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Abstract—The massive amounts of time series data contin-
uously generated and collected by applications warrant the
need for large scale distributed time series processing systems.
Indexing plays a critical role in speeding up time series similarity
queries on which various analytics and applications rely. How-
ever, the state-of-the-art indexing techniques, which are iSAX-
based structures, do not scale well due to the small adopted fan-
out (binary) that leads to a highly deep index tree, and the ex-
pensive search cost through many internal nodes. More seriously,
the iSAX character-level cardinality adopted by these indices
suffers from a poor maintenance of the proximity relationships
among the time series objects, which leads to severe accuracy
degradation for approximate similarity queries. In this paper, we
propose the TARDIS distributed indexing framework to overcome
the aforementioned limitations. TARDIS introduces a novel iSAX
index tree that is based on a new word-level variable cardinality.
The proposed index ensures compact structure, efficient search
and comparison, and good preservation of the similarity rela-
tionships. TARDIS is suitable for indexing and querying billion-
scale time series datasets. TARDIS is composed of one centralized
global index and local distributed indices−one per each data
partition across the cluster. TARDIS uses both the global and local
indices to efficiently support exact match and kNN approximate
queries. The system is implemented using Apache Spark, and
extensive experiments are conducted on benchmark and real-
world datasets. Evaluation results demonstrate that for over
one billion time series dataset (TB scale), the construction of a
clustered index is about 83% faster than the existing techniques.
Moreover, the average response time of exact match queries is
decreased by 50%, and the accuracy of the kNN approximate
queries has increased more than 10 fold (from 3% to 40%)
compared to the existing techniques.

I. INTRODUCTION

Many emerging applications in science, manufacturing, and
social domains generate time series data at an explosive speed.
For example, the sensors on a Boeing787 produce around half
a terabyte of time series data per flight [1]. As a result, the
data mining techniques on these big time series data, e.g.,
similarity search, clustering, classification, motif discovery,
outlier patterns, and segmentation have drawn a lot of recent
interest [2], [3]. In particular, similarity search operations are
of paramount importance since they form the basis of virtually
all of the more complex operations mentioned above [4]. Since
full scans on large-scale time series data are prohibitively
expensive, indexing techniques become a critical backbone
to make such similarity queries practical. Unfortunately, as it
would be presented in this paper, the state-of-the-art indexing
techniques over big time series data lack both the desired
scalability and accuracy.

Since time series are inherently high-dimensional data, a
common approach before indexing the data is to first apply a

dimensionality reduction technique to extract key features, and
then index these features instead. Many summarization and
feature extraction techniques have been proposed including
Discrete Fourier Transforms (DFT) [5], Discrete Wavelet
Transforms (DWT) [6], Piecewise Aggregate Approxima-
tion (PAA) [7], [8], and Symbolic Aggregate approXimation
(SAX) [9]. Typically, these representations are then indexed
by Spatial Access Methods (SAMs) like the R-tree or its
variants. However, SAMs are known to degrade quickly due
to the curse of dimensionality. Indexable Symbolic Aggregate
approXimation (iSAX) [10] is proposed as an index-friendly
feature extraction technique. It first divides a time series into
equal size segments, and then uses characters of variable
cardinalities to represent the mean of these segments, which
results in representing a given time series as a sequence of
characters. The iSAX Binary Tree [11] is later proposed as a
binary index structure of the iSAX representation.

Unfortunately, all implementations of the above techniques
are designed for centralized systems and assume the dataset
is small enough to fit in one machine. For this reason, it takes
about 400 hours to build an index for one TB of data [11].

More recently, some distributed time series management
systems have been proposed to transfer, store or analyze time
series data (refer to a recent survey in [3]). These systems
mainly leverage mathematical models and sampling to support
approximate Select-Project-Transform (SPT) queries with or
without error bounds. A more relevant system to our work
that supports similarity search is the DPiSAX index [12].
However, the built index tree (we refer to it as “iBT”) suffers
from too many internal nodes and large depths of the leaf
nodes due to the inherent binary fan-out. Moreover, since iBTs
are based on the direct iSAX character-level cardinalities, the
comparisons are shown to be very expensive, and the accuracy
of the returned results of kNN approximate queries tend to be
poor (below 10% in many cases).

