 items 
by the amount of data we had for each, and found that 8 of 
the worse fitting skills (as identify above by high p-value) 
also had a small amount of data. Specifically, these 8 skills 
had less than 440 data instances, while the median amount 
of data for each skill was 1391 records. This confirmed our 
expectation that skills with less data will be less well fit. 
Out of the 78 skills, 13 coefficients predicted un-learning 
(i.e. the slopes are negative), and 10 of those coefficients 
were not statically significant different from zero. Overall, 
40 of the slope-coefficients were not statically significantly 
different than zero. Again, in the future we will automate 
the process to remove those skills from the model and to 
re-fit the data. Other reasons a skill might have a poorly fit 
slope would be that we tagged items with the same skill 
names that share some superficial similarity, but do not 
have the same learning rates.  
 We further looked to see which skills were both poorly 
fit for their intercept (15) and slopes (40).  It turned out 
that there were 11 instances of skills that were poorly fit 
along both lines. These are instances of skills that need 
further refining in out model.   

Does Introducing Item Difficulty Help? 

Getting Item Difficult Parameters  
In order to answer RQ3, item difficulty information was 
required for the ASSISTments as well as the state test 
items. To obtain such information, we adopted Item 
Response Theory (IRT) and trained Rasch models 

 
Figure 3.  A question tagged with the skill “Equation-
Concept” 



(Embretson & Reise, 2000; van der Linden & Hambleton, 
1997), based on online data and the state test responses.  
 IRT now underlies several major tests. Computerized 
adaptive testing (CAT), in particular, relies on IRT. In 
CAT, examinees receive items that are optimally selected 
to measure their potential. IRT principles are involved in 
both selecting the most appropriate items and equating 
scores across different subsets of items. IRT now contains 
a large family of models. The simplest model is the Rasch 
model, also known as the one-parameter logistic model 
(1PL). For the model, the dependent variable is the 
dichotomous response for a particular person to a specified 
item. The independent variables are the person’s trait 
score, sθ , and the item’s difficulty level, iβ .  
 Though the Rasch model can be used to estimate the 
probability of the success response on specified items, it is 
a unidimensional model. Therefore, our approach is to 
obtain the iβ from the trained Rasch models for all items 
(discardingθ ) and useβ as a covariate in our mixed-
effects logistic regression models to incorporate item 
difficulty with different grain-sized skills models.  
 To get theβ ’s for the ASSISTments, we were using 
2005-2006 ASSISTment data for the same group of items 
but done by a different group of 2702 students from the 
same district as the 497 students in our data, assuming 
students from different years are of the same knowledge 
level. After training up the Rasch model, we extracted 
theβ ’s for all the items and observed that the values of β  
center around zero and range12 from -2.37 to 2.69. Then we 
added a new column in our data (See the sample data in 
Table 1.) putting in the correspondingβ for the particular 
item in the each row. Now the data is ready to be used to 
train mixed-effects logistic regression models with β as a 
covariate. The similar approach was followed to get the 
β ’s for the state test items. The item level response data 
of 1117 8th graders from Worcester who have not gotten 
involved in the ASSISTment system was utilized to train 
the Rasch model and we observed that the β ’s of the 34 
state test items range from -2.22 to 1.60.  

Results and Discussion  
With β acquired, we then updated the three regression 
models (with different skill models being used) as 
described in Section 4 by introducing β as a covariate to 
obtain 3 new models. Now we have three pairs of models 
with 2 models (without-beta and with-beta) for each skill 
model. To check if the internal validity of the introduction 
of β , we examined the Bayesian Information Criterion 
(BIC) of the three pairs of models and found that for each 
pair, there is a huge drop-down (over 10,000 points13) on 
BIC when β  was used as a covariate, suggesting that by 
introducing β , we can construct statistically significantly 

                                                 
12 A higher value of β  indicates the item is relatively easy while a lower 
one suggests a relative harder item.  
13 Raftery (1995) discussed a Bayesian model selection procedure, in 
which the author proposed the heuristic of a BIC difference of 10 is about 
the same as getting a p-value of p = 0.05. 

better fitted models on the ASSISTment data, tracking the 
change of students’ performance. Afterwards, we got 
students’ predicted score on the state test and calculated 
the MAD and % Error as we did before. Unfortunately, this 
time, no supportive evidence was found for the adding of 
item difficulty. The MAD and % Error are at about the 
same level for both models of all three pairs, suggesting 
that though item difficulty information was not as helpful 
to on estimating the score of the external state test as on 
tracking learning in the ASSISTment system. This result 
surprised us and we are still seeking plausible explanation 
for the result that an internally better fitted model does not 
serve as a better predictive model on the external measure.  
 Though failed to give a confirmative answer to RQ3, the 
work reassured the conclusion about RQ2. After β was 
introduced as a covariate, the relationship between the skill 
models remained the same: WPI-78 with-beta model is 
statistically significantly better and WPI-1 with-beta model 
is significantly worse than the other two models. 

Conclusion 
It appears that we have found evidence that using students’ 
response to scaffolding questions were helpful to 
constructing a model that can track students’ knowledge 
better (RQ1). Also, we presented results showing fine-
grained models can better predict MCAS score (RQ2). 
Item difficulty was introduced as a factor to improve the 
predictive models and we ended up with better internally 
fitted models, but surprisingly no significant enhancement 
was observed on the prediction of the scores of the external 
state test (RQ3). Reasoning from a Null result is always 
dangerous. In fact we don’t hypothesize that item difficulty 
will not help. If anything, our guess is that the 34 items 
from the MCAS might not be the most reliable way of 
accessing our models.  The important results presented are 
certainly about RQ2, where we show one instance where 
fine-grained model can be used to predict students’ skills 
better. Pardos, Heffernan, Anderson & Heffernan (2006, in 
press) simultaneously worked to answer the same research 
question, using Bayesian networks, and they reached the 
same conclusion as we did.  
 You will remember that for RQ2, we do not bother to 
report the internal fit of our models using measures like 
BIC, and there are two reasons. The first is that “internal fit 
is not the important variable” and the second is “we don’t 
know how to”. Less flippantly, the first reason is that what 
we really care about is the ability to predict the scores on 
the state test, so the internal fit of the model is not the main 
question of interest. Secondly, the size of the datasets is 
different using the different models; The finer-grained 
models add additional rows for all questions that are 
tagged with more than one skills, and BIC only make sense 
when the data is meant to be the exact same.   
 We believe that the ASSISTment system can be a better 
predictor of state test scores because of this work. Of 
course, teachers want reports by skills, and this is the first 
evidence we have saying that our skill mappings are 



“good”. (We make no claim that our WPI-78 is an optimal 
fitting mapping.) Now that we are getting reliable models 
showing the value of these models, we will consider using 
these models in selecting the next best-problem to present 
a student with. As part of the future work, we will get our 
data ready to be shared with other scholars. Researchers 
interested are welcomed to contact us for detail.  
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