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Abstract 

Secondary teachers across the United States are being asked to use formative 

assessment data to inform their classroom instruction. At the same time, critics of 

US government’s No Child Left Behind legislation are calling the bill “No Child 

Left Untested”. Among other things, critics point out that every hour spent 

assessing students is an hour lost from instruction. But, does it have to be? What 

if we better integrated assessment into classroom instruction and allowed students 

to learn during the test? This dissertation emphasizes using the intelligent tutoring 

system as an assessment system that just so happens to provide instructional 

assistance during the test.  

Usually it is believed that assessment get harder if students are allowed to 

learn during the test, as it’s then like trying to hit a moving target. So, my results 

are somewhat shocking that by providing tutoring to students while they are 

assessed I actually improve the assessment of students’ knowledge. 

Most traditional assessments treat all questions on the test as sampling a 

single underlying knowledge component. Yet, teachers want detailed, diagnostic 

reports to inform their instruction. Can we have our cake and eat it, too?  In this 

dissertation, I provide solid evidence that a fine-grained skill model is able to 
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predict state test scores better than coarser-rained models, as well as being used to 

give teachers more informative feedback that they can reflect on to improve their 

instruction.  

The contribution of the dissertation lies in that it established novel assessment 

methods to better assess students in intelligent tutoring systems. Through analyzing 

data of more than 1,000 students across two years, it provides strong evidence 

implying that it is possible to develop a continuous assessment system that can do all 

three of these things at the same time: 1) accurately and longitudinally assesses 

students, 2) gives fine grained feedback that is more cognitively diagnostic, and 3) 

saves classroom instruction time by assessing students while they are getting 

tutoring. 
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Chapter 1 

1 Introduction 

1.1 The Problems 

Across the world there are interests in student learning and assessing. In 

many US states there are also concerns about poor student performance on new 

high-stakes standards based tests that are required by No Child Left Behind Act 

(NCLB, 2002) legislation of the US government. To address this issue, 

educational technologies, like intelligent tutoring systems (ITS) have been 

developed and proven to be useful to help students learn. For instance, the 

Cognitive Tutors has been shown to lead to large learning gains (Koedinger et al, 

1997). Recently, U.S. President Obama made a commitment to increase 

investment on educational software, saying that “[W]e will devote more than 3 

percent of our GDP to research and development. … Just think what this will 

allow us to accomplish: solar cells as cheap as paint, and green buildings that 
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produce all of the energy they consume; learning software as effective as a 

personal tutor…” 1. This sounds very inspiring. But, how do we build ITSs that 

are as effective as a personal tutor? Among other things, knowledge intensive 

student modeling is, in my view, a critical aspect for the success of any ITS. 

Assessment of an examinee’s ability is the first step of student modeling in an ITS 

because student state is a prerequisite for creating a pedagogical strategy. The 

student model provides valuable information for the tutor to help on its tutoring 

strategy (e.g. when to interrupt and what to say when interrupt), problem 

sequencing (e.g. what’s the next appropriate task to give to a student so his 

learning gain is maximized), performance prediction (how a student will respond 

to a step associated with certain rules), etc. It can be very useful for informing real 

teachers’ of student’s weakness so that they can adjust classroom instruction as 

well.  

Assessment (or tests) has a long history of being used for performance 

evaluation. Yet, nowadays, we see both challenges and opportunities for 

assessment. On the one hand, the movement towards high-stakes testing promises 

to encourage rigor and accountability in middle school mathematics. But, as tests 

become more and more intensively employed, new concerns about over-testing 

arise. On the other hand, educational software has goes to schools and produced 

                                                 

1 http://my.barackobama.com/page/community/post/amyhamblin/gGxW3n.  

http://my.barackobama.com/page/community/post/amyhamblin/gGxW3n
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enormous learning (Koedinger et al., 1997). Comes after that is the question of 

how to assess students accurately in such a learning intensive environment, and, 

meanwhile, to respond effectively to teachers’ needs for classroom instruction.  

1.1.1 Formative assessment steals time from 
instruction 

Across the country of the United States, high-stakes standards-based tests are 

required by the NCLB. The new testing system in Massachusetts, Massachusetts 

Comprehensive Assessment System (MCAS) requires students to take rigorous 

tests in English, math, history and science in grades 3-12. Currently, students need 

to pass the math and English portions of the 10th grade versions in order to get a 

high school diploma. However, as reported by Massachusetts Dept. of Education, 

in the year of 2003, 20% of students failed the 10th grade math test on the first try; 

in urban districts, a staggering 18% of students that take the 10th grade math 

MCAS never manage to pass. The industrial city of Worcester is a representative 

of many such districts. Moreover, the state of Massachusetts singled out student 

performance on the 8th grade math test as an area of highest need for 

improvement2. Partly in response to this pressure, and partly because teachers, 

parents, and other stakeholders want and need more immediate feedback about 

how students are doing, there has recently been intense interest in “Formative 

                                                 

2 http://www.doe.mass.edu/mcas/2002/results/summary.pdf 
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Assessment” in K-12 Education (Boston, 2002; Black & Wiliam, 1998a, 1998b; 

Roediger & Karpicke, 2006) and in predicting student performance on end-of-

year tests (Olson, 2005) with many companies 3  providing such services of 

practice tests. Some teachers make extensive use of these practice tests and 

released test problems to help identify learning deficits for individual students and 

the class as a whole. However, such formative assessments not only require great 

effort and dedication, but they also take valuable time away from instruction. 

Critics of No Child Left Behind are calling the bill “No Child Left Untested” 

emphasizing the negative side of assessment, in that every hour spent assessing 

students is an hour lost from instruction. Some online testing systems (such as 

Renaissance Learning, www.renlearn.com) automatically grade students and 

provide reports but they may not be informative as they do not maintain 

sufficiently rich data records for students and hence cannot report on a fine-

grained level of student knowledge.  

The limited classroom time available in middle school mathematics classes 

has always compelled teachers to choose between time spent assisting students' 

development and time spent assessing students' abilities. Therefore, a solution 

must involve a way whereby students can take an assessment, but also learn as 

                                                 

3 Including Northwest Evaluation Association (http://nwea.org/assessments/), Measured Progress 
(http://measuredprogress.org), Pearson Assessments (http://www.pearsonassessments.com/). and 
the Center for Data-Driven Reform in Education (http://www.cddre.org/) 
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they are being assessed. A solution needs to be found so that teachers can get the 

benefit of being data-driven in trying to meet instructional objectives, but at the 

same time, make sure that their students’ time is spent primarily on learning. The 

goal of integrating assessment and assisting instruction was achieved in the 

ASSISTments system that I will describe later.  

1.1.2 Teachers’ needs have been forgotten 

Along with the change towards high-stakes testing is the fundamental 

dilemma that teachers face in trying to use assessment to guide instruction. 

Because assessment takes time away from instruction, how can teachers be sure 

that the time they spent on assessing will improve instruction enough to justify the 

cost of the lost instructional time? Worcester Public Schools are representatives of 

the many districts that are trying to address the dilemma. Among other things, 

they seek to use the MCAS assessments in a data-driven manner to provide 

regular and ongoing feedback to teachers and students on progress towards 

instructional objectives. For instance, the School Improvement Teams at each 

school review the results from the previous year to analyze which problems their 

students performed particularly poorly on. However, teachers want feedback 

much more often than once a year, but it usually takes the state six months to 

grade the MCAS exams. Moreover, they want better feedback than they currently 

receive. While the number of mathematics skills and concepts that a student needs 
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to acquire is on the order of hundreds, the feedback on the MCAS to principals, 

teachers, parents, and students is broken down into only 5 mathematical reporting 

categories, known as “Strands.” (See Figure 1.1) In fact, the state’s Curriculum 

Framework breaks the 5 strands into 39 individual “learning standards” for 8th 

grade math and tags each item with one of the 39 standards. The MCAS reporting 

system is a representative of other states’ reporting system. In 2004, a principal 

handed us a report (shown Figure 1.1) he received from the state and asked that 

we focus efforts on Geometry and Measurement because his students scored 

poorly in those areas (receiving 38% and 36% correct compared to over 41+% 

correct in the three other reporting categories). However, a detailed analysis of 

state tests in Texas concluded that such topic reporting is not reliable because 

problems are not equated for difficulty within these areas (Confrey, Valenzuela, 

& Ortiz, 2002). Therefore, even though receivers of such reports are being told to 

be “data-driven” and use the reports to inform their instruction, the MCAS reports 

themselves are never designed to give feedback at a grain size that could be used 

for the purpose. A reader can get some intuition on why this is the case by trying 

problem 19 from the 2003 MCAS shown in Figure 1.2. Then ask yourself “What 

makes this item difficult?” Clearly, this problem includes elements from four of 

the 5 “strands” (only missing “Data Analysis, Statistics and Probability”). It is 

Algebra (for solving equations), Geometry (for its use of congruence), Number 

Sense (for doing the arithmetic operations), or Measurement (for the use of the 
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concept of perimeter).  Ignoring this obvious overlap, the state chose just one of 

the 5 strands to classify the problem. It turns out, the state classifies it as 

Geometry, but later one I will show how our methodology is creating evidence to 

suggest that there is more to this problem than just Geometry.  

 

Figure 1.1. A school level report 

 

Figure 1.2. Item 19 from 2003 MCAS test 

When we asked this same question about problem 19 to teachers on our 

Teacher Advisory Board, one of our cooperating educators said “But you know 

the state - I worked on the MCAS assessment for perimeter [referring to one of 
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the committees that designs items for the MCAS]... and sometimes when they get 

a problem that they know, very well, that it could fit more than one strand, they 

put it in the strand that they need to fill.  And that is the problem!” Another 

teacher followed up with “It does affect reports... because then the state sends 

reports that say that your kids got this problem wrong so they're bad in geometry- 

and you have no idea, well you don’t know what it really is- whether it's algebra, 

measurement/perimeter, or geometry.” A teacher cannot trust that putting more 

effort on a particular low scoring area will indeed pay off in the next round of 

testing.  

Wiliam (2006) describes an assessment as formative only if information 

about what is being assessed results in change that would otherwise not occur. 

Under this guideline, “An assessment of curriculum is formative if it shapes the 

development of that curriculum. An assessment of a student is formative if it 

shapes that student’s learning” (p. 3). Here the definition of formative assessment 

becomes more detailed to the utility for teachers to understand if and how 

students are learning. It would be easier for a teacher to make data-driven changes 

in her classroom if she had a more detailed analysis of her students' learning. 

Students’ weaknesses need to be addressed by helping them with precise concepts 

and skills that are neither too easy nor too hard. It was reported that instead of 

having performance reports that break math knowledge into only a few 

components, teachers want more fine grained diagnostic reports to accommodate 
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their everyday classroom practice (e.g., Militello, Sireci, & Schweid, 2008; Wylie, 

& Ciofalo, 2008). These reports are referred to as “assessment for learning” 

(Stiggins, 2005; Black et al., 2003).  

To help solving these problems, I have been engaged in constructing a fine 

grained skill model and tracking student’s knowledge development at skill level. 

Meanwhile, I developed an online reporting system to inform teachers about their 

students’ performance on each skill in a timely manner.  

1.1.3 Assessment becomes challenging when 
students learn 

Traditionally these two areas of testing (i.e. Psychometrics) and instruction 

(i.e., math educational research and instructional technology research) have been 

separate fields of research with their own goals. Standard psychometric theory 

requires a fixed target for measurement (e.g. van der Linden and Hambleton, 

1997), which requires that learning during testing be limited. In psychometrics 

field, an important assumption of classical test theory (CTT) is that if an examinee 

could be tested repeatedly using different but strictly parallel forms each time, and 

assuming test administration was unaffected by previous ones, the average 

measurement errors would approach zero as the number of administrations 

approach infinity (Feldt and Brennan, 1993). Item response theory (IRT) (van der 

Linden and Hambleton, 1997) overcomes some problems of CTT by focusing on 
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statistical characteristics of individual items. But the local independence 

assumption still holds (i.e. the response to an item depends only on the item itself 

and the examinee’s ability, but independent of responses to other items) and IRT 

generally also assumes the examinee ability to be constant and its dimension to be 

low.  

This “fixed target” assumption has hardly met in an ITS as the ultimate goal 

of a tutoring system is to help students learn. The targets are thereby moving. On 

the one hand, a tutor often tailors its feedback according to student answers to 

present question. The feedback is given to students in order to help them learn the 

content. The tutor also adapts its subsequential activities based on students’ 

answers to previous questions to better remediate problematic knowledge 

components and, thus, to promote more learning. Therefore, student’s knowledge 

is constantly changing in the intelligent tutor and “local independence” 

assumption is not valid any more. On the other hand, assessment in an ITS 

features high dimension. It is common that the number of skills an ITS track in 

their student modeling module is in the order of hundred instead of just one latent 

trait. For instance, Cognitive Tutors maintains updated status of student mastery 

of 2,400 production rules (Ritter, et al., 2009). The knowledge base system 

GUIDON (Clancey, 1987) represented domain knowledge using about 400 rules 

and pedagogical knowledge by around 200 rules.  
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Another characteristic that makes assessment in intelligent tutors special is 

that different from taking a traditional test, students typically use intelligent tutors 

regularly in a long term. For instance, in many schools Cognitive Tutors are used 

3 days per week over the whole year; similarly, students from Worcester Public 

Schools would go to school computer lab and work within the ASSISTments 

system (Razzaq et al., 2005) for 20 minutes every other week as a part of their 

normal math class. Thus, not only is student ability not fixed during the 

“assessment” any more, but also it is changing over time. Therefore, the measure 

of student performance and understanding in such circumstance should be 

continuous instead of discrete.  

Statisticians have done some work to enable assessment of students while 

they are learning over time. Some attempts to combine standard psychometric 

models with Markov learning models have been attempted (as far back as 

Jannarone, 1986). Some work has been done on psychometric measurement of 

growth and change (e.g. Tan, Imbos and Dos, 1994; Embretson, 1992; Fischer 

and Seliger, 1997). Gierl and colleagues made contributions in cognitive 

diagnostic assessment area (Leighton, & Gierl, 2007). Embretson (1991) proposed 

a multidimensional dynamic latent trait model to account for learning and change. 

Embretson & Reise (2000) (pp.297-303) provided a comprehensive review on the 

application of IRT models to study continuous and discontinuous change. 

However, making predictions from testing data in which students are actively 
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learning material has only been pursued energetically in the realm of computer-

based intelligent tutoring (e.g., Corbett, Anderson and O’Brien, 1995).   

One thrust of this dissertation is that I propose approaches to leverage an 

intelligent tutor to assess students better. I have found evidences showing 

allowing student learn in the tutor is no longer an obstacle for assessment, but an 

opportunity to for us to be able to assess more accurately.  

1.2 Contribution of this Dissertation 

This dissertation makes contributions in several aspects.  

(a) First, I propose a novel approach for student assessment. By considering 

student-system interacting data, I can predict student end-of-year exam score 

reliably better than traditional methods that pays attention to only correctness 

(Feng, Heffernan, & Koedinger, 2006a, 2006b, 2009; Feng, Beck, Heffernan, & 

Koedinger, 2008).  My work provides solid evidence for the value of assistance 

measures, such as the percent correct for scaffolding, the use of help, hint requests, 

time to respond, and other factors, for prediction of standardized test scores, and 

suggests that we can do the two things, assessment and assistance, well 

simultaneously. This work is novel because traditional assessment usually focuses 

on students’ responses to test items and whether they are answered correctly or 

incorrectly, but ignores all other student behaviors during the test (e.g., response 
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time). However, an ITS has the potential to use far more. In this dissertation, I 

take advantage of a computer-based tutoring system to collect extensive and rich 

data while students interact with the system. The result is shocking: the model (I 

call it assistance model) that is based upon only the interaction information but 

includes no correctness on the main problems leads to significantly better 

prediction of student’s state test scores than the model (called lean model) that is 

based on the correctness alone. The relative success of the assistance model over 

the lean model highlights the power of the assistance measures. Thus, not only is 

it possible to get reliable test information while “teaching on the test”, data from 

the teaching process actually improves reliability. This work is novel also in that 

similar large scale data (learning data of 1000+ students’ usage of an online 

system over two years) has not been available or analyzed beforehand. While the 

idea of dynamic testing (Brown et al., 1983) is not new, I argue that 

operationalising it and carefully evaluating whether this promising idea for 

improving student modeling is achievable in an implemented system that has been 

widely used by real teachers and students is an important contribution.   

The broader impact of this contribution lies in that it has potentially huge 

practical implications for schools in the U.S. I provide evidence that reliable 

assessment and instructional assistance can be effectively blended. Thereby 

teachers can be relieved from the dilemma where they have to make the hard 

choice between assessment and assistance. While in some sense it is not really 
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surprising that adding dimensions to the user model improves its accuracy, the 

underlying debate on assessment vs. teaching makes this data even more relevant. 

The results with the ASSISTments system open up a the possibility of a 

completely different approach to assessment that is contentious in nature in 

suggesting students might not need to spend any time on formal paper and pencil 

tests.  

(b) The second contribution of this dissertation is that I show not only we can 

hit moving targets, but also we can that longitudinally over a long period of time 

(Feng, Heffernan, & Koedinger, 2006a, 2006b; Feng, Beck, Heffernan, & 

Koedinger, 2008). I argue this is novel since no existing systems longitudinally 

track student knowledge over time and use that to predict student’s state test 

scores. While in this dissertation, I demonstrate how mixed-effects models can be 

utilized to track change over time and, thus, help do a better job predicting state 

test scores.  

The general implication from this research suggests that continuous 

assessment systems are possible to build and that they can be quite accurate at 

helping schools get information on their students over a long period of time. 

Computer Research Association (CRA) report (Computer Research Association, 

2005) has pointed out that continuous assessment systems research is a huge 

growth area. And, recently, in an interview with U.S. News & World Report 



                                    

15  

     

(Ramírez, & Clark, 2009), U.S. Secretary of Education Arne Duncan also called 

for continuous assessment. He mentioned that he is concerned about over-testing, 

and feels that fewer, better tests would be more effective. Many states are moving 

towards adopting “value added” assessments, so that they can track the value 

added by teachers and schools. Value added is possible because you have year to 

year state assessments so you can see the average learning gain for students per 

year, and attribute those gains to teachers and schools. Such systems could benefit 

from data that is collected every few weeks, instead of once a year, thereby 

allowing schools to more quickly figure out what works at increasing student 

learning and get more accurate estimates of student performance later as well.  

(c) This dissertation makes a unique contribution by developing skill models 

of various granularities and rigorously evaluates the effectiveness of the models at 

estimating student knowledge (Feng, Heffernan, Mani, & Heffernan, 2006; Feng, 

Heffernan, Heffernan, & Mani, 2009). One of the main contributions of this 

dissertation is that it demonstrates the value of a very fine-grained versus more 

coarse-grained models within intelligent tutoring systems. I rigorously evaluate 

the effect of granularity of the skill models and validated the usage of a fine-

grained skill models. While some prior research in the field of intelligent tutoring 

systems has looked at the value of coming up with accurate skills models (and has 

generated some automated methods for doing so, such as Barnes, 2005; Cen, 

Koedinger & Junker, 2005, 2006), my work is different in that we hand-coded the 
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skill models and built the connection between skills and questions. This is similar 

to what Ferguson et al. (2006) did as they also associated problems with skills by 

hand, but they employed a different methodology. Another contribution of this 

dissertation is that I demonstrate how skill models in intelligent tutoring systems 

can be used to predict standardized test scores. 

The practical implication of this contribution has to do with the balance 

between informative feedback and accurate assessment. Traditionally, most 

assessments, including the high stake state tests required by NCLB, treat all 

questions on the test as sampling a single underlying knowledge component. Yet, 

the fact is that instead of having performance reports that break math knowledge 

into only a few components, teachers want more fine grained diagnostic reports to 

accommodate their everyday classroom practice (Militello, Sireci, & Schweid, 

2008; Wylie, & Ciofalo, 2008). Can we have our cake and eat it, too? That is, can 

we have a good overall prediction of a high stakes test, while at the same time be 

able to tell teachers meaningful information about fine-grained knowledge 

components? The answer from the dissertation is “yes”. I show that we can 

inform teachers of fine grained skills with which their students are having trouble 

as well do a better job of predicting student’s knowledge using the fine grained 

model than using coarser grained models, which is surprising because for each 

skill we have less information.   
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(d) I implement a reporting system that has been deployed and used by real 

teachers (Feng & Heffernan, 2005, 2006, 2007), as part of the ASSISTment 

system. The complete working system, ASSISTments system, is available on the 

World Wide Web (www.assistment.org) and has been used by more than 6,000 

students (Razzaq, Feng, et al., 2005, 2007). The system makes it possible to 

assess students and assist student learn at the same time. This reporting system is 

different from reports from state tests in that first, the reports are made available 

online lively. Thus, instead of waiting for six months, teachers can view the 

reports while students working on ASSISTments; secondly, the system reports to 

teachers based upon a very fine grained skill model as opposed to the state test 

reports that only break math into only a few knowledge components, so that 

teachers know what’s really causing difficulties to their students.  

The U.S. Department of Education (2003) stated, “Research shows that 

teachers who use student test performance to guide and improve teaching are 

more effective than teachers who do not use such information” (p. 2). Therefore, 

if assessments are to move from assessments of learning to assessments for 

learning (c.f., Stiggins. 2005) then we must continue to focus on the box that 

encompasses diagnostic modeling data and teachers as the end-users. By giving 

teachers cognitively diagnostic data in a timely fashion through my reporting 

system, teachers can change their teaching in response to the data they collect 

about student understanding. 

http://www.assistment.org/
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(e) I establish an easy approach to estimate and compare the effectiveness of 

different tutoring content (Feng, Heffernan, & Beck, 2009). The traditional 

approach uses randomized controlled studies that can be very expensive speaking 

of the time and subjects, especially if we want to focus on hundreds of individual 

pieces of tutoring contents. Yet, I demonstrate an approach where we can apply 

educational data mining technique to use observational data to efficiently compare 

the effectiveness of individual pieces of instructional materials in a tutoring 

system. This is a low cost approach comparing to randomized experiments. My 

analyses show in the ASSISTments system, some contents have more impact on 

student math skill development while some contents are not so useful. I suspect 

this result is not specific to ASSISTments, and other tutors may have items that 

vary greatly in educational effectiveness. Potentially, the method can be used 

generally to examine the quality of instructional contents in learning systems, and 

thus improve the overall learning impact.  

To summarize, as an interdisciplinary research, this dissertation contributes to 

several academic domains. First, the dissertation contributes to the field of 

computer science, particularly, intelligent tutoring systems and user modeling. 

Chapter 3 contributes to the field of intelligent tutoring systems by aiming to 

exploit the fine grained data in a tutoring system to improve the accuracy of 

modeling a learner. In particular, where many uses of assessment use only the 

overall correctness of the student's answers, a tutoring system has the potential to 
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use far more. The results indicate that not only can a tutoring system be used to 

help student learn which has been the goal of most systems, but also it can be 

quite accurate at assessing students. Following approaches provided by this 

dissertation, intelligent tutoring system builders can build detailed learner models 

to “feed” into the tutoring process that can be used to inform teachers, students 

and the machine on the ways to best remedy problems. This part of the 

dissertation was published and well-received at World Wide Web Conference 

(WWW) (nominated for best student paper award) and the journal of User 

Modeling and User Adaption and Interaction (UMUAI) (nominated for James 

Chen award, best UMUAI paper of the year).  

The topic of user modeling is important, especially with the increasing role of 

standardized testing. In general, being better able to diagnose a student’s 

knowledge is critical for improved and targeted teaching, for both teachers and 

intelligent tutoring systems. Chapter 4 makes significant contribution on this 

aspect. Early in 1994 when speculating on long term research goals, researchers in 

intelligent system field, McCalla & Greer (1994) pointed out that the ability to 

represent and reason about knowledge at various levels of detail is important for 

robust tutoring. As far as I know, my contribution is entirely unique in that it 

rigorously evaluates the effect of the level of details within the skill models, using 

usage data of about 1,000 students from over two years from a tutoring system 

and external state test scores, going from very broad to very detailed. Since 
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intelligent tutoring systems tend to use fine-grained skill models, the work thus 

validates a core underlying assumption. This part of the dissertation was 

published in IEEE Transaction on Learning Technologies (featured article of the 

issue).  

Researchers in data mining area has been searching for automated 

techniques to address interesting scientific questions, such as revising transfer 

models for better knowledge representation. Yet, the work in Chapter 5 starts with 

human constructed models and ends with the conclusion that students of different 

proficiency level can be best represented by different transfer models. I was also 

trying to bring together efforts from human subject experts, educational data 

mining approach, and intelligent searching process from artificial intelligence 

field to refine existing transfer models. I think this is an important piece work in 

that it helps us with better understanding what parts of the scientific enterprise can 

be best done by people and which are better done computationally, which is a 

major issue in the area of educational data mining.  

This dissertation makes important contributions to educational measurement, 

esp. psychometrics and educational assessment development. Assessment 

models in the psychometrics society usually assume a fixed target during a test in 

a limited time, which is always violated in a tutoring system. How to hit a moving 

target thereby becomes an important issue to be addressed because we want 
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students to “move” (i.e. they learn and their ability improves). Yet, I establish an 

approach showing because our system not only teaches while it assesses, but it 

even does a better job of assessing because of learning, and longitudinal modeling 

approach allows us to do so over a long period of time. As nowadays more and 

more computer-based tests are being administered in replacement of paper-and-

pencil tests, the results from this dissertation could well influence the 

development of e-assessment (or adaptive assessment) system. They bring up a 

good reason for psychometricians to develop models that pay more attention to 

the data that they have discarded in the past, such as students’ response time, their 

attempting frequency, their learning over time, and so on.  

1.3 Dissertation Organization 

The remainder of this dissertation is organized into 6 chapters. The second 

chapter gives an overview of the ASSISTments system. In particular, it shows 

how students work in the ASSISTments.  

The third chapter focuses on the reporting system in the ASSISTments 

project. It describes representative reports that have been built to inform teachers 

and shows how one of the reports promotes later works of the dissertation. In 

addition, teachers’ attitude towards the system will be discussed.  
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The forth chapter addresses the testing challenge in ASSISTments. 

Particularly, in this chapter, I present the dynamic metrics that I develop to 

measure the amount of assistance students need to solve problems. After 

analyzing usage data of 1, 000 students in two years, I argue that the dynamic 

metrics are more helpful at predicting students’ state test scores than the 

correctness of their answers. I also show how to longitudinally model their 

knowledge development in an environment where students learn. Additionally, 

methods are proposed to evaluate our predictions. I argue that the accuracy of the 

predictions is comparable with the standardized test itself. 

The fifth chapter reports my work on developing and evaluating fine grained 

skill model. In the chapter, I focus on explore two research questions: Does 

adding scaffolding responses help? And does the finer-grained model predict 

better than coarser grained models? The modeling process will be described on 

how I evaluated models of various granularities based on data of more than 1,000 

students and their external state test scores. Solid evidence is presented that the 

fine grained model leads to more accurate estimates of students’ state test scores.  

Chapter six discusses my effort on improving the system, including detecting 

instructional differences among individual contents in tutoring efficacy and 

refining existing skill models based on findings from data analysis. Conclusions 

of this dissertation and the future work are described in Chapter seven.  
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Chapter 2 

2 Background 

2.1 Overview of the ASSISTments System 

Back in 2003, the US Dept of Education funded Heffernan and colleagues to 

build a system that assesses 8th grade math while it tutors students. Since spring, 

2004, I, together with other colleagues, have been working on the ASSISTments 

system that was built to offer instruction to students while providing a more 

detailed evaluation of their abilities to the teacher than is possible under current 

approaches. The key feature of ASSISTments is that they provide instructional 

assistance in the process of assessing students. If students got the item correct 

they were given a new one. If they got it wrong, they were provided with a small 

“tutoring” session where they were forced to answer a few questions4  that broke 

                                                 

4 As future work, once we have built a predictive model and are able to reliably detect students 
trying to “game the system”, (i.e., just clicking on answer) we will allow students to re-try a 
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the problem down into steps to eventually get the problem correct. During the 

tutoring session, students are allowed to request for hint messages and make more 

than one attempts at the questions.  

The intelligent tutor was deployed with a completely internet savvy solution 

and developed based on the Common Tutoring Object Platform (CTOP) (Nuzzo-

Jones, Walonoski, Heffernan & Livak, 2005) whereby students access the web 

site via a web browser that reported each student’s actions on the web page to our 

database at WPI, thus enabling completely live database reporting to teachers, as I 

will describe in Chapter 4. The ASSISTments system is about 5 years old and has 

been primarily used by middle-school and high-school teachers and students 

throughout Massachusetts who are preparing for the MCAS tests. The system 

started by interviewing a few middle school math teachers about how they would 

tutor a problem. In May of 2004, one week before the MCAS was given, about 300 

students participated when 5 different teachers brought their students to their 

schools’ computer labs. In the 2004-2005 school year, more than 600 students 

used the system regularly about every two weeks. Eight math teachers from two 

middle schools would bring their students to the computer lab, at which time 

students would be presented with randomly selected MCAS test items. Currently, 

                                                                                                                                     

question if they don’t seem to be “gaming” (Baker, Corbett, & Koedinger, 2004). Thus, studious 
students will be given more flexibility. 
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there are over 3,000 students and 50 teachers using our system as part of their 

regular math classes. The ASSISTments is a collaborating project between 

researchers and teachers: now over 30 teachers have used the system to create 

contents; 17 teachers are participating a workshop at WPI to learn how to make 

more effective use of diagnostic assessment data from ASSISTments; Heffernan 

and colleagues, and WPI graduate students still visit schools regularly to help 

with technical issues and on how to use ASSISTment data to drive classroom 

instructions. 

 The individual pieces of tutoring for a given MCAS question are called 

“ASSISTments”, a word coined by Kenneth Koedinger, because they blend 

assisting the student to learn with assessment. Each ASSISTment consists of an 

original question and a list of scaffolding questions. The original question usually 

has the same text as in MCAS test while the scaffolding questions were created by 

our content experts to coach students who fail to answer the original question. The 

first scaffolding question appears only if the student gets the item wrong. An 

ASSISTment that was built for item 19 of the 2003 MCAS is shown in Figure 2.1. 

Particularly, Figure 2.1 shows the state of the interface when the student was 

partly done with the problem. We see that the student typed “23” (which 

happened to be the most common wrong answer for this item from the data 

collected). After an error, the textbox was then disabled and the student was not 

allowed to try the item further, but instead must then answer a sequence of 
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scaffolding questions (or “scaffolds”) presented one at a time. Students work 

through the scaffolding questions, possibly with hints, until they eventually get 

the problem correct. If the student presses the hint button while on the first 

scaffold, the first hint is displayed, which would be the definition of congruence 

in this example. If the student hits the hint button again, the second hint appears 

which describes how to apply congruence to this problem. If the student asks for 

another hint, the answer is given. Once the student gets the first scaffolding 

question correct (by typing “AC”), the second scaffolding question appears. 

Buggy messages will show up if the student types in a wrong answer as expected 

by the author.  shows a buggy messages that appeared after the student clicked on 

“½*x(2x)” suggesting he might be thinking about area. (Hints appear on demand, 

while buggy messages are responses to a particular student error and will show up 

on the screen automatically) Once the student gets this question correct he will be 

asked to solve 2x+x+8=23 for 5, which is a scaffolding question that is focused on 

equation-solving. So if a student got the original question wrong, what skills 

should be blamed? This example is meant to show that the ASSISTments system 

has a better chance of showing the utility of fine-grained skill modeling due to the 

fact that we can ask scaffolding questions that will be able to tell if the student got 

the question wrong because they did not know congruence versus not knowing 

perimeter, versus not being able to set up and solve the equation. As a matter of 
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logging, a student is only marked as getting the item correct if he/she answered 

the questions correctly before asking for any hints or encountering scaffolding. 
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Figure 2.1. An ASSISTment shown after a student hits the “Hint” button twice, showing the 
two different hints and one buggy message that can occur at different points 

 

A key hypothesis of this project is that ASSISTments can do a better job of 

assessing student knowledge limitations than practice tests or other on-line testing 
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approaches by using a “dynamic assessment” approach (Grigorenko & Sternberg, 

1998); in particular, use the amount and nature of the assistance that students 

receive which is normally not available in traditional practice test situations as a 

way to judge the extent of student knowledge limitations. These measures include 

the time it takes students to come up with answer to a question, the attempts they 

take to correct an answer if it is wrong, the number of hints they request, and their 

performance during the tutoring session on the scaffolding questions. My effort to 

test this hypothesis of improved prediction of the ASSISTments’ dynamic 

assessment approach is discussed in Chapter 4. Further, because the scaffolding 

questions break the test questions down into a series of simpler tasks that directly 

assess fewer knowledge components, I hypothesize that I can do a more accurate 

assessing job. This hierarchal breakdown will provide a much finer-grained 

analysis than is currently available for any large-scale tests, such as MCAS. 

Moreover, since students use the web site regularly during a year, we can track 

student performance development longitudinally. Each week, the web site will 

learn more about each student and will provide an increasingly accurate 

prediction of how well each student will do on the MCAS.  

ASSISTments is definitely a team effort. My responsibility in this project 

includes the development of the reporting system, and later on analysis of data 

collected from the system. It is worth mentioning that all the data used in this 

dissertation have been collected from the ASSISTments system. It is the special 
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features of ASSISTments that make it possible for us to do a better job assessing 

students.  