In this paper, we propose a novel iSAX-based distributed in-
dexing framework for big time series data, called “TARDIS”1

for supporting exact match and approximate kNN queries.
The index still adapts the iSAX representation but with a
new word-level variable cardinality instead of the character-
level cardinality. The word-level cardinalities enable better in-
parallel processing, which suits the target distributed systems.
In addition, we propose the iSAX-Transpose (iSAX-T) as a
string-like signature to get rid of the costly conversions during
the comparisons. On top of these signatures, we introduce a

1TARDIS is the Time Machine name introduced in Dr. Who TV series.



K-ary index tree (called sigTree) to overcome the limitations
of the former binary trees. sigTrees enable compact index
structure with fewer internal nodes and shorter paths to leaf
nodes.

TARDIS uses the sigTrees to construct a single centralized
global index based on statistics collected from the data. The
global index acts as a skeleton (or partitioning scheme) to re-
partitioned the time series data across the cluster machines
to localize the similar objects together. Then, each partition
is locally indexed−using sigTrees as well−for faster access
within a given partition. To better support exact match queries,
each local index is augmented with a partition-level Bloom
Filter index, which is synchronously generated with the local
index, to avoid many unnecessary accesses to the actual parti-
tion. Moreover, the combination of the word-level cardinality
and the compactness of the sigTrees significantly enhance the
accuracy of the kNN Approximate queries mainly because they
preserve the proximity of the similar time series objects much
better than the current techniques.

In summary, the contributions of this paper are as follow:
• Identifying the core limitations of the state-of-art index-

ing techniques in processing big time series data. And
then, proposing TARDIS, a scalable distributed indexing
framework to address these limitations. TARDIS consists
of a centralized global index, and distributed local indices
to facilitate efficient similarity query processing.

• Proposing a new iSAX-T signature scheme that dramati-
cally reduces the cardinality conversion cost, and sigTree
that constructs a compact index structure at the word-level
similarity.

• Introducing efficient algorithms for answering the exact
match and kNN approximate queries. We introduce dif-
ferent query processing strategies to greatly improve the
accuracy of the approximate queries.

• Conducting extensive experiments on benchmark, syn-
thetic, and real-world datasets to compare TARDIS with
the state-of-the-art techniques. The results show signif-
icant improvement in index construction time (≈ 8x
speedup), and more critically, more than 10x accuracy
improvement in some of the kNN approximate queries.

The rest of this paper is organized as follow. We review the
background in Section 2. The new iSAX signature scheme
and the index tree are defined in Section 3. TARDIS index
construction is presented in Section 4, and the query process-
ing algorithms are discussed in Section 5. The experimental
evaluation is presented in Section 6. Finally, we review related
work in Section 7, and present the conclusion remarks in
Section 8.

II. PRELIMINARIES

A. Key Concepts of Time Series

Definition 1: [Time Series Dataset] A time series X =
〈x1, x2, · · · , xn〉, xi ∈ R is an ordered sequence of n real-
valued variables. Without loss of generality, we assume that
the readings arrive at fixed time granularities, and hence the
timestamps are implicit and no need to store them. A time

series dataset DB = {X1, X2, · · · , Xm} is a collection of m
time series objects all of the same length n.

Definition 2: [Euclidean Distance(ED)] Given two time
series X = 〈x1, x2, · · · , xn〉 and Y = 〈y1, y2, · · · , yn〉, their
Euclidean distance is defined as:

ED(X,Y ) =

√√√√ n∑
i=1

(xi − yi)2 (1)

Similar to exiting techniques, TARDIS supports two fun-
damental similarity queries, namely exact match and kNN
approximate queries. The exact kNN queries tend to be
very expensive and time consuming, and most applications,
especially those working with big datasets, typically prefer
faster responses even with some accuracy loss.

Definition 3: [Exact Match Query] Given a query time
series Q = 〈q1, q2, · · · , qn〉 of length n, and a time series
dataset DB = {X1, X2, · · · , Xm}, the exact match query
finds the complete set S = {Xi ∈ DB} such that ∀Xi ∈
S,ED(Xi, Q) = 0, and @Yj /∈ S|ED(Yj , Q) = 0.

