
Joins over UNION ALLQueries in Teradata®: Demonstration of
Optimized Execution

Mohammed Al-Kateb, Paul Sinclair, Grace Au, Sanjay Nair,
Mark Sirek, Lu Ma, Mohamed Y. Eltabakh∗

Teradata Labs
El Segundo, CA

{mohammed.al-kateb, paul.sinclair, grace.au, sanjay.nair, mark.sirek, lu.ma, mohamed.eltabakh}@teradata.com

ABSTRACT
The UNION ALL set operator is useful for combining data from
multiple sources. With the emergence and prevalence of big data
ecosystems in which data is typically stored on multiple systems,
UNION ALL has become even more important in many analytical
queries. In this project, we demonstrate novel cost-based optimiza-
tion techniques implemented in Teradata Database for join queries
involving UNION ALL views and derived tables. Instead of the
naive and traditional way of spooling each UNION ALL branch to
a common spool prior to performing join operations, which can
be prohibitively expensive, we demonstrate new techniques devel-
oped in Teradata Database including: 1) Cost-based pushing of joins
into UNION ALL branches, 2) Branch grouping strategy prior to
join pushing, 3) Geography adjustment of the pushed relations to
avoid unnecessary redistribution or duplication, 4) Iterative join
decomposition of a pushed join to multiple joins, and 5) Combining
multiple join steps into a single multisource join step. In the demon-
stration, we use the Teradata Visual Explain tool, which offers a
rich set of visual rendering capabilities of query plans, the display
of various metadata information for each plan step, and several
interactive UGI options for end-users.

KEYWORDS
Joins over Union All, Query Optimization, Cost-Based Optimization

1 INTRODUCTION
The UNION ALL set operation is a mean of combining data from
multiple sources. In traditional relational databases, a UNION ALL
query resembles a logical table that combines rows of multiple
physical tables. The UNION ALL operator is used in modern appli-
cations more frequently than ever, and a few emerging examples
include: 1) Large Fact Tables in Data Warehousing: A fact table
in an existing data warehouse grows too big and a new fact table
is defined as an extension of it. When a query is issued against
the fact data, it needs to access both tables as one single relation.

∗The author (meltabakh@cs.wpi.edu) is a visiting faculty at Teradata Labs.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGMOD’18, June 10–15, 2018, Houston, TX, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-4703-7/18/06. . . $15.00
https://doi.org/10.1145/3183713.3193565

This is accomplished by combining the two tables as a view or
derived table using UNION ALL. And 2) Heterogeneous Access in
Big Data Applications: In the context of big data ecosystems, data
of a single application may need to be integrated from multiple,
and possibly, heterogeneous data sources. In the Teradata Unified
Data Architecture (UDA) [2], the current data of an application
may be stored in a table in Teradata Database and the history data is
stored in HDFS on a remote Apache Hadoop server. Data from both
local and remote systems can be combined using UNION ALL for
data analytics through Teradata’s QueryGrid – a processing engine
that allows users to use SQL to query local and remote systems
seamlessly, transparently, and efficiently [7].

Example 1: The following is our running example used through-
out the paper. Consider a query that joins two tables t1(a1,b1, c1,d1)
and t2(a2,b2, c2,d2) with a UNION ALL derived table that has two
branches: one branch retrieving from t3(a3,b3, c3,d3) with a single-
table condition onb3, and the other branch retrieving from t4(a4,b4, c4,d4)
with a single-table condition on b4. The query is as follows:

SELECT a1, a2, a, c
FROM t1, t2, (SELECT a3, c3 FROM t3 WHERE b3=3

UNION ALL
SELECT a4, c4 FROM t4 WHERE b4=4) dt (a, c)

WHERE c1=c2 AND d1=a;

When the UNION ALL derived table (the output from the inner
queries over t3 and t4) joins to the outer relations in the query, a
naive and straightforward plan is to write all UNION ALL branches
to a common spool1 and then join the common spool to the relations
t1 and t2. However, spooling all branches can be costly. This can be
the case, for instance, if the branches are very large fact tables with
millions or billions of rows. Spooling all branches may also lead to
out-of-spool scenarios and failure of execution. Joining the common
spool to the other relations can be costly as well. In Massively
Parallel Processing (MPP) systems like Teradata Database [3], the
common spool may need to be redistributed for subsequent joins,
which can add significant overhead to query execution. In short,
queries involving joins over UNION ALL derived tables can become
prohibitively expensive if not carefully optimized.