2.2 The Massachusetts Comprehensive 
Assessment System 

The Massachusetts Comprehensive Assessment System (MCAS) is a high-

stakes testing system required by the No Child Left Behind Act. In Massachusetts, 

MCAS is the graduation requirement in which all students in state educated with 

public funds in the tested grades are required to participate. It is administered as 

standardized test that produces rigorous tests in English, math, science and social 

studies for grades 3 to 10 every year. Students need to pass the math and English 

portions of the 10th grade versions in order to get a high school diploma. The test 

is filled with challenging multi-step problems that tap a variety of different 

mathematical concepts. Students even have to write essays explaining the 

mathematics they use to solve problems. (See Appendix B for sample released 

MCAS test items from the year 2003).  

MCAS results for students are reported as scaled scores and performance 

levels that are calculated based on the raw scores. The raw score reflects the total 

number of points a student got from a MCAS test, ranging from 0 to 54. The 

range of scaled scores for MCAS tests is arbitrarily defined to be between a 
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minimum of 200 and maximum of 280, which is further divided into four 

performance levels, namely Warning/Failing (when the scaled score falls in the 

range of 200 ~ 218), Needs Improvement (220 ~ 238), Proficient (240 ~ 258), and 

Advanced (260 ~ 280). The purpose of scaled scores is to provide information 

about the position of a student’s results within a performance level. Student raw 

scores, or the total number of points, on the MCAS tests are converted into scaled 

scores using a scaling procedure. Generally speaking, the MCAS scaling 

procedure involves two-step transformations: “(1) non-linear monotonic 

transformations of the raw score points into theta metric5 points, and (2) linear 

transformations of theta points into MCAS scaled score points.” (MCAS technical 

report, 2001, p41) These transformations do not change the rank ordering of 

students, nor their performance level classifications. Also, three threshold raw 

scores determined by a standard setting procedure were used as the cut points for 

the four performance levels. The whole procedure tries to minimize the 

fluctuations in the thresholds from year to year, consistent with the slight shifts in 

the difficulty of the tests and the gaps in theta estimates between rounded raw 

scores.  

My dissertation work relates to the MCAS in several ways. First, MCAS helps 

set the goal for the ASSISTments project. Because students are more likely to fail 

                                                 

5 The “theta metric” refers to the student ability (θ) metric in Item Response Theory models.  
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the mathematics portion of the test6, the state is focusing efforts on mathematics. 

8th grade math thereby became where the ASSISTments project started to help 

students get better prepared for the MCAS7. Secondly, we have built our content 

based upon the released items from previous MCAS math tests. In Massachusetts, 

the state department of education has released publicly 11 years worth of 8th grade 

MCAS test items on math, totalling over 400 items, which we have turned into 

ASSISTments by adding “tutoring”. The items that have been used include not 

only the publicly available released items but also variations on these problems 

involving different numbers, cover stories, or combinations of concepts and skills. 

By using MCAS released items we both help to encourage transfer to the real test, 

as well appear to parents, teachers, and students to be a worthwhile activity that is 

geared towards the MCAS objectives that they care about. Thirdly, student MCAS 

scores have been widely used in the student response data modelling process of my 

research. For instance, I evaluate models by examining how well they predict the 

MCAS test scores which was taken by students at the end of a school year after the 

online data being used was collected, as I will describe later in Chapter 4. Fourthly, 

the Massachusetts Curriculum Framework from MCAS provides a base for the 

                                                 

6 http://www.edweek.org/ew/newstory.cfm?slug=02mcas.h21 
7 We started with 8th grade mathematics because it is the “hard” part. The system itself was built in 

the way that it is not limited to a specific domain or a particular grade. Now the system also 
includes 6th grade and 10th grade math contents. Meanwhile it has expanded to tutor science 
inquiry skills (Sao Pedro et al., 2009).  
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construction of our fine grained skill model (See Appendix C for learning standards 

for Grades 7-8). It also serves as contrast cases for my analysis of effectiveness of 

skills model at various granularities, as I will describe in Chapter 5.  
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Chapter 3 

3 Informing Teachers Live  

Chapter organization: In this chapter, section 1 discusses more about the 

motivation of building the reporting system. Section 2 presents representative 

reports that I have designed and implemented to give teachers feedback on their 

students’ performance and to help them analyze the contents. Section 3 shows 

teachers’ attitude towards the reporting system, and in Section 4, reports from 

other systems are described and contribution of my reporting system is discussed. 

The content of this chapter draws heavily from the paper (Feng, & Heffernan, 

2005) that has been presented at a workshop, and two journal papers (Feng, 

Heffernan, 2006, 2007).  

3.1 Introduction 

As discussed in Chapter 1, schools seek to use the yearly MCAS assessments 

in a data-driven manner to provide regular and ongoing feedback to teachers and 

students on progress towards instructional objectives. Plus teachers and parents 
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also want better and faster feedback than they currently receive. Among other 

things, the feedback on the MCAS is broken down into only 5 strands despite the 

fact that the number of mathematics skills and concepts that a student needs to 

acquire is on the order of hundreds. In Chapter 2, I have shown an item was filled 

into Geometry strand though it could naturally fit more than 1 strand.  

The question of tagging items to learning standards is very important because 

teachers, principals and superintendents are all being told to be “data-driven” and 

use the MCAS reports and use the MCAS reports such as in Figure 1.1 to adjust 

their instruction. However, these MCAS reports were never designed to give 

feedback at a grain size that could be used to guide instruction. The MCAS, and 

almost all other similar state tests (as well as many tests like the GRE and the 

SAT) are as well, unidimensional tests that assume there is only one “latent” (i.e. 

unobserved) skill that is being tapped (i.e. the one skill of “MATH” as opposed to 

tracking algebra and geometry separately).  Such tests work pretty well at telling 

you which students are performing well since students that do well in one area 

tend to do well in others, but are not good at informing educators about how to 

help students. There are several reasons for this poor MCAS reporting: 1) the 

reasonable desire to tag problems with multiple skills, 2) the fact that paper and 

pencil tests cannot figure out, given a student's response, which skills to credit or 

blame, 3) there are skills that deal with decomposing and recomposing multi-step 

problems, yet are currently poorly understood by cognitive science. It would be 
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easier for a teacher to make data-driven changes in her classroom if she had a 

more detailed analysis of her students' learning on a finer grained knowledge level 

and the analysis results are reported periodically, or better lively, along the school 

year.  

To address the reporting issue with MCAS test, the primary goal of this 

reporting system is to assist student learning by providing feedback of precise 

assessment to teachers, so that they can adjust their classroom strategies based 

upon the system’s fine-grained analysis of student learning. I conjecture that 

detailed reporting with precise assessment, closely tied to the material students are 

working on, will make it easier for teachers to use data-driven decision makers to 

alter their planned instruction in response to the need of the majority of the class 

and to the need of individual student. The reporting in the ASSISTment system 

was built to identify the difficulties individual students – and the class as a whole 

– are having. It is intended that teachers will be able to use the detailed feedback 

to tailor their instruction to focus on the particular difficulties identified by the 

system. Compared to the MCAS reports, reports provided by the reporting in the 

ASSISTment system is live so that teachers do not need to wait. We have built 

different cognitive models and reported to teachers in term of finer grained-sized 

skills in addition to the learning standards. The cognitive model we built allow 

one problem to be tagged with multiple skills and finer grained models that break 

down the 5 strands into about 100 skills and code the problems (also the 
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scaffolding questions) with the new skills. I will describe the fine grained 

cognitive model in further detail in Chapter 5 where the creation, analysis and 

refinement of cognitive models will be discussed.  

3.2 The ASSISTments Reporting System 

The ASSISTment system was deployed with a completely internet savvy 

solution that reported each student’s actions to our database at WPI as they are 

working in the system, thus enabling completely live database reporting to 

teachers (Feng & Heffernan, 2005, 2006, 2007b). Teachers seem to think highly 

of the ASSISTment system not only because their students can get instructional 

assistance in the form of scaffolding questions and hint messages while working 

on real MCAS items, but also because they can get online, live reports on 

students’ progress while students are using the system in the classroom. Below in 

this Chapter, I present several representative reports as a part of the reporting 

system that I built to help inform teachers.  

3.2.1 Real-time lab performance monitoring  

The “Grade Book”, shown in Figure 3.1, is the most frequently used report 

by teachers. Each row in the report represents information for one student, 

including how many minutes the student has worked on the ASSISTments, how 

many minutes he has worked on the ASSISTments today, how many problems he 
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has done and his percent correct, our prediction of his MCAS score and his 

performance level. Our “prediction” of a student MCAS score is at this point 

primitive. The column is currently simply a function of percent correct. Back in 

2005, we found a strong correlation between our prediction for the 68 students 

who have used our system May 2004 (the first group of users of ASSISTment) 

and their real MCAS raw score 8  (r = 0.7) (Razzaq et al., 2005). And I was 

continually refining our prediction function based on new data (Feng, Heffernan, 

& Koedinger, 2006a, 2006b, 2009). My work on developing better predictive 

models for MCAS will be discussed in Chapter 4 and Chapter 5.  

                                                 

8 MCAS test results are reported in the form of scaled scores and performance levels for individual 
students, schools, and districts.  Individual student raw scores are translated into scaled scores 
and performance levels through a process called scaling. The raw score, ranging from 0 to 54 
will be converted into scaled score which ranges from 200 to 280. The total range of MCAS 
scaled scores is divided into four equal segments, each referring to one performance category, 
namely warning/failings, need improvement, proficient, and advanced. Please refer to 
http://www.doe.mass.edu/mcas/ for further details.  

http://www.doe.mass.edu/mcas/
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Figure 3.1. A grade book report on real student data for one of our teachers’ classes 

In Figure 3.1, we see that these 6 students have used the system for about 4 hours. 

“Tom” has finished 90 original items. Many of those he got wrong and so was 

asked many scaffolding questions of which he got 44% of the 228 questions asked 

correct. He asked for 353 hints. Our prediction of his MCAS score was relatively 

low, “Warning/Failing”. Teachers can also see “Mary” has asked for way more 

hints than others (705 hints). Noticing this, a teacher could go and confront the 

student with evidence of gaming or give him a pep-talk. The “Grade Book” is so 

detailed that a student commented: “It’s spooky”, “He’s watching everything we 

do” when her teacher brought students to his workstation to review their progress. 

By clicking the link next to each student, the teacher can see what those questions 

were and what kind of errors the student made. Knowing students’ reactions to 

questions helps teachers to improve their instruction and enable them to correct 

students’ misunderstandings in a straightforward way.  
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Figure 3.2. An item report tells teachers how students are doing on individual problems. 

 

The grade book report gives an overview of a student/a class’s performance. 

Figure 3.2 shows an item report which is generated based on detailed, action-level 

logs of students. The report shows teachers how students are doing on individual 

problems. In particular, the item report in Figure 3.2 presents how three students 

from one class did on an assignment of eight problems focusing on Pythagorean 

Theorem, a skill that the students are requested to acquire in the eighth grade. By 

presenting in different colours and using different tags, the report helps teachers 

quickly tell if a student answered the question correctly (indicated by a “+” sign in 
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the report); if not, did they give incorrect answer (indicated by an “x” sign) at 

their first attempt or they requested for hint (indicated by a message “Hint 

requested”). For instance, the three yellow-highlighted cells in the third row leap 

out at the first sight. Hence, the teacher can tell at a glance that the student is 

asking for too many bottom-out hints. Actually, the student requested for hint 

messages 53 times, far more than others. Teachers can also see what students 

have answered for each question. As shown in the report, the correct answer of 

item #131 is “14”, yet two of the three students gave the answer “192”, which 

could be a warning signal to the teacher suggesting there are some common 

misunderstandings among students. Through providing the detailed information, 

we hope to help teachers inform their instructions and, thus, provide better 

remediation to students.  

Teachers seem to think highly of the ASSISTment system not only because 

their students can get instructional assistance in the form of scaffolding questions 

and hint messages while working on real MCAS items, but also because they can get 

online, live reports on students’ progress while students are using the system in the 

classroom. 

3.2.2 Help identifying difficult steps  

Teachers want to know particular skills or knowledge components that cause 

trouble to students. Unfortunately the MCAS is not designed to be cognitively 
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diagnostic. By breaking original items into scaffolding questions and tagging 

scaffolding questions with knowledge components, we are able to analyze 

individual steps of a problem. Figure 3.3 is what we call a scaffolding report 

because it reports statistics on each of the scaffolding questions that are associated 

with a particular original item.   

 

Figure 3.3. A “scaffolding report” that teachers can generate already from the reporting 
system 

 

On the first line of Figure 3.3, we see this problem is hard since only 12% of the 

students got it correct on their first attempt. Of the 180 students having done this 

item so far, 88% (about 158 students) could not get the correct answer to the 

original question, thus forced by the system to go through scaffolding questions to 

eventually solve the problem. Eagle-eye readers may notice that 154 (the number 

of attempt on the first scaffolding question) is less than 88% of 180. And the 
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number of attempts on later scaffolding questions went down more. That’s 

because students could log out and log back in to redo the original question to 

avoid going through all scaffolding questions. This problem has been solved. 56% 

of students asked for a hint, telling you something about students' confidence 

when confronted with this item. (It is useful to compare such numbers across 

problems to learn which items students think they need help on but don't, and vice 

versa). Remember that the state classified the item into “Geometry” category 

according to its “congruence” (G.2.8) shown in bold.  The other MA learning 

standards (M.3.8, P.7.8) are the learning standards we added in our first attempt to 

code using the MCAS 39 standards. We see that only 23% of students that got the 

original item incorrect can correctly answer the first scaffolding question lending 

support to the idea that congruence is tough.  But we see a as low percent correct 

25% on the 3rd question that asks students to solve for x. The statistics result 

gives us a good reason to tag “P.7.8-setting-up-and-solving-equations” which is a 

learning standard under the strand of “Patterns, Relations, and Algebra” to the 

problem. 

Given the scaffolding report can provide lower level of cognitive diagnosis, 

our cooperating teachers have carefully designed scaffolding questions for those 

tough problems to find out the answer. For example, one teacher designed an 

ASSISTment for (“What’s ¾ of 1 ½?”), item 20 of year 2003 8th grade MCAS. 

The first scaffolding question for the ASSISTment is “what mathematical 
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operation does the word ‘of’ represent in the problem”. This teacher said, “Want 

to see an item that 97% of my students got wrong? Here it is… and it is because 

they don’t know ‘of’ means they should multiply.” The report has confirmed the 

hypothesis. 40% of students could not select “multiplication” with 11 of them 

selecting “division”. 

The scaffolding report has helped us to develop our tutors in an iterative way. 

For each question, the report shows top common errors and corresponding 

“buggy” messages. When building the scaffoldings for ASSISTments, we have 

tried to “catch” common errors students could make and give them instructive 

directions based on that specific error, such as correcting students’ 

misunderstanding of question texts or knowledge concepts. But given that 

students may have different understandings of concepts, ASSISTments may give 

no messages for some errors, which means our tutor lost chances to tutor students. 

Also, students may feel frustrated if they are continually being told “You are 

wrong” but get nothing instructive or encouraging. As shown in Figure 8, the 

wrong answer “15” to the third question has been given 13 times, but the 

ASSISTment gave no instructive messages. Noticing this, the ASSISTment 

builders can improve their tutor online by adding a proper “buggy” message for 

this error.  
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Figure 3.4. Red & Green” distribution matrix 

 I also display a table that I call “Red & Green” distribution matrix as shown in  

Figure 3.4 following the scaffolding report. Numbers in the cells show how many 

students got correct (indicted by green number in un-shaded cells) or wrong 

(indicated by red in shaded cells) on a question. The number is split as the questions’ 

sequence number grows so that it also represents how those students have done on 

previous questions. In this example, we see that 4 students who have answered the 

original question wrong went through all of the scaffolding questions correctly. 

Given that, we tend to believe those students have mastered the knowledge 

components required by each step and but need instruction on how to “compose” 

those steps. It’s also worth pointing out that there are 8 students who answered 

original question wrong but answered correctly to the last question, which asks the 

same question as the original one. Since the assistment breaks the whole problem 

into scaffolding steps and gives hints and “buggy” messages, we would like to 

believe those students learned from working on the previous steps of this assistment. 

3.2.3 Informing hard skills  

Tagging questions with knowledge components in different transfer models 

enables us to develop reports to inform teachers about the knowledge status of 
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classes and of individual student. “Class Summary” report and “Student-Level 

Knowledge Component” report were developed for this purpose. As shown in 

Figure 3.5, teachers can select their favourite transfer model, specify the number of 

knowledge components to be shown in the report. Knowledge components are 

ranked according to their correct rate which is students’ correct rate (demonstrated in 

Figure 3.5 as green bars together with percent correct as values) at the items tagged 

with those knowledge components. By clicking the name of a knowledge 

component (shown as a hyperlink in Figure 3.5), teachers are redirected to another 

page showing the items tagged with the knowledge components. In the new page, 

teachers are able to see the question text of each item and continue to preview or 

analyze the item if they want to know more about the item.  
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Figure 3.5. The class summary report (settings and results) 

By presenting such a report, we hope we can help teachers to decide which 

knowledge components and items should be focused on to maximize the gain of 

students’ scores at a class level when instructional time is limited. We would like to 

evaluate the effectiveness of the report by comparing the learning gain in a limited 

time of the classes for which the teachers have been exposed to this report to the 

control groups for which this report is not accessible.  

 In addition to the class level knowledge component report, we present a 

student level report (developed by Quyen Do Nguyen at WPI) to teachers which 
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shows the knowledge status of individual students. Similar to the class level report, 

strong and weak knowledge components are listed, but only for the particular 

student specified by the teacher. The student level knowledge component report 

comes after the class level report and quickly becomes a favourite report of our 

cooperating teachers. Teachers love the fact that they can see in this report the weak 

points of a particular student in their classes so that they will pay more attention to 

those knowledge components when giving instructions to the student. Since both 

original items and scaffolding steps have been tagged in different grain sized transfer 

models in the ASSISTments system, I argue that we can more accurately detect what 

are the real obstacle knowledge components for each student.  

3.3 Teachers’ Attitude 

Nice things have been mentioned about the system by our cooperating 

teachers anecdotally. To collect usage feedback from teachers, we created an 

online survey of teacher attitude about the ASSISTment system and how do they 

use the data from the system during the school year 2005 to 2006. The responses 

were positive. Teachers in general liked the feature that the ASSISTments lead 

students step by step when they incorrectly answered a question and “it was great 

to have the ‘hints’ that are tailored to their individual needs”. They also 

considered using the system as a good MCAS practice and loved the fact that they 
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can receive scores at the end of the class. Among the 11 teachers who responded, 

8 teachers strongly agreed that they thought their students learned by using the 

system and 3 agreed somewhat. And nine of the teachers would consider 

assigning ASSISTment problems as homework for students with computers at 

home.  

I have noticed a discrepancy that although eight of the 11 teachers thought 

the data provided the system was helpful, only 3 teachers said that they did use 

the data (i.e. the reports) to change what they did instruction in class while 7 

others mentioned that they only did this somewhat. I hypothesize that one reason 

for this difference can be the availability of the reports. Most teachers are not 

accustomed to frequently log in to the system to access the reports on their own. 

To some teachers, doing this also adds extra work. Actually when being asked the 

opinion on receiving automatic email reports, 9 teachers thought that would be 

great since it would be “a much easier and faster way of obtaining the 

information” and it would eliminate work for them so that allow them “more time 

to focus on certain strategies or concepts in class”.  

Another thing we care about is how the teachers use the reports. In the survey, 

most teachers only mentioned that they reviewed common mistake problems with 

the whole class, which indicated that many functions provided the reporting 

system have been ignored. Again, availability of the reports might be one 
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explanation. Another reason, I speculate, can lie in the fact that different reports in 

the system are not quite well organized and there is no demonstration or function 

specification on the website to help people get started. Making the reports for 

teachers more user-friendly would also be of value. One teacher commented: “I 

got more familiar with the program as the year went on. It wasn't until the end of 

the year that I was able to start using the data. And that was only after I was 

shown step by step on how to retrieve the information and then use it.” Overall, 

the teachers seemed to value the ASSISTments system mostly for its tutoring 

capabilities rather than for its assessment capabilities.  

I speculate that teachers that use the ASSISTments reports will learn more 

about their students, and thereby make their classrooms more effective, and thus 

produce better learning. However, we will not know if this is true until we have 

run a randomized controlled study with 20 teachers in the control group and 20 

teachers in the experimental group. 

3.4 Related Work and Contribution 

Many researchers have been interested in constructing assessment/tutoring 

systems on different subjects, many of which provide the similar tutoring 

functionality as the ASSISTment system and various reports to teachers to help 

instructing student learning. Measures of Academic Progress (MAP - 
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http://www.nwea.org) are state-aligned computerized adaptive tests provided by 

the Northwest Evaluation Association (NWEA) and it is also the most commonly 

used assessment system by Worcester Public Schools. MAP covers subjects other 

than math and gives similar online reports such as class rosters, student progress 

report, class by subject report to educators to guide their instructions. Unlike the 

ASSISTments system, as an assessment system, MAP provides no tutoring to 

help student learning and it sticks to the strands and categorization given by the 

state. Hence, it lacks the ability to analyze a problem in further detail, and 

performance is reported in only 5 categories. 

The Online Learning Initiative (OLI - http://www.cmu.edu/oli/) from 

Carnegie Mellon University provides a collection of online tutors directed at 

many subject areas. While the OLI provides a wide range of online tutors, the 

tutors lack extensibility to other tutor types and domains, resulting in a high cost 

for creating content.  

Cognitive Tutors, created by LearnLab (http://www.learnlab.org/), also 

provide tutoring in addition to being extendable to other domain or content. They 

have been successful in raising students' math test scores in high school and 

middle-school classrooms. The Authoring tools, named, CTAT, are provided to 

make content creation easier for experts and possible for novices in cognitive 

science. However, although Cognitive Tutors trace knowledge mastery at a very 
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detailed level, they do not provide comprehensive reports about students’ progress 

to teachers on the amount of assistance they need to finish the problems, etc. They 

do not give item analysis reports or class summary reports, either.  

The National Center for Research on Evaluation, Standards and Student 

Testing (CRESST) (Vendlinski et al., 2005) provides an online system (not 

limited to math) and has a collection of tools to support the creation and 

distribution of content. However, the CRESST system does not offer tutoring, 

instead it allows for open ended questions that are then evaluated by a human 

teacher, nor does the CRESST system provides reports for teachers.  

Effective Educational Technologies (EET) developed a series of online 

assessment and tutoring programs (MasteringPhysics - 

http://www.masteringphysics.com/, MasteringGeneralChemistry, and 

MasteringAstronomy) together with the authoring tools for content creation. Most 

like in the ASSISTments system, with the mastering program, students receive 

feedback based on common wrong answers and misconceptions. By capturing the 

step-by-step difficulties of individual students, the Mastering platform responds to 

each student with individualized hints and instructions. The program provides 

tools to find problems of the wanted type, topic coverage, and level (functioned as 

problem difficulty report as described in Section 4) and to monitor class/student 

performance via a “grade book”; tracks students’ work on the sub-problems 
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(similar to the scaffolding questions in ASSISTments) and awards partially credit 

when evaluating students’ performance. MasteringPhysics has been widely used 

as homework system while the ASSISTment project just started its first step into 

the picture.  

LON-CAPA (http://www.lon-capa.org/) is a special assessment system 

because of its distributed learning content management that allows the sharing of 

assessment materials across institutions and disciplines. It provides assessment 

analysis gives an overview of how students are performing in the courses. The 

report shows all the attempts made by a student on each problem and it can also 

analyze one problem across all students, which is rather simple, comparing 

reports in the MAP, MasteringPhysics, or the ASSISTments system.  

3.5 Conclusion 

To summarize, I feel that I have developed some state-of-the-art online 

reporting tools that will help teachers and researchers be better informed about what 

their students know. The primitive evaluation is that we have made it possible for all 

these reports to work live in the classroom. Since doing learning analysis by hand is 

both time consuming and fallible, one aim of our reporting system is to automate 

statistical analysis of learning experiments. For instance, after researchers set up an 
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experiment, the system will send out emails automatically after the study is done and 

inform which condition is superior.  
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Chapter 4 

4 Predicting Student Performance 
Better in a Tutoring System 

Chapter organization: The first section of the chapter gives an introduction 

of the problem and describes how the later work is motivated. Section 2 focuses 

on developing dynamic assessment metrics to improve predictive power of 

assessment models. Section 3 shows how I have emphasized the problem of 

tracking student performance longitudinally. In Section 4, the dynamic 

assessment and longitudinal methods are combined to create a better prediction. 

Section 5 focuses on evaluating the estimates made from my models against those 

from standardized tests. Section 6 does a literature review of related works that 

are compared to my work to emphasize the contribution of this chapter. All 

studies from this chapter have been published in the following conference and 

journal papers: Feng, Heffernan, & Koedinger, 2006a, 2009 (Section 2, Section 3); 
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Feng, Heffernan, & Koedinger, 2006b (Section 4); Feng, Beck, Heffernan & 

Koedinger, 2008(Section 5).  

4.1 Introduction 

As mentioned in Chapter 1, critics of US government’s No Child Left Behind 

legislation are calling the bill “No Child Left Untested”. Among other things, 

critics point out that every hour spent assessing students is an hour lost from 

instruction. But, does it have to be? What if we better integrated assessment into 

classroom instruction and allowed students to learn during the test? In the 

ASSISTments system, we implement an approach that provides immediate 

tutoring on practice assessment items that students cannot solve on their own. The 

system helps teachers make better use of their time by offering instruction to 

students while providing a more detailed evaluation of student abilities to the 

teachers, which is impossible under current approaches.  

Recently, in an interview with U.S. News & World Report (Ramírez, & Clark, 

2009), U.S. Secretary of Education Arne Duncan weighed in on the NCLB Act, 

and called for continuous assessment. He mentioned that he is concerned about 

over-testing, and feels that fewer, better tests would be more effective. He wants 

to develop better data management systems that will help teachers track 

individual student progress in real-time, so that teachers and parents can assess 
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and monitor student strengths and weaknesses. To reflect on the “continuous 

assessment” idea, I think, one way that ITS research distinguishes itself from 

other educational software development is that it is concerned with modeling the 

knowledge of the learner in some computationally useful and inspectable way 

(McCalla & Greer, 1994). The modeling phase should involve understanding 

learner behavior in the rich context of the environment in which learning occurs, 

and, thus, obtains a better understanding of student’s pre-existing, or current 

knowledge status and how the knowledge is changing over time.  

ASSISTments provides an ideal test bed to investigate continuous assessment.  

It automatically provides students with feedback, scaffolding questions and hints 

based upon the answers given by students and their help-seeking request; it 

transparently and automatically logs all student actions into a background 

database; it keeps records of all student activities in the tutoring system over a 

long period of time; and, moreover, it synthesizes all related profile of students 

including demographic information, the school they go to, their teachers, and their 

state test scores over years. There is rich data about the nature and amount of help 

that the student was given, which would be of great value in judging a student's 

mastery of knowledge. Recall that I have presented our prediction of students' 

“expected” MCAS test scores as a single column in one of our online teacher 

reports, the “Grade Book” report, described in chapter 3. The predicted score was 

created based only upon student’s average percent correct on the original 
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questions. In Razzaq et al. (2005), we reported a correlation between our 

prediction for the 68 students who have used our system in May 2004 and their 

real MCAS raw score (r = .7), which is somewhat satisfying given such a 

primitive model. But, can we do better than that? Examining the prediction model, 

I notice three issues that I will refer to as the static issue, the average issue, and 

the uninformative issue respectively. First, because the model only uses original 

question response data, it is static in that does not distinguish between two 

students, “Tom” and “Jack”, who both got 39% of the original questions correct, 

but then needed very different levels of tutoring to get the problem correct 

eventually. “Tom” requested for 353 hints while “Jack” only asked for about half 

of that; in less time, “Jack” finished more problems than “Tom” did. Intuitively, 

“Jack” was probably at a higher proficiency level than “Tom” and, thus, should 

receive a higher predicted score. Secondly, the prediction is an average. It totally 

ignores the change of student’s proficiency level in the past several months (If we 

assume the students used the system for 30 minutes every other week, then the 4 

hours of practice has been accumulated in the past 4 months). Presumably, even if 

two students have the same average score in the middle of a year, the one who 

starts with a lower incoming knowledge but learns quicker probably will end up 

with a higher MCAS test score. Thirdly, the prediction is not informative for 

teacher’s classroom instruction in that it does not tell teachers which particular 

knowledge component to be focused on.  
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In the following two sections, I argue the two issues have been addressed by 

leveraging the ample data resources in the ASSISTments system. Section 4.2 

addresses the static issue by introducing dynamic metrics, while section 4.3 

focuses primarily on the second issue, the average issue, and applies longitudinal 

models. I will leave the uninformative issue for Chapter 5 which is all about skills.  

4.2 Addressing the Assessment Challenge 
Using Dynamic Metrics 

The goal of this section is to see if it is possible to do assessment better if we 

take advantage of the student-system interaction information in ASSISTments 

that is normally not available in traditional practice tests. I will focus on 

answering the research question: Does the tutoring interaction provide valuable 

assessment information? A positive answer to the research question would help us 

to build a better predictive model and also improve our online teacher reporting. 

My hypothesis is that we can achieve more accurate assessment by not only using 

data on whether students get test items right or wrong, but by also using data on 

the effort required for students to solve a test item with instructional assistance. 

These measures include response efficiency that accounts for the time it takes 

students to come up with an answer to a problem, the time they take to correct an 
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answer if it is wrong, help-seeking behavior (e.g. the number of hints they 

request), and their performance on the sub-steps (called scaffolding questions). 

4.2.1 Developing dynamic metrics 

In order to differentiate student mastery at a finer grained level, I develop the 

following group of metrics that measure students’ accuracy, speed, attempts and 

their help-seeking behavior: 

 Original_Percent_Correct – students’ percent correct on original 

questions, which we often referred to as the “static metric”.  

 Original_Count - the number of original items students have done. This 

measures students' attendance and how on-task they are. This measure 

also reflects students' knowledge since better students have a higher 

potential to finish more items in the same period of time.  

 Scaffold_Percent_Correct - students' percent correct on scaffolding 

questions. In addition to original items, students' performance on 

scaffolding questions is also a reasonable reflection of their knowledge. 

For instance, two students who get the same original item wrong may, in 

fact, have different knowledge levels and this may be reflected in the one 

may get more of the scaffolding questions right than the other. 
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 Question_Count - the number of questions (both original items and 

scaffolding questions) students have finished. Similar to Original_Count, 

this variable is also a measure of attendance and knowledge but given the 

fact that scaffolding questions show up only if students fail the original 

question, it is not obvious how this measure will correlate with students' 

MCAS scores. 

 Hint_Request_Count - how many times students have asked for hints. 

 Avg_Hint_Request - the average number of hint requests per question. 

 Bottom-Out_Hint_Count - the total number of bottom-out9 hint messages 

students got. 

 Avg_Bottom_Hint - the average number of bottom-out hint messages 

students got per question.  

 AvgFirstHintRequest_original – on average, how many times students 

requested hints before they made an attempt on an original question.  

 AvgFirstHintRequest_scaffold – Similar to AvgFirstHintRequest_original, 

this variable measures on average, how many times students requested 

hints before they made an attempt on scaffolding questions.  

                                                 

9 Since the ASSISTment system does not allow students to skip problems, to prevent students 
from being stuck, most questions in the system were built such that the last hint message almost 
always reveals the correct answer. This message is referred to as "Bottom-out" hint. 
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AvgFirstHintRequest_original and AvgFirstHintRequest_scaffold are only 

available for 2005-06 data. I hypothesize the two metrics are both a reflection of 

student knowledge and their confidence. Students who either do not understand 

the question or are uncertain of their response may request hints before making an 

attempt. Accordingly, my hypothesis is that both metrics will be negatively 

correlated with MCAS scores without other variables in the model. If 

Original_Percent_Correct is already in the model, then 

AvgFirstHintRequest_original might be positively correlated because it may be 

better to know you don’t know (and those ask for a hint) than not know and just 

guess.  

 Attempt_Count - the total number of attempts students made across all 

original and scaffolding questions. 

 Avg_Attempt - the average number of attempts students made for each 

question. 

 Avg_Item_Time - on average, how long it takes for students to finish a 

problem (including all scaffolding questions if students answered the 

original questions incorrectly). 

 Avg_Question_Time - on average, how long it takes for a student to 

answer a question, whether original or scaffolding, measured in seconds. 
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 Total_Minutes - how many total minutes students have been working on 

items in the ASSISTment system. Just like Original_Count, this metric is 

an indicator of the attendance.  

The ten measures from Hint_Request_Count to Avg_Question_Time in the 

above list are generally all ASSISTment style metrics (or the assistance metrics), 

which indicate the amount of assistance students need to finish problems and the 

amount of time they spend to finish items. Therefore, the hypothesis is that these 

measures will generally be negatively correlated with MCAS scores (though, for 

instance, Attempt_Count or Total_Minutes may be positively correlated because 

they are partially determined by time on task).  