Definition 4: [kNN Approximate Query] Given a query time
series Q = 〈q1, q2, · · · , qn〉, a time series dataset DB =
{X1, X2, · · · , Xm} and an integer k, the query finds the set
S = {Xi ∈ DB} such that |S| = k. The error ratio of S,
which represents the approximation accuracy, is defined as
1
k

k∑
i=1

ED(Xi,Q) ∀Xi∈S
ED(Yi,Q) ∀Yi∈T ≥ 1, where T = {Y1, Y2, · · · , Yk} is

the ground truth kNN answer set.

B. iSAX-Representation Overview
iSAX [10] is based on Piecewise Aggregate Approximation

(PAA) [7] and Symbolic Aggregate approXimation (SAX)
[9]. Figure 1 illustrates an example of how these techniques
summarize a time series.

PAA(T,w): Given a time series, say T in Figure 1(a), PAA
divides T into equal-length segments and represents each
segment by the mean of its values. The number of segments is
called “word length” (w), which is an input to the technique,
and the entire representation vector is called a “word”. For
example, the PAA of word length = 4 of T is PAA(T,4) =
[-1.5, -0.4, 0.3, 1.5] as illustrated in Figure 1(b).

SAX(T,w,c): SAX takes the PAA representation of time
series T as its input, and then discretizes it into characters
or binary alphabet labels. This discretization is achieved by
dividing the value space (the y-axis) into horizontal stripes.
The number of the stripes equals an input parameter referred
to as “cardinality” (c), which is typically a power of 2. For
example, in Figures 1(c) and (d), the cardinality is set to 4 (2
bits) and 8 (3 bits), respectively. The authors in [9] proposed
an algorithm to decide on the boundaries of each stripe. For
example, in Figure 1(c), stripes “11” and “01” have the bound-
aries of [0.67, ∞], and [-0.67, 0], respectively. Then, each
stripe is assigned a character label−which can be an arbitrary
character or binary bits. Finally, each segment in the time
series is assigned its corresponding stripe label. Figures 1(c)
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(a)	Raw	time	series	T,	|T|=12 (b)	PAA(T,	w=4)	=	[-1.5,	-0.4,	0.3,	1.5]

(c)	SAX(T,w=4,c=4)	=	[00,	01,	10,	11] (d)	SAX(T,w=4,c=8)	=	[000,	010,	101,	111]

(e) iSAX(T,w=4,c=4) is a variable cardinality
where each segment can be represented
by either 1 or 2 bits (2 is the max based on
parameter ``c’’). Examples of valid iSAX
representations include: (a) 1-bit for each
segment [01, 01, 11, 11], (b) 2-bits for the
3rd segment [01, 01, 102, 11]

(f) iSAX(T,w=4,c=8) is a variable
cardinality where each segment can be
represented by either 1, 2, or 3 bits (3 is
the max based on parameter ``c’’).
Examples of valid iSAX representations
include: (a) 1-bit for each segment [01, 01,
11, 11], (b) 2-bits for the 1st and 3rd
segments and 3-bits for the 2nd one [002,
0103, 102, 11]

w:	word	length	(#	of	segments	(characters)) c:	cardinality	 (#	of	horizontal	stripes)

Stripe	“11”		
boundaries	 [0.67,	∞]

Stripe	“01”		
boundaries	 [-0.67,	0]

Fig. 1: PAA, SAX, and iSAX Representations.

and (d) illustrate the SAX(T, 4, 4) and SAX(T, 4, 8) for the
time series T presented in Figure 1(b). Two main observations
to highlight for the SAX representation:
• Fixed Cardinality: A drawback of the SAX representation

is that a time series representation is fixed, i.e., each segment
is represented by the number of bits corresponding to the
cardinality parameter. This means, for large datasets, a high
cardinality must be used to increase the possibility of creating
enough distinct representations among the time series objects.
• Lower-Bound Distance: A nice property of the SAX

representation is that it guarantees for two time series T1 and
T2, their Euclidean distance in the SAX domain (calculated
based on the boundaries of the SAX stripes) is smaller
than or equal to their true distance in the data space. That
is: ED(T1.SAX, T2.SAX) ≤ ED(T1, T2). This property is
effective in pruning many candidates during a similarly search
query, e.g., range or kNN, only based on the SAX represen-
tation and without checking the raw time series values.