In Teradata, we have introduced and developed new optimiza-
tions to overcome the drawbacks of the naive execution plan high-
lighted above [1]. These optimizations are the core of this demon-
stration. More specifically, we introduced: 1) A cost-based optimiza-
tion for pushing joins into the UNION ALL branches, 2) A UNION

1Spools are intermediate/buffer tables.

https://doi.org/10.1145/3183713.3193565

SIGMOD’18, June 10–15, 2018, Houston, TX, USA M. Al-Kateb et al.

t3	 t4	

t1	

t2	

!	 !	

"	 "	

⋈	

⋈	

∪	

(a) Naïve plan in which UNION ALL spooling
is performed first.

UNION ALL spooling

t3	

t1	

t2	

!	

"	

⋈	

⋈	

∪	

t4	

t1	

!	

"	

⋈	

(b) One possible plan after enabling join pushing.

…	

Figure 1: Join Pushing: The Generation of Alternative Plans.

ALL branch grouping mechanism prior to join pushing to reduce
the number of branches, 3) Geography adjustment 2 of the pushed
relations to avoid unnecessary redistribution or duplication, and
4) Iterative join decomposition of a single pushed join to multiple
joins. The demo will also include a newly introduced optimization
called “multisource join" that combines multiple join steps into a
single multisource step.

In a nutshell, the introduced optimizations are complementary
to each other, and combined altogether they open up opportunities
for significant speedup for this type of Join-UnionAll queries. A key
difference compared to the existing rule-based solutions is that the
introduced optimizations are fully integrated within a cost-based
optimizer, and thus these optimizations are picked only if they are
effective.

We believe the demo will be attractive to the audience since the
addressed problem is applicable to a wide range of big data applica-
tions, and the introduced optimizations are beyond the standard
textbook optimizations in database systems. Moreover, we plan to
use the Teradata Visual Explain tool as the demo interface, which
offers various high-end capabilities for plan rendering, detailed
metadata display, and interactive exploration.

2 SYSTEM OVERVIEW
Teradata Architecture: Teradata Database is a highly parallel
database engine with an advanced shared-nothing architecture that
inherently enables horizontal scalability and fault tolerance. The
building blocks of parallelism in Teradata Database are Parsing
Engine (PE) and AccessModule Processor (AMP). An AMP is as-
sociated with a portion of the data, and it consists of a collection
of worker tasks running on one machine—which are threads—that
perform operations on the data, e.g., sorting, aggregation, join.

A table in Teradata Database can have a Primary Index (PI),
Primary AMP Index (PA), or no Primary Index (NoPI). Rows of PI
and PA tables are hash-distributed to AMPs while Rows of NoPI
tables are randomly distributed to AMPs. Teradata Database offers
advanced partitioning and store schemes for a given table across
AMPs, which can be row, column, or a hybrid row-column stores
that can seamlessly work together in a single system.

2The term “geography” refers to the layout of a relation on disk, e.g., a relation
has specific storage ordering, partitioning, or distribution.

t3	 t4	

!	 !	

"	 "	

∪	

#	

t5	

#	

t6	

!	

t7	 t8	

⋈	
Branch	4	

Branches 1 and 2 inherit the geography of their base tables t1 and t2, respectively.
Branches 3, 4, and 5 will have their geography decided on the fly. Possible branch
groupings include {Branch 3, Branch 4}, {Branch 3, Branch 5}, {Branch 4,
Branch 5}, {Branch 3, Branch 4, Branch 5}.

Figure 2: Branch Grouping Optimization.