Among these measures, “Original_Percent_Correct” is a static metric that 

mimics paper practice tests by scoring students as either correct or incorrect on 

each item, while the rest of the measures are dynamic testing metrics that measure 

the amount of assistance students need before they get an item correct, how fast 

they answered the questions, etc.  

I have been presenting some of these online measures in our reports to 

teachers (See Figure 3.1). Particularly, student “Mary” used the system 4 hours 

and 17 minutes, finished 114 items with 20% correct. She went through 356 

scaffolding questions with 20% correct and asked for 705 hints, which is 

excessive compared to her classmates.  
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4.2.2 Description of the data 

The first data I consider comes from the 2004 – 2005 school year, the first 

full year in which the ASSISTment system was used in classes in two middle 

schools in Massachusetts. At that time, the ASSISTment system contained a total 

of 493 main questions and 1216 scaffolds; 912 8th grade students’ logs were 

maintained in the system over the time period from September to May. Of these, 

approximately 400 original questions and their corresponding scaffolding 

questions were in regular use by students. Although the system was web-based 

and hence accessible in principle anywhere/anytime, students typically interacted 

with the system during one class period in the schools’ computer labs every few 

weeks. Among these 912 students, I am able to obtain complete data for 417 of 

them. The data set contains online interaction data from the ASSISTment system, 

the results of 8th grade MCAS tests taken in May, 2005 and the results of 10th 

grade MCAS tests taken by the same group of students two years later, in May, 

2007. I exclude the data of 25 students who did less than 39 10  questions in 

ASSISTments. The 391 students in the final 04-05 data set have practiced 

mathematics problems in the ASSISTment system for a mean length of 267 

                                                 

10 The number 39 was picked because there are 39 questions in the real 8th grade MCAS test each 
year.  
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minutes (standard deviation = 79) across about 9 sessions, finishing on average 

147 items (standard deviation = 60).  

The second data set I will use is from the 2005-2006 school year. About 

3,000 students used the system during the year, among which I collected a full 

data set for 616 students from Worcester Public Schools, including the online data 

from ASSISTments and their 8th grade MCAS test raw scores (MCAS test was 

taken in May, 2006). The students on average worked in the ASSISTment system 

for 196 minutes (standard deviation = 76), and finished an average of 88 items (at 

least 39 items, standard deviation = 42).  

In the reporting system, student performance is represented in terms of scaled 

score and performance level (as seen in Figure 3.1) because teachers and students 

are more used to interpreting these metrics than understanding the raw score. But 

since the raw score provides a finer grain differentiation between students, when I 

analyze the data, all of the procedures are judged on their ability to predict the 

MCAS raw scores.  

Given the data set, my goal is to see if we can reliably predict students' 

MCAS raw scores and to evaluate how well on-line use of the ASSISTment 

System, can help in the prediction. To achieve the goal, I perform a stepwise 

linear regression using the online measures as independent variables to predict 

students' MCAS scores. I first apply the approach on the 2004-05 data and then on 
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the 2005-06 data.  Models constructed based on data from different years are also 

cross-validated too investigate whether the approach generalizes across years. 

4.2.3 Modeling 

Now that the dynamic metrics are developed, I first present the Pearson 

correlations between actual MCAS raw scores and all the independent variables in 

Table 4.1 to give some idea of how these factors are directly related to MCAS 

score. The first column shows the correlation between the factors and the 2005 

MCAS test scores in the 2004-05 data set, and the second column shows the 

correlation between the factors and the 2006 MCAS test scores. All these factors 

except Attempt_Count and Avg_Question_Time turn out to be significantly 

correlated with MCAS score at the 0.01 level (2-tailed). In general, students who 

maintained higher percent correct, finished more items, requested for less help 

and solved problems faster in ASSISTment, tended to have a high MCAS score at 

the end of the year, which is consistent with my hypothesis.  

Table 4.1. Correlations 

 Correlations Factors 

04-05 data/ 
2005 MCAS 
(391 students) 

05-06 data/ 
2006 MCAS 
(616 students) 

Static metric Original_Percent_Correct 0.786 0.689 

Original_Count 0.477 0.394 
Attendance Total_Minutes 0.241 0.202 

Scaffold_Percent_Correct 0.721 0.647 

Question_Count 0.163 0.132 

Hint_Request_Count -0.465 -0.265 
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Avg_Hint_Request -0.689 -0.536 
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 Correlations Factors 

04-05 data/ 
2005 MCAS 
(391 students) 

05-06 data/ 
2006 MCAS 
(616 students) 

Bottom_Out_Hint_Count -0.423 -0.258 

Avg_Bottom_Hint -0.584 -0.477 

Attempt_Count  0.036  0.026 

Avg_Attempt  -0.398  -0.593 

Avg_Question_Time  -0.062  -0.026 

Avg_Item_Time  -0.391  -0.299 

AvgFirstHintRequest_original NA -0.347 

AvgFirstHintRequest_scaffold NA -0.351 

My effort to predict student MCAS scores starts with a “lean” model, an 

Item Response Theory (IRT)-style model using ASSISTments data only. As a 

starting point, I use a one-parameter IRT model (the Rasch model, also called 1-

PL IRT model) (van der Linden & Hamilton, 1997), the straightforward model 

with just student proficiency and item difficulty parameters (and only on original 

question data). In the simple Rasch model, the probability of a correct response is 

modeled as a logistic function of the difference between the student and item 

parameter. To train the lean model, I use a data set of all data collected in the 

ASSISTment system from Sept., 2004 to Jan., 2008, including responses to 2,797 

items (only on original questions) from 14,274 students. By including more 

student response data from the four years, I hope to acquire a more reliable 

estimate of the item parameters, and thus a more stable estimate of the student 

proficiency.  
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Some readers may argue for multi-parameter models, such as 2-PL or 3-PL 

IRT models, that are expected to perform better on parameter estimation given 

sufficient amount of data. There were extensive research with regard to the test 

length and sample size on parameter estimates for dichotomous items in the 1980s. 

For instance, Hulin, Lissak, and Drasgrow (1982) concluded that 30 items and 

500 examinees were required to produce acceptable results when the 2-PL model 

was used. For the 3-PL model, they suggested 60 items and 1,000 examinees. We 

have thought of using more general models. However, the number of data points 

per item in our data set varies tremendously (mean = 276, and standard deviation 

= 463). There are 424 items for which we have less than 10 data points. So, we 

stick with the simplest 1-PL Rasch model.  

I fit the Rasch model in BILOG-MG 3.0 (Zimowski, Muraki, Mislevy & 

Bock, 2005) and obtain an estimate of every student’s proficiency trait score 

(usually called the student parameter), ranging from -4 to 4. The trait score is then 

transformed to the probability of a correct response on an item of average 

difficulty (i.e. item difficulty parameter equal to 0.5). I name this probability 

“IRT_Proficiency_Estimate” and add an extra column in the data set that is 

described in section 4.2.1 to record the student proficiency estimates. Finally, I 

conduct a linear regression to predict MCAS scores using student proficiency 

estimate to put them on the same scale.  
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The lean model is based on how students performed on the original questions 

but ignores how students interacted with the system. Using the online testing 

metrics, I run a stepwise regression11 analysis to predict MCAS test scores. I will 

refer to this model as the assistance model. Original_Percent_Correct is not 

included in the assistance model in order to distinguish it from the lean model and 

to show how the interaction information alone can do in estimating student 

performance. It is worth highlighting that the assistance model, which does not 

use the assessment information from the original questions is fundamentally 

different from traditional assessment model, represented by the lean model which 

only uses the original question information. By contrasting the assistance model 

against the lean model, we can isolate the assessment value of the tutor-student 

interaction session.  

A third model that combines the student proficiency parameters, estimated by 

the lean model, with the online testing metrics is explored as well. New parameter 

values for the assistance metrics are again fit in a stepwise regression. I name this 

model the mixed model. Student percent correct on original questions is not 

included here because these values have been used to find the best fitting student 

                                                 

11 We set probability of F to enter <= .05; probability of F to remove >= .10 for all stepwise 
regression analysis we did.  
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proficiency parameters. Using student proficiency has the advantage that it takes 

into consideration the difficulty of each item a student attempts.  

As mentioned before, Beck, Jia & Mostow (2004) were able to increase the 

within-grade correlation between their model and student performance on a 

fluency test significantly by adding help-seeking behavior in the computer 

Reading Tutor. In order to see how much the information on the amount of 

assistance that students need to solve a problem can help in the ASSISTment 

system, I construct another model, which I will refer to as the help model. In 

Beck et al. (2004), two features were constructed to describe student help requests: 

the percentage of words on which the student clicked for help and the percentage 

of sentences on which the student requested help. While in this dissertation, I 

have developed more features, including Hint_Request_Count, 

Avg_Hint_Request, Bottom_Out_Hint_Count, Avg_Bottom_Hint. Recall that all 

these hint related metrics are significantly correlated with MCAS test scores. Thus, 

to build the help model, I run a stepwise linear regression to predict student 

MCAS scores using the student proficiency parameter estimated by the lean 

model plus all of the hint related metrics.  

So far I have constructed four models: the lean model, the assistance model, 

the mixed model and the help model. Each model addresses different aspects of 

student performance. The modeling process has been replicated using data from 
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both 2004-2005 and 2005-2006 school years. In the next section, I will evaluate 

the models. 

4.2.4 Results and model evaluation 

4.2.4.1 Do the dynamic metrics help build a more predictive 
model?  

In Table 4.2, I summarize the four models that have been built using 2004-

2005 data, for which I have selected different groups of independent variables (IV) 

for regression. For each model, the table report how many variables entered into 

the model, how well the model fit data and how the predicted scores correlated 

with the real MCAS scores. SPSS automatically displays R Square and Adjusted 

R Square in the output. Because the four models have different numbers of 

parameters and are not always nested 12 , we need a method to compare the 

generalization quality of the models. I choose to use the Bayesian Information 

Criterion (BIC) for this purpose and applied the formula for linear regression 

models introduced by Raftery (1995, p135), which is different from what is 

typical used for calculating BIC but most convenient for linear regression models:  

)log()1log( 2 npRnBIC   

where 

                                                 

12 Two models are nested if they both contain the same terms and one has at least one additional 
term.  
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n: the sample size (for the 2004-2005 data case, n = 391; for the 2005-2006 

data, n=616) 

log: natural logarithm 

p: the number of independent variables included in each model (not including 

intercept) 

The MCAS test score predictions of the best fitting models are compared 

with actual 2005 MCAS test scores to calculate mean absolute deviation (MAD), 

which has been used as the measure to evaluate the student models in prior works 

(e.g. Anozie & Junker, 2006; Ayers & Junker, 2006; Feng, Beck, Heffernan & 

Koedinger, 2008). Here I follow those works and compute MAD for the models. 

The measure of MAD is suggested by Brian Junker, a statistician from Carnegie 

Mellon University (Junker, 2007).   





n

i
ii predictionMCAS

n
MAD

1

1
 

where MCASi is the actual MCAS score of the ith student, and predictioni is the 

predicted score from the prediction function being evaluated.  
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The correlation between the adjusted predicted scores13 by each model and 

student real MCAS test scores is also presented. The absolute deviations (AD) of 

each model for each of the 391 students are compared with each other, two 

models at a time, using paired t-tests (the p-values for comparisons of 

successively better models are shown in the first column of Table 4.2). 

Table 4.2. Model Summary (based on 2004-2005 data) 

Model 
  
MAD 

R Square BIC #variables 
Correlation with 
2005 8th grade 
MCAS  

The lean model 6.40 0.537 -295 1 0.733 
The help model 6.13 0.585 -326 3 0.765 
The assistance model 5.46 0.674 -402 6 0.821 
The mixed model 5.04 0.707 -450 5 0.841 

 p=.031 
 p=.004 
 p=.001 

 

As we can see, the help model correlates reliably better with MCAS score 

than the lean model, suggesting that in ASSISTments, student help-seeking 

behavior is helpful in improving MCAS score prediction. The lean model does 

not correlate with MCAS score as well as the assistance model, which indicates 

that MCAS score can be better predicted by using features reflecting student 

assistance requirement, effort, attendance, etc, even if we ignore student responses 

to original questions. Additionally, we can improve our prediction of MCAS 

score further on top of the assistance model by combining the student proficiency 

                                                 

13 The adjusted predicted score is calculated by doing “leave-one-out” cross validation in SPSS 
14.0.  
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parameter together with the online metrics that describe how students interacted 

with the system, such as the number of attempts students need, and how long a 

student need to answer a question. The improvement is statistically reliable in 

terms of MAD14, BIC15  and the correlations16.  

As the best fitted model, the mixed model takes into account students' 

performance on both original items (indicated by the IRT_Proficiency_Estimate) 

and scaffolding questions (indicated by the feature Scaffold_Percent_Correct), 

together with the other online metrics, and the model correlates with MCAS 

scores fairly well (r = 0.841). With five variables (one less than in the assistance 

model), it gains a 0.033 increment in the R2 value, 48 points lower on BIC value, 

and a significant better correlation with MCAS scores, which means the mixed 

model is significantly better than other models. Variables enters the mixed model 

in the following order: IRT_Proficiency_Estimate, Scaffold_Percent_Correct, 

Avg_Question_Time, Avg_Attempt and Avg_Hint_Request. Among these 

variables, IRT_Proficiency_Estimate and Scaffold_Percent_Correct have positive 

coefficients, and Avg_Question_Time, Avg_Attempt and Avg_Hint_Request 

have negative correlation coefficients. Notice that student percent correct on 

                                                 

14 See the chapter of “Evaluating hypotheses” in Mitchell (1997). 
15 Raftery (1995) discussed a Bayesian model selection procedure, in which the author proposed 

the heuristic of a BIC difference of 10 is about the same as getting a p-value of p = 0.05. 
16 We did significance testing of the difference between two dependent correlations from a single 

sample using the applet online at http://www.quantitativeskills.com/sisa/statistics/correl.htm.  

http://www.quantitativeskills.com/sisa/statistics/correl.htm
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original questions (IRT_Proficiency_Estimate) is considered the most significant 

predictor since it entered the final model earlier than other factors. However, the 

information from the tutoring session is helpful too, which indicates that 

performance on sub-steps, the speed, and the help-seeking behavior are additional, 

reliable indicators of students’ level of knowledge acquisition. The mixed model 

is presented in Table 4.3 and the interpretation of the model is straightforward: 

 Every point increase in IRT_Proficiency_Estimate (ranging from -4 to 4) 

adds 26.800 points to the prediction of MCAS score.  

 Every one percent increase in Scaffold_Percent_Correct ( ranging from 0 

to 1) adds 20.427 points to the prediction of MCAS score.  

 Average students' predicted score will reduce 0.170 points for every extra 

second students spent to finish a question.  

 On average, if a student needs one more attempt to reach a correct answer 

for an item, his/her predicted MCAS score will be 10.5 points lower.  

 On average, if a student requests one more hint, the predicted score will 

lower 3.217 points.  

Table 4.3. Variables and coefficients of the mixed model (based on 2004-2005 data) 

Order Variables Entered Coefficient Standardized Coefficient t Sig. 

0 (Constant) 32.414   6.136 0.000 

1 IRT_Proficiency_Estimate 26.800 0.443 10.364 0.000 

2 Scaffold_Percent_Correct 20.427 0.283 4.436 0.000 
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Order Variables Entered Coefficient Standardized Coefficient t Sig. 

3 Avg_Question_Time  -0.170 -0.212 -6.941 0.000 

4  Avg_Attempt -10.500 -0.178 -5.485 0.000 

5  Avg_Hint_Request -3.217 -0.149 -2.175 0.030 

The variables and corresponding coefficients of the final help model and the 

final assistance model are shown in Table 4.4 and Table 4.5. As we can see in 

Table 4.4, in addition to the IRT_Proficiency_Estimate, the average number of 

hint requests per question (Avg_Hint_Request) and the total number of hint 

requests (Hint_Request_Count) are also significant predictors of student 

performance on the MCAS test. Comparing Table 4.5 with Table 4.3, we notice 

that the assistance model is not nested within the mixed model. Without the 

IRT_proficiency_estimate, the step-wise regression added two other variables to 

the assistance model: Original_Count (total number of problems finished) and 

Attempt_Count (total number of attempts).  

Table 4.4. Variables and coefficients of the help model (based on 2004-2005 data) 

Order Variables Entered Coefficient Standardized Coefficient t Sig. 

0 (Constant) 17.021  6.816 0.000 

1 IRT_Proficiency_Estimate 31.389 0.519 10.430 0.000 

2 Avg_Hint_Request -8.967 -0.416 -7.019 0.000 

3 Hint_Request_Count 0.008 0.160 3.284 0.001 

 

Table 4.5. Variables and coefficients of the assistance model (based on 2004-2005 data) 

Order Variables Entered Coefficient Standardized Coefficient t Sig. 

0 (Constant) 39.698  7.124 0.000 

1 Scaffold_Percent_Correct 16.383 0.227 3.348 0.001 

2 Original_Count 0.114 0.572 7.775 0.000 

3 Attempt_Count -0.029 -0.473 -6.712 0.000 
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Order Variables Entered Coefficient Standardized Coefficient t Sig. 

4  Avg_Question_Time -0.131 -0.162 -3.941 0.000 

5 Avg_Hint_Request -6.933 -0.322 -4.774 0.000 

6  Avg_Attempt -5.349 -0.091 -2.236 0.026 

 

I replicate the same modeling process on the data from the school year of 

2005-2006. As mentioned before, the data is for 616 8th grade students from 

Worcester Public Schools. All of the four models are fitted to this data set and the 

results are summarized in Table 4.6.  

Table 4.6. Model Summary (based on 2005-2006 data) 

Model   MAD 
R 
Square 

BIC #variables 
Correlation with 
2006 8th grade 
MCAS 

The lean model 5.77 0.615 -581 1 0.784 
The help model 5.46 0.669 -656 4 0.818 
The assistance model 5.39 0.666 -630 7 0.816 
The mixed model 4.89 0.728 -763 6 0.853 

 p<.001 
 p=.693 
 p<.001 

 

The results are similar to those obtained using the 2004-2005 data set where 

the mixed model is still the best fitting and most generalizable model. The 

adjusted predicted score correlated with the 2006 MCAS test scores at 0.853, 

which is reliably higher than the correlation between the other models and the 

MCAS scores. The ranking of the other three models is the same as the ranking 

we got from using the 2004-2005 data except that the difference between the help 

model and the assistance model is no longer reliable (p = 0.693). The assistance 
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model and the mixed model are still reliably better than the lean model (p < 

0.001).   

A critic may argue that it is not fair to have the lean model as a contrast case 

as students were not spending all their time on assessment. Whether or not the 

ASSISTment system would yield better predictions than such a tougher contrast 

case, where students only spend on-line time on assessment and not on instruction, 

is an open question worthy of further research.  However, we would remind that 

critic that such a contrast would leave out the instructional benefit of the 

ASSISTment system and, moreover, might not be as well received by teachers 

and students. Schools are willing to use the ASSISTments often because they 

believe (and Razzaq et al., 2005 have shown) students learn during the 

ASSISTments. However, the schools are not willing to use more valuable 

instruction time to test more often.  

Some readers may have noticed that no quadratic terms or interactions 

between factors are included in our models when building regression models. As 

a matter of fact, I have suspected that there might be a non-linear relationship 

between the online measures and MCAS scores and such a regression model is 

also trained. I got a much more complicated model; the models with quadratic and 

interaction terms fit (by BIC values) the best on training data of both years, yet 

they are not statistically reliably better than the mixed models where no quadratic 
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or interaction terms are included. With 25 variables entered (mostly interaction 

terms), the model becomes hard to interpret and potentially overfits17 our data. 

Both for clarity and because our goal is generalization (e.g., better cross 

validation and BIC values) not just fit, the mixed model is our preferred model for 

MCAS score prediction. 

4.2.4.2 Model validation  

Now that I have trained models on data from two different years, I want to 

compare the models and see how different they are from each other. The 

coefficients of the mixed model trained based on 2005-2006 data is shown in 

Table 4.7. Comparing the model here with the model trained using 2004-2005 

data as shown in Table 4.3, we can notice that the model is entered with 6 

variables, yet the mixed model trained using 2004-2005 data is more 

parsimonious (5 variables). Further, it is worth pointing out that the assistance 

metrics that measure student help-seeking behaviors does not enter the model as 

they do for the 04-05 model (shown in Table 4.3). In both models, the student 

proficiency parameter estimated by the IRT model and student percent correct on 

scaffolding questions are the top two predictors.  

                                                 

17 We applied the model trained based on 2004-2005 data on the data from 2005-2006 and the 
predicted value does not correlate with 2006 MCAS score very well. The correlation is at the 
same level as the lean model.  
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Table 4.7. Variables and coefficients of the mixed model (based on 2005-2006 data) 

Order Variables Entered Coefficient Standardized Coefficient t Sig.  

0 (Constant) 3.284  2.224 0.027 

1  IRT_Proficiency_Estimate 32.944 0.530 13.657 0.000 

2 Scaffold_Percent_Correct 21.327 0.309 8.544 0.000 

3  Question_Count 0.072 0.652 8.891 0.000 

4 Avg_Question_Time -0.102 -0.173 -5.498 0.000 

5 Avg_Item_Time 0.045 0.154 5.432 0.000 

6 Total_Attempt -0.044 -0.550 -7.570 0.000 

 Since the models are not the same across years, the models might be 

overfitting the training data. Presenting BIC that penalizes a model by the number 

of variables entering the model and using adjusted predicted score that is 

calculated using “leave-one-out” cross validation have given us some protection 

against overfitting. On top of that, I investigate the issue further and explore how 

well the models generalize by validating the model using data in the same year 

and across years, and then evaluate the model fitting using the correlation and the 

MAD on the testing data. The first thing is cross validating the model (the mixed 

model) using the same year’s data. For this purpose, I allow SPSS to randomly 

select 50% of the 2004-2005 data as the training cases and trained the mixed 

model on the 20318 selected training cases. It is good to see that the mixed model 

correlated with the 2005 MCAS score with r equal to .842 (p < .01). The resulting 

model is also very similar to the one shown in Table 4.3, where the same 

                                                 

18 Sharp readers may notice 203 is not exactly 50% of 391, the total number of students in the data 
set. The fact is, SPSS finished the 50% sampling and returned 203 rows, and we decided not to 
change it.  
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variables enter the model and the sign of all the coefficients are in the same 

direction as before, except that the values of the estimated coefficients changed 

slightly. I then fit the model on the 188 testing cases of the same year, and find 

out that the model fit well on the testing data (r = .837, MAD = 5.25). In the next 

step, I train the model using the second half of the data and test it using the first 

half, and get similar result. Thus, it is verified that the mixed model worked very 

well on the data of the same school year (i.e. the same group of students, and the 

same MCAS tests, etc.)  

Now that I have validated our model inside a year, I further test its validity 

using data across years. I use the 2005-2006 data as the testing set for the model 

trained over the 2004-2005 data and vice versa19. Again, I do the validation on the 

mixed model as it is the preferred model. It turns out that both models work fairly 

well on the testing set. As presented in Table 4.8, the predicted scores tested on 

the 2005-2006 data correlate with the 2006 MCAS with the correlation coefficient 

equal to 0.827 and the correlation is 0.824 for the model tested on 2004-2005 data. 

And both correlations are significant at the 0.01 level. Therefore, even though the 

models constructed based on data from different years are not quite the same, they 

                                                 

19 Since the range of MCAS raw score is 0 to 54, if the model predicted a score larger than 54 on 
the testing data, we only assigned a score of 54; and if the model predicted a negative score, we 
assigned a score of zero.  
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are both very predictive of student end-of-year exam scores. The strong 

correlations do a good job of protecting us from overfitting the data.  

Table 4.8. Results of testing the mixed models on a different year’s data 

Year of 
training data 

Year of 
Testing data 

MAD on 
Testing data 

Correlation with 
MCAS scores on 
testing data 

MAD after 
correction 

2004-2005 2005-2006 5.82 0.827 5.16 

2005-2006 2004-2005 6.55 0.824 5.80 

 

However, I also notice that the MADs on testing data sets are relatively high. 

Given that the correlations are solid, I suspect that the models are overall under-

predicting or over-predicting on the testing data sets. For this reason, I generate 

the scatter plots for both testing sets (shown in Figure 4.1). As we can see from 

the scatter plots (the fit line is shown), the model trained over 2005-2006 data 

under-predicts the 2005 MCAS scores for the students who used the ASSISTment 

system during the school year 2004-2005; while the model trained over the 2004-

2005 data over-predicts the 2006 MCAS score for our users during 2005-2006. 

Why? Presumably, if our models are really overfitting, we probably would not get 

a solid correlation; and since the IRT_Proficiency_Estimate in the mixed model 

can account for student difference, we speculate that if the difficulty of the MCAS 

tests shifted in the two years that would directly have an impact on student raw 
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scores 20  though their performance level wouldn’t be affected because of the 

equalization procedure as described later.   

 

Figure 4.1. Scatter plot of predicted scores on testing data vs. MCAS raw scores 

 

To investigate whether the difficulty of the MCAS tests changed from the 

year 2005 to 2006, I compute the average percent correct of all the students from 

Worcester for both tests. As I have suspected, overall, the students from 

Worcester got 42% correct on the 2005 MCAS test and 46% correct on the 2006 

MCAS test which is statistically reliably higher than that of the 2005 test 

suggested by the two sample t-test of the two groups of students (p < .05). This 

indicates that the 2006 MCAS test was reliably easier than the 2005 MCAS test 

                                                 

20 Recall that we have been using MCAS raw scores as the dependent variables in our models 
which are affected by the variant in the difficulty of the tests.  
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for students from Worcester. The result was confirmed by the fact that the 

threshold raw scores shifted 3 points higher in the year 2006 – students were 

required to score higher in 2006 to achieve the same performance level that their 

score would have received in 2005. This finding can be considered as an 

explanation of why the 2006 MCAS scores are under-predicted by the 2004-2005 

mixed model while the 2005-2006 model over-predicts the 2005 MCAS score. 

Given this, I apply a very simple correction on the predicted score by subtracting 

3 points from the scores predicted by the 2005-2006 model and adding the same 

to the scores predicted by the 2004-2005 model. This simple correction lowered 

the MADs by 0.7 points in both cases. Namely, the MAD drops from 5.89 to 5.16 

when I test the on 2005-2006 data, and MAD drops from 6.49 to 5.80 when I use 

2004-2005 data as the testing set.  

To summarize, the models work fairly well on both the same year’s data and 

data from different years. There are a number of possible reasons why the 

regression modeling process picked up different groups of predictors for data 

logged in different years including random variation and differences in the 

logging system, the user interface and the problem sets from one year to the next.  

Nevertheless, both models generalized and fit well on the testing set with some 

offsets caused by the changing of the MCAS tests themselves. With regard to the 

validation result, I claim that the dynamic testing approach can reliably improve 

the prediction of student end-of-year test scores by taking into consideration the 
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help-seeking behavior, the speed and the number of attempts needed to answer 

questions.  

4.3 Tracking Learning Longitudinally 

In Razzaq et al. (2005) and Feng, Heffernan, Beck & Koedinger (2008), we 

reported results that suggested students were learning directly during the assisting 

in ASSISTments. We did this by looking at groups of items that had the same 

skills and looked to see if performance later in the class period was associated 

with high performance. The gain score over all of the learning opportunity pairs 

suggested that students were learning in the system. In this section, instead of 

discussing within-system learning, I will be focusing on tracking student progress 

that results from both classroom instruction and ASSISTments tutoring over a 

long period of time (Feng, Heffernan, & Koedinger, 2006a). I am interested in 

characterize each student’s pattern of change over time as well as if there is inter-

individual differences in the change; and if the answer is yes, what the factors that 

are associated with the differences are. To investigate these questions, I conduct 

longitudinal analysis (Singer & Willett, 2003; Fitzmaurice, Laird & Ware, 2004) 

by fitting mixed-effect models on the ASSISTment data to investigate if learning 

happens over time. Specifically, the research questions I want to answer in this 

section include: (a) Can we track student learning over the course of the year? (b) 
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Can we see what factors affect student learning? (c) Can we track the learning of 

individual skills? I build a series of mixed-effects models and gradually introduce 

factors such as what school they are in, who their teacher is, or which class they 

are from into the models. I will be focusing on the first two questions in this 

section while leave the discussion on the third question to Chapter 4 that all has to 

do with skills: the construction of skill models, using skill models in tracking 

student performance, and evaluation of the skill models.   

4.3.1 Longitudinal data analysis and mixed-effects 
models 

“Singer and Willett” (Singer & Willett, 2003) style longitudinal data analysis 

is an approach for investigating change over time; in our case, the change of 

students’ performance over the course year. Since students’ typically use 

ASSISTments regularly over a long period of time, our data naturally fit into the 

area of longitudinal analysis. With that said, there are three methodological features 

that we need to check to make sure the data is suited to the analysis of change. First, 

each subject should have three or more waves of data (i.e. three or more 

observations at different measurement occasions). Two waves of data cannot 

describe the process of change since it cannot tell the shape of individual growth 

trajectory, nor can it distinguish true change from measurement error. Secondly, 

since we are talking about change, time is the fundamental predictor, and thus should 

be measured in a sensible metric. Theoretically, it could be measured in a variety of 
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units - years, semesters, months, days, and so on. Yet, Singer & Willett (2003) also 

warned that the metric should also be carefully selected so that it is useful for the 

outcome, and the spacing of the waves of data is appropriate for a particular study. 

Thirdly, we need to choose a continuous outcome that changes systematically over 

time. Statistical models care little about the meaning of the individual outcomes. Yet, 

in order to represent change trajectories using a meaningful parametric form, the 

outcome should be chose in a way such that it makes conceptual and theoretical 

sense for the outcome to follow such a trajectory.  

Longitudinal data analysis allows us to learn a slope that represents a 

student’s learning rate and intercept that represents the estimate of incoming 

knowledge for each individual student. This is achieved by fitting a multilevel 

statistical model (also referred to as mixed-effects model) as illustrated in more 

detail below. A two level mixed-effect model embodies two types of research 

questions. Level-1 questions about within-person change – How does each subject 

change over time?, and it’s the responsibility of level-1 submodel to describe how 

individuals change over time; while level-2 questions about between-person 

differences – What predicts differences among people in their changes? And the 

level-2 submodel deals with systematic interindividual differences in change. 

Precisely, a multilevel (2 levels here) statistical model for longitudinal analysis can 

be represented as:  
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Level-1 submodel (individual growth model) 
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where  is the score for person i at time j, a linear function of TIMEij 

(CenteredMonth here); 

ijY

 i0 , i1 are intercept and slope of change trajectory of subject i (i.e. i0  

represents student i’s initial knowledge, and i1 indicates how much his/her 

learning rate) 

 01 , 10  represents population average of level-1 intercept/slope 

 01 , 11  are population average difference in i0 , i1 for a unit difference 

in level-2 predictor (LEVELi)   

 ij is the random measurement error for person i at occasion j   

 i0 , i1  are parameter residuals that permit the level-1 parameters of one 

person to differ stochastically from those of others.  
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4.3.2 Description of the data 

I use ASSISTments log data from 2004-2005 school year for the longitudinal 

analysis. Instead of formatting the data as one row for each student (often referred 

to as “person-level” data set), I choose to build a data set that had one record per 

student for each time they used the ASSISTments system (usually referred to as 

“person-period” data set, Singer & Willett, 2003). Each row represents a 

measurement occasion, i.e. a day when they came to the lab. Rather than treating 

time as days from the beginning of the year, I collapse All data in a given month 

is collapsed and month is chose as the level of granularity to measure time in. The 

time metric is called “CenteredMonth” since the months are centered around 

September 2004. Data from September, 2004 is excluded to account for the fact 

that students were learning how to use the system when they first came to the labs 

in September, 2004. This makes CenteredMonth run from 1 for Oct., 2004 to 9 for 

June, 2005. The final “person-period” structured data set contains 841 students 

and on average 5.7 data waves for each of them. This data set has more students 

than the one from above because we do not need to have student’s MCAS test 

scores, nor is there a limitation on the total number of problems they need to 

finish. The data set contains data from students of the same 8 teachers from 2 

schools, teaching a combined total of 31 mathematics classes. Students’ percent 

correct on the original items is treated as the outcome whose values change 

systematically over months. To mimic the real MCAS score, we multiply percent 
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correct by 54 (the full MCAS score). This makes the range of the outcome change 

to 0~54. The outcome will be referred to as PredictedScore from now on.  