iSAX(T,w,c): iSAX maintains the nice lower-bound dis-
tance property of SAX. However, unlike SAX, iSAX uses
variable cardinality for each segment in the time series. This
is achieved by first enforcing the representation of the stripes’
labels to be binary bits (not arbitrary characters). And then
leveraging these bits to allow for variable cardinality for each
segment. For example, Figure 1(e) illustrates the iSAX(T, w=4,
c=4) for time series T . iSAX takes the same input as SAX,
however, each segment can be independently represented by a
number of bits up to the max number identified by parameter
”c”. The figure shows two possible representations for T . Fig-

Root

0",1",0" 1", 1", 1"0", 0", 0"

0",11%,0" 0", 10%, 0"

0",11%,01% 0", 11%,00%

. . . . . . 

Leaf node
Internal node

Key Pointer

0",0",0" ....

1",1",1" ....

... ....

0",10%,0" ....

0",11%,00% ....

0",11%,01% ....

(a) iBT index tree
(b) Map each leaf node in 
iBT to the related pointer

Fig. 2: The iBT Index and iSAX Map Table.

ure 1(f) also illustrates two possibilities when the cardinality
is set to 8 (3 bits). The decision of how many bits to use for
a given segment is dynamically determined while indexing
the time series data and building the iSAX Binary Tree index
(iBT) overviewed next.

C. iSAX Binary Tree Index (iBT)

The iBT index [10] is an unbalanced binary tree index with
the exception of the 1st level (see Figure 2(a)). It starts with
one root node, and a set of leaf nodes in its 1st level using 1
bit representation for each segment, i.e., the number of nodes
in the 1st level is 2w, where w is the word length. The time
series objects are inserted one at a time to the corresponding
leaf node based on is iSAX representation. Once the number
of time series contained by a leaf node exceeds a threshold,
which is an input parameter, the node switches to be an internal
node and it splits into two child leaf nodes. The splitting is
performed by increasing the cardinality of one of the segments,
which means using more bits to represent this segment. This
will probably lead to distributing the node’s time series objects
over the two child nodes. For example, the internal node
[01, 112, 01] in Figure 2(a) is divided into two leaf nodes
[01, 112, 012] and [01, 112, 002] by extending the cardinality
of the 3rd segment (also called character) from 1 bit to 2 bits.

The Round-robin split policy initially proposed in [10] to
determine the split character has shown to perform excessive
and unnecessary subdivision. An optimized policy is proposed
in [11] to pick the character having a high probability to
equally split the leaf node. Ultimately, the cardinality increase
over any segment cannot exceed the max cardinality c. The
work in [11] also proposes a bulk-loading mechanism of time
series data that first determines the shape of the iBT tree, and
then routes each time series to its leaf node.

Limitations of iBT: Although it is an interesting structure
and performs well for small datasets, iBT indices suffer from
severe limitations under big datasets, which include:
• Loose structure and long traversal: The superabundance

of internal nodes caused by the binary fan-out results in
deep height for many leaf nodes, and thus increases the
tree height and its traversal at query time.

• Large initial cardinality: To guarantee leaf nodes to have
the same granularity, the conversion from time series to
iSAX needs to put aside enough large initial cardinality
for the split mechanism due to the uncertainty of segment
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(b) Word-level: A and C are cov-
ered by [012, 012, 012, 102]

Fig. 3: Similarity of Time Series.

skewness and the amount of data. Hence, it results in
unnecessary conversion and storage.

• High matching overhead: The alternative to solve the long
tree paths is to convert the iBT to a map table [12] (see
Figure 2(b)). The signature of each leaf node becomes
a key in the table, and a pointer is maintained to either
the tree node (if the tree is kept) or the actual partition
holding the data. However, given a query time series Q,
the search for matches within the map table is complex
and very expensive due to the variable character cardinal-
ity in the keys. It requires creating all possible signatures
from Q and then performing repetitive search in the map
table, which is a clear bottleneck.

• Weak proximity preservation and poor search accuracy:
iBT uses character-level variable cardinality to solve the
segment skewness problem and construct the hierarchical
tree. However, character-level matching is not efficient in
preserving the proximity of the relatively similar objects,
and these objects may end up in far away leaf nodes. This
results in poor accuracy for approximate queries.