UNION All Optimizations: We briefly describe each of the
developed optimizations. Assume R Z S denotes a join between
two relations R and S , where S represents a UNION ALL view or
derived table with n branches S1, S2, ..., Sn . The objective of the
optimization techniques is to find a sequence ofm joins wherem
≤ n that is semantically equivalent to R Z S such that:(m∑

i=1
Cost (R Z Si)

)
< Cost (R Z S)

where Cost (R Z Si) is the cost of the plan that joins the relation R
to the branch Si , and Cost (R Z S) is the cost of the plan that joins
the relation R to the entire UNION ALL relation S . The constraintm
≤ n reflects the fact that some of the branches of S can be grouped
together before join pushing and handled as one branch.

• Join Pushing: This optimization aims at avoiding spooling all
UNION ALL branches prior to joins if and when possible. Referring
to Example 1, the naive base plan would execute the UNION ALL
branches first and spool (materialize) the derived table dt into a
common spool. This derived table then joins with the other tables,
e.g., t1 followed by t2, as illustrated in Figure 1(a). As highlighted
in Section 1, this plan can be very expensive and the UNION ALL
spooling can be the bottleneck. With the join pushing optimization,
the query optimizer is able to create many other alternatives and
equivalent plans. One example is depicted in Figure 1(b), where table
t1 is pushed inside the UNION ALL branches. All other alternatives
are also considered, e.g., pushing t2 instead of t1 and also joining
t1 and t2 first and pushing their output inside the UNION ALL
branches. The efficiency comes from the fact that join pushing is
cost based, and the alternative plans are each costed and compared
to the base plan to pick the least expensive plan.

• Branch Grouping: This optimization enables some UNION ALL
branches to be handled individually, while others are grouped to-
gether prior to join pushing. This optimization takes place when
some of the UNION ALL branches do not yet have a defined geog-
raphy, i.e., layout and partitioning information has not yet been
decided. This is the case when the table in a given branch is a
non-base (computed-on-the-fly) table. For example, referring to

Joins over UNION ALLQueries in Teradata®: Demonstration of Optimized Execution SIGMOD’18, June 10–15, 2018, Houston, TX, USA

t3	

t1	

!	

"	

⋈	

t1	
!	

⋈	

t3(a3,b3)	

⋈	

t3(c3)	

…	 …	The	rest	of	the	plan	 The	rest	of	the	plan	

Assume Table t3(a3,b3,c3,d3) is columnar with column groups {(a3,b3), (c3), (d3)}.
(a) All columns of t3 are materialized together in one spool and then joined with t1.
(b) Join is decomposed into two steps with access to the appropriate column groups.

(a) One join between t3 and t1 (b) Decomposed join between t3 and t1

Figure 3: Join Decomposition Optimization.

Figure 2, where a UNION ALL operator has five branches, branches
1 and 2 already have their geography set, which is the geography
of the base tables t1 and t2, since the selection (σ) and projection
(π) operators do not change the geography. In contrast, branches
3, 4, and 5 involve either grouping and aggregation (δ) or join (▷◁)
operators, which would require a new geography for their outputs.
As illustrated in Figure 2, the branch grouping optimization kicks
in under these situations. There are various grouping possibilities
between branches 3, 4, and 5 to reduce the number of joins and
minimize the overall cost. However, to avoid the exponential cost
of trying all possible groupings, Teradata applies some heuristics
to decide on the final grouping prior to the join pushing.

• Iterative JoinDecomposition: Pushing the join into the UNION
ALL branches is a kind of join decomposition. For example, refer-
ring to Example 1, a join with the derived table dt can now be
implemented as multiple joins as in Figure 1 (b). The iterative join
decomposition optimization can perform further decompositions
after the push down. For example, consider the left branch of the
UNION ALL operator (t3 ▷◁ t1) in Figure 1(b). If t3 happens to be
a columnar table, then based on its column groups, the join with
t1 can be decomposed into multiple joins as illustrated in Figure 3.
Join decomposition can be also activated if, for instance, table t3
is a row-oriented table but with a secondary index on the joining
column. In Teradata, secondary indexes are stored as separately
from the base table and it is possible to have a full join with them
before joining with the base table.

• Geography Adjustment: In Teradata, the geography of a rela-
tion specifies how the relation’s rows are distributed in preparation
for a join operation. The geography is determined based on several
factors including the join type (predicate), relation cardinality, the
join method picked by the query optimizer, etc. A relation can have
one of four geographies, namely: Direct (i.e., rows are accessed di-
rectly from an AMP), Local (i.e., rows are accessed directly from an
AMP after some pre-processing), Hash (i.e., rows are redistributed
across machines), and Duplicate (i.e., rows are broadcasted to all
machines).