4.3.3 Modeling 

Most people would think the answer to research question (a) is obviously, 

yes, which is just what I thought before peeking into our data. In Figure 4.2, 

average %correct of students is plotted versus time. The y-axis is the average 

percent correct on the original questions (student performance on the scaffolding 

questions is ignored in this analysis). The x-axis represents the CenteredMonth 

(i.e. the number of months elapsed since the beginning of the year, Sept., 2004), 

where data is bunched together into months, so some students who came to the 

lab twice in a month will have their numbers averaged. Does it look like there is 

learning happening over time? Well, maybe, but not so “obvious”.  
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Figure 4.2. Average student performance is plotted over time 

I plot data and fit a regression line for each individual student (Figure 4.3) 

before applying a mixed effect model and ended with a mean slope of 1.46 points 

per month. This positive trajectory slope is considered as the initial evidence that 

students learned across time. I then plan to build a series of mixed effect models 

of increasing complexity that would progressively add components for tracking 

learning over time, and then add parameters for schools, teacher and classes as 

shown in Figure X. I follow the standard method of performing longitudinal data 

analysis (Singer and Willett, 2003) fitting mixed effects (fixed effect plus random 

effect) models that simultaneously builds two sub-models, in which level-1 sub-

model fits within-person change and describes how individuals change over time 
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and level-2 sub-model tracks between-person change and describes how these 

changes vary across individuals. The models are fitted in SPSS 13.0.  
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Figure 4.3. Fitting a regression line separately for individual student 
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Figure 4.4. Unconditional model (left)  and  unconditional growth model  (right) 

 

4.3.4 Results and discussion 

I start by building an “unconditional means model” (left of Figure 4.4) with 

no predictors, which had a BIC of 31712, as shown in Figure 4.5.  This model is 

called “unconditional” because there are no predictors so that it won’t describe 

change in the outcome over time. Instead, it “simply describes and partitions the 

outcome ‘variation’.” This model serves as a baseline by which to evaluate 

subsequent models. The unconditional means model showed us that the estimated 

overall average on initial PredictedScore is around 24 points and the estimated 

variance of intercepts and the estimated variance of residual are both large and 

statistically significant (p < 0.05). This can be interpreted as students’ 

PredictedScore varies over time and students differ from each other on their 

performance, and there is sufficient variation at both levels to warrant further 

analysis.  

The unconditional model is then compared with an “unconditional growth 

model” (right of Figure 4.4), in which “CenteredMonth” is introduced as a 
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predictor TIME. This new model double circled in Figure 4.5 predicts that the 

estimate of students’ average PredictedScore in October, 2004 is about 18 and the 

average slope is 1.29 (p < 0.05), which means after each month, the average 

PredictedScore increases by 1.29 points, and the increase is statistically reliable. 

To get more sense out of this number (1.29), I compare this predicted average 

monthly increase with the improvement required in MCAS test. In MCAS test, 

students’ raw score is out of 54 and their performance is evaluated at 4 levels: 

warning, need improvement, proficient and advanced. To “jump” from warning to 

proficient, which is the aim of most students, raw score needs to increase from 23 

to 35 and the difference 12 is about 22% of the full score. Distributing the 

difference across 9 months gives monthly improvement of about 1.33 points, 

which is slightly higher than the monthly increase predicted in our analysis. The 

growth model is statistically better having a BIC that is lower by 84 BIC points, 

which lead us to conclude that time is an important factor and also give a positive 

answer to the first research question.  



                                    

95  

     

Unconditional growth model
(Model B, TIME)

Unconditional means model
(Model A, no predictor)

BIC = 31712 
#param = 3

BIC = 31628 
#param = 6

Model D
TIME + SCHOOL

BIC = 31616 
#param = 8

Model E
TIME + TEACHER

BIC = 31672 
#param = 20

Model F
TIME + CLASS

BIC = 31668 
#param = 70

Diff = 12

Diff = 84

 

Figure 4.5. Series of longitudinal models for tracking learning 

 

The covariance parameters of the model showed that initial knowledge varies 

significantly between students after controlling for time (p < 0.05) and the 

knowledge changing rate varies significantly between students. Since the level-2 

(i.e. between-person) variance components quantify the amount of unpredicted 

variation in the individual growth parameters (i.e. initial knowledge and rate of 

change), the significance of the variance indicates there could be other factors we 

can introduce as level-2 predictors to explain the heterogeneity in each parameter. 

New factors are then introduced to build three new models, with each 

containing one of the school (as in Model D), teacher (as in Model E) or class (as 

in Model F) variables. The schools model shows a statistical significant advantage. 

For schools there is a clear difference in incoming students’ scores, which makes 

sense with regard to the fact that one school draws students from the more 
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affluent side of town. The difference in slope parameter of schools is near 

significance (p=0.09) and suggests that one school causes more learning in 

students then another. In contrast to model D, neither model E nor model F 

displays statistically significant improvement over model B. Our speculation is 

that class may be a level too low to investigate difference on learning, noticing 

that model F contains 70 parameters that will draw a big increment on BIC values. 

And a similar problem may associate with model E, which contains 20 parameters. 

These results show that the ASSISTments system can reliably track the fact 

that students are learning in their classes over time. This means that the 

ASSISTments system can be useful to track and evaluate different interventions. 

According to these results, not all considered factors (School, Teacher and Class) 

are significant and we see only that the ASSISTments system detected different 

rates of learning at different schools. During this analysis, we notice the fact that 

generally speaking, students with higher estimated initial scores showed lower 

rates of learning (correlation between intercept and slope of student’s learning 

trajectory is equal to -0.81). The preliminary speculation on this fact is that 1) this 

may be attributed to the “ceiling effect”: it is hard for top students to make fast 

progress; 2) good students were assigned to Algebra class and learning content 

that won’t be tested until 10th grade and won’t appear in the Assistment system. 

Further investigation needs to be done to explain this phenomenon.   
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Given that it was the first year of the ASSISTments project, new content is 

created each month, which introduces a potential confounder of item difficulty. It 

could be that some very hard items were selected to give to students in 

September, and students were not really learning but were being tested on easier 

items. In the future, this confound shall be eliminated by sampling items 

randomly.  

Being able to detect differences between the impacts of various factors can 

help us improve reporting system as well.  Most of the reports described in Chapter 

3 are for normal teachers. As a supplementary to those reports, based on the results 

of longitudinal analysis, I have been working on new reports for principals and 

administrators which will allow them to see which groups of students need most 

attention on a wider scope across teachers/classes, based on their gender, special 

education status, if they get free-lunch and if they are underrepresented. Given these 

reports, users can also compare teachers and see that which schools/teachers 

produced more learning than others.  
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4.4 Combining Dynamic Metrics and 
Longitudinal Modeling to Predict End-of-
year Score Better 

Providing instructional assistance in the process of assessing students is the key 

feature of the ASSISTments. The hypothesis is that the ASSISTments can do a 

better job of assessing student knowledge than practice tests or other on-line 

testing approaches by using a “dynamic assessment” approach, thus providing a 

more precise prediction of student performance on the MCAS test. In section 4.2, 

I show that by introducing the assistance students required as parameters, we were 

able to construct a better fitted regression model to predict students’ performance on 

MCAS than simply using their performance on original items. Meanwhile, the 

longitudinal analysis approach has been described and applied to track student 

learning over time in section 4.3. In this section, I will show a new method of 

MCAS score prediction by combining these two parts (i.e. regression model fitting 

plus longitudinal analysis). Specifically, our research question is: Can we make a 

more precise prediction of students’ performance on the MCAS by using 

assistance data longitudinally? 
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4.4.1 Introducing new longitudinal outcome 
variables 

As mentioned in Section 4.3, to analyze data longitudinally, one important 

thing to determine is an outcome whose values change systematically over time. 

Students’ percent correct on the original items is treated as an outcome in Section 

4.3. To mimic the real MCAS score, we multiply the percent correct by 54 (the 

full MCAS score), which makes the outcome range change to 0~54. I will refer to 

this variable as plain_predicted_score in this section to emphasize the fact that it 

is computed directly from students’ monthly performance on original items 

without any correction. In addition, two new variables, referred to as 

original_predicted_score and assistance_predicted_score, will be calculated 

using linear regression models as I do in Section 4.2. The 

original_predicted_score is regressed on original_percent_correct, while 

assistance_predicted_score is predicted by all the online dynamic metrics as 

described in Section 4.2. All three predicted scores will be used as the outcome 

variable individually in the longitudinal data analysis and results will be 

compared. By introducing dynamic metrics when constructing longitudinal 

outcome variables, the two techniques are combined together in this new method.  

The new approach of MCAS score prediction combines assistance students 

required and the effect of time. It contains the following steps: a) Split data of the 

students into training and testing sets; b) train regression models on the training 
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set and obtain the variables entered in the models and their associated coefficients; 

c) apply regression models to the testing set and calculate the values of the 

outcome variables for each student for every month; d) longitudinally track 

student knowledge using different outcome variables; e) predict student MCAS 

score given the result of step d); f) compare the outcome variables based on the 

MCAS score prediction result and answer the research question. 

4.4.2 Description of the data 

To apply this new approach, I use a data set of 494 students who were using 

the ASSISTment system from September 16, 2004 through May 16, 2005 for an 

average of 249 minutes and finished an average of 135 items. I also exclude data 

from the students’ first day of using the ASSISTments. We have the MCAS 

scores of the 494 students, but no limitation is applied on the total number of 

problems finished. A paper practice test (I will refer to as pretest) was 

administered in September 2004. Students were asked to finish the test in two 

periods over two days (totally 80 minutes) and scores of this test were shown to 

be a significant predictor of MCAS scores (Feng, Heffernan, & Koedinger, 

2006a). Here the pretest scores are also used as an independent variable to predict 

MCAS performance.  

Among the 494 students, I let SPSS select approximately 50% as training 

individuals to train up regression models, leaving 244 students in the testing set. 
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For the training individuals, a file of 250 rows with one row per student is created. 

Each row includes variables representing a student’s associated real MCAS score, 

the student’s pretest scores, and the 13 “online measures” which we think indicate 

the amount of assistance a student needs to get an item correct. In contrast to the 

training set, data for the 244 testing individuals are organized in the “person-

period” style to facilitate longitudinal analysis. Because a student only worked on 

the ASSISTments for one period (about 20 to 40 minutes, varies among schools) 

every time they came to the lab, similar as in Section 4.2, rather than treating 

visiting days as the metric for time, all data in one month is collapsed and month 

is used as the level of granularity to measure time to achieve more stable learning-

over-time data, and again called “CenteredMonth”.  It runs from 0 to 7. The 

“person-period” structured dataset contains on average 5 data waves for each 

student and values of all the online measures for each CenteredMonth are 

computed as well. 

4.4.3 Modeling 

For a long time, we have observed that the ASSISTment system was 

consistently under-predicting student performance due to the following reasons. 

Firstly, when building the ASSISTments, authors changed the type of many 

questions from multiple choices to text input questions, which makes the 

ASSISTments on average harder than the actual MCAS items. Secondly, the 
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ASSISTment system always allows students to ask for hints, which to some 

degree prevents students from trying their best to get the solution. Since hint 

requests were treated as false responses, this feature could impact students’ 

evaluation. Thirdly, students do not take the ASSISTments as seriously as a real, 

high-stakes test such as the MCAS and finally they may behave differently when 

working on a computer because they like or dislike computers (Baker et al, 2005). 

Therefore, I want to take advantage of regression models to adjust the predicted 

scores.  

First, I run stepwise linear regressions to predict students’ real MCAS scores 

using pretest scores plus original_percent_correct, and pretest scores plus all of 

the online measures respectively. The models, named 

Original_Regression_Model and Assistance_Regression_Model, respectively, are 

summarized in Table 4.9. 

Table 4.9. Regression models based upon different independent variables 
Model Parameter Un-std. Coeff. Std. Coeff. 

(Constant) 4.753  
pretest .764 .496 

Original_ 
Regression_ 
Model original_percent_correct 27.869 .367 

(Constant) 26.035  
pretest 0.64 .415 
percent_correct 24.205 .307 
avg_attempt -10.56 -.202 

Assistance_ 
Regression_ 
Model 

avg_hint_request -2.283 -.125 

Given Table 4.9, I build the following formulas to compute values for the two 

new variables that represent student knowledge in a certain month. Noticing that 

using the above formula, assistance_predicted_score takes into account student 
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performance on scaffolding questions together with the amount of assistance, in 

particular, the number of attempts and hints, students need on average to get an 

item correct.  

original_predicted_score = 4.753 + pretest * 0.764 + original_percent_correct 

* 27.869 

assistance_predicted_score = 26.035 + pretest * 0.64 + percent_correct * 

24.205 - avg_attempt * 10.56 - avg_hint_request * 2.283 

Now that the outcome variables are calculated, I fit mixed-effect models on 

the testing data set and continuously track original_predicted_score and 

assistance_predicted_score of students over eight months (Sept, 2004 through 

May, 2005). The modeling is conducted in SPSS. To facilitate the discussion, I 

will refer to the two longitudinal models as Original_Mixed_Model when 

original_predicted_score is picked as the outcome variable and 

Assistance_Mixed_Model when assistance_predicted_score is used as the 

outcome variable. Each model give two parameters for any individual student, 

intercept (representing initial knowledge status in the first month) and slope 

(denoting learning rate across the 8 months).  

4.4.4 Results and discussion 

Recall that my research question asks whether a more precise prediction can 

be achieved using dynamic metrics longitudinally. To answer this question, I 
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compute the MAD for both of the two models. Naturally, the predicted scores for 

the last month (i.e. CenteredMonth = 7) is treated as the predicted MCAS score. 

For the Original_Mixed_Model, MAD is 6.20, with a standard deviation equal to 

4.72 while for the Assistance_Mixed_Model the MAD is 5.533 with standard 

deviation being 4.40. Consequently, we claim that the Assistance_Mixed_Model, 

by utilizing the dynamic online metrics, helps to improve the correctness of the 

prediction on MCAS score. The paired t-test that compares absolute residuals of 

each student indicates the improvement is statistically significant (p = 0.011).  

In both regression models presented in Table 4.9, pretest is a significant 

parameter. We wonder how much the tutoring and assistance information can help 

without pretest because pretest scores are not always available every school year. 

I replicate the whole process without using pretest. A comparison of evaluation 

measures to corresponding values above shows that pretest is an important 

predictor and without it, the precision of prediction degrades; meanwhile, the 

model involving tutoring and assistance information still exhibits its superiority 

and the difference in MAD is almost statistically significant (p = 0.055). 

In the beginning of the section, I present that we achieve a MAD of 5.533 

when predicting MCAS score using the Assistance_Mixed_Model, which is about 

10.2% of the full score. To see how good the prediction is, we compare this 

prediction to the prediction reached by 3 other approaches as measured by MAD 
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scores. Among other things, pretest scores alone could be used for prediction 

purposes. So we do a simple regression to predict student’s real MCAS scores 

using associated pretest scores and ended up with a MAD of 6.57 that is 

statistically significantly higher (p<0.05) than 5.533. For a second comparison we 

look at the predictions in the “Grade Book” reports to teachers on our current web 

site (Shown in Figure 3.1). The prediction was primitive and was simply a linear 

function of percent correct on original items. For students in the testing data set, 

this approach gave a MAD equal to 7.47. In yet a third comparison, we can 

compare it to using the plain_predicted_score as an outcome variable in the 

longitudinal analysis which brought on a MAD of 9.13. Obviously, all three of 

these comparisons show higher MAD values, thus indicate that they are not as 

good at predicting MCAS scores. Note that the comparison between pretest-

prediction-method and the ASSISTment approach confounds total time during the 

assessment (80 vs. 249 minutes) in the sense that it took only about 80 minutes to 

do the paper and pencil pretest.  However, we argue that this is a fair comparison, 

because our schools (6 schools have adopted the system this year) say they are 

willing to use the ASSISTments often because they think that students are 

learning during their use of the ASSISTment web site. 
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4.5 Can an Intelligent Tutoring System 
Predict Math Proficiency as Well as a 
Standardized Test?  

In Section 4.4, I report that we have reduced the MAD by combining dynamic 

metrics and longitudinal data modeling, but can we do better? Should we be 

dissatisfied unless we can get a MAD of zero? I want to investigate what a 

reasonable comparison should be. Ideally, I want to see how good one MCAS test 

is at predicting another MCAS test. We could not hope to do better than that (But 

considering there is measurement error in the MCAS test, maybe we can!). 

However, I do not have access to data for a group of kids that took two different 

versions of the MCAS test to measure this. Then, how can I evaluate the 

predictive accuracy of a student model relative to the standardized test?  

4.5.1 The “splitting” method 

In Feng, Heffernan, & Koedinger (2006b), I ran a simulation study. In the study, I 

took students’ scores on 2005 MCAS test, randomly split the test into two halves, 

and then used their scores on the first half to predict the second half. I call this 

method the “splitting” method. In the study, open response questions from the 

MCAS test are excluded, while only the remaining 34 multiple-choice and short 

answer questions are kept with regard to the fact that open response questions are 

not supported in the ASSISTments system. Then the 34 items are randomly split 



                                    

107  

     

into two halves and student performance on one half is used to predict their 

performance on the other half. This process was repeated 5 times. On average, I 

got MAD of 1.89, which is about 11% of the full score (17 points with one point 

for each item). Hence I drew the conclusion that using the new approach I have 

established, the prediction of MCAS score is as good as the real MCAS test itself, 

with the caveat that only 34 items are utilized in the process here, while my 

prediction models are built based on students’ work on 135 ASSISTment items 

over eight months. 

4.5.2 The “longitudinal” method 

Later on, I propose another approach to use student cross-year data for 

determining whether a student model is as good as the standardized test at 

estimating student proficiency (Feng, Beck, Heffernan, & Koedinger, 2008).  I 

call this method the “longitudinal” method.  

Assume student math proficiency in the 8th grade and in the 10th grade are 

highly correlated. Since the measurement error is relatively independent due to 

the two years time interval between the tests, therefore, whichever (our student 

model or the MCAS test) better predicts 10th grade MCAS score is better 

assessing student  math skill at 8th grade.  
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4.5.2.1 Results 

Let’s define MCAS8’ be the leave-one-out21  predicted score for 8th grade 

MCAS that comes from the mixed model in Section 4.2; MCAS8 be the actual 8th 

grade MCAS score and MCAS10 be the actual 10th grade MCAS score. Then we 

ask the question: Can MCAS8’ predict MCAS10 better than MCAS8 does? To 

answer the question, we calculated the correlation between the three metrics: 

MCAS8’, MCAS8 and MCAS10, as presented in Figure 4.6. 

MCAS10: 10th grade MCAS score

MCAS8’:  our prediction of 8th grade MCAS score using online metrics and student proficiency

MCAS8: 8th grade MCAS score

Real MCAS8 MCAS10
r = 0.731

MCAS8’

r = 0.871

r = 0.728

Online metrics

IRT proficiency estimate

IRT proficiency estimate

predicts

r = 0.731
r = 0.628

 

Figure 4.6. Correlation between IRT student proficiency estimate, MCAS8’, MCAS8 and 
MCAS10 

First of all, I want to point out that all correlations in Figure 4.6 are 

statistically reliable (p < 0.001). The student proficiency estimated by the lean 

model (as described in Section 4.2) correlates with MCAS10 with r equal to .628. 

                                                 

21 The adjusted predicted score is calculated by doing “leave-one-out” cross validation in SPSS.  
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It does not do as well as MCAS8 and MCAS8’ as we have expected. Even though, 

we think it is worth finding out and having this lean model, which is based on less 

data, as a contrast case. It is the most direct test of the question of whether 

ASSISTment use could essentially replace the 8th grade test. Both MCAS8 and 

MCAS8’ are reliable predictors of MCAS10. MCAS8 correlates with MCAS10 

with r equal to 0.731 while the correlation between MCAS8’ and MCAS10 is 

fractionally lower (r = 0.728). A significance test22 shows they are not statistically 

reliably different, which suggests that our student model can do as well as MCAS 

test on predicting the MCAS score two years later. Since both MCAS tests are 

measuring the student’s math proficiency, it can be considered as the evidence 

that the student model is doing a good job estimating student math proficiency. At 

the very least, what our system is modeling is relatively stable across a two-year 

interval.  

4.5.3 The “proxy” measure method 

A third approach of comparing a student model to a standardized test has 

been described in the literature. Beck & Sison (2006) found 3 tests that measures 

extremely similar constructs to the standardized test that they were interested in. 

They took the arithmetic mean of those tests as a proxy measure for the true score 

                                                 

22 The test is done online at http://www.quantitativeskills.com/sisa/statistics/correl.htm 
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on the original measure. I will refer to this method as the “proxy” measure 

method.  

4.5.4 Discussion 

Put the three methods that have been described above together, we can see 

that the pro of the “proxy” measure method is that it can be done quickly while 

the con is that construct validity could be an issue. Similarly to the “proxy” 

measure method, the pro of the simulated “splitting” method is the quickness but 

it also has some cons. Firstly, if there is measurement error for a particular day 

(e.g. a student is somewhat ill or just tired), then splitting the test in half will 

produce a correlated measurement error in both halves, artificially increasing the 

test's reliability relative to the measure of the “longitudinal” method (which is not 

based on data from the same day as the MCAS).  Secondly, to do the splitting, it 

requires assess to item level data which is not always available. The 

“longitudinal” method, by going across years, avoids this confound with 

measurement error, and get a fairer baseline. Though, we do admit that it takes 

longer time and harder effort to collect data across years (in our case, 3 years). I 

want to stress that this is a rather long-term prediction. The collection of the 

online data started in September, 2004; the 8th grade MCAS score that we are 

predicting came in at the end of year 2005; while the 10th grade MCAS score that 

we used to evaluate our prediction were available at the end of year 2007. 
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In conclusion, I have proposed new methods for evaluating the predictive 

accuracy of a student model relative to the standardized test, using a simulation 

study or using student standardized test scores across multiple years. And I argue 

that I can model student math proficiency as well as the standardized test as 

measured by the new evaluation criteria. 

4.6 Related Work and Contribution 

An intelligent learning environment adapts the educational interaction to the 

specific needs of the individual student. Thus, student modeling is an essential 

component in such an environment and the learning effectiveness depends heavily 

on the understanding of student knowledge, difficulties, and misconceptions.  Yet, 

assessing students automatically, continuously and accurately without interfering 

with student learning is an appealing but also a challenging task.  

Even before the computer supported systems become popular, much work 

has been on developing “testing metrics” for dynamic testing (Grigorenko & 

Sternberg, 1998; Sternberg & Grigorenko, 2001, 2002) to supplement accuracy 

data (wrong/right scores) from a single sitting. Researchers have been interested 

in trying to get more assessment value by comparing traditional assessment (static 

testing; students getting an item marked wrong or even getting partial credit) with 

a measure that shows how much help they needed. Bryant, Brown and Campione 
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(1983) compared traditional testing paradigms against a dynamic testing paradigm. 

Grigorenko and Sternberg (1998) reviewed relevant literature on the topic and 

expressed enthusiasm for the idea. In the dynamic testing paradigm, a student 

would be presented with an item and when the student appeared to not be making 

progress, would be given a prewritten hint. If the student was still not making 

progress, another prewritten hint was presented and the process was repeated. 

Sternberg & Grigorenko (2001, 2002) argued that dynamic tests not only serve to 

enhance students’ learning of cognitive skills, but also provide more accurate 

measures of ability to learning than traditional static tests. In Bryant, Brown and 

Campione’s study they wanted to predict learning gains between pretest and 

posttest. They found that student learning gains were not as well correlated (R = 

0.45) with static ability score as with their “dynamic testing” (R = 0.60) score. 

They also suggested that this dynamic method could be effectively done by 

computer, but never pushed toward to conduct such studies in a computer system. 

The ASSISTment system provides an ideal test bed to investigate dynamic 

assessment as it automatically provides students with feedback, scaffolding 

questions and hints. So, naturally, I extend these prior works and test the idea of 

dynamic assessment in ASSISTments. As far as I know, only very few work (e.g. 

Beck, Jia & Mostow, 2006) has noticed the nature and amount of help that a 

student is given appear to be of value in judging a student’s mastery of knowledge, 

and test the idea in a real computer system. Thus, I claim that operationalising the 
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idea and assessing whether this promise is achievable in an implemented system 

is an important contribution. 

Beck, Jia & Mostow (2004) were able to increase the within-grade 

correlation between their model and student performance on a fluency test 

significantly by adding help-seeking behavior in the computer Reading Tutor 

(Mostow & Aist, 2001). In psychometrics field, van der Linden and his colleagues 

(Klein Entink, Fox, & van der Linden, in press; van der Linden, 2007, 2008) have 

extended the traditional IRT model to take into account student response time. My 

work is different to these works in that I take more features into account in the 

same model. An important contribution is that I contrast models based upon 

correctness information with models based only upon dynamic metrics, and show 

the later is superior at assessing student knowledge, which has been totally 

ignored in traditional assessment practice.  

Anozie & Junker (2006) pursued a rather different approach from me, 

looking at the changing influence of online dynamic metrics on MCAS 

performance over time. They computed monthly summaries of online metrics 

similar to those used by us, and built several linear prediction models, predicting 

end-of-year raw MCAS scores for each month. 

Modeling student response data from intelligent tutoring systems has a long 

history (e.g. Corbett, Anderson, & O’Brien, 1995; Draney, Pirolli, & Wilson, 
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1995). Below, I give a quick literature review of works on student modeling. 

These works typically used different approach, such as knowledge tracing, 

Bayesian networks, or have been applied in different learning architecture, such 

as distributed learning environments, from what I have applied in this dissertation.  

 One stream of modern educational research is on the modeling of student’s 

individual problem-solving performance. Such analysis provides detailed 

assessments of student competence at different skills, and the results are usually 

used to guide the selection of next instructional actions in ITS. Corbett & 

Anderson (1995) proposed a process called knowledge tracing to model students' 

changing knowledge state during skill acquisition using a two-state Markov 

model. They showed the model was very successful in predicting test 

performance. Corbett, Anderson, & O’Brien (1995) further explored the quality of 

student modeling in the ACT programming tutor. Corbett, Anderson & O’Brien 

(1995) observed the power function might not hold for some complex skills thus 

there are blips in the learning curves. On top of that they found complex skills can 

be decomposed into sub-skills which result in smoother learning curve. This work 

led some cognitive scientists to look back at existing cognitive model and to bring 

up methods to improve cognitive models (e.g. learning factor analysis, Cen, 

Koedinger & Junker, 2005, 2006). 
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Bayesian networks are becoming an increasingly popular way of representing 

the state of a student’s knowledge, skills, or abilities, especially in intelligent 

learning environments. Mislevy and colleagues (e.g. Mislevy, 1995; Mislevy & 

Gitomer, 1996; Mislevy, Steinberg, & Almond, 2003) focused on the role of 

probabilistic reasoning in ITS. They suggested evaluating students and providing 

feedbacks to students and teachers based on evidence. Conati & VanLehn (1997) 

used Bayesian networks to model student knowledge and updated the networks in 

real time. In addition to skill assessment and performance prediction, the model 

was also used to do plan recognition, and was used by the Help component of 

ANDES system (VanLehn, 2005) to provide tailored support. The Bayesian 

network for a problem was automatically constructed from the solution graph 

produced by a problem solver. The display capability of Bayesian networks is 

designed to work with individual student one at a time. Yet, Almond et al. (2008) 

viewed the problem from a teacher’s perspective, concerning how to make 

inferences about a group of students. To ease the complicated coding effort 

involved in the usage of Bayes nets, esp. dynamic Bayes nets, Chang et al. (2006) 

introduced a Bayes Net Toolkit for Student Modeling (BNT-SM) that allows a 

researcher to describe causal relationships among student knowledge and 

observed behavior. Later on in Beck et al. (2008) dynamic Bayesian networks was 

trained up using the toolkit for evaluating the efficacy of assistance that was 

provided to students in an ITS that tutors reading.  
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Student modeling (or user modeling) is a distinctive feature of user-adaptive 

software systems, including adaptive hypermedia and other adaptive Web systems, 

and has caught attention of many researchers. For instance, Brusilovsky, 

Sosnovsky, and Shcherbinina (2005) addressed the issue of user modeling in a 

distributed learning architecture. They described a generic student modeling 

server and introduced a specific, topic-based knowledge modeling approach that 

was used in an adaptive system to help students to select the most relevant self-

assessing quizzes. Brusilovsky and Millán (2007) focused on user modeling in 

adaptive systems. They explored the nature of the information being modeled in 

adaptive web (including users’ knowledge, interests, goals and tasks, background, 

individual traits, and context of work), the overlay modeling approach, and also 

uncertainty-based user modeling for adaptive systems.  

Another stream of student modeling in learning environment has to do with 

the study of open learner models (Bull, 2004; Bull & Kay, 2007). Student models 

(or learner models) are usually not accessible to the students themselves. However, 

some works integrated the educational benefits of allowing students to access the 

learner model contents, and even to negotiate with the system on the 

understanding of their knowledge proficiency. It was argued that this exposure 

will increase students’ self-awareness of their knowledge and, thus, enhance 

learning (e.g. Kay, 1997; Bull & Nghiem, 2002). Certain amount of work has 

been done on application and evaluation of open learner models in various 



                                    

117  

     

learning environments (e.g. Dimitrova, Self, & Brna, 2001; Mitrovic & Martin, 

2002; Bull, & McEvoy, 2003; Bull, et al., in press; Wongchokprasitti & 

Brusilovsky, 2007; Ahn et al. 2007).  

Among these studies on modeling student proficiency, different criteria have 

been used to evaluate the effectiveness of the student models. For instance, Beck 

& Sison (2006) used relative closeness to real scores and mean absolute error 

(MAE); Anozie & Junker (2006) evaluated their model using mean absolute 

deviation (MAD) which is essentially the same as MAE; while we have reported 

R square and Bayesian Information Criterion (BIC) (Feng, Heffernan & 

Koedinger, 2009). 

4.7 Conclusion 

In this chapter, testing challenge in the ASSISTments system, a web-based 

assessment and learning system is addressed. I bring up a few research questions 

focusing on the assessment ability of the system. The questions are answered by 

mining our log data and comparing with standardized test results. Solid evidence 

is presented that the online assessment system does a better job of predicting 

student knowledge than traditional approaches by being able to take into 

consideration how much tutoring assistance was needed, how fast a student solved 

a problem and how many attempts were needed to finish a problem. And the 
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prediction accuracy is comparable with results from the standardized test. 

Promising evidence is also found that the online system is able to track students' 

learning during a year well.  
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Chapter 5 

5 Cognitive Diagnostic Assessment 
and Skill Model Analysis 

Chapter organization: This chapter is organized as follows. Section 1 

motivates the work of building skill models from the perspective of both 

practitioners and builders of intelligent tutoring systems. The second section 

describes how we have constructed a fine grained model and built a hierarchal 

structure of models at different granularities. Section 3 analyzes the relative 

effectiveness of skill models at various grained level and shows evidence that the 

fine grained model leads to more accurate prediction of external state test scores. 

Section 4 compares my work to other related works in the literature and point out 

the contribution of my works in this chapter. Section 5 concludes the chapter. 

Contents of this chapter draw largely from the following papers: Feng, Heffernan, 

Mani, & Heffernan (2006), a paper presented at AAAI’06 workshop, Razzaq, 

Feng, Pardos, & Heffernan (2007), the article published in Journal of Technology, 
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Instruction, Cognition, and Learning, and Feng, Heffernan, Heffernan, & Mani 

(2009), an article recently published in IEEE Transaction on Learning 

Technologies.  

5.1 Introduction 

Most large standardized tests are “unidimensional” in that they are analyzed 

as if all the questions are tapping a single underlying skill. However, cognitive 

scientists such as Anderson & Lebiere (1998) believe that students are learning 

individual skills. Among the reasons that psychometricians analyze large scale 

tests in a unidimensional manner is that students’ performance on different skills 

are usually highly correlated, even if there is no necessary prerequisite 

relationship between these skills. Another reason is that students usually do a 

small number of items in a given setting (for instance, 39 items for the 8th grade 

math MCAS test), which makes it hard to acquire identifiability for each single 

skill, especially when the number of skills that need to be mastered is larger than 

the number of the items in the test. Such tests work pretty well at telling you 

which students are performing well but if we want to give help to students, we 

need a detailed understanding of the concepts and skills involved in the problems 

students are trying to solve.  As mentioned in Chapter 3, one of the issues with the 

report shown in Figure 3.1 is the uninformative issue. Teachers will be happy to 
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know that we can accurately predict student’s total score in MCAS. But, on top of 

that, they will also want to be given more specific information on how to adjust 

their instruction to help those students who are predicted to fail the test. Not only 

do they want to know these students are having difficulties, but also they need to 

be told where exactly the difficulties lie so that they can isolate and try to 

eliminate them in their instructional practice.  

A task analysis of the problems shown in Figure 1.2 is that it requires the 

following knowledge components: Know the concept of congruence; know how 

to parse an algebra expression and solve equations; know the concept of perimeter; 

know how to add and subtract numbers. These knowledge components make up a 

skill model for this problem. It is easier to list these skills (or concepts) than it is 

to determine which are the hardest for students to learn. However, understanding 

the hard skills for students is important as such skills should be the focus of 

assessment and instruction. Assessment is more accurate if problems are tagged 

with the hardest skills required because failure is more likely a consequence of a 

lack of that skill than any others. Meanwhile, instruction becomes more effective 

when focusing on supporting learning of such skills, because these skills need the 

most attention and benefit the most from designing scaffolds that support their 

acquisition. Yet, literature in the area of difficulty factors assessment suggests that 

how identifying what is difficult for students is not at all obvious (e.g. Heffernan 

& Koedinger, 1997, 1998). By developing scaffolds and tagging all questions in 
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fine grained skill models in an automated assessment environment as 

ASSISTments, we hope to address the hypotheses about the nature of student 

learning difficulties, and meanwhile, report more informatively to classroom 

instructions.  