Example 1: Referring to Figure 3(a), assume a character-
level variable cardinality of (1,1,3,1) bits. In this case, the
time series A, B, C are represented as [01, 01, 0113, 11],
[01, 01, 0103, 11] and [01, 01, 0103, 11], respectively. Under
this representation, the closest series to “C” is “B” (their
distance in the iSAX space is zero). However, it is clear, that
the closest to “C” is “A”.

D. Distributed iSAX Time Series System
To the best of our knowledge, DPiSAX [12] is the only

iSAX-based distributed system in literature to support index
construction and kNN Approximate queries. It constructs a
global index and local indices. It leverages the cluster ma-
chines to sample a subset of the time series and convert them
into iSAX signatures. These signatures are then sent to the
master node to construct the global index, which is a partition
table instead of the loose iBT structure. For local indices
construction, all time series are converted into iSAX signature
with a large initial cardinality of size 512 to guarantee the
split requirement. Then, for each iSAX signature (not the raw
time series) a lookup over the partition table is performed
(with high matching overhead) to re-partition the signatures.
Finally, all workers concurrently build iBTs as local indices
over their partitions.

Given a query Q, DPiSAX converts Q into its iSAX
signature. It then matches the partition signature in the global

Notation Description
(ts,rid) (A time series, its record id)
w Word length
b # of cardinality bits, i.e., cardinality = 2b

pid Partition id
isaxt(n) iSAX-T signature with 2n cardinality
freq(n) Frequency of isaxt(n)
Tardis-G TARDIS global index
Tardis-L TARDIS local indices
G-MaxSize Split threshold for Tardis-G leaf nodes
L-MaxSize Split threshold for Tardis-L leaf nodes

TABLE I: Frequently Used Notations.

index to identify the corresponding partition. Then, a worker
loads this partition and traverses the local index to find leaf
node(s) for post-processing. DPiSAX is an un-clustered index,
i.e., the time series original data remain un-partitioned, the leaf
nodes in local indices only store the iSAX signatures and the
record id of the corresponding time series.

Limitations of DPiSAX:
• Inheriting the limitations of iBT: Although it achieves

its relative scalability over the iBT indices by supporting
distributed processing, DPiSAX is still based on the iBTs
and inherits its limitations as highlighted above.

• Additional degradation in result’s accuracy: To speedup
the creation of the DPiSAX index, it builds an un-
clustered index. However, answering queries based only
on the iSAX representation without the final refine phase
further degrades the accuracy of the results. On the other
hand, retrieving the raw time series to apply the refine
phase involves expensive random I/O operations across
the cluster machines.

III. TARDIS BUILDING-BLOCK STRUCTURES

To address the aforementioned limitations, we propose
a new iSAX-based signature scheme and its accompanied
index tree to optimize the index construction and similarity
queries over massive time series datasets. The frequently used
notations in this paper are listed in Table I.

A. iSAX-Transposition Signature (iSAX-T)

The objective of the indexable Symbolic Aggregate approX-
imation Transposition (iSAX-T) is to simplify the represen-
tation conversion from a higher cardinality, e.g., 5 bits, to
a lower cardinality, e.g., 3 or 4 bits, which is a common
operation during both index construction and query search.
This guarantees the efficiency of the parallel process. Unlike
iSAX, iSAX-T utilizes word-level variable cardinality defined
as follows:
• Word-Level Variable Cardinality: In this representation

scheme, all characters in one word, i.e., the characters across
all segments in a time series, must use the same cardinality.
This cardinality is decided by the level of the index tree in
which the time series resides.

Example 2: Referring to Figure 3(b), assume the Time
series A, B, C reside in a leaf node at the 2nd level of the
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(a) SAX(T,4,16) [11004, 11014, 01104, 00014]
Matrix Transposition and Hexadecimal

iSAX-T
SAX(T,4,2) = {1, 1, 0, 0 } = C
SAX(T,4,4) = {11, 11, 01, 00 } = CE
SAX(T,4,8) = {110, 110, 011, 000 } = CE2
SAX(T,4,16) = {1100, 1101, 0110, 0001} = CE25

(b) iSAX-T Signature for Different Cardinality

Fig. 4: iSAX-T Signature.

index tree. In this case, all characters (segments) will use a
2 bit cardinality, and thus represented as [012,012,012,102],
[002,002,012,112] and [012,012,012,102], respectively. Com-
pared to Example 1, the closest series to “C” is now “A”.
This is mainly because the word-level cardinality is intended
to preserve the proximity of similar time series better than the
character-level cardinality.

iSAX-T adapts a string-like signature based on matrix
transposition to speedup the cardinality conversion operation.
Thanks to the uniform word-level cardinality for a whole word,
the binary signature can be considered as a binary matrix as
presented in Figure 4(a). After transposing this matrix and
transforming the binary into a hexadecimal, the signature is
represented as a string.