Geography adjustment plays an important rule in UNION ALL
join pushing to avoid unnecessary overheads, e.g., avoid unneces-
sary redistributions and duplications of the pushed relation. For
example, considering the relations in Example 1, assume tables
t1 and t2 join first to a specific spool, and then their results are
pushed to each of the two UNION ALL branches. The first branch
needs a Duplicate geography for the output of t1 ▷◁ t2, while the
second branch needs Local geography. Under geography adjust-
ment, the system may alter the second-branch desired geography
to either Direct and its source comes from broadcasted version,
or Duplicate since the data is broadcasted anyway for the first
branch.

• Multisource Join: This is a newly introduced optimization (not
included in [1]). The main idea is that the pushed joins can be
performed as one or more multisource steps. A multisource step
reads rows from multiple sources (tables or spools) simultaneously.
This means that instead of dispatching a separate join step for each
join (and possibly incurring the same overhead multiple times),
multiple joins can be grouped together as one multisource join step.
A multisource join avoids multiple reads of the outer table, repeated
building of a hash table for hash joins, and additional spooling and
sorts. Distinct from the other introduced optimizations, multisource
join is a rule-based optimization. It is applied as a heuristic rule
whenever applicable. The optimization kicks in if the same join
method is picked for the individual joins and the other relation has
the same geography.

3 DEMONSTRATION PLAN
The demonstration plan includes the following items:

• Learning Lessons to Audience: A key learning lesson that
we plan to emphasize from this demo to both database researchers
and practitioners is that despite the decades of research in query
optimization, still big data applications trigger the need for non-
trivial optimizations. The demo will show examples of these novel
optimizations fully integrated within the standard cost-based opti-
mizers, and highlight the significant gain that can be achieved.

• System Features: The core system features to be demon-
strated are the UNION ALL optimizations highlighted in Sections 1
and 2. The features are compared against both the naive plans, in
which UNION ALL branches are evaluated first and spooled to a
common spool, and the rule-based optimizations, in which the join
pushdown blindly follows some rules instead of being cost based.

• Datasets and Queries:We plan to use datasets from the TPC-
DS benchmark. This benchmark is a perfect fit for our experiments
since its schema already contains three large fact tables with simi-
lar structure for sales information, namely Store_Sales, Web_Sales,
and Catalog_Sales. Moreover, it has three other large tables for
return information, namely Store_Returns,Web_Returns, and Cata-
log_Returns. Many of the benchmark queries use UNION ALL over
these fact tables along with join operations, e.g., queries Q2, Q4,
Q14, Q33, Q49, and Q76 [5]. We plan to also add some variations of
these queries to create various scenarios serving our demo.

• Advanced Visual Interface for Query Plans: To visualize
the query plans with and without the optimizations, we use the

SIGMOD’18, June 10–15, 2018, Houston, TX, USA M. Al-Kateb et al.

Menu	
Bar

Tool	Bar

Query	Plan	
Blocks
(Operators)

Execution	
Estimations

High-Level	
Explanations

Opera=on	Performed:											Merge	Join	
Group	AMP	Informa=on:						All	AMP	
Es=mated	CPU	Cost:														00:00:00.02	
Es=mated	IO	Cost:																	00:00:00.41	
Es=mated	Network	Cost:					00:00:00.00	
Es=mated	Heuris=c	Cost:					00:00:00.00	
Total	Es=mated	Cost:												00:00:00.43	

Step	6	 Step	7	Es=mated	Cardinality:	128,017	rows	

Es=mated	Cardinality:	128,017	rows	
Es=mated	Cardinality:	22	rows	

Cost		00:00:00.21	

t1	 t5	
t1	 SP…	3	

SP…	2	 SP…	2	

4)	Finally,	the	contents	of	Spool	2	(SP…2)		are	sent	
back	to	the	user	as	the	result	of	the	statement.	The	
total	execu=on	=me	is	0.07	sec	

Merge	Join	

Locally	Built	

Figure 4: Teradata Visual Explain Tool: The Interactive Interface of our Demonstration.