From the perspective of the needs of intelligent tutoring systems, one key 

component of creating an intelligent tutoring system is forming a model that 

monitors student behavior. ITS needs the construction of complex models to 

represent the skills that students are using and their knowledge states. As students 

work through the program, the model tracks their progress and chooses what 

problems will be displayed next. By using a better skill model, a system should be 

able to do a better job of predicting which items students will get correct in real-

time. That means the system can do a better job of selecting the next best item for 

students to work on. For instance, one criterion of the next “best” item could be 

the one that has the largest ratio of expected test-score gain to expected time to 

complete the problem. Expected test score gain will be a function that depends 

upon both the expected rise in skills from doing that item at that time, as well as 

the weight of those skills on the test (i.e., the MCAS). A better model would also 

help to address the issues as we mentioned above to help teachers adjust their 

instruction in a data-driven manner. Such a model will allow a teacher who has 

one week before the MCAS to know what topics to review to maximize the class 

average. We can make a calculation averaging the whole class to suggest what 
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will give the teacher the biggest “bang for the buck.” An example of a useful 

report (Feng & Heffernan, 2007) that teachers can get using the ASSISTments 

system is shown in Figure 3.5. Teachers can see how their students are doing on 

each skill and can determine where they need to spend the most time. To 

summarize, a fine-grained model that is based upon a thorough understanding of 

what is hard for students can lead a better categorization of test items and better 

guidance for teaching.  

I am engaged in an effort to investigate if we can do a better job of predicting 

the state test scores by modeling individual skills in a finer grain size (Feng, 

Heffernan, Mani, & Heffernan, 2006; Feng, Heffernan, Heffernan, & Mani, 2009). 

This is not applicable in the traditional assessment environment because of 

limited testing time and test items. As a consequence, it is hard to determine 

which skill(s) to credit or blame, especially when a wrong answer is given. 

However, the special structure of the ASSISTment System gives teachers that 

very information. By providing scaffolding questions within test items, we can 

independently assess individual components of knowledge and not just overall 

performance on an item. Since original questions are always followed by 

scaffolding questions, each addressing a single piece of the knowledge, when a 

student answered the original question wrong, we can rely on his responses to 

scaffolding questions to make precise inferences about exactly where the student 

has a misunderstanding and are able to track the specific knowledge component 
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precisely. Moreover, students are using the ASSISTments System regularly in 

their normal math class during a school year, working on mathematic questions 

drawn from a pool of more than 1,400 questions generated from released state test 

items, local teachers, and project staff. The continuous usage allows us to collect 

more evidence of student’s performance on every skill. I hypothesize that richer 

information per item, accumulated over many sessions, will compensate for the 

smaller number of MCAS-like items that students are exposed to at any one 

sitting. 

5.2 Development of a Fine Grained Skill 
Model 

Cognitive modeling involves a great deal of detailed protocol collection and 

task analysis. The models are not easy to construct and are difficult to verify. Yet, 

cognitive modeling is very important in an ITS as it is the basis of cognitive 

diagnostic assessment and teacher reporting. Our initial effort on building fine 

grained models is based upon our knowledge of the existing background research 

from mathematics education as well as cognitive task analysis conducted by 

subject-matter experts. In April, 2005, we staged a seven hour long “coding 

session,” where we invited our subject-matter experts to create a set of skills and 

to use those skills to tag all of the existing 8th grade MCAS items. Because we 
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wanted to be able to track learning between items, we wanted to come up with a 

number of skills that were somewhat fine-grained but not too fine-grained such 

that each item had a different skill. We therefore imposed the limit that no one 

item would be tagged with more than three skills23. It is not coincidence that many 

of the ASSISTments System questions have three scaffolding questions; we 

wanted the fine grained-ness of the modeling to match the fine grained-ness of the 

scaffolding. We wanted the scaffolds to have identifiability, meaning that each 

scaffolding question should be tagged with only one skill. Identifiability is 

important because when a student got a question tagged with two skills wrong, we 

will have a hard time coming up with a method that would be able to blame the 

lack of a single skill. As a matter of fact, in the data set to be used in Section 5.3, 

the average number of skills tagged to main questions is 1.44 and the number is 

1.03 for scaffolding questions, which means that for many questions in 

ASSISTments System, there is only one skill tagged with the main question. In 

such cases, each of the scaffolds was also tagged with that skill. There clearly is 

something a bit odd there, as an individual scaffolding question should be easier 

than the main item. I noticed this, but my modeling effort does not correct for the 

presumably wrong assumption that questions tagged with the same set of skills 

have the same degree of difficulty. 
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During the “coding session.” the subject-matter expert was free to create 

whatever skills she thought appropriate. She reviewed the items, solved the 

problems and, thus, conducted a cognitive task analysis to identify what 

knowledge was required to perform each task. When the coding session was over, 

we wound up with about a model of 106 skills. Yet since only 78 out of the 106 

skills were involved in the data used in this dissertation so I call this model the 

WPI-78. To create the coarse-grained models, the fine-grained model was used to 

guide us. We decided to use the same broad strands that are used by both the 

National Council of Teachers of Mathematics and the Massachusetts Department 

of Education. These strands are named 1) “Patterns, Relations and Algebra,” 2) 

“Geometry,” 3) “Data Analysis, Statistics and Probability,” 4) “Number Sense 

and Operations” and 5) “Measurement.” The Massachusetts Department of 

Education actually tags each item with exactly one of the five strands, but our 

mapping was inferred from the WPI-78, so it was not the same as the state’s 

mapping. It hereby was named WPI-5. Furthermore, we allowed multi-mapping, 

i.e., allowing an item to be tagged with more than one skill. An interesting piece 

of future work would be to compare our fit with the classification that the state 

uses. Similarly, we adopted the name of the 39 learning standards (nested inside 

the five strands) in the Massachusetts Curriculum Framework, associated each 

skill in WPI-78 to one of the learning standards, thus we created the model WPI-

39. After the students had taken the state tests, the state released the items in that 
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test, and we had our subject-matter expert tag up these items in WPI-5, WPI-39 

and WPI-78.  
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Figure 5.1. The hierarchal structure of four skill models at different granularities 

 

As mentioned above, the WPI-1, WPI-5 and WPI-39 models are derived from the 

WPI-78 model by nesting a group of fine-grained skills into a single category. 

Figure 5.1 shows the hierarchical nature of the relationship among WPI-78, WPI-

39, WPI-5, and WPI-1. The bottom layer lists 13 out of the 78 skills in the WPI-

78 model. For instance, both nested inside the Setting-up-and-solving-equation 

skill in the WPI-39 model, equation-solving is associated with problems involving 

setting up an equation and solving it; while equation-concept is related to 

problems that have to do with equations in which students do not actually have to 

solve them. In the upper layer we see how the two skills in WPI-78 are nested 
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inside of “Patterns, Relations and Algebra,” which itself is one piece of the five 

skills that comprise the WPI-5 skill model. 

As shown in Figure 2.1, in the WPI-78 skill model, the first scaffolding 

question of item 19 from the 2003 MCAS test is tagged with “congruence,” the 

second tagged with “perimeter,” the third tagged with “equation-solving.” The 

original question is associated with all three skills. When a student answers the 

original question wrong, we will examine his response to the scaffoldings to 

determine which skill is causing difficulty. According to Figure 5.1, in the WPI-

39 model, the corresponding skills tagged are “Setting-up-and-solving-equations,” 

“Understanding-and-applying-congruence-and-similarity,” and “Using-

measurement-formulas-and-techniques.” In the WPI-5, the questions are tagged 

correspondingly with “Geometry,” “Measurement” and “Patterns, Relations and 

Algebra,” and just one skill of “math” at the WPI-1.  
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Figure 5.2. A screen shot showing an item and a list of skills that could be tagged to the item 
in the builder 

 

The ASSISTment Builder (Heffernan et al., 2006) provides technology 

support for authors to tag skills for the ASSISTment System question they build. 

This tool, shown in Figure 5.2, provides a means to link certain skills to problems 

and to specify that solving the problem requires knowledge on that skill. The 

skills are organized in a hierarchical structure. The authors are allowed to browse 

the skills within each model and to map the ones they select to a problem.  

5.3 Do We Need Fine Grained Models?  

Many intelligent tutoring systems use fine-grained models to track student 

mastery of individual knowledge components. For instance, the Cognitive Tutors 
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(Ritter, et al., 2009) tracks 2,400 skills in four curricula. Do we really need such 

kind of fine-grained models? Barnes has done considerable work with trying to 

induce transfer models, in this work called q-matrices from data (Barnes, 2005, 

2006). Winters et al. (2005) has compared a variety of statistical approaches for 

constructing transfer models. They both found sparse models generated by 

computers. However, both of their approaches ignored learning, which seems to 

be a big part of skill mapping in cognitive models. McCalla & Greer (1994) 

pointed out that the ability to represent and reason about knowledge at various 

levels of detail is important for robust tutoring. Gierl, Wang & Zhou (2008) 

proposed two directions for future research of cognitive assessment, and one is to 

increase understanding of how to specify an appropriate grain size or level of 

analysis with a cognitive diagnostic assessment (Nichols, Chipman & Brennan, 1995; 

Leighton, & Gierl, 2007). In this section, I consider four skill models with different 

granularity, including a unidimensional model and a fine-grained model 

developed at WPI with 78 skills. The four models are structured with an 

increasing degree of specificity as the number of skills increases. The measure of 

model performance is the accuracy of the predicted MCAS test scores based on 

the assessed skills. Given that the fine-grained model is composed of 78 skills, 

people might think the model would naturally fit the data better than the skill 

models that contain far less skills, maybe even overfit the data with so many free 

parameters. However, I evaluate the effectiveness of the skill models over a 
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totally different data from MCAS tests, the external state tests as the testing set. 

Predicting students’ scores on this test will be our gauge of model performance. 

Hence, I argue that overfitting would not be a problem in our approach. 

5.3.1 Description of the data 

For the 2004-2005 school year, I collected data from 44724 students, who 

used our system from Sep. 17, 2004 through May 16, 2005 for on average 7.3 

days (one period per day)25. All these students worked on the system for at least 

six days (one session per day). Again, data from the students’ first day of using 

the system is excluded. The item-level state test report is available for all these 

447 students so that I am able to construct our predictive models on these 

students’ data and evaluate the accuracy on state test score prediction. The 

original data set, corresponding to students’ raw performance (before applying 

any “credit-and-blame” strategies as described in the next section and not inflated 

due to the encoding used for different skill models), contains about 138 thousand 

data points, among which around 43 thousand come from original questions. On 

average, each student answered 87 MCAS (original) questions. I will refer to this 

                                                 

24 The amount of data is limited by the maximum memory allowed by the open source statistical 
package R. I reduce the number of students from the initial 495 to 447 to accommodate the 
modeling process in R. The 447 students are randomly selected from the whole data set.    

25 Given the fact that the state test was given on May 17, 2005, it would be inappropriate to use 
data after that day for the purpose of predicting state scores. Therefore that data was not included 
in our data set. 
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data set as DATA-2005. For the students involved in DATA-2005, the mean score 

out of 34 points is 17.9 (standard deviation=7.1). 7 

Similarly, I build a data set for the usage of the ASSISTment System during 

the 2005-2006 as well. The data set involves 474 students who, on average, 

worked in the system for 5.5 days and answered 51 original questions. The item 

level response data from the 2006 MCAS tests is available for these students as 

well. This data set will be referred to as DATA-2006. For the students in 2006 

data set, the mean score is 18.8 (standard deviation = 7.8). 

Both of the data sets are organized so there  can be one or multiple rows for 

every student response to each single question depending on which skill model we 

are interested in and how many skills the question is “tagged” with in that 

particular skill model. For instance, suppose a question is tagged with two skills 

in a model, then for each response made to the question there would be two rows 

in the data set, with skill names listed in a separate column. Students’ exact 

answers are not included. Instead, we use a binary column to represent whether 

the student answered the specified item correctly or not. No matter what the input 

type of the item is (multiple-choice or text-input), a “1” indicates a correct 

response while a “0” means a wrong one. Additionally, a column is associated 

with each response, indicating the number of months elapsed since September 17, 

2004 (or September 1st, 2005) till the time when the response was made. Thus in 
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DATA-2005, the number of months elapsed for a response made on September 

17th will be zero, and the number will be 1 for a response made at October 17th, 

2004, and so on. This gives us a longitudinal, binary response data set across the 

school year.   

Table 5.1. Sample raw data of one student 
Row 
ID 

Student 
ID 

State Test ID question 
ID 

WPI-78 skills Original? Response 
Month 
Elapsed 

1 950 2003- item 19 326 Congruence Yes 0 1.32 
2 950 2003- item 19 326 Perimeter Yes 0 1.32 
3 950 2003- item 19 326 Equation-Solving Yes 0 1.32 
4 950 2003- item 19 327 Congruence No 0 1.32 
5 950 2003- item 19 328 Perimeter No 1 1.32 
6 950 2003- item 19 329 Equation-Solving No 0 1.32 
7 950 2003- item 19 330 Equation-Solving No 0 1.32 
8 950 1999- item 27 1183 Perimeter Yes 0 2.94 
9 950 1999- item 27 1183 Area Yes 0 2.94 
10 950 1999- item 27 1184 Perimeter No 1 2.94 
11 950 1999- item 27 1185 Area No 1 2.94 

Table 5.1 displays 11 rows of the raw data for one student (system student ID = 

950) who finished the item 19 (from 2003 state test, shown in Figure 1) and item 

27 (from 1999 state test) on two different days. The first 7 rows represent the 

student’ responses to item 19 (with system ID for the original question being 326) 

and the remaining 4 rows show his responses to item 27 (with system ID for the 

original question being 1183). We can see that since the original question of item 

19 was tagged with 3 skills, “Congruence,” “Perimeter” and “Equation-Solving,” 

the student’s response was duplicated in rows 1 – 3. Likewise, the original 

question of item 27 is tagged with 2 skills as shown in row 8 and row 9. If a 

student gives correct answer to an original question, the response column of all 

rows corresponding to that original question is marked as “1”. If the student 



                                    

134  

     

answered the original question wrong, he gets “0” in all the corresponding rows, 

and we will use his response to separate scaffolding questions to determine which 

skill to blame (assuming each scaffolding question is tagged with only one skill). 

In the example, the student answered both the original questions incorrectly, thus 

got “0” in the response column of rows 1-3 and rows 8-9), and was presented with 

the scaffolding questions. The student did not do very well on the first item. He 

only gave a correct answer to the second scaffolding question (indicated by “1” in 

the response column of row 5), and failed on all others. In contrast, although the 

student did not get item 27 right on the first shot on the original question, the 

student wound up answering both scaffolding questions correctly. The WPI-78 is 

the skill model used here.  

5.3.2 Mixed-effects logistic regression modeling 

The mixed-effects logistic regression model is fit, a longitudinal model, on 

the data to obtain an estimate of student knowledge on individual skills at a 

certain time, and for simplification, assuming student knowledge changes linearly 

over time. The mixed-effects logistic regression model is also referred to as the 

Generalized Linear Mixed-effects Model (GLMM) in the statistics literature and 

as hierarchical models in Bayesian settings. It consists of both fixed effects, 

parameters corresponding to an entire population or repeatable levels of factors, 

and random effects, parameters corresponding to individual subject drawn 

randomly from a population. For dichotomous (binary in our case) response data, 

several approaches have been developed. These approaches use either a logistic 
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regression model or a probit regression model and various methods for 

incorporating and estimating the influence of the random effects on individuals. 

Since we want to track individual student’s development of skills over time and 

make predictions, we chose mixed-effects logistic regression model because it 

takes into account the fact that responses of one student to multiple items are 

correlated, moreover, the random effects allow the model to learn parameters for 

individual students separately. Hedeker & Gibbons (2006) described mixed-

effects models for binary data that accommodate multiple random effects. As 

these sources indicate, the mixed-effects logistic regression model is a very 

popular and widely accepted choice for analysis of dichotomous data.  

As a statistical foundation of the mixed-effects generalization of the logistic 

regression model, we first present the simpler fixed-effects logistic regression 

model. Let pi represent the probability of a positive response on an item for the ith 

individual. The probability of a negative outcome is then . Let 

denote the set of covariates and 

ip1

),,,,1( 21 ipiii xxxx  ),,,( 10  p   be the vector 

of corresponding regression coefficients. Then the logistic regression model can 

be written as: 
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The model can also be represented in terms of log odds or logit of the 

probabilities, namely: 

']
1

log[ i
i

i x
p

p



 

In logistic regressions, the logit is called the link function because it maps the 

(0, 1) range of probabilities onto (-∞, +∞) range of linear predictors. And by 

doing this, now the logistic regression model is linear in terms of the logit, though 

not in terms of the probabilities.  

The simple logistic regression model can be generalized to be the mixed-

effects model by introducing the random effects. Suppose TIME is the only 

covariate we care about in the model (skill can be introduced as a factor in the 

model in a similar way). The 2-level representation of the model in terms of logit 

can be written as 

Level-1 (or within-person) model:  
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Where  is the probability that student i gives a correct answer at the jth 

opportunity of answering a question; 

ijp

   TIMEij refers the jth opportunity when student i answered a question. In 

our data, it is a continuous value representing the number of months (assuming 30 

days in a month) elapsed since student i took his first action in the system  

ii bb 10 , denote the two learning parameters for student i.  represents the 

“intercept” or how good is the student’s initial knowledge; represents the 

“slope” which describes the change (i.e., learning) rate of student i.  

ib0

ib1

 
10 ,  are the fixed-effects and represent the “intercept” and “slope” of the 

whole population average change trajectory.  

  are the random effects and represent the student-specific variance 

from the population mean.  

ii vv 10 ,

Such a model is often referred to as a “longitudinal model” (Singer & Willett, 

2003; also see Chapter 4 for an introduction of longitudinal data analysis) since 

TIME is introduced as a predictor of the response variable, which allows us to 

investigate change over time. The models are fitted in R (R Development Core 

Team, 2007) using lmer() function in lme4 package (Bates, 2007) and “logit” is 

used as the link function. I introduce skills as fixed-effect factor and TIME 

(monthElapsed) as both a fixed effect and a random effect in order to learn both 
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the learning rate per month for the whole group of students on average and the 

variation of each individual student. I also include the interaction between skills 

and monthElapsed, which tells the model to learn students’ average learning rate 

separately for each skill. Notice that skills are not included as random effects, 

which meant the model assumes a student’s learning rate did not vary over 

different skills26.   

After the model is constructed, the fixed-effects for the whole group 

(i.e.
10 ,  in the above 2-level model), including an intercept, a coefficient for the 

monthElapsed covariate, four coefficients for the skills, one for each skill in the 

WPI-5 model, and four coefficients for the interaction term, and the random 

effects for each student (i.e. ), including an intercept indicating a student’s 

incoming knowledge and a slope (coefficient for monthElapsed as a random 

effect) indicating the student’s overall learning rate per month, are extracted. 

Then the two learning parameters “intercept” and “slope” (i.e.  and  in the 

model above) are calculated for each individual student and for each skill. Given 

this, I can apply the model on the items in the state test to estimate students’ 

response to each of them.  

ii vv 10 ,

ib0 ib1

                                                 

26 This is just a simplifying assumption. Of course, in reality, it is possible that a student might 
learn one skill (e.g. perimeter) faster than another one (e.g. congruence).  
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5.3.3 Predicting state test scores  

After the model is fit, we have skill levels of the students based on their 

online ASSISTment data using the specified skill model. I then apply the model 

on the actual state test. All the items in the state tests have been tagged in all of 

the four skill models by our subject matter expert27. To predict a student’s test 

score when a particular skill model is adopted, first, the fractional score the 

student can get on each individual item is computed, and then the “item-scores” 

are summed up to give a total score for the test. So how do we predict their state 

test item-score?  

Given a student’s learning parameters on all skills, and the exact test date of 

MCAS, we can calculate the probability of positive response from the student to 

an item tagged with any single skill. In the case that an item is tagged with more 

than one skill, I pick the skill that gives the lowest probability among all the skills 

that apply to the item28 for that student (i.e. the hardest skill for the student). Thus, 

I obtain the probability of positive response to any particular item in the state test. 

In this approach, a student’s probability of correct response for an item is used 

directly as the fractional score to be awarded on that item for the student. Then, 

                                                 

27 All the tagging was done after the MCAS items were released without any reference to the 
modeling process described in this paper.  

28 We admit that there are other approaches dealing with multi-mapped items. For instance, using 
Bayesian Networks is a reasonable way to deal with this situation. Pardos et al. (2007) use this 
approach and got similar results that fine-grained models enable better predictive models.  
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item scores are summed up to produce the total points awarded on the test. For 

example, if the probability of an item marked with Geometry is 0.6, then 0.6 

points will be added to the sum as the points awarded for this item. This sum is 

just what I use as the predicted state test score29.  

The prediction evaluation functions we build using the existing data are also 

intended to work well in future years, and so for reasons of interpretability, the 

prediction error function chosen is mean absolute deviation (MAD). A normalized 

metric named % Error is also calculated by dividing the MAD by the full score.  

)/(% eMaxRawScorMADError   

where “MaxRawScore” is the maximum raw score possible with the MCAS 

questions used.  The MCAS state test consists of 5 open response, 4 short answer 

and 30 multiple choice questions. The max score is 54 points if all 39 MCAS 

questions are considered, since some are scored wrong/right and some are scored 

with partial credit. In our case, only the multiple-choice and short answer 

questions are used with regard to the fact that currently open response questions 

                                                 

29 I think it might be useful to discuss our model from a more qualitative point of view.  Is it the 
case that if you tag an item with more skills, does that mean our model would predict that the 
item is harder?  The answer is no, in the sense that if you tagged a bunch of items with an easy 
skill (i.e., one easier than what the item was currently tagged with), that would not change our 
model’s prediction at all.  This makes qualitative sense, in that we believe the probability of 
getting a question correct is given by the probability of getting correct the most difficult skill 
associated with that question.  
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are not supported in our system. This makes a full score of 34 points with one 

point earned for a correct response on an item.  

5.3.4 Research question 1: Does adding 
scaffolding responses help identifying weak skills? 

Given the data, I start the work examining only students’ responses to 

original questions. The first research question I want to answer is: Would adding 

response data to scaffolding questions help us do a better job of identifying 

students’ weak knowledge and thus more accurately predicting state test scores, 

compared to only using the original questions? Because the scaffolding questions 

break the test question down into a series of simpler tasks that directly assess 

fewer knowledge components, which allows us to deal with skill “credit-and-

blame”, I hypothesize the ASSISTments System can do a more accurate job 

assessing students’ skill mastery level. This hierarchal breakdown of knowledge 

provides a much finer-grained analysis than is currently available. It creates a 

good chance for us to detect exactly which skills are the real obstacles that 

prevent students from correctly answering the original questions. I also 

hypothesize that scaffolding questions would be especially useful when we utilize 

a finer-grained model since multi-mapping of original questions becomes more 

often in such a model and thereby “identifiablity” becomes a more serious issue. I 

think that getting an answer to this question would help us properly evaluate the 

second and more important research question described in Section 5.3.3. 
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5.3.4.1 Scaffolding credit and partial blame  

Since the scaffolding questions show up only if the students answer the 

original question incorrectly, their responses to the scaffolding questions are only 

explicitly logged in that situation. However, if a student gets an original question 

correct, he is only credited for that one question in the raw data. To deal with the 

“selection effect,” I introduce a compensation strategy of “scaffolding-credit”: all 

associated scaffolding questions are also marked correct if the student gets an 

original question correct, assuming they have mastered every single knowledge 

component required by this problem.  

An important thing we need to determine when using a multi-mapping model 

(in which one item is allowed to be tagged with more than one skill) is which 

skills to blame when a student answered an item tagged with multiple skills 

incorrectly. Intuitively, the tutor may want to blame all the skills involved; 

however, this would be unfair to those relatively easy skills when they are tagged 

to some compound, hard items. To avoid this problem, I apply the “partial blame” 

strategy: if a student got such an item wrong, the skills in that item will be sorted 

according to the overall performance of that student on the skills and only the 

hardest skill for the student (i.e. the skill on which that particular student showed 

the worst performance)  will be blamed.  
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When evaluating a student’s skill levels, both original questions and scaffold 

responses are used in an equal manner and they have the same weight in 

evaluation. 

5.3.4.2 Results and discussion  

Recall that the research question asks whether adding response data to 

scaffolding questions can help us do a better job of tracking students’ knowledge 

and more accurately predicting state test scores. To answer the question, I first 

train mixed-effects logistic regression models using the data set that only includes 

original questions response; one regression model for each skill model. Then I 

replicate the training process. This time student responses to scaffolding questions 

are included and the “credit-and-blame” strategy described as above is applied. 

Again models are trained for all four skill models. 

Interestingly but not surprisingly, it turns out that better-fitted models, as 

measured by %Error, on the state test can always be obtained by using scaffolding 

questions. In particular, when using the WPI-1 on DATA-2005, the mean 

decrease of % Error is 1.91% after scaffolding questions are introduced; for WPI-

5, the decrease is 1.21%; and the decrease of % Error is 2.88% for the WPI-39 

and 5.79% for the WPI-78 which is the biggest improvement. I then run paired t-

tests between the % Error terms for the 447 students and find that the 

improvements are statistically significant in all the four cases as summarized in 
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Table 5.2. The same effect shows in DATA-2006. As presented in Table 5.2, the 

improvement on %Error is statistically reliable on all of the four models.   

Table 5.2. The effect of using scaffolding questions on DATA-2005 and DATA-2006 
MAD % Error (MAD/#items) 

Skill 
Model Orig. 

Response 

Orig.+ 
Scaffolding 
Response 

Orig. 
Response 

Orig.+ 
Scaffolding 
Response 

%Error 
p-value of 
paired t-
test 

DATA-2005 
WPI-1 5.07 4.42 14.91% 13.00% 1.91% 0.008 
WPI-5 4.78 4.37 14.06% 12.85% 1.21% 0.049 
WPI-39 5.20 4.22 15.29% 12.41% 2.88% <0.0001 
WPI-78 6.08 4.11 17.75% 12.09% 5.79% <0.0001 

DATA-2006 
WPI-1 6.81 6.58 20.05% 19.37% 0.63% 0.001 
WPI-5 6.76 6.51 19.88% 19.14% 0.74% <0.0001 
WPI-39 5.98 4.83 18.68% 15.10% 3.58% <0.0001 
WPI-78 5.58 4.99 16.91% 14.70% 2.21% <0.0001 

This drop-down of %Error (also MAD) makes sense for several reasons. One 

is that by using the response data to scaffolding questions I am using more of the 

information we collected. So it is not surprising that I can get a better model. A 

second reason is that the scaffolding questions help us do a better job of dealing 

with credit-and-blame problems. The effect of scaffolding questions is so strong 

that the order of the models even shift for DATA-2005. When only original 

questions are used, the WPI-5 is the best model (as bolded in Table 5.2), and the 

prediction error gets worse when the WPI-39 or WPI-78 models are used; while 

after scaffolding question responses are introduced, the most fine-grained model, 

WPI-78 becomes the best one. My interpretation of this is that when only original 

responses are used, individual skills do not get as much identifiability; it only 

makes sense to make fine-grained skill models, if you have questions that can be 



                                    

145  

     

tagged with just a single skill. Another reason why finer-grained models might 

not fit the data as well would be the fact that the finer-grained model has fewer 

data points per skill, so there is a tradeoff between the number of skills you would 

like and the precision in the estimates. For instance, for DATA-2005, the amount 

of data points for each skill in the WPI-39 is about 2.3 as many as data for those 

skills in the WPI-78. I also look at the “branching factor” (i.e. on average how 

many skills are tagged with each question) of different models for both data sets. 

In DATA-2005, branching factors of original questions are 1.13, 1.28 and 1.35 

respectively for the WPI-5, WPI-39 and WPI-78 models. The factors decrease to 

be 1.006, 1.03 and 1.05 for scaffolding questions. In DATA-2006, also for the 

three models in the same sequence, branching factors of original questions are 1, 

1.37 and 1.42, and the numbers are 1, 1.12 and 1.04 for scaffolding questions. So 

it is true in these data sets that the finer-grained models tend to be more frequently 

multi-mapped; and scaffolding questions are usually tagged with one skill, 

occasionally two. To get more “identifiability” per skill, in the next section I use 

the “full” response data (with scaffolding question responses added in) to try to 

answer the question of whether finer-grained models predict better. 

Sharp readers may have noticed that the MAD of WPI-39 model for DATA-

2006 is lower than that of WPI-78, yet %Error of the WPI-39 model is higher than 

%Error of the WPI-78 model. This is because the two multiple-choice items in 

2006 MCAS test, item 13 and item 26, were tagged with the skills “N.6.8-
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understanding-absolute-value” and “P.9.8-modeling-covariation” respectively, yet, 

none of the ASSISTment System items were tagged by the same two skills, which 

means we do not have training data to track student knowledge on the two skills. 

Therefore, I ignored the two items when predicting students’ total score of 2006 

MCAS test using the WPI-39 model. This reduces the total number of MCAS 

items of the WPI-39 to 32. The %Error of the WPI-39 model is calculated by 

MAD/32 while the %Error of the other models is calculated by MAD/34.  

Does an error rate of 12.09% on the WPI-78 seem impressive or poor? What 

is a reasonable goal to shoot for?  Zero percent error? For comparison reason, we 

created a baseline estimation of students’ MCAS test scores by first computing 

students’ overall percent correct on original questions, and multiplied the 

%correct with the full score. Under this “dumb” approach, the %Error was 

17.26% for DATA-2005, and 21.47% for DATA-2006. In Feng, Heffernan & 

Koedinger (2006b) we reported on a simple simulation on how well one MCAS 

test was at predicting another MCAS test. We did not have access to data for a 

group of students who took two different versions of the MCAS test to measure 

this, so we estimated it by taking students’ item level scores on MCAS, randomly 

splitting the 34 multiple-choice items in the test into two halves, and then using 

their scores on the first half to predict the second half.  This process was repeated 

fives times, and on average the %Error was 11%, suggesting that a 12% error rate 

is looking somewhat impressive.  
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5.3.5 Research question 2: Does the finer-grained 
model predict better? 

The second and more important research question I want to answer has to do 

with how the granularity of a skill model affects its effectiveness on tracking 

student knowledge. Specifically, the question is: How does the finer-grained skill 

model (WPI-78) do on estimating external test scores compared to the other skill 

models? We think that an answer to this question that says that a finer-grained 

model allows for better modeling/prediction would have important societal 

implications (e.g., regarding tracking student performance and reporting to 

teachers).  

5.3.5.1 Does the fine-grained model fit better than the 
coarser-grained models? 

To answer RQ2, I compare the four mixed-effects regression models (trained 

on the “full” data set with scaffolding questions used) fitted using the four 

different skill models. As shown in Table 5.3, the WPI-78 gets the best result, 

followed by the WPI-39, WPI-5, and followed by the WPI-1. % Error drops down 

when a finer-grained model is used, from WPI-1 to WPI-5 and then from WPI-39 

to WPI-78.  

In order to see if the % Error is statistically significantly different for the 

models, I compare each model with every other model. First, 95% confidence 

intervals are also calculated for MAD of all models. We notice although the p-
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value from paired t-test are small, there is overlap among the confidence intervals. 

Generally speaking, the confidence intervals are very wide and the standard 

deviations of MAD are big. So the prediction accuracy varies across students.  

Then, paired t-tests are conducted between individual % Error term of the 447 

students in DATA-2005 and also the 474 students in DATA-2006. I find out that 

in DATA-2005, the WPI-78 does as well as the WPI-39 (p = 0.21), and they both 

predict MCAS score reliably better than the WPI-5 and WPI-1. In DATA-2006 

the WPI-78 model is statistically reliably better than the WPI-39, WPI-5 and 

WPI-1 (p<0.001 in all cases), and WPI-1 is statistically reliably worse on 

predicting MCAS scores than the other models (p <0.0001), suggesting that finer-

grained skill models are more helpful in tracking students’ knowledge over time.  

Table 5.3. Evaluating the accuracy of MCAS prediction across skill models 

Skill Model MAD 
95% Confidence 
Interval for MAD 

% Error  

DATA-2005 

WPI-1  4.42 [4.12, 4.72] 13.00% 

WPI-5  4.37 [4.07, 4.66] 12.85% 

WPI-39  4.22 [3.94, 4.50] 12.41% 

WPI-78 4.11 [3.84, 4.39] 12.09% 

IRT-2005 4.36 [4.04, 4.68] 12.82% 

DATA-2006 

WPI-1  6.58 [6.18, 6.99] 19.37% 

WPI-5  6.51 [6.11, 6.90] 19.14% 

WPI-39  4.83 [4.56, 5.11] 15.10% 

WPI-78  4.99 [4.71, 5.28] 14.70% 

IRT-2006 4.67 [4.34, 4.99] 13.7% 

 p=0.006

 p<0.0001

 p=0.21

 p=0.10

 p<0.0001

 p<0.0001

 p=0.0001

 p=0.03
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As a measure of internal fit, the average absolute residuals for each model 

fitted on the data are also calculated. For data of both years, the WPI-78 fits best. 

Since the WPI-78 model contains far more skills than other models, one might 

think the model wins simply because of the large number of parameters. As a 

sanity check, we generate a Random-WPI-78 model in which items are randomly 

mapped with skills from the WPI-78 model. It turns out that the random model 

does reliably worse than the WPI-78 model (and also the WPI-39), both in MCAS 

score prediction and in the internal fit30. 