As a consequence, the conversion is simplified as a string
drop-Right operation. Equation 2 shows how to calculate
the drop-Right letter number n. hc, lc and w represent the
high cardinality, the low cardinality and the word length
respectively (see Figure 4(b) as an example).

n = (log2hc− log2lc) ∗
w

4
(2)

B. iSAX-T K-ary Tree (sigTree)
sigTrees are hierarchical K-ary trees based on the cardinality

of the iSAX-T signature. Each node has no more than 2w

children (this bound results from increasing the cardinality
representation by 1 bit over the w characters (segments) of the
time series). For example, referring to Figure 5(a), the node
with signature [01, 01, 11] in the 1st layer has been expanded
to its children by adding an additional bit to each of the three
characters, which results in having 8 children in the 2nd layer.
Three classes of nodes are involved in the sigTrees:
• Root Node: It represents the entire space and only

contains the number of time series in the whole tree and
pointers to its children nodes.

• Internal Nodes: They designate splits in the sub-tree
space. When the quantity of time series contained in a
leaf node exceeds a given split threshold, this leaf node
gets promoted to an internal node and splits all its data
entries into at most 2w leaf nodes by increasing a 1 bit
cardinality for all characters. Each internal node stores
its iSAX-T signature, the number of time series in its
sub-tree, and pointers to its children nodes.

1st bit

2nd bit

3rd bit

Leaf NodeInternal Node

Root

1",1",0" 1",1",1"0",0",0"

01$, 00$, 10$ 01$, 01$,11$

010&,000&,100&

.	.	.	0",0",1"

.	.	.	00$, 00$,10$

011&, 001&, 101&.	.	.	

(a) Binary alphabet labels

Root

0 1 76 .	.	.	

10 14 .	.	.	 17

140 .	.	.	 147

(b) String-like

Fig. 5: sigTree with fan-out = 23.

• Leaf Nodes: They are the storage nodes at the bottom.
They store the iSAX-T signatures and the number of time
series they hold. Moreover, they store additional content
that differs depending on the index type they belong to,
i.e, global or local index, as will be explained later.

Figure 5 shows a sigTree with internal and leaf nodes
represented by binary and compact string-like signatures. To
insert a time series into the tree, we iteratively move down
in the tree based on the iSAX-T signature until a leaf node is
found. If a split is needed, it is performed as mentioned above.
In addition, each node is able to reach all sibling nodes with
the same cardinality from the parent node as we maintain the
nodes double-linked (point to their parents as well as their
children).

Example 3: Assume inserting a time series T =
[01104, 00114, 10114] into the sigTree in Figure 5(b). First,
T is converted into its iSAX-T signature ”1473” according to
Figure 4(b). Then, it starts in the tree from root node, drops 3
letters down to 1 bit cardinality to match the internal node ”1”
in the 1st layer. This process repeats downward until finally
traverse to the leaf node ”147” in the 3rd layer.

Benefits: The careful design of our representation of the
iSAX-T and sigTree solutions offer the following benefits for
massive time series processing in a distributed infrastructure:
• Compact structure: Compactness means fewer internal

nodes and shorter depth of leaf nodes due to the large
fan-out up to 2w.

• Small initial cardinality: The short height can be achieved
with a small cardinality which saves conversion costs and
storage space.

• Efficient signature conversion: The conversion is simpli-
fied as a string drop-Right operation. Given the frequency
of this operation during the index construction and query
processing phases, the cumulative time savings are con-
siderable.

• Word-level similarity: iSAX-T effectively preserves the
proximity relationship of similar time series due to the
used word-level cardinalities.

IV. TARDIS INDEXING STRUCTURE

Based on the sigTree structure, we