Teradata Visual Explain tool (see Figure 4). It is an advanced tool
that makes query plan analysis easier. The tool has a rich set of ca-
pabilities in the Menu Bar and Tool Bar with various functionalities
and display options. The plan steps are captured and represented
graphically in a form of a tree. For each step, pop-up windows can
be displayed to show high-level text explanation, estimated execu-
tion statistics and cardinalities, underlying tables demographics,
available indexes, and many others (see Figure 4). The tool can
also visualize multiple windows at the same time to facilitate the
comparison between different query plans.

• Visual Performance Analysis: The Teradata Visual Explain
tool also enables monitoring and retrieving information about a
query execution in real-time. Statistics, e.g., comparing the actual
cost vs. the estimated cost, can be collected at the plan step level
within a query. We use this capability to show the bottlenecks dur-
ing execution; e.g., in a naive UNION ALL plan where the branches
are very large tables, the bottleneck is the UNION ALL step.

4 RELATEDWORK
Optimizing UNION ALL join queries has been addressed in both
research and industry. Herodotou et al. [6] propose techniques for
multiway joins over partitioned tables and suggest that they are
applicable to UNION ALL queries as well. However, the empha-
sis of [6] is on partition (branch) elimination, which is different
from the scope of our work. IBM DB2 [9] has several optimizations
for UNION ALL queries, including join pushdown; however, these

are rule based and are done at the query rewrite level. Teradata
Database already has similar optimizations [4], but rule-based opti-
mizations are limited to specific scenarios covered by the rewrite
rules. In contrast, the optimizations we present in this demonstra-
tion are cost based and are integrated in the lookahead framework
of the Teradata join planner.

On the other hand, Su et al. [8] present join factorization in
Oracle to pull out common tables from UNION ALL branches. Join
factorization does the exact opposite of join pushing and does not
overlap with our optimizations.

In short, combining the five introduced UNION ALL optimiza-
tions and integrating them within a cost-based optimizer is unique
to Teradata.

REFERENCES
[1] Mohammed Al-Kateb, Paul Sinclair, Alain Crolotte, Lu Ma, Grace Au, and Sanjay

Nair. 2017. Optimizing UNION ALL Join Queries in Teradata. ICDE (2017).
[2] Teradata Unified Data Architecture. 2016. "www.teradata.com/

solutions-and-industries/unified-data-architecture". (2016).
[3] Carrie Ballinger. 1994. Evolving Teradata Decision Support for Massively Parallel

Processing with UNIX. In SIGMOD. 490.
[4] A.S. Ghazal and W.J. McKenna. 2009. Pushing Joins across a Union. (2009).

www.google.dj/patents/US20090313211.
[5] GitHub: TPC-DS Queries. 2000. https://github.com/Agirish/tpcds. (2000).
[6] Herodotos Herodotou, Nedyalko Borisov, and Shivnath Babu. 2011. Query Opti-

mization Techniques for Partitioned Tables. In ACM SIGMOD. 49–60.
[7] QueryGrid. 2014. www.teradata.com/products-and-services/query-grid. (2014).
[8] H. Su, R. Ahmed, A. Lee, M. Zait, and T. Cruanes. 2010. Join Factorization of

Union/Union All Queries. (2010). US Patent 7,644,062.
[9] Calisto Zuzarte, Robert Neugebauer, Natt Sutyanyong, Xiaoyan Qian, and Berger

Rick. 2005. Partitioning in DB2 Using the UNION ALL View. (July 11 2005).
www.ibm.com/developerworks/data/library/techarticle/dm-0202zuzarte.

www.teradata.com/solutions-and-industries/unified-data-architecture
www.teradata.com/solutions-and-industries/unified-data-architecture
www.google.dj/patents/US20090313211.
www.teradata.com/products-and-services/query-grid
www.ibm.com/developerworks/data/library/techarticle/dm-0202zuzarte.

	Abstract
	1 Introduction
	2 System Overview
	3 Demonstration Plan
	4 Related Work
	References