I want to address that our results on student performance prediction are by no 

means the best. As a matter of fact, an Item Response Theory (van der Linden & 

Hamilton, 1997) model that has been widely used in traditional testing area by 

psychometricians as a control has also been trained. I fit the simplest model on the 

same online data as being used above (both scaffolding and original response data 

after pre-processing), the Rasch model that models student i’s dichotomous 

response (0 = wrong, 1 = correct) to problem j as a logistic function of the 

difference between student proficiency (θi) and problem difficulty (βj), on our 

                                                 

30 It is common to report the value of a model by using a metric that balances model fit and model 
complexity such as Bayesian Information Criterion (BIC). For instance, Cen et al. (2005) and 
Ferguson et al. (2006) both used BIC to compare different models. However, because the size of 
the datasets was different when we used the different models; the finer-grained models add 
additional rows for all questions that are tagged with more than one skill while BIC only make 
sense when the data is meant to be the exact same size.  For the same reason, we did not conduct 
ANOVA on the results. 
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online data. The fitted model give us an estimate of math proficiency for every 

individual student which allows us to compute the predicted MCAS score 

assuming every item in MCAS has an average difficulty (β=0). In Table 5.3, IRT-

2005 refers to the IRT modeling condition for DATA-2005, and IRT-2006 refers 

to the IRT modeling for DATA-2006. As we can see, the %Error of the Rasch 

model for DATA-2005 is 12.82%, marginally higher than that of the WPI-78, 

12.09% (p = .10). Yet, the Rasch model does better in the next year where the 

%Error (13.70%) is reliably higher (p = .03) than that of the WPI-78 (14.70%). 

Other than the IRT model, we have also contrasted our result on DATA-2005 

with the result produced by Bayesian network approach that dealt with skills 

associated with one item conjunctively using “AND” gate (Pardos, Feng, Heffernan, 

& Heffernan, 2007). The “AND” gate signifies that all the skills must be known in 

order for the questions to be answered correctly. Pardos et al. (2008) confirmed 

the “conjunctive” hypothesis. During the comparison process, we found out that 

our approach did better than the Bayesian networks approach when the WPI-1, 

and WPI-5 models were used, and the two approaches are comparable when the 

WPI-39 and WPI-78 were used. Specifically, for the WPI-39 model, %Error of 

the Bayes approach is 12.05%, lower than what we got (12.41%); yet for the 

WPI-106 model, %Error the Bayes approach is 13.75%, higher than our result of 

12.09%.  
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Comparing the results I get using DATA-2005 and those using DATA-2006, 

I notice two things changed. First, the order of prediction accuracy differs when 

only original questions are used. The finer-grained models still track student 

knowledge better than coarser-grained models when DATA-2006 was used; yet it 

is not the case when DATA-2005 was used. Second, the prediction error is much 

higher in the year 2005-2006 than in the previous year. Third, the effectiveness of 

the IRT model reduces in the year 2006. One possible reason for the higher 

prediction error is that we have fewer training data points for each student in the 

year 2005-2006. On average, in the year 2005-2006, each student was involved in 

5.5 sessions and finished 51 problems while in the year 2004-2005, each student 

got on average 7.3 data points and did 87 problems. Additionally, the problem set 

administered to students in the two years are not the same, and the amount of 

questions included differ as well. The data set from DATA-2005 includes 329 

original questions, and 887 associated scaffolding questions. On the contrary, 

DATA-2006 only includes 222 original questions and 354 scaffolding questions, 

with each original questions associated with less scaffolding questions than in 

DATA-2005.  

5.3.5.2 How well does the fine grained model fit the data?  

When using logistic regression, the statistical packages allow the user to 

analyze which of the parameters seem to have good fitting values. We now turn to 
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do a little more close analysis on the WPI-78 to see how good our model is. In our 

model, each skill gets one coefficient indicating the skill’s “intercept” and one for 

the skill’s “slope.” The first of these, the intercept, allows us to model that some 

skills start the year with students knowing them better, while the slope allows for 

the fact that some skills are learned more quickly than others. The model shows 

that for students who used the system in the school year 2004-2005, the easiest 

skills are “Subtraction,” “Division” and “Simple-Calculation,” while the skill that 

had the hardest incoming difficulty was “Qualitative-Graph-Interpretation” (as 

shown in Figure 5.3). I also look at the fits on the slopes for each skill. The skill 

that shows the steepest rate of learning during the course of the year is “Sum-of-

Interior-Angles-Triangle” (e.g., “what is the sum of the angles inside of a 

triangle?”). It seems quite plausible that students learned a good amount related to 

this skill as we noticed in a classroom a poster that said the “The sum of the 

interior angles in a triangle is 180” clearly indicating that this was a skill that 

teachers were focused on teaching. The skill that showed the least learning is 

called “Equation-Concept” (as shown in Figure 5.4). Out of the 78 skills, 7 

coefficients predicted “un-learning” (i.e., the slopes are negative), which 

presumably raises a sign of overfitting, or that the tagging of the skills in the skill 

model is not quite right.  
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Figure 5.3. A question tagged with the skill “Qualitative-Graph-Interpretation.” 

 

 

Figure 5.4. A question tagged with the skill “Equation-Concept” 

 

Speaking of the accuracy of fit, I also notice that the model obtained a high 

accuracy on predicting student response on items tagged with the simple skills 

(e.g. Division, Subtraction), yet not so good at tracking student knowledge on 

skills “Of-Means-Multiply”, “Interpreting-Linear-Equations” or “Inequality-

Solving”. I speculate that skills that have less data for them would be more likely 

to be poorly fit. I calculate the correlation between the total amount of data points 
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for each skill and the average residual of the skill, and find out that the 

correlations are weak. Other reasons a skill might have a poorly fit slope would be 

that we tagged items with the same skill names that share some superficial 

similarity, but do not have the same learning rates. This analysis suggests some 

future work in refining the WPI-78 model; for instance, one possible refinement is 

to merge “equation-concept” with “equation-solving” (i.e., delete the “equation-

concept” skill from the model and map all items tagged with “equation-concept” 

to “equation-solving”).   

All in all, I make no claim that the fine grained model that we created 

represents the best fitting model possible. Nevertheless, I stand by the claim that 

this model, taken in total, is good enough that it can produce good fit to the data, 

and make good predictions of the MCAS scores, indicating the model is useful, 

even given the flaws that might exist in it. 

5.4 Related Work and Contribution 

There has also been a large interest in building cognitive diagnostic models. 

What we refer to as a “skill model” is referred to as “Q-Matrix” by some 

educational data mining researchers (Barnes, 2005, 2006) and psychometrician 

(Tatsuoka, 1990); Croteau, Heffernan & Koedinger (2004) called it “transfer 

model”; while Cen, Koedinger & Junker (2005), and Gierl, Wang & Zhou (2008) 
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used the term “cognitive model.” In all cases, a skill model is a matrix that relates 

questions to the skills needed to solve the problem. Such a model provides an 

interpretative framework to guide test development and psychometric analyses so 

test performance can be linked to specific cognitive inferences about the 

examinees.  

Researchers in machine learning area have been using automatic/semi-

automatic techniques to search for skill models. Tatsuoka and colleagues 

developed the rule space method (Tatsuoka, 1990, 1993) in which hypothesized 

expert rules and actual student errors in fraction addition can be mapped and 

compared. The expert point that is closest to the student response is assumed to be 

the rule that the student is using. Barnes has done considerable work with trying 

to induce transfer models, in this work called Q-matrices (Birenbaum, Kelly, & 

Tatsuoka, 1993), from data (Barnes, 2005, 2006). Koedinger and colleagues 

(Koedinger & Junker, 1999; Cen, Koedinger & Junker, 2005, 2006) proposed a 

semi-automatic approach called Learning Factor Analysis (LFA) as a generic 

solution to evaluate, compare, and refine many potential cognitive models of 

learning. Pavlik, Cen, & Koedinger (2009) proposed a method called learning 

factors transfer analysis to automatically generate domain models. Though 

addressing the same problem, my work is different from above in that we hand-

coded the skill models and built the connection between skills  and questions. 

This is similar to what Ferguson et al. (2006) did in their work as they also 
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associated problems with skills by hand, but they employed a different 

methodology using Bayesian Networks.  

Though different approaches have been adopted to develop skill models and 

model students’ responses, as far as I know, very little effort has been put in 

comparing different grain-sized skill models in the intelligent tutoring system area. 

The only work we are aware of that shows that by building fine-grained skill 

models researchers could build better fitting models was by Yun, Willett and 

Murnane (2004) who developed an alternative curriculum framework. Their 

results of confirmatory factor analysis showed that the alternative framework fits 

data better suggesting the state’s learning standards is subject to improvement. 

However, they did not try to answer the question regarding to the right grain size 

of skill models. Collins, Greer, & Huang (1996) investigated the results of skill 

hierarchies. Yet, different from us, they were using simulated users, but have not 

applied their approach on real student data. Carmona1 et al. (2005) also 

introduced a hierarchal structure into their Bayesian models. However, they 

focused on prerequisite relations among skills but not the various granularities of 

skill models, as I do.   

Designed to measure specific knowledge states and cognitive processing 

skills in a given domain, cognitive diagnostic modeling based on student response 

data has a long history (e.g. Nichols, Chipman & Brennan, 1995; Leighton, & Gierl, 
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2007). Corbett and Anderson (1995) employed a diagnostic approach called 

knowledge tracing that models students as an overlay of the ideal production rules. 

Corbett and his colleagues (Corbett, Anderson, & O’Brien, 1995) employed a 

very detailed model of skills, but their system did not have questions tagged with 

more than one production rule (Anderson, 1993). However, in this dissertation, 

multi-mapping31 is allowed. I propose very simple strategies to take advantage of 

the structures of ASSISTments to deal with the credit and blame issue, which 

turns out to be as effective as the complex conjunctive modeling approach.  

Anderson (1982) and Newell & Rosenbloom (1981) found that the 

performance of cognitive skills improves approximately as a power function of 

practice. Draney, Pirolli, & Wilson (1995) followed the power function form of 

learning, but decomposed the parameter related to the first trial performance in 

the power function into effects with respect to production rules difficulties, 

pedagogical manipulations, and individual difference. Our collaborators (Ayers & 

Junker, 2006) were engaged in trying to allow multi-mapping using a version of 

the fine grained model but reported their Linear Logistic Test Model (LLTM) 

does not fit well. Different from my approach, the model Ayers & Junker applied 

does not track student performance over time. Also, my method is different 

                                                 

31 A “multi-mapping” skill model, in contrast to a “single-mapping” model, allows one item to be 
tagged with more than one skill. 
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Anderson and Draney’s in that the mixed-effects model assumes linear learning 

and time instead of trial is used as a covariate. Since students only use 

ASSISTments sparsely across a year, using time accounts for the learning 

happened during normal classroom instruction. For instance, in my model, a 

response given in October will be treated differently from a response given in 

December, even if both represent a student’s second trial on a math skill 

“Pythagorean theorem”. Yet, the power function of learning would consider no 

difference.  

Mixed-effect models are used in this dissertation to track student knowledge 

development. In the literature, many other approaches have been developed to 

address the same problem as well. Gierl, Wang & Zhou (2008) used an approach 

called “attribute hierarchy method”, a cognitively-based psychometric procedure 

developed by Leighton, Gierl, and Hunka (2004) at the University of Alberta, 

make diagnostic inference about cognitive skills in SAT. Mislevy and his 

colleagues are using a methodology they call “Evidence Centered Design (ECD)” 

in their approach to cognitively diagnostic assessment at Educational Testing 

Service (Mislevy, Steinberg, & Almond, 2003). The mapping between the 

knowledge components is represented in a Bayesian Network. Almond et al. 

(2007) also examines the application of Bayesian networks to Item Response 

Theory-based cognitive diagnostic modeling. In these works, the Bayes net does 

the inferencing to estimate each student’s knowledge of each component. This 
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work is widely respected in psychometrics while less known in the intelligent 

tutoring systems community. A major difference from my work is that these 

approaches have usually been used on cases where students are not learning 

during (or between) test sessions. In the moving target circumstance, Dynamic 

Bayesian Networks (Dean and Kanazawa, 1989) would be a natural extension to 

apply to the ECD method when students are learning. In the tutoring situation, 

VanLehn and colleagues (e.g. Murray, VanLehn, & Mostow, 2001) have applied 

a similar approach.  

Others (e.g. Bock, Gibbons, and Muraki, 1988), in the psychometrics field, 

have developed multi-dimensional Item Response Theory (IRT) models but these 

models do not allow multi-mapping. Different from most other efforts (including 

studies from this dissertation) focusing on correct knowledge,  Baffes & Mooney 

(1996) implemented an approach in an authoring system called ASSERT which 

uses theory refinement to introduce errors into an initially correct knowledge 

based so that it models incorrect student behaviors, and generate feedback for 

remediation. 

5.5 Conclusion 

Mislevy (2006) described six steps in model-based reasoning in science. These 

steps, including model formation, elaboration, use, evaluation, revisions and 
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model-based inquiry, provide a framework for considering my progress in 

developing and refining skill models. In this chapter, I establish evidence that we 

can over time, track students’ skills in an intelligent tutoring system like the 

ASSISTments System. I find solid evidence that using students’ responses to 

scaffolding questions were helpful in tracking students’ knowledge and fine-

grained models can better predict MCAS scores than coarser ones. As discussed 

in the chapter, teachers want reports by skills at fine-grained level, and this is the 

first evidence we have saying that our skill mappings are good enough to better 

predict a state test than some less fine grained models. Furthermore, I illustrate 

how individual skills are modeled and being used to give feedback to teachers in 

the ASSISTments system. I argue that the results show further that not only can 

reliable assessment and instructional assistance be effectively blended in a 

tutoring system, but also, more importantly, such a system can provide teachers 

with useful fine-grained student-level knowledge they can reflect on and adjust 

their pedagogy. 
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Chapter 6 

6 Towards Improving System 
Effectiveness 

Chapter organization: This chapter explores a mixture of efforts on 

improving the overall effectiveness of a tutoring system. After an introduction is 

given in Section 1, Section 2 focuses on detecting instructional effectiveness of 

the tutoring system by answering two research questions. Given the results from 

Section 2, Section 3 describes how these findings can be used to help manually or 

automatically improve existing skill model. Section 4 illustrates a different way to 

refine existing models, aiming at increasing their power of modeling students at 

different knowledge levels. Section 5 highlights the contribution of the chapter 

and reviews related works. Section 6 concludes the chapter. The essence of this 

chapter has been included in the following papers: Feng, Heffernan, Beck, & 

Koedinger, 2008; Feng, Heffernan, & Beck, 2009 (Section 2); Feng, & Beck, 

2009 (Section 4). I want to point out that the work described in Section 3 of this 
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chapter is the only work in this dissertation that is in preparation and has yet been 

published.  

6.1 Introduction 

In Chapter 4 and Chapter 5, I have argued that the ASSISTments system can 

accurately predict student end-of-year performance, and a fine grained skill model 

is developed to track student’s mastery of individual knowledge components and 

to inform teachers more precisely. Based upon above works, in this chapter, I will 

focus on improving the system, including overall tutoring efficacy and knowledge 

modeling accuracy. Below I will illustrate my efforts on trying to improve the 

instructional effectiveness through several steps. First, applying educational data 

mining techniques to find out whether a system effectively teaches; secondly, 

detecting if there is variance of the instructional efficacy among different skills; 

thirdly, more closely examining if the variance exists among individual pieces of 

instructional contents.  

Once I can reliably tell difference among skills and items, this information 

can be utilized to improve existing skill models which in turn improve the overall 

predictive power of the system and thus could potentially increase learning. Two 

approaches are proposed for this purpose. First, support subject experts’ efforts on 

manually update existing hand-crafted skill models by providing our findings 
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from data analysis. Secondly, I also try to suggest difficulty factors for learning 

factor analysis based on the research findings on item effectiveness variance so 

that LFA can automatically searches for superior skill models.  

As a stream of the efforts of refining existing skill models, several works 

have been done to use automatic and computationally intensive methods to search 

for best-fit models for groups of different knowledge levels. Yet, I have taken an 

alternative view to start from our hand-constructed skill models and use them as a 

lens to examine student learning. This work follows Chapter 5 in that it examines 

the models based on their granularities. Yet it also reflects my efforts on refining 

existing models. I thereby describe this work in this chapter as opposed to 

organizing it into Chapter 5.  

6.2 Using item level analysis to analyze 
instructional effectiveness  

The field of Intelligent Tutoring Systems is often concerned with how to 

model student learning over time. More often than not, these models are 

concerned with how student performance changes while students are using the 

tutor. In Chapter 4, I have described my work on tracking student learning 

longitudinally over time and also pointed out that it confounds student’s learning 

in the classroom and also within ASSISTments. While in this section, I will look 
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to see if learning from the computer system is happening over time, trying to 

separate out learning from the classroom. For these purpose, I conduct a focused 

item-level analysis of a subset of items to track how student performance on these 

items changes during the same ASSISTment session. I will explore the possible 

reasons of why on some sets of problems students learned or failed to learn. And 

on top of that, I want to see if we can tell which item in a group is the most 

effective at causing learning.  

6.2.1 Description of the data 

The hypothesis is that students learn from groups of items that share the same 

background knowledge requirement. Our subject manner expert picked 181 items 

out of the 300 8th grade (approximately 13 to 14 years old) math items in 

ASSISTment. Items that have the same deep features or knowledge requirements, 

like approximating square roots, but have different surface features, like cover 

stories, were organized into a Group of Learning OPportunity (GLOP). 

Besides, the expert excluded groups of items where learning would be too 

obvious or too trivial to be impressive. Also, GLOPS had to be of at least size two, 

so singleton items were not selected either. The selected 181 items fall into 39 

GLOPs with the number of items in each GLOP varies from 2 to 11. The items 

are a fair sampling of the curriculum and cover knowledge from all of the five 

major content strands identified by the Massachusetts Mathematics Curriculum 
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Framework: Number Sense and Operations; Patterns; Relations and Algebra; 

Geometry, Measurement, and Data Analysis; and Statistics and Probability. It 

sampled relatively heavily on the strand Patterns, Relations & Algebra. Items in 

the same group were collected into the same section of ASSISTments, and seen in 

random order by students. Each student potentially saw 39 different GLOPs that 

involve different 8th grade math skills (e.g. fraction-multiplication, inducing-

functions, symbolization articulation) in random order. Figure 6.1 shows four 

items in one GLOP that are about the concept “Area.” All these problems asked 

students to compute the area of the shaded part in the figures. It is worth pointing 

out that all the GLOPs were constructed by focusing on the content of the items 

before the analysis is done in this dissertation.  

I collected data for this analysis from Oct. 31, 2006 to Oct. 11th, 2007. Over 

2000 8th grade students participated in the study. Cases where the student only 

finished one item in a GLOP are excluded. We end up with a data set of 54,600 

rows, with each row representing a student’s attempt at an item. 2,502 students 

enter into the final data set, mostly from Worcester, Massachusetts area. Each 

student on average worked on 22 items.  
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Figure 6.1. A sample GLOP that addresses the skill “Area” 
 

Although one may argue for other indicators, e.g. students’ help requests and 

response times, for this study, I simply choose to use the correctness of student’s 

first attempt to an item as an outcome measure of their performance. Table 6.1 

shows a sequence of time-ordered trials of student “Tom” and “Mary” on items in 

two GLOPs, together with the correctness of each response. The column 

“correct?” indicates whether the student answered the question correctly or not. 

The value will be 1 where he succeeded; otherwise, it is set to be zero. “Tom” 

finished all 5 items in the GLOP 1. He managed to solve the first, the forth and 

the fifth item but failed on the second and the third one. “Mary” worked on four 

problems (i.e. had 3 opportunities to learn) from GLOP 4 on April 2nd, 2007 

starting from 9:39 AM. She failed the first two but successfully solved the last 

two items. 
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Table 6.1. Raw response data of two students on two GLOPs 
Student  GLOP Item ID Timestamp Previous trials (t) Correct? 
Tom 1 1045 11/7/2007 12:30:31AM 0 1 
Tom 1 1649 11/7/2007 12:31:15 AM 1 0 
Tom 1 1263 11/7/2007 12:43:40 AM 2 0 
Tom 1 1022 11/7/2007 12:46:09 AM 3 1 
Tom 1 1660 11/7/2007 12:48:20 AM 4 1 
Mary  4 2236 4/2/2007 9:39:20AM 0 0 
Mary  4 9086 4/2/2007 9:42:19AM 1 0 
Mary  4 2239 4/2/2007 9:53:11AM 2 1 
Mary 4 2274 4/2/2007 9:58:07AM 3 1 

6.2.2 Research question 1: Can we predict from 
which groups of questions students will learn?  

6.2.2.1 Do students learn from ASSISTments? 

I first attempt to determine whether the system effectively teaches (Feng, 

Heffernan, Beck, & Koedinger, 2008). Learning is assessed by comparing student 

performance the first time they were given one item from a GLOP with their 

performance when they were given more items (also more opportunities) from the 

same GLOP in the same day. If students tend to perform better on later 

opportunities of items in a GLOP, it indicates that they may have learned from the 

instructional assistance provided on items by the ASSISTments system that they 

worked on earlier by answering the scaffolding questions or by reading hint 

messages. There is controversy over whether same-day learning opportunities 

should be used as evidence of learning. For example, Beck (2006) thought 

repeated trials were not indicative of learning. He chose not to use later 

encounters on the same day in the Reading Tutor since performance on those 

encounters is not a reflection of student knowledge but just retrieved from short 
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term memory. However, our domain (mostly 8th grade multi-step math problems) 

is more complex than reading and the items in a GLOP usually have different 

surface features. Solving these problems is not simple retrieval of an answer from 

a previous question. And even if it isn't more complex, our later day trials are 

horribly confounded by classroom instruction due to low density of usage (every 

other week). Therefore, I choose to analyze the response data on the same day to 

eliminate the confound of learning happening because of classroom instruction 

between two ASSISTment sessions.  

To answer the question, I run a logistic regression to study the relationship 

between student performance (i.e. their responses to items) and the number of 

opportunities the student has on a GLOP. In this method, the dependent variable 

is student response to a question and we account for the difference of student 

math proficiency by including student as one of the predictor variables. Similarly, 

question is included as another predictor with regard to the fact that questions in 

one GLOP may vary in difficulties. Opportunity is introduced as a covariate. The 

regression formula is  

Equation 6.1. Logistic regression model 

 
 jjii
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Where  

ijp  is the probability that the student i will answer question j correctly 
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Opportunity# indicates how many opportunities the student i has on a 

particular GLOP.  

i , j  and   are the coefficients for the corresponding predictors , 

 and Opportunity#. 

iStudent

jQuestion

The model is very similar to models used by Cen et al. (2005) for Learning 

Factor Analysis except that skills are not included as factors since we are 

investigating generalized learning over all GLOPS. A multinomial logistic 

regression is run in SPSS and the regression coefficient estimated by the model, 

corresponding to the number of learning opportunities ( ), is .03 (p < .001). This 

result suggests that in general, students perform reliably better as they have more 

chances of practicing on the same GLOP. The coefficient tells that students will 

improve by 0.03, on a logit scale, for each practice opportunity. This learning 

corresponds to approximately a 0.8% improvement in performance for each 

problem practiced, a rather small effect. In Massachusetts, MCAS test scores are 

categorized into four performance levels (namely warning, need improvement, 

proficient, and advanced). According to the results of 2006 MCAS test, students 

need to earn 13 more points (24% of the full score) to jump from need 

improvement to proficient which is required by the federal movement based on 

NCLB standards to graduate from high school. Theoretically, if students can gain 

0.7% for each learning opportunity, they will fulfill the 24% improvement by 
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solving 31 problems in ASSISTments. It should be noted that there may be a 

selection effect in this experiment in that better students are more likely to do 

more problems in a day and thereby more likely to contribute to this analysis. 

Also there is a limitation with the model that all GLOPs are assumed to produce 

the same amount of learning as indicated by the coefficient of the learning 

opportunity covariate, which may not be true.   

Once I have found that students are learning from working in ASSISTments 

and the learning results are generalized across the 40 GLOPs, I then step further 

to explore if all of the GLOPs are equally effective at promoting learning. The 

answer is “no”, which is not surprising anyway since the items in different 

GLOPs vary on several aspects (e.g. focusing on various skills; built by authors 

with differing teaching experience using various teaching strategies, etc.). In 

summary, out of the 40 GLOPs, the amount of learning per opportunity is 

statistically reliably higher than zero on 11 of them. 2 GLOPs caused marginally 

reliable learning and 16 caused unreliable learning. And there is non-reliable “un-

learning” for the remaining 11 GLOPs, suggesting that not much learning 

occurred when students worked on these GLOPs.  

6.2.2.2 Why students learned or failed to learn? 

Now that I have shown that learning varies among GLOPs, I will explore the 

reasons for this variation. I am not only interested to know which category each 
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GLOP falls in and but also curious why. Particularly, I want to investigate why 

students did not show learning on certain GLOPs. Our four hypotheses are:  

H1: Learning transfer from harder items to easier items, or students tend to 

learn more by doing harder items than by doing easier items. Presumably, if a 

student learned to solve a hard item, he then should be able to do better on an 

easier item that requires similar skills.  However, the converse is not necessarily 

true.  

H2: Knowledge transfer occurs within GLOPs of items that use similar skills. 

We can never know exactly how a student internally represents a problem and what 

the exact skills a student applied to solve a problem. But if a GLOP is well-focused 

in what it covers, presumably students should show more learning within it.   

H3: The “learnability” of the skills required by GLOPs varies. Our statistics 

show that each ASSISTment provides about 2 minutes of instruction. It can be 

hard to teach some skills effectively, for instance, symbolization articulation, in 

such a short period. Such skills require deep understanding and more practice to 

be able to apply and transfer, whereas some other skills such as area are more 

teachable since students only need to be reminded to apply the area formula.  

H4: The efficacy of instructions has an impact on learning results. We can 

easily imagine that some GLOPs have better teaching efficacy than others. The 

quality of the scaffolding questions and hint messages can differ from one item to 
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another as authors used a tutoring strategy that are more, or less, effective than 

others.  

In this dissertation, I test the first two hypotheses and leave the last two as 

future work. The plan is to invite more content experts to help us identify the 

learnability of the related skills and to evaluate the quality of the ASSISTments 

by looking closely at the scaffolding questions and hint messages.  

H1: Do students learn more from harder items or easier items? 

Noticing learning varies among GLOPs, the first thing we do is to explore the 

relationship between the amount of learning and the easiness of a GLOP 

(measured by the average difficulty of items in the GLOP). I calculate the rank-

order correlation and got a coefficient of .333 (p = .036, N=40), which indicates 

that students learned more on harder GLOPs than on easier ones. We asked 

ourselves: why is this? A quick answer is that there is more room to grow for 

harder items. Or, maybe students just learn more from harder items than easier 

items.  

Beck (2006) introduced an approach called learning decomposition to 

analyze what type of practice was most effective for helping students learn a skill. 

The approach uses regression to determine how to weight different types of 

practice opportunities relative to each other. Here, learning decomposition is 

applied to our data set to investigate how students acquire math skills: will their 
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practice on harder items produce more learning? To test the first hypothesis, two 

more columns are added to the data set. One column, entitled 

“easier_before_current”, represents how many items the student has seen in the 

same GLOP are easier than the current item. The other column, entitled 

“harder_before_current”, indicates how many items were seen that are harder than 

the current one. I measure the easiness of the items using the item parameter 

given by a one-parameter Item Response Theory model (i.e. Rasch model32). The 

Rasch model was trained over data collected in the system from Sept., 2004 to 

Jan., 2008, including responses to 2,700 items from more than 14,000 students. 

The two columns are introduced as covariates in the regression model.  

Equation 6.2. Learning decomposition model for H1 
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Where e  and h  represents the coefficients for the two new covariates 

respectively. 

                                                 

32 In the Rasch model, the probability of a specified response is modeled as a logistic function of 
the difference between the person and item parameter. In educational tests, item parameters 
pertain to the difficulty of items while person parameters pertain to the ability or attainment level 
of people who are assessed. 
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The model is fitted in SPSS 14.0 as well. In the results, I notice that the 

coefficients of the two covariates of easier_before_current and 

harder_before_current are very close to each other ( e  = .032, and h = .033). 

The coefficient for easier_before_current is fractionally but not reliably lower 

(p=.966), which suggests that students learn as much from easier items as from 

harder items, and thus the first hypothesis is rejected.  

H2: Does more learning occur in GLOPs that are more focused?  

H2 is different than H1 in that it believes that transfer occurs within GLOPs 

that have similar difficulty questions (and hence address similar skills based on 

our assumption). To test H2, we want to investigate the relationship between the 

amount of learning that happened in each GLOP and the cohesiveness of the 

GLOP in term of item difficulty and the skills that are needed to answer the items.  

Two approaches are used to quantify the cohesiveness of the GLOPs. The 

first metric is an automated measure that comes from a computer modeling 

process based on the assumption that if two skills, A and B, are better modeled by 

a single skill, then practice on either A or B symmetrically transfers to the other. 

During the modeling process, for each GLOP, we compared the BIC of two 

models.  The first model treats each question as having a separate difficulty. The 

second model treats all questions as having the same difficulty, and thus had 

number_of_questions_in_GLOP-1 fewer parameters. Presumably, if the 
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cohesiveness of a GLOP is high, we should expect the second model to fit better 

on our data as measured by Bayesian Information Criteria (BIC) (or any model 

fitting criteria that penalizes for model complexity). We follow the same 

procedure and calculated the difference of BIC values between two models for 

each of the GLOPs.  

The second metric is based on our subject-matter expert’s ranking of the 

cohesiveness of the GLOPs. As requested by us, our subject-matter expert set the 

rating from 1 to 5. A fit of 1 or 2 means that the items are very different. A 3 

means there are some flaws in the selection, a 4 means there are just a few 

inconsistencies and a 5 means they fit very well. According to the ranking of the 

expert, 18 GLOPs got a fit of 5, 10 were given a fit of 4, 7 GLOPs got 3 and the 

remaining 5 GLOPs scored 2.  

After obtaining the two metrics, we continue to analyze the relationship 

between the cohesiveness of the GLOPs and the amount of learning that happened 

in each of them. First, I calculate the rank-order correlation between the 

automated metric and the amount of learning but fail to find a significant relation 

(r = .13, p = .94). I then discretize coherence into 3 coherence bins: high, medium 

and low and performed a one-way ANOVA to explore whether there are any 

differences in the amount of learning, but find no main effect (F = .676, p = .515). 

After that, I conduct the same analysis using the expert ranking of the 
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cohesiveness. The rank-order correlation between fit and amount of learning is 

equal to .322 (p = .045). Yet the ANOVA shows no main effect of fit (F = 1.573, 

p = .213). Further more, instead of using five groups, I merge all GLOPs with fit 

less than 5 into one category named “non-perfect-fit” as a contrast to the ones 

with “perfect-fit” and run an independent sample t-test to compare the mean 

between the two categories. The result suggests that there is statistically reliably 

more learning happening in GLOPs of perfect fit (t = 2.311, p = .030).  

To complete the third side of the triangle of learning/automated coherence 

metric/expert ranking, I also compute the correlation between our two metrics of 

fit/cohesiveness. They do not correlate with each other (r =-.198, p=.22), which 

means that an automated measure and an expert's judgment differ. In conclusion, 

H2 is supported by the expert’s judgment but not by the result of data mining.  

To summarize, I find evidence that suggests there is learning within 

ASSISTments. More interestingly, I find that the learning differed across the 

groups of items. A variety of hypotheses is tested to explain this phenomenon. 

The automated approaches are unable to account for the variation. However, 

human expert judgments are predictive as to which groups of skills were learnable.  
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6.2.3 Research question 2: Can we tell which item 
is the most effective at causing learning?   

One popular method of determining whether one type of instruction is more 

effective than the other, or whether one tutor is more beneficial than another on 

helping student learn a skill, is to run a randomized controlled study. A major 

problem with the controlled study approach is that it can be expensive. A study 

could involve many users (in each condition), be of considerable duration, and 

require the administration of pre/post tests. To address this problem, Beck (2006) 

introduced an approach called learning decomposition, an easy recipe to enable 

researchers to answer research question such as what type of practice is most 

effective for helping student to learn a skill. In this section, I apply learning 

decomposition to compare the instructional effectiveness of single tutoring 

components, leveraging data collected in the ASSISTments system (Feng, 

Heffernan, & Beck, 2009). 

6.2.3.1 Methodology 

Beck (2006) introduced the idea of learning decomposition. It extends the 

classic exponential learning curve by taking into account the heterogeneity of 

different learning opportunities for a single skill. The standard form of 

exponential learning curve can be seen in Equation 6.3. In this model, parameter 

A represents students’ performance on the first trial; e is the numerical constant 
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(2.718); parameter b represents the learning rate of a skill, and t is the number of 

practice the learner has at the skill.  

Equation 6.3. Standard exponential learning curve model 

b tperformance A e    

 
Equation 6.4. Learning decomposition model 

)*(* 21* ttBbeAeperformanc   

The model as shown in Equation 6.3 does not differentiate different types of 

practice, but just counts up the total number of previous opportunities. In order to 

investigate the difference two types of practice (I and II), the learning 

opportunities are “decomposed” into two parts in the model in Equation 6.4, in 

which two new variables t1 and t2 are introduced in replace of t, and t = t1 + t2 . t1 

represents the number of previous practice opportunities at one type I; and t2 

represents the number of previous opportunities of type II. The new parameter B 

characterizes the relative impact of type I trials compared to type II trials.  The 

estimated value of B indicates how many trials that one practice of type I is worth 

relative to that of type II. For example, a B value of 2 would mean that practice of 

type I is twice as valuable as one practice of type II, while a B value of .5 

indicates a  practice of type I is half as effective as a practice of type II. The basic 

idea of learning decomposition is to find an estimate of weight B that renders the 

best fitting learning curve.  
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Equation 6.4 factors the learning opportunities into two types, but the 

decomposition technique can generalize to n types of trials by replacing t with 

B1*t1 + B2*t2 + … + tn.  Thus, parameter Bi represents the impact of a type i trial 

relative to the “baseline” type n.  

Various metrics can be used as an outcome measurement of student 

performance. For instance, Beck (2006) chose to model student’s reading time 

since it is a continuous variable. When it comes to a nominal variable, e.g. 

dichotomous (0/1) response data, a logistic model should be used. Now learned 

performance, (i.e. performance in Equation 6.4), is reflected by odds ratio of 

success to failure. Equation 6.5 represents a logistic regression model for learning 

decomposition.  

Equation 6.5. Logistic models for learning decomposition 

)*(*)*(* 2121*
)_(
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eperformanc    

Equation 6.5 can be transformed to an equivalent form as below: 

)*(*)
)_(

)_(
ln( 21 ttBba

answerwrongP

answercorrectP
  

Different approaches have been established to track students’ progress in 

learning. Among these, one technique by Koedinger and colleagues is called 

Learning Factors Analysis (LFA) (Cen, Koedinger & Junker, 2005, 2006). LFA 

was proposed as a generic solution to evaluate, compare, and refine many 
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potential cognitive models of learning. Since student performance is often 

represented by a dichotomous variable, logistic regression models have been used 

as the statistical model for evaluation. Although both LFA and learning 

decomposition are concerned with better understanding student learning, and both 

use logistic models, they have different assumption. LFA assumes all trials cause the 

same amount of learning but the skills associated with each trial may vary, while 

learning decomposition assumes the domain representation is constant but different 

types of practice cause different amounts of learning.  

The reminder of the section explores applying learning decomposition 

approach to answer questions about how students’ acquisition of math skills is 

impacted by different instructional items, and various tutoring strategies.  

6.2.3.2 Modeling 

Table 6.1 has shown a sequence of time-ordered trials of student A on items 

in GLOP 11, together with the correctness of each response. The student finished 

all 5 items in the GLOP. He managed to solve the first, the forth and the fifth item 

but failed on the second and the third one. So, for teaching the math skill involved 

in GLOP 1, which item is likely to be more (or less) effective for student 

proficiency development? In order to answer this question, we adopt the idea of 

learning decomposition. Each item in a GLOP is considered as a different type of 

practice; then students’ practice opportunities are factored into practice at each 
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individual item. Since each student has at most one chance at an item, the number 

of previous opportunities at each item is either 0, indicating the student has not 

worked on that item, or 1, indicating the student has finished that item before. 

Table 6.2 shows the corresponding data after the trials are decomposed into 

component parts. Rather than counting the number of previous encounters, we 

instead count the number of prior encounters of each item in the GLOP. 

Table 6.2. Decomposed response data of student “Tom” 
Prior encounters Student 

ID 
Item 
ID 

Trials 
(t) 

Correct? 
Item 
1022 

Item 
1045 

Item 
1263 

Item 
1649 

Item 
1660 

Tom 1045 0 1 0 0 0 0 0 
Tom 1649 1 0 0 1 0 0 0 
Tom 1263 2 0 0 1 0 1 0 
Tom 1022 3 1 0 1 1 1 0 

Tom 1660 4 1 1 1 1 1 0 

 

Given the data in Table 6.2, in order to determine the influence of each item 

on student learning we use a logistic regression model.  I use a logistic model 

since our data are dichotomous. By fitting a logistic regression model, I seek to 

model the odds of giving a correct answer as  

Equation 6.6. Logistic regression model for examining effect of practice on different items 
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Here A is the intercept of the regression model. The remainder part, , 

represents a learning decomposition model that simultaneously estimate the 

impact of all items in a GLOP. D is a space of all items in a GLOP. The space is 
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different for different GLOPs. Coefficient Bi represents the amount of learning 

caused by item i (or learning rate of item i). Generally, a positive estimate of Bi 

suggests students tend to perform better on later opportunities after they 

encountered item i; or students have learned from the instructional assistance 

provided on item i by the ASSISTment system that they worked on earlier by 

answering the scaffolding questions or by reading hint messages. ti represents the 

number of prior encounters of item i. Note that, the ti’s account for all possible 

trials, and are thus equal to t. When the model parameters are estimated from data, 

the B parameters indicate the relative impact of different items on student math 

skill development.  

6.2.3.3 Results and discussion 

The model shown in Equation 6.6 is fit to data of each GLOP separately in the 

statistics software package R (see www.r-project.org). To account for variance 

among students and items, student IDs and item IDs are also introduced as factors. 

By taking this step we take into consideration the fact that student responses are 

not independent of each other, and properly compute statistical reliability and 

standard errors.  After the model is fitted, it outputs estimated coefficients for 

every item in each GLOP. Table 6.3 reports the estimated value of the B 

parameters of items in two GLOPs, GLOP 1 and GLOP 4, and also the standard 

error, order descending by the value of B in each GLOP. We can see that among 

http://www.r-project.org/
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all the items in GLOP 1, Item 1022 has the largest positive impact on student skill 

development:  0.464 in scale of logit (although the logit (log-odds) scale is not the 

most common one, it has the property that the item with the largest B coefficient 

will result in the largest learning gain, and an increase of 0.464 in logit scale is 

approximately equivalent to an increase of 0.116 in the probability of giving a 

correct answer). Unfortunately, the model has determined that working on Item 

1649 does not help student learning, indicated by a negative value of B although 

the value is not reliably lower than zero.   

Table 6.3. Coefficients of logistic regression model for items in GLOP 1 and GLOP 4 

GLOP ID Item ID 
B (Coefficient) 

(higher is better) 
std. err 

1 1022 0.464 0.257 
1 1660 0.414 0.247 
1 1045 0.127 0.254 
1 1263 0.011 0.241 
1 1649 -0.176 0.261 
4 2264 0.707 0.225 

4 2236 0.079 0.236 

4 9086 -0.014 0.232 

4 2239 -0.236 0.237 

4 2274 -0.274 0.240 

  p =.1 

 p =.08 

 p=.05 

It looks like the items vary in their instructional effectiveness in helping 

student learn the skill(s) associated with a GLOP. But the standard errors are 

relatively large, too. So, given any pair of item i and item j, I perform z-test to 

determine whether coefficients for item i and item j in the logistic regression 

model are statistically significantly different (p<0.05). The z-score is calculated 

using 22/)( jiji stderrstderrBBz  , assuming a normal distribution.  As shown 

next to Table 6.3, the model fails to reliably tell the difference among the top 4 
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items in GLOP 1 (# of items = 5; # of students = 531; # of data points = 2,256), 

but only find marginal difference (0.05 < p <0.1) between Item 1022 and item 

1649, and between Item 1660 and Item 1649. However, we succeed to detect 

difference between the top 2 items in GLOP 4, Item 2264 and Item 2236 (p = 0.05) 

(# students = 652; #data points = 2,573). 
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Figure 6.2. (a) Partial order relationship of items in GLOP 1;  (b). Partial order relationship 
of items in GLOP 4. 

 

Ideally, I would like to come up with a partial order of items in a GLOP that 

reflects which item caused the most learning, which one comes next, and which 

item is least effective. Figure 6.2(a) illustrates the partial order relationship among 

items in GLOP 1. In the diagram, an arrow connecting two items suggests there is 

a reliable difference between the instruction impact of the two items; and the 

arrow points to the less effective item. Additionally, the higher an item locates in 

the diagram, the larger the estimated value of B is. We follow the same process to 



                                    

185  

     

acquire orders of items in all 39 GLOPs in our data set. The partial order diagram 

for items in GLOP 4 is shown in Figure 6.2 (b).   

One question is what types of items lead to more learning, easier or harder 

ones?  Presumably, I hypothesize if a student learned to solve a hard item, he/she 

then should be able to do better on an easier item that requires similar skills. 

However, the converse is not necessarily true. In the last section, I tested this 

hypothesis and our results indicate that students learn as much from easier items 

as from harder items. Thus, those results suggest rejecting the hypothesis. Here, I 

will replicate the investigation: we have directly estimated the amount of learning 

caused by each item (B parameter), and also since item ID was used as a factor in 

the logistic regression model, we get one parameter each item that reflects the 

easiness of the item. Interestingly, this time we are able to find a significant 

correlation between the two values (the amount of learning vs. easiness) of the 

181 items (Spearman’s rho = .192, p = .010), which suggests that, although the 

effect is not large, in general students did learn more by doing easier items. This 

result makes sense from the perspective of cognitive development. A hypothesis 

proposed by a cognitive scientist, Kenneth Koedinger (personal communication), 

was that easy questions were easy because they only required the usage of a single 

skill, or fewer closely related skills. Hard questions were hard because they 

involved multiple (or extra) skills. The extra required skills were not intrinsic to 

the GLOP, and thus practice on them should not be helpful on other items in the 
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GLOP. But easy items forced students to focus on the crucial part of the GLOP. 

Thus, practicing these items helped students to perform better later in the same 

GLOP.  

Above I explore the research question of measuring the instructional 

effectiveness of different problems, and associated tutoring, using the learning 

decomposition technique. One area of interest following this work is how to 

validate these numbers. One approach is to use human raters. While doing the 

learning decomposition analysis, we invite two human experts to review the items 

in 25 GLOPs that include less than 4 items. The human experts are asked to come 

up with a ranking of the items based on which items (including the scaffolding 

questions and the hint messages) they think will produce the most learning. It took 

the experts about 3 hours to finish ranking all 68 items. I then look at the pair-

wise correlation between rankings of the two human experts, and the ranking 

rendered by the learning decomposition approach. It turns out that the rankings of 

the experts correlate with each other significantly (Spearman’s rho = .238, p 

= .049). Yet, I can only find reliable correlation between one rater’s ranking and 

the learning decomposition ranking (Spearman’s rho = .323, p = .007). Notice that 

this correlation is even stronger than that of the two human raters, which provides 

some evidence for the validity of our results. However, overall, the inter-rater 

reliability is relatively low, so we will need to try harder to obtain stronger 

evidence. Another approach is to make use of synthetic data by using a computer 
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simulation study. The benefit of using a simulation is that we would know the 

ground truth about the effectiveness of each item. Furthermore, running a 

simulation study would allow us to better understand the power of the learning 

decomposition approach, such as how big the differences between the learning 

impacts of two items need to be for this approach to be able to detect it? How 

many students, data points the learning decomposition approach requires to tell a 

given difference between two items?  

To summarize the section, I have shown how learning decomposition can be 

applied in the domain of mathematics to use observational data to estimate the 

effectiveness of different tutoring content. It provides an evidence that the 

learning decomposition is not domain specific and generally applicable to a 

variety of ITS that focus on different domains. An open issue for this approach is 

related to the generalization of the approach. There are other factors that we have 

not yet explored such as the variant item effectiveness for students of different 

knowledge levels. Applying the methodology in other domains, esp. ill-defined 

domains, possibly involves analyzing more other factors. The results may be 

affected by the organization of GLOPs as well. 
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6.3 Towards refining existing skills models  

Existing literature has shown that creating an accurate model of a students’ 

knowledge can be quite difficult due to various sources of uncertainty caused by 

factors such as multiple sources of student errors, varied problem solving 

strategies, problems associated with more than one skill, careless slip and lucky 

guesses, learning and forgetting (Katz, Lesgold, Eggan & Gordin, 1992), 

requiring the time of experts to create and then test these models on students. The 

expert-built models are subject to the risk of “expert blind spot” (Nathan, & 

Koedinger, 2000). I am happy to see that our first cognitive model fits relatively 

well on student performance data.  Nevertheless, it is not an optimal model, esp. 

considering the amount of time we spent on developing the model, and this first 

model is just our “best guess”.  I still feel that we can probably refine the fine-

grained model to be more accurate. For instance, as I have noticed from the 

modelling results I get from Chapter 5, for DATA-2005, among the 78 skills in 

the WPI-78 model, 13 coefficients indicate un-learning (i.e. the slopes are 

negative). This is a sign that the tagging of problems with these 13 skills might be 

appropriate and can be further improved.  
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6.3.1 Using data mining findings to aid manual 
update of existing models 

So, given the problems, how do we refine the existing model? The first 

approach I can think of is to hand the model back to our subject-matter expert and 

ask her to improve the model. However, as mentioned before, our existing fine 

grained skill model is “hand-crafted” and involves more than 1,000 items. 

Therefore, it is not plausible for the content expert to examine every item to 

improve the model, especially if we need to do this iteratively and want this to be 

done in a timely manner. Well, here is where the data analysis results can provide 

some clues. One clue is to focus on the “un-learned” skills. One reason that a skill 

might have a poorly fit slope would be that we tagged items with the same skill 

names that share some superficial similarity, but do not have the same learning 

rates. As mentioned above, there are 13 of these skills whose tagging should be 

further examined. In terms of items, the candidates to be examined would be 

items for which the mixed-effects model produces highest residuals, and those for 

which student performance has been consistently over-predicted or under-

predicted across all students.  

A second clue comes from my item level analysis of instructional 

effectiveness as described in the last section. In that work, the first finding is that 

the amount of learning is rather uneven across GLOPs. Remember GLOP is a 

group of items that are organized into one group by subject matter experts 
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because they are associated with the same skill in the skill model. So, the GLOPs 

from which students did not show much learning raise a signal that maybe these 

items do not belong to the same group, so there was no transfer among them. 

Finding out the GLOPs that did not causing learning suggests potential 

problematic tagging with the group of items in the skill model. While when we 

take an even closer look at items in each GLOP, I notice which bits of content 

were not very effective in promoting learning in ASSISTments system. One 

reason that these items produced least learning could be the quality of tutorial 

materials of the items is relative low. But these items are also candidates for 

which the skill-tagging shall be examined.  

In this way, we use automated data mining methods to help intelligent 

tutoring system builders learn from the logs of students data what portion of their 

tutors worked well and what portions should be improved. And then, this 

information can be used to aid content experts so that they can concentrate on the 

most problematic skill tagging and gain efficiency on model improvements. 

Anecdotally, our subject-matter expert is happy about the results we present to her 

and think they are helpful. But, at the moment, she is still in progress of updating 

the existing skill model and we do not yet have empirical results to quantitatively 

demonstrate whether the data analysis improve efficiency substantially.  
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6.3.2 Searching for better models automatically 

The first approach of model refinement I describe in the last section depends 

on human intelligence and experience, while the second one relies on 

computational capability of machines by improving and applying a method called 

learning factor analysis. 

6.3.2.1 Description of learning factor analysis  

Cen, Koedinger & Junker (2005, 2006) proposed a generic method called 

learning factor analysis (LFA) for cognitive model evaluation and refinement. 

LFA was initially conceptualized by Koedinger and Junker (1999). It aims to 

“combine statistics, human expertise and combinatorial search to evaluate and 

improve a cognitive model”. LFA has three parts: a statistical model that evaluate 

how the model fit the data; difficulty factors associated with problems; and a 

combinatorial search space of cognitive models to for student models that better 

account for student performance data directed by the evaluation of the statistical 

model.  

LFA is an extension of the power law of learning (Newell & Rosenbloom, 

1993), which represents that the error rate decrease exponentially according to a 

power function as the number of opportunities to practice a skill increase. The 

power law applies to one particular student and over only one skill while LFA 

models multiple students and multiple skills by adding in student and skill 
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intercepts and skill learning rates. Cen, Koedinger & Junker (2006) used a 

multiple logistic regression model:  
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where  

p = the probability to get an item right 

X = the factors for students 

Y = the factors for skills 

T = the covariates for the number of opportunities practiced on the skills 

Y T = the covariates for interaction between skill and the number of practice 

opportunities for that skill 

α = the coefficient for each student, i.e. the student’s “smarts” 

β = the coefficient for each rule, i.e. the skill’s difficulty 

γ = the coefficient for the interaction between a skill and its opportunities, i.e. 

the learning rate.  

In LFA, a factor is a hidden feature in a problem that makes the problem 

easier or harder to solve. It is usually identified by subject exerts based up 

instruction theory and task analysis. An example factor in math with two possible 

values is using a rule CIRCLE-AREA (e.g. S = π*r2) forward (to calculate circle 
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area given radius) or backward (to calculate radius given circle area). Here 

forward and backward are values of a difficulty factor. 

LFA performs heuristic search over a search space where each state is a new 

cognitive model to locate the best one. Starting from a base model, it applies one 

of the 3 operators “split”, “add”, and “merge” on skills in current model to 

generate sub-models by incorporating the difficulty factor (or factor). For instance, 

operator “add” means that the factor with its possible value is simply added as a 

new skill to the original model. Suppose solving a problem requires applying 

CIRCLE-AREA backward. By applying the “add” operator, there will be one 

more skill called “APPLYING-FORMULA-BACKWARD” added to current 

model and tagged to the problem, while the rest skills remain unchanged. In this 

way, a sub-model is generated and the search space expanded. Various heuristics 

such as AIC, BIC, R-square and Log likelihood, have been considered as model 

evaluation and selection measures.  

6.3.2.2 Suggesting possible factors for LFA search 

As a basis of LFA, difficulty factors have always been found by subject 

experts through a process of “difficulty factor assessment” (DFA) (Koedinger, 

2000). Based upon theory or task analysis, researchers can hypothesize the likely 

factors that cause student difficulties, and by assessing performance difference on 

pairs of problems that vary by only one factor, the experts identify the hidden 
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knowledge component that can be used to improve a skill model. It is phase of 

human making hypothesis and identification that makes LFA a semi-automatic 

approach, even though it is intuitively appealing as being a fully automated 

method.  

Can we raise efficiency of LFA by suggesting difficulty factors automatically 

yet still get better models? In Section 6.2, I have shown certain items in a random 

sequence cause significantly less learning than others. Intuitively, it is highly 

possible that there is certain factor inherited in the items, which make it harder for 

the learning from this item to transfer to later items. This could be either because 

later items demand more skills than the current one, or because what a student 

learns from current item does not help later items. In both conditions, there is 

probably “mis-tagging” with this item. Thus, presumably, such a factor can be 

utilized by LFA to manipulate the original skill model to search for the best-fit 

model. What I really hope to see is that having a human expert sitting in front of a 

computer, with the help of our educational data mining results, she can quickly 

determine what factors each item may have. Before doing that, I want to check to 

see if my results can be used to make suggestions on factors and whether there is 

some validity in the approach.  

In order to test this idea, I create factor tables for all the GLOPs as described 

in Section 6.2.1. In each table, I use one factor with two values “High” and “Low” 
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indicating the effectiveness of the items. The item that has caused least learning is 

associated with “Low” while all other items are associated with “High”. Table 6.4 

shows the factor table for GLOP 1. Noticing that since all items are tagged with 

the same skill “Interpreting-Circle-graph” as they all belong to one GLOP.  

Table 6.4. Assigning factor to GLOP 1 based on learning coefficients 
GLOP ID Item ID Skill Factor B (Coefficient) 

(higher is better) 

1 1022 Circle-graph High 0.464 
1 1660 Circle-graph High 0.414 
1 1045 Circle-graph High 0.127 
1 1263 Circle-graph High 0.011 
1 1649 Circle-graph Low -0.176 

6.3.2.3 Results 

Given the factor tables, I run LFA search over all the GLOPs. Following Cen, 

Koedinger & Junker (2005, 2006), BIC is used as the heuristic to evaluate the 

models in that it balances simplicity and predictive power of models. Among the 

38 GLOPs I have examined, LFA is able to find statistically significantly better 

models (a difference of 10 points or more on BIC) for 12 of them, using the 

factors as assigned in the factor tables. Among the 12 GLOPs, 5 of them include 2 

items; 3 include 4 items; the rest 4 GLOPs have 5, 6, 8, and 9 items respectively.  

To get a feeling of how well the suggested factors do, I conduct a simple 

sanity check where I randomly assign one item each GLOP with the “Low” value 

of the factor, and then run the same searching process as before. Obviously, for 

the 2-item GLOPs, the results will be the same as before. But for GLOPs with 
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more items, the search process using randomly assigned factor values only find 

better models for 2 out of the 27 GLOPs, which makes our previous results of 7 

out of 27 somewhat impressive.  

I admit there are other ways of assigning values in the factor table. Yet, I am 

also glad to see that the results show some validity for the very simple way of 

suggesting factors. I am especially happy to see that when there are more than 5 

items in a GLOP, this method can still help find better models for 4 out of the 15 

GLOPs.  

This work is preliminary despite of the inspiring results, in that the amount of 

data I have applied this method to is very limited. I would like to apply this 

approach on data collected from other tutoring systems to verify the generality as 

well. Moreover, I do realize that using human experts’ suggested factors would be 

another control condition to compare to. But considering the amount of efforts 

and time that need to be spent on difficulty factor assessment, maybe it would not 

be a totally “fair” comparison. Another reasonable study would be to run a 

randomized controlled study to compare two conditions where in one condition, 

human experts use solely DFA to identify factors, while in the other condition, 

human experts are provided the item level tutoring effectiveness results as I show 

in Section 2. The study should be controlled for time, and then controlled for 

groups to examine on what aspects the results can be helpful.  
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6.4 Constructing skill models for different 
groups 

6.4.1 Introduction 

The topic of representing domain knowledge is fundamental in the 

construction of intelligent tutoring systems. This representation is important not 

only because it denotes the language used in constructing the tutor (e.g. the level 

at which to construct hints), but also because it makes claims about the level at 

which students represent knowledge and transfer it between problems. For this 

reason, such models are sometimes called transfer models (e.g. Croteau, 

Heffernan, & Koedinger, 2004).    

In the last section, I have shown how our results on item instructional 

effectives can suggest “factors” for the searching process of LFA, and thus, 

improve model fit. While in this section, rather than trying to invent another 

complex and computationally intensive technique, I take an alternative view. We 

know from prior research that students of differing proficiency have somewhat 

different representations of the domain, with more skilled learners having a more 

compact (i.e. coarser) representation (Leszczenski & Beck, 2007); Rafferty & 

Yudelson, 2007). We also know that different tutorial interventions influence the 

representation that learners acquire, with better interventions causing learners to 

develop a more compact representation (Koedinger & Mathan, 2004).  A common 
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fallacy is the belief that finer-grain models will fit learner data better, or at least 

will fit better given sufficient training data, since they are able to represent subtler 

distinctions in the domain. This belief is incorrect since fine-grained models not 

only make subtle distinctions in skills, they (typically) also assert that tasks are 

more independent of each other (being tagged with different skills). Thus, 

knowledge transfer happens less often in that practice in one task does not help 

with another. If learners are able to transfer knowledge amongst skills, a coarser-

grain model will better fit performance data. Theoretically based upon the 

learning curve equations (Newell & Rosenbloom, 1993), a compact model allows 

for faster mastery of skills if learning rates do not decrease sufficiently to 

compensate for the greater number of practice attempts for each skill. Intuitively, 

consider a model with 2 skills and a student who needs five practice attempts for 

each skill to achieve mastery. If the model can be compounded into a more 

compact model of just 1 skill by merging two of the original skills, then literally 

the student will have ten practice opportunities on the new skill as every 

opportunity on either of the two merged skills will count as an opportunity on the 

new skill. Suppose the students’ learning rate and the initial knowledge does not 

change a lot after the “merging”, the student may not need all the ten practices to 

gain mastery, which means the learning speed is increased.  

Given the previous results and the fact that we have built a series of hand-

constructed transfer models at various levels of granularities, perhaps it makes 
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more sense to skip over automated techniques and simply start with existing 

transfer models and use them as a lens to examine student learning. In this way, 

we can still do interesting science with our large datasets but do not have to focus 

on complex machinery. Specifically, we are interested in whether models of 

different granularity better fit distinct subgroups, and, consequently, whether we 

can use this approach to evaluate schools by examining the grain-size at which 

their students are best represented. Given two schools where one is better 

predicted by a coarser transfer model, that school is probably the better one. This 

approach is different than simply looking at which school has the highest test 

score performance. If a weaker school changes its curriculum and its students 

have a better mental model of the domain and are transferring better, they might 

still lag a stronger school in raw knowledge and consequently in test scores. This 

approach can potentially detect such schools. We can validate this hypothesis in 

two ways. First, we have an idea of the quality of the schools we are evaluating 

(although the person interpreting the data did not). Second, instead of partitioning 

students by school, we can use their state assessment test score and partition them 

by math proficiency. If we see a trend for stronger students, it is reasonable to 

believe it applies to stronger schools.  

The advantage of this approach is that it is easy. Also, if one transfer model 

does a better job at a particular school, since that model is expert-constructed it 

should not be (any more) difficult (than usual) to construct tutorial content for the 
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model; whereas automated models might not fit educators’ understanding of the 

domain. For this research, I use data collected in the ASSISTments system as the 

test bed.   

6.4.2 Approach 

DATA-2005 (after preprocessing using scaffold-blame and partial credit 

strategies) as described in Chapter 5 is reused for this analysis. The only 

difference is that all 495 students in the initial data sets are used here. This 

changed the statistics slightly. The data set contains 147,624 data points from the 

495 students, among which 45,135 come from original questions. The students 

have used the ASSISTment system on at least 6 days, with an average of 9 days 

during 2004-2005 school year and on average, finished 91 original questions.  

The first portion of this research involves partitioning students into groups to 

determine if different groups of students have different patterns for learning math 

skills. Naturally, the 495 students can be separated by the schools they were in, 

with 312 from school F and 183 from school W. I also try to separate them by 

their performance level at the 2005 MCAS test. The high performing group 

includes the 128 students whose performance level is assessed by the state as 

“Advanced” or “Proficient”; the medium group includes the 154 students whose 

performance level is “Needs Improvement”, and the low performing group has the 

rest 213 students at performance level “Warning”. While these performance levels 
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are somewhat specific to Massachusetts, they are at least criterion-referenced and 

much more general than numbers extracted from a student model or raw scores on 

a test (what qualifies as “Proficient” in Massachusetts is probably similar to 

“Proficient” in Macedonia). The hypothesis is that students from a stronger school, 

or higher performing group, would show more transfer in their knowledge 

acquisition than those from a weaker school, or lower performing groups. Hence, 

for the stronger students and schools the coarser grained model will better 

describe their learning and provide more accurate prediction of their MCAS test 

scores.  

Similarly as in Chapter 5, mixed-effects logistic models are fit here. But we 

have chose two prediction evaluating functions for this analysis, namely, mean 

absolute difference (MAD), and mean difference (MD), as below.  
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where MCASi is the actual MCAS score of the ith
 student, and predictioni is 

the predicted score from our model. Both measures are used since MAD gives a 

good estimate the closeness of the prediction to actual scores while MD allows us 

to see if a certain model has been overestimating or underestimating.  

6.4.3 Results and discussion 

The results for both school F and school W are summarized in Table 6.5. As 

shown in Table 6.5, school F has a flat error line across all four different transfer 
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models. The MAD for the WPI-39 model is the lowest, and yet a paired t-test that 

compares the absolute pair-wise differences of individual students among all 

models suggested that there is no reliable difference. However, for school W, the 

line tilts: the MAD of the WPI-39 model is reliably lower than those of the WPI-1 

and WPI-5 models, indicating school W is better predicted by a finer grained 

model than by coarser grained models. Note that we are not able to fit the 

statistical model for school W with the WPI-106 transfer model (there is a 

technical glitch we do not understand and are investigating). We encounter the 

same problem later in the paper, which admittedly bring up some caveats in 

interpreting our results. The second part of Table 6.5 shows the values of MD for 

each model. The results indicate that both schools are optimized at the WPI-39 

model. In general, student performance on the state test is overestimated by our 

models except that the WPI-106 model underestimates school F; and school W is 

even more overestimated than school F across known results from all the three 

models. As we know that, theoretically a one-skill model assumes perfect transfer. 

Since that is unlikely to happen, it would tend to overestimate student 

performance. And for a weaker school, perfect transfer is even more improbable. 

Thus, the overestimation would be greater since students are probably learning a 

collection of 106 unrelated skills. The tendency of overestimate decreases as the 

granularity of transfer models increases, and a very fine grained model such as the 

WPI-106 model that assumes no transfer or very low transfer may even 
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underestimate when there is actually some level of knowledge transfer. We can 

see that in Table 6.5, the MD goes from positive to negative when we use the 

WPI-106 model for School F. Given these results, based on our hypothesis we 

would predict school F is the stronger school. An examination of both schools’ 

MCAS performance reports (for current achievement) and information on their 

Annual Year Progress (AYP, for changes in performance) confirms our prediction.  

Table 6.5. Results for students grouped by schools 
Results School WPI-1 WPI-5 WPI-39 WPI-106 

School F 4.188 4.168 4.124 4.175 MAD 
School W 4.669 4.601 4.329 N/A 
School F 1.362 0.932 0.477 -1.000 MD 
School W 3.043 2.867 2.012 N/A 

 
Table 6.6. Results for students grouped by performance levels 

Results Performance Level WPI-1 WPI-5 WPI-39 WPI-106 
Advanced/Proficient 2.673 2.834 2.489 3.249 
Needs improvement 3.180 3.243 2.900 N/A 

MAD 

Warning 4.027 4.092 3.518 N/A 
Advanced/Proficient -1.726 -2.034 -1.210 -2.715 
Needs improvement 1.534 1.744 0.893 N/A 

MD 

Warning 3.023 3.136 2.212 N/A 

 

As mentioned in section 6.4.1, a second validation approach is that instead of 

partitioning students by school, we can use their state assessment test score and 

partition them by math proficiency. If we see a trend for stronger students, it is 

reasonable to believe it applies to stronger schools. As discussed in section 6.4.2, 

I split all the 495 students into 3 groups based on their state test performance level, 

and fit a mixed-effects logistic regression model to each group separately for 

different transfer models. The values of MAD and MD are summarized in Table 
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6.6. I see a slight support with MAD: for the students at the high end, the WPI-39 

does the best job at predicting their state test scores, reliably better than the other 

three models, while the WPI-106 model does reliably worse than the WPI-1 and 

WPI-5 models, suggesting there is certain amount of knowledge transfer 

happening with the high performing students. However, since we do not obtain 

results of the WPI-106 model for the other two groups, it is hard to draw a 

conclusion there. When it comes to the MD measure, we notice some support as 

well. Obviously, the advanced and proficient students have been underestimated 

by all models, and the amount of underestimation goes worst when the finest 

grained model, the WPI-106 model, is applied. On the contrary, the medium and 

low performing students are all overestimated under all the models. Just as we 

hypothesize, the finer grained models overestimate less than the coarser grained 

models, and the better performing, stronger groups are less overestimated than the 

weaker groups. Therefore, weaker students are better represented by transfer 

models that are finer-grained. 

6.4.4 A bottom-up aggregation approach  

Rather than starting with an a priori disaggregation, I also try a bottom-up 

aggregation approach, focusing on treating students as individuals and 

discovering commonalities among students who are best-fit with a particular 

transfer model. We have collected demographic data about several properties of a 
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student, such as which school he/she goes to, ethnicity, gender, etc.  Finding out 

the relation among these properties and which transfer model best fits this student 

is the goal. The plan is to bring together model-fitting information and student 

characteristics, and then use a machine learning classifier to determine the best-fit 

model. This bottom-up aggregation is a strong alternative to proposing and testing 

disaggregation, and will scale nicely as we get more descriptors for each student. 

 

Figure 6.3. Result of classifying in Weka using J48 pruned tree 

For this purpose, I first re-fit models for all the students as one group33 and 

identify which model best fits each individual student. The best-fit model 

information is then combined with other properties of the student in a new data set. 

                                                 

33 Since we are fitting models for all students at the same time, I have to use the data set of only 
447 students simply because of a memory limit of R.  
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Specifically, the properties we use are: gender, free-lunch status (indicative of 

family income), special education status, ethnicity, and state test performance 

level. These properties are picked because they are easy to access, and all of them 

have meanings to researchers working with other populations in other locations. 

In comparison, properties such as the school a student attends are much less 

useful to those in other locations. Given the new data set, we built a J48 (C4.5 

revision 8) decision tree in Weka 3.6. The constructed J48 pruned tree is show in  

Figure 6.3 that tells how the classifier uses the attributes to make a decision. The 

constructed tree is extremely simple with just 5 nodes. The WPI-1 model is 

overall the best fitting model for Advanced (A) and Proficient (P) students, and 

the WPI-106 is for “Needs improvement” (NI) or Warning (W) level students. 

The numbers in brackets after the leaf nodes indicate the number of instances 

assigned to that node, followed by how many of those instances is incorrectly 

classified as a result. In our case, the correct classification rates are relatively 

good for students at performance level of A, P, and W. Yet, for students at 

performance level of NI, even though the WPI-106 model is the best fit, it is not 

dominant with 76 out of 138 instances misclassified. It is encouraging that this 

simple decision tree can achieve a predictive accuracy of over 70% during 

stratified cross-validation. Although the decision tree only uses MCAS 

performance, it is provided with the variables described above but is unable to 

find a use for them. This result suggests the appropriate level of transfer model 
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granularity really seems to depend on student knowledge, rather than on variables 

that may correlate with knowledge such as family wealth. Therefore, if tutor 

designers have students with rather different levels of knowledge, they might wish 

to use different levels of their skill hierarchy. This point does not contradict the 

use of evaluating interventions (Koedinger & Mathan, 2004) and schools by 

model granularity: other properties certainly matter in how well knowledge 

transfers, but for our dataset they are not as predictive as the student’s knowledge.   

In summary, in this section, I start with existing hand-constructed transfer 

models at various levels of granularity, and use them as a lens to examine student 

learning. Specifically, I start by examining whether we can evaluate schools by 

determining the grain-size at which its students are best represented. I have also 

examined what models best fit students at different levels of proficiency, and 

found some support for the idea of stronger students being better fit with coarser 

transfer models. The interesting analysis is the bottom-up aggregation and using 

classification to find clusters of students who learn similarly. Through the usage 

of a bottom-up aggregation approach, the problem is changed. Rather than trying 

to automate the model search, why don’t we automate seeing which student best 

fits which model? Results of the analysis suggest transfer model granularity really 

seems to be about student knowledge.  
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6.5 Related Work and Contribution 

My work on using educational data mining approach to analyze relative 

instructional effectiveness of individual tutoring contents in intelligent tutoring 

systems is among the earliest efforts on this topic. Pardos & Heffernan (2009) 

explored the same question using the same data set but a different, Bayesian 

network approach. Even though the Bayesian networks is generally considered 

powerful, the learning decomposition method is an easier recipe, and also more 

scalable when the number of items increases. The traditional approach uses 

randomized controlled studies that can be very expensive, speaking of the time 

and subjects, especially if we want to focus on hundreds of individual pieces of 

tutoring contents. Yet, I demonstrate an approach where we can apply educational 

data mining technique to use observational data to efficiently compare the 

effectiveness of individual pieces of instructional materials in a tutoring system. 

This is a low cost approach comparing to randomized experiments. 

Given the importance of transfer models, it is not surprising that their 

construction and improvement has been a major focus in the community. At the 

end of Chapter 5, I have reviewed many works in the literature on constructing 

transfer models. Beyond that, Winters et al. (2005) has compared a variety of 

statistical approaches for constructing transfer models, including cluster methods 

such as k-means and dimensionality reduction such as non-negative matrix 
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factorization. One common thread of this work is that it produces models that are 

typically more compact than those created by experts. This difference is both a 

source of strength (perhaps students learn differently than experts believe?) and a 

source of weakness (if the models are less understandable or make it harder to 

represent pedagogical knowledge why should we use them?). Although it would 

be an expensive undertaking, I am unaware of a controlled study showing that a 

tutor using automatically constructed model provides superior teaching compared 

to a tutor using to hand-constructed transfer model (or vice versa).   

Rather than inferring a transfer model from scratch, LFA is a hybrid approach 

of refining existing models. As I have described in Section 6.4.2, this technique 

starts with a transfer model, typically built by hand, and computationally tries 

various modifications to the model to better align it with student performance data 

(e.g. see Cen, Koedinger & Junker, 2005, 2006). LFA has also been used in 

Leszczenski & Beck (2007) and Rafferty & Yudelson (2007) to answer scientific 

question on the level of knowledge that learners use to represent written words 

and problem-solving skills in geometry. Pavlik, Cen, & Koedinger (2009b) 

reconfigured LFA by taking into the desired features of knowledge tracing 

(Corbett & Anderson, 1995), and proposed a new version called performance 

factor analysis (PFA). Different from LFA, PFA uses two parameters to track a 

student’s prior successes for a skill separately from the student’s prior failures for 

the skill.  
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Different from LFA that uses computation intensive method to search for 

better models, Ferguson, Woolf, & Mahadevan (2009) developed a method to use 

transfer learning to guide the improvement of skill models. They hand-coded the 

transfer features in problems and thus constructed a hierarchical transfer learning 

model as an improvement of existing flat skill model.  

Ritter et al. (2009) addressed the issue of model improvement by 

investigating the nature of the space of parameters from knowledge tracing. They 

used a k-means clustering to drastically reduce the parameter space used to model 

students from 2,400 skills to 23 clusters without compromising the behavior of 

the system (the Cognitive Tutors).  

6.6 Conclusion 

In this chapter, I first present results suggesting that students are learning 

from working within ASSISTments and also point out that the learning is rather 

uneven across skills. I then take an even closer look at individual items that are 

tagged with the same skill and find out that the instructional effectiveness varies 

across items. It is found out that some items cause significant learning while some 

other items are not as useful at promoting learning. This is among the first efforts 

to look at effectiveness of individual item. I argue that this is an important step 

towards improving overall effectiveness of a tutoring system.  
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Following my effort on detecting item effectiveness, several practices are 

described on how to use the results to improve skill modeling in ASSISTments. 

Possibilities of both manual approach and automatic approach, i.e. learning factor 

analysis, are considered. Preliminary results show our findings in item 

effectiveness from educational data mining can be used to assign factors, and thus, 

automate LFA. As another way to improve the predictive power of skill models, 

the hand-constructed models of various granularities are revisited to explore the 

correlation between student knowledge and the grain-size of their best-fit skill 

models. I find out that high performing students are better modeled by coarser 

grained models while finer grained models are more predictive for lower 

performing students.   

I want to acknowledge that we don’t have control group to compare the 

learning results against to. Also, if student performance systematically varies over 

time apart from learning, my model does not account for it. For instance, if 

students experienced a ramp up effect of doing better over time, this could explain 

away our results. Similarly, if students get fatigued over a class period we would 

be underestimate the learning effect.  

Currently, our GLOPs are manually constructed. It would be interesting to 

see how the items would be grouped by some automated method such as Q-matrix 
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algorithm or LFA, and then how our results will be impacted by a new grouping 

method.  
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Chapter 7 

7 Conclusion of this Dissertation 

7.1 Conclusion 

The ASSISTments system has been launched and is in its fifth full year of 

operation. Unlike other assessment system, it provides instructional assistance 

while assessing students. The dissertation focuses on how to assess students better 

in such a learning environment. In this dissertation, I address the testing challenge 

in this web-based learning and assessment system from different aspects.  

Teachers’ needs have been addressed since the very beginning of the 

ASSISTments project. An online reporting system is developed to inform teachers 

of their students’ performance and where students are having difficulties.  

In this dissertation, instead of ignoring students’ learning behaviors as most 

traditional tests do, I leverage this information in our predictive model. Some 

evidence is presented that the online assessment system can do a better job of 
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predicting student knowledge by being able to take into consideration how much 

tutoring assistance was needed, how fast a student solves a problem and how 

many attempts were needed to finish a problem. Traditional assessment usually 

happens in a limited amount of time. Yet, in this dissertation, promising evidence 

is found that the ASSISTments system is able to track students' learning during a 

year well. Furthermore, our prediction of students’ end-of-year test score is as 

accurate as the standardized test itself.  

Being able to estimate student’s total score is not enough. In this dissertation, 

I help build a fine grained skill model that is used to model student’s individual 

piece of knowledge components separately. The results from rigorous evaluation 

show that the fine-grained model can estimate student proficiency more 

accurately than existing coarser-grained models. More importantly, such a model 

is used to provide teachers with useful fine-grained student-level knowledge they 

can reflect on and adjust their pedagogy.  

Realizing the skill model is not optimal, I am also seeking ways to improve it. 

The application of educational data mining techniques helps find out the skills 

that students have a hard time mastering. Relative effectiveness of individual 

pieces of instructional contents can be detected as well. Since skills are “latent”, 

its mastery is reflected by performance on the problems tagged with the skills. 

The results thereby identify potential targets for skill model improvements as well. 
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In this dissertation, both manual and automatic approaches are considered as ways 

to make use of the findings to refine existing models.  

All in all, I believe that the ASSISTments System can be a better predictor of 

state test scores and fine grained knowledge because of this dissertations’ work. 

With that said, I would like to end with a tantalizing question: Are we likely to 

see states move from a test that happens once a year, to an assessment tracking 

system that offers continuous assessment (Computer Research Association, 2005) 

every few weeks? While more research is warranted, my results suggest that 

perhaps the answer should be yes. 

7.2 General Implications 

A recent Computer Research Association (CRA) report (Computer Research 

Association, 2005) prepared for NSF reported on the need to fund the cyber-

learning, and pointed out that continuous assessment systems research is a huge 

growth area. A general implication from this research suggests that continuous 

assessment systems are possible to build and that they can be more accurate at 

helping schools get information on their students. We argue that this result is 

important because it opens up the ability to blend assessment and assisting. This 

opens up a whole new area of assessment. To respond to Arne Duncan’s call for 

better testing and data management systems, the studies from this dissertation 
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imply that it is possible for the states to develop such a system similar to the 

ASSISTments System that does all three of these things at the same time: 1) 

accurately and longitudinally assesses students, 2) gives fine grained feedback that is 

more cognitively diagnostic and 3) saves classroom instruction time by assessing 

students while they are getting tutoring. 

Another idea upon which we can reflect is, "what is the right way to judge a 

project like this one, which tries to blend assessment and assisting (increasing 

student learning)?" The system does not have to be either the best assessment 

systems in the world, or the best learning system in the world. It needs to be a 

good balance between the two. Fundamentally, there will always be tradeoffs 

between the accuracy of assessment data and increases in students' learning, due 

to the fact that schools have only a finite number of days in a year.   

Our results show that in the ASSISTments system, some contents have more 

impact on student math skill development while some contents are not so 

effective. I suspect that this result is not specific to ASSISTments, and other 

tutors have items that vary greatly in educational effectiveness. This study 

demonstrates another, low cost, approach of evaluating ITS contents other than 

experimental study. Potentially, the approach and the results can be used to 

examine the quality of instructional contents in a learning system, and thus 

improve the overall learning impact. 
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Automated techniques for revising transfer models for better knowledge 

representation have addressed interesting scientific questions. Is there a way we 

can do interesting science on educational data sets and avoid the “irritating” 

automation step? The answer from this dissertation is “yes,” if it is possible to 

build a hierarchy of transfer models with different granularity. Previous 

experience tells us that hand-constructed transfer models at different grain sizes is 

not a rare thing to have, and not very hard to think about. The hierarchy can be 

used for runtime benefit of intelligent tutoring systems such as the control of 

mastery learning or generation of feedback messages for students of various 

proficiency levels. It can also be used to evaluate schools and be validated via 

high stake test performance. I argue that hand-created transfer models and a 

bottom-up approach to aggregating students is a better use of human brains and 

computational power than approaches that focus search efforts on revising the 

domain model.  Better understanding what parts of the scientific enterprise can be 

best done by people and which are better done computationally is a major issue in 

the area of educational data mining.  
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7.3 Ideas of Future Work 

7.3.1 Evaluating the impact of reports on decision 
making 

In the ASSISTments project, we don’t yet have a solid answer to the research 

question “Can teachers use the advice of this system to lead to higher student 

learning?” Conducting year long studies to see if students in classrooms with 

teachers that are using the system lead to higher MCAS gains than in classrooms 

where the teacher did not use the system would help answer this question. There 

are some preliminary results showing ASSISTments is effective. Yet, we are not 

sure how much has to do with the feedbacks we provide in the reports (or it is just 

more practice in ASSISTments). Thus, one of the future work is to have a better 

understanding if detailed reporting to teachers of students’ difficulties can lead 

teachers to do more data-driven decision making. We collected self reports from 

teachers but they seem too rosy and we think that are trying to trying please the 

researchers at WPI. We could send in an army of classroom observers is try to 

divine how teachers are changing their instruction in response to this data, but this 

is not cost-effective or feasible. Instead one way is to look to see which teachers 

and when they seem to be looking at the data by logging teachers’ usage of the 

reports (that we currently have not done yet).  This can be done by emailing 

teachers a link to get their report but in order to see it they will have to click on a 
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link, which will allow us to tell which teachers are even opening the email (with 

informed consent of course). Of course teachers will also be able to log into their 

accounts and access the same information so that usage can be logged as well. 

And given the fact that these reports will contain hyperlinks to dig further into the 

data, we will be able to distinguish between the casual teachers that only open 

their report from a teacher that explores their data in greater detail.  Do the 

teachers continue to look at the data all year?  If their self-reports correlate with 

the computer accesses then they are more likely to be believable. Are teachers that 

access the data more often the same teachers that are getting higher gain scores?  

Of course this is only correlation data. But running a randomized controlled 

experiment giving the system to some teachers but not others could provide some 

causal evidence.  

7.3.2 Helping teachers to change their practice  

This dissertation has been focusing on student modeling and better 

assessment. Yet, I want to address that student performance modeling and 

assessment is not the ultimate goal, but just gives the roadmap for change. Early 

findings of the national Study of Education Data Systems and Decision Making 

indicate that although there is dramatic increase in teacher access to student data 

systems, the data from these systems are having little effect on teachers’ daily 

instructional decisions (Means, Padilla, DeBarger, & Bakia, 2009).  
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Recently in the speech, Arne Duncan, the United States Secretary of 

Education, called for teachers to use data to drive instruction in order to improve 

student achievement. He has been critical of the fact that teachers are currently 

learning to use data to drive instruction on the job, instead of that being part of 

their teacher preparation program and in service. He pointed out that “one of our 

collective challenges is to talk about data and research and ways that people 

understand.”34 As a matter of fact, a critique for our reports is that our feedback 

might be useful in identifying what skills that are used in the missed items are the 

ones that are causing the most trouble, but this might suffer from the fact that they 

are abstract and then hard for a teacher to know how best to respond. Thus, 

instead of overwhelming teachers by reporting on a lot of skills, maybe it is better 

to give advice of skills that are the “low hanging fruit” for their students by 

focusing on concepts and skills that are most directly to be within an individual 

student’s reach. Another way to address this concern is to direct teachers to lesson 

plans and other activities. In education research area, researchers have recently 

started some practices on aiding this change on top of presenting them assessment 

results. For instance, the Diagnostic Geometry Assessment (Russell & Masters, 

2009), an online assessment, provides a collection of lesson plans and 

instructional resources targeting common misconceptions. Teachers also have 

                                                 

34 http://www.ed.gov/news/speeches/2009/06/06082009.html 

http://www.ed.gov/news/speeches/2009/06/06082009.html
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access to follow-up tests that can be administered to the student after instruction 

to measure whether the student has corrected the misconception. At WPI, we have 

a partnership program in Math and Science education (PIMSE35) that involves 

participants of teachers, graduate students, and ASSISTments coach. The goal of 

the project is to help teachers figure out the best ways of integrating data-driven 

instruction into their own classroom practices. A workshop has been set up for 17 

local teachers in the next school year and a college seminar entitled using 

advanced educational technology to support data-driven decision making 36  is 

available for teachers to take. Though it is a challenging task, I believe in that we 

just need to “being much more thoughtful about how we look at assessments and 

create incentives so that every child is pushed to excel and pushed to reach their 

potential” (said Arne Duncan).  

7.3.3 Improving assessment work 

The online, dynamic metrics have been shown to be very helpful at predicting 

student MCAS scores. Although effective, the metrics are simply counts and 

averages. A piece of future work following that could be to improve the online 

assistance metrics. For instance, since the number of hints available is different 

across problems and the amount of information released in each level of hint 

                                                 

35 http://teacherwiki.assistment.org/PIMSE_Schedule_2009-2010 
36 http://nth.wpi.edu/MME562.htm 
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differs too, instead of simply summing-up or computing the mean value, we want 

to construct some weighting function to better measure the amount of assistance 

students requested to solve a problem.  

Another piece of work follows up the assessment work is to predict fine 

grained knowledge across years. Since our model is clearly capturing something 

that is predictive of student future performance (as shown in Section 4.5.2), we 

are considering focusing on determining what predicts specific deficits in an area. 

The research question we want to answer will be: can an 8th grade student model 

be used to predict the student will have a problem with a specific 10th grade skill? 

Teachers will be glad to know the answer so that they can adjust their instruction 

to better help student knowledge learning.    

7.3.4 Assessment for learning 

Now that this dissertation shows that we can do a good job assessing students, 

it is reasonable to move to the next stages of model-based inquires (Mislevy, 2006) 

and think about how to use the assessments to make better, more adaptive 

intelligent tutoring systems. It would be rather a pity if the work stops on the 

power of a rich set of elements to predict performance on a standardized test, but 

never feeds back into the runtime tutoring process. Following this direction, it 

think future work could involve creating detailed learner models that based on the 

findings from this dissertation and then use the models inform teachers, parents, 
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learners and, more importantly, the tutoring system on the ways to best remedy 

problems. This way, we are not only doing assessment of learning, but also doing 

assessment for learning.  

In this dissertation, I find out that students of different proficiency level are 

best modeled by skill models at different granularity level. A major open question 

of this work is whether just because a student is best modeled at a coarser grain 

size, shall we use such a model to drive tutorial instruction?  For example, even 

though strong students are best modeled by a single skill “Math,” it is not obvious 

how one would design hint messages, remediation, and problem sequences in a 

system that only recognized one skill. A hybrid approach to be tested in the future 

work would be to track student knowledge and drive mastery learning at a coarser 

grain size, but provide feedback using a finer-grained model. A second question is 

that, since student knowledge is changing over time, perhaps we should use 

different level models to represent a student at different points in his learning.   
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Appendix B.  

Sample MCAS test items from 
year 2003



Grade 8 Mathematics Test
The spring 2003 Grade 8 MCAS Mathematics Test was based on learning standards
in the Massachusetts Mathematics Curriculum Framework (2000). The Framework
identifies the five major content strands listed below. 

� Number Sense and Operations

� Patterns, Relations, and Algebra

� Geometry

� Measurement

� Data Analysis, Statistics, and Probability

The grade 7–8 learning standards for each of these strands appear on pages 62–66 of the
Mathematics Curriculum Framework, which is available on the Department website at
www.doe.mass.edu/frameworks/math/2000/final.pdf.

In Test Item Analysis Reports and on the Subject Area Subscore pages of the MCAS
School Reports and District Reports, Mathematics test results are reported under five
MCAS reporting categories, which are identical to the five Mathematics Curriculum
Framework content strands listed above.

Test Sessions and Content Overview

The grade 8 Mathematics Test contained two separate test sessions. Each session
included multiple-choice and open-response questions. Session 1 also included short-
answer questions. Common test items are shown on the following pages as they
appeared in test booklets.

Reference Materials and Tools

During testing, each student taking the Grade 8 Test was provided with a Grade 8
Mathematics Reference Sheet and a plastic ruler. A copy of this reference sheet follows
the final question in this chapter.

While answering questions during Session 2, each student had sole access to a calculator
with at least four functions and a square root key. Calculator use was not allowed during
Session 1. No other reference tools or materials were allowed, with the exception of
bilingual word-to-word dictionaries used by limited English proficient students.

Cross-Reference Information

The table at the conclusion of this chapter indicates each item’s reporting category
and the Framework learning standard it assesses. The correct answers for multiple-choice
and short-answer questions are also displayed in the table.

167



2097370 C

� Which of the following statements
is false?

A. *

B.

C.

D. �12 � 12 � 12 � (�12)

12 � (4 � 1) � (12 � 4) � 1

12(4 � 1) � 12(4) � 12(1)

(�12)(�12)(�12) � 3(�12)

2
2097398 C Art Code 2097398.AR1

� The figure below shows an RPM gauge.

How many RPMs is the gauge
registering?

A. 44

B. 48

C. 4080

D. 4800 *

1

2

3 4

5

6

RPM
(  1000)+

1

Mathematics
SESSION 1

You may use your reference sheet during this session.
You may not use a calculator during this session. 

DIRECTIONS
This session contains fifteen multiple-choice questions, five short-answer questions, and two
open-response questions. Mark your answers to these questions in the spaces provided in
your Student Answer Booklet.
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Mathematics Session 1

2097299 C Art Code 08M80567X-2.eps, 2097299.AR1, .AR2, .AR3, .AR4

� The chart below shows the average monthly price per share of HiTek stock for each month
in 2001.

2001 HiTek Stock Prices

Which of the following curves best models the general behavior of the stock’s price 
for last year?

A. C.

B. * D.
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J F M A M J J A S O N D

Month January February March April May June July August September October November December

Average
Price (in $) 22.61 24.25 31.02 27.31 29.92 33.10 36.14 35.50 34.01 31.05 36.20 40.12

3
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Mathematics Session 1

Question 9 is an open-response question.

• BE SURE TO ANSWER AND LABEL ALL PARTS OF THE QUESTION.
• Show all your work (diagrams, tables, or computations) in your Student Answer Booklet.
• If you do the work in your head, explain in writing how you did the work.

Write your answer to question 9 in the space provided in your Student Answer Booklet.

2097262 C Art Code 2097262.AR1

� At student registration, eighth-grade students selected the courses they would be taking next
year as ninth graders. The counselor made the diagram below that shows a relationship
among the percentages of students who chose to take Biology, Algebra, and/or Band.

a. According to the diagram, what percent of the eighth-grade students will be taking 
all three courses, Biology, Algebra, and Band, next year?

b. What percent of the eighth-grade students will be taking Algebra and Biology, but not
Band, next year?

c. If 900 students signed up to take courses, how many will not be taking Biology, Algebra
or Band? Show or explain your work.

15%
25% 12%

3%

8%
2%

8%

Biology Algebra

Band

Student Registration

9
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Questions 19, 20, and 21 are short-answer questions. Write your answers to these questions in the
boxes provided in your Student Answer Booklet. Do not write your answers in this test booklet.
You may do your figuring in the test booklet.

2097356 C Art Code 2097356.AR1

� Triangles ABC and DEF shown below are congruent.

The perimeter of �ABC is 23 inches. What is the length of side in �DEF?

2097266 C

� What is of ?

2097329 C Art Code 2097329.AR1

� Write a rule that could be used to show the relationship between x and y in the table below.

y

�4

�1

16

1

0

9

49

x

0

3

7

21

11
2

3
420

DF

x

B

A C

8 inches

2x

E

D F

19

Mathematics Session 1
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Massachusetts Comprehensive Assessment System 
Grade 8 Mathematics Reference Sheet

Use the information below and your ruler as needed to answer questions in this test.

PERIMETER FORMULAS

square..............P = 4s

rectangle .........P = 2b + 2h

triangle............P = a + b + c

CIRCLE FORMULAS

circle ...............C = 2 r

OR

C = d

A = r2�

�

�

AREA FORMULAS

square..............A = s2

rectangle..........A = bh

OR

A = lw

triangle ............A = bh

circle ...............A = r2

trapezoid .........A = h

VOLUME FORMULAS

rectangular prism .........V = Bh
(B = area of base)

cone..............................V = r2h

cylinder ........................V = r2h

cube..............................V = s3

(s = length of an edge)

�

p
1
3

(b1 � b2)1
2

�

1
2

CONVERSIONS

1 mile = 5280 feet

1 square mile = 640 acres

a2  +  b2  =  c2

a c

b

PYTHAGOREAN THEOREM
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Grade 8 Mathematics
Spring 2003 Released Items:

Reporting Categories, Standards, and Correct Answers

Item No. Page No. Reporting Category Standard
Correct Answer

(MC/SA)*

1 170 Measurement 8.M.1 D

2 170 Number Sense and Operations 8.N.8 A

3 171 Data Analysis, Statistics, and Probability 8.D.2 B

4 172 Patterns, Relations, and Algebra 8.P.7 C

5 172 Data Analysis, Statistics, and Probability 8.D.1 A

6 172 Data Analysis, Statistics, and Probability 8.D.3 C

7 173 Patterns, Relations, and Algebra 8.P.6 –2

8 173 Data Analysis, Statistics, and Probability 8.D.2 20 years old

9 174 Data Analysis, Statistics, and Probability 8.D.2

10 175 Patterns, Relations, and Algebra 8.P.2 B

11 175 Patterns, Relations, and Algebra 8.P.7 A

12 175 Patterns, Relations, and Algebra 8.P.5 B

13 176 Patterns, Relations, and Algebra 8.P.7 D

14 176 Number Sense and Operations 8.N.4 C

15 176 Data Analysis, Statistics, and Probability 8.D.3 D

16 177 Geometry 8.G.7 B

17 177 Patterns, Relations, and Algebra 8.P.7 D

18 177 Patterns, Relations, and Algebra 8.P.5 C

19 178 Geometry 8.G.2 10 inches

20 178 Number Sense and Operations 8.N.12 or equivalent

21 178 Patterns, Relations, and Algebra 8.P.1 y � x2 or x2 � y

22 179 Geometry 8.G.3

23 180 Number Sense and Operations 8.N.9 B

24 180 Number Sense and Operations 8.N.10 B

25 180 Data Analysis, Statistics, and Probability 8.D.3 C

26 180 Number Sense and Operations 8.N.3 B

27 181 Patterns, Relations, and Algebra 8.P.1 D

28 182 Patterns, Relations, and Algebra 8.P.1

29 183 Number Sense and Operations 8.N.10

30 184 Number Sense and Operations 8.N.2 B

31 184 Geometry 8.G.1 C

32 184 Data Analysis, Statistics, and Probability 8.D.4 C

33 184 Number Sense and Operations 8.N.9 A

34 185 Measurement 8.M.2 C

35 185 Number Sense and Operations 8.N.3 D

36 185 Patterns, Relations, and Algebra 8.P.1 A

37 186 Patterns, Relations, and Algebra 8.P.9 B

38 186 Measurement 8.M.3 C

39 187 Measurement 8.M.3

* Answers are provided here for multiple-choice and short-answer items only. Sample responses and scoring guidelines for
open-response items, which are indicated by shaded cells, will be posted to the Department’s website later this year.

189
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Appendix C.  

MCAS Curriculum Framework 
for 8th grade mathematics 

 



Mathematics Curriculum Framework November 2000 61

Learning Standards by Grade Span 
or Course for Grades 7–12



Mathematics Curriculum Framework November 200062

Students engage in problem solving, communicating, reasoning, connecting, and representing
as they:

8.N.1  Compare, order, estimate, and translate among integers, fractions and mixed 
numbers (i.e., rational numbers), decimals, and percents.

8.N.2  Define, compare, order, and apply frequently used irrational numbers, such as √2
and π.

8.N.3  Use ratios and proportions in the solution of problems, in particular, problems
involving unit rates, scale factors, and rate of change.

8.N.4  Represent numbers in scientific notation, and use them in calculations and problem
situations.

8.N.5  Apply number theory concepts, including prime factorization and relatively prime
numbers, to the solution of problems.

8.N.6  Demonstrate an understanding of absolute value, e.g., |-3| = |3| = 3.

8.N.7  Apply the rules of powers and roots to the solution of problems. Extend the 
Order of Operations to include positive integer exponents and square roots.

8.N.8  Demonstrate an understanding of the properties of arithmetic operations on 
rational numbers. Use the associative, commutative, and distributive properties;
properties of the identity and inverse elements (e.g., -7 + 7 = 0; 3⁄4 × 4⁄3 = 1); and the
notion of closure of a subset of the rational numbers under an operation 
(e.g., the set of odd integers is closed under multiplication but not under addition).

8.N.9 Use the inverse relationships of addition and subtraction, multiplication and divi-
sion, and squaring and finding square roots to simplify computations and solve
problems, e.g. multiplying by 1⁄2 or 0.5 is the same as dividing by 2.

8.N.10  Estimate and compute with fractions (including simplification of fractions), integers,
decimals, and percents (including those greater than 100 and less than 1).

8.N.11  Determine when an estimate rather than an exact answer is appropriate and apply
in problem situations.

8.N.12  Select and use appropriate operations—addition, subtraction, multiplication, 
division, and positive integer exponents—to solve problems with rational numbers
(including negatives). 

N U M B E R S E N S E A N D O P E R A T I O N S

GRADES 7–8 LEARNING STANDARDS

Understand numbers, ways of representing numbers, relationships among numbers,
and number systems 

Understand meanings of operations and how they relate to one another 

Compute fluently and make reasonable estimates 
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Students engage in problem solving, communicating, reasoning, connecting, and representing
as they:

8.P.1   Extend, represent, analyze, and generalize a variety of patterns with tables, graphs,
words, and, when possible, symbolic expressions. Include arithmetic and geometric
progressions, e.g., compounding. 

8.P.2    Evaluate simple algebraic expressions for given variable values, 
e.g., 3a2 – b for a = 3 and b = 7.

8.P.3    Demonstrate an understanding of the identity (-x)(-y) = xy. Use this identity to 
simplify algebraic expressions, e.g., (-2)(-x+2) = 2x - 4.

8.P.4    Create and use symbolic expressions and relate them to verbal, tabular, and 
graphical representations.

8.P.5   Identify the slope of a line as a measure of its steepness and as a constant rate of
change from its table of values, equation, or graph. Apply the concept of slope to the
solution of problems.

8.P.6    Identify the roles of variables within an equation, e.g., y = mx + b, expressing y as a
function of x with parameters m and b.

8.P.7    Set up and solve linear equations and inequalities with one or two variables, using
algebraic methods, models, and/or graphs.

8.P.8    Explain and analyze—both quantitatively and qualitatively, using pictures, graphs,
charts, or equations—how a change in one variable results in a change in another
variable in functional relationships, e.g., C = πd, A = πr2 (A as a function of r),
Arectangle = lw (Arectangle as a function of l and w).

8.P.9    Use linear equations to model and analyze problems involving proportional 
relationships. Use technology as appropriate.

8.P.10    Use tables and graphs to represent and compare linear growth patterns. 
In particular, compare rates of change and x- and y-intercepts of different linear
patterns.

Understand patterns, relations, and functions 

Represent and analyze mathematical situations and structures using algebraic symbols 

Use mathematical models to represent and understand quantitative relationships 

Analyze change in various contexts

GRADES 7–8 LEARNING STANDARDS

P A T T E R N S ,  R E L A T I O N S ,  A N D A L G E B R A
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Students engage in problem solving, communicating, reasoning, connecting, and representing
as they:

8.G.1   Analyze, apply, and explain the relationship between the number of sides and the
sums of the interior and exterior angle measures of polygons.

8.G.2    Classify figures in terms of congruence and similarity, and apply these relationships
to the solution of  problems.

8.G.3    Demonstrate an understanding of the relationships of angles formed by intersecting
lines, including parallel lines cut by a transversal.

8.G.4    Demonstrate an understanding of the Pythagorean theorem. Apply the theorem to
the solution of problems.

8.G.5    Use a straight-edge, compass, or other tools to formulate and test conjectures, and
to draw geometric figures.

8.G.6    Predict the results of transformations on unmarked or coordinate planes and draw
the transformed figure, e.g., predict how tessellations transform under translations,
reflections, and rotations.

8.G.7    Identify three-dimensional figures (e.g., prisms, pyramids) by their physical 
appearance, distinguishing attributes, and spatial relationships such as parallel
faces.

8.G.8    Recognize and draw two-dimensional representations of three-dimensional objects,
e.g., nets, projections, and perspective drawings.

Analyze characteristics and properties of two- and three-dimensional geometric
shapes and develop mathematical arguments about geometric relationships 

Specify locations and describe spatial relationships using coordinate geometry and
other representational systems 

Apply transformations and use symmetry to analyze mathematical situations 

Use visualization, spatial reasoning, and geometric modeling to solve problems 

GRADES 7–8 LEARNING STANDARDS

G E O M E T R Y
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Students engage in problem solving, communicating, reasoning, connecting, and representing
as they:

8.M.1    Select, convert (within the same system of measurement), and use appropriate 
units of measurement or scale.

8.M.2    Given the formulas, convert from one system of measurement to another. 
Use technology as appropriate.

8.M.3    Demonstrate an understanding of the concepts and apply formulas and 
procedures for determining measures, including those of area and perimeter/ 
circumference of parallelograms, trapezoids, and circles. Given the formulas, 
determine the surface area and volume of rectangular prisms, cylinders, and
spheres. Use technology as appropriate.

8.M.4    Use ratio and proportion (including scale factors) in the solution of problems, 
including problems involving similar plane figures and indirect measurement.

8.M.5    Use models, graphs, and formulas to solve simple problems involving rates, 
e.g., velocity and density.

M E A S U R E M E N T

GRADES 7–8 LEARNING STANDARDS

Understand measurable attributes of objects and the units, systems, and processes 
of measurement 

Apply appropriate techniques, tools, and formulas to determine measurements 
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Students engage in problem solving, communicating, reasoning, connecting, and representing
as they:

8.D.1   Describe the characteristics and limitations of a data sample. Identify different
ways of selecting a sample, e.g., convenience sampling, responses to a survey, 
random sampling.

8.D.2   Select, create, interpret, and utilize various tabular and graphical representations
of data, e.g., circle graphs, Venn diagrams, scatterplots, stem-and-leaf plots, box-
and-whisker plots, histograms, tables, and charts. Differentiate between continuous
and discrete data and ways to represent them.

8.D.3    Find, describe, and interpret appropriate measures of central tendency (mean,
median, and mode) and spread (range) that represent a set of data. Use these
notions to compare different sets of data.

8.D.4    Use tree diagrams, tables, organized lists, basic combinatorics (“fundamental 
counting principle”), and area models to compute probabilities for simple compound
events, e.g., multiple coin tosses or rolls of dice.

D A T A A N A L Y S I S ,  S T A T I S T I C S ,  A N D P R O B A B I L I T Y

GRADES 7–8 LEARNING STANDARDS

Formulate questions that can be addressed with data and collect, organize, and display relevant
data to answer them 

Select and use appropriate statistical methods to analyze data 

Develop and evaluate inferences and predictions that are based on data 

Understand and apply basic concepts of probability 
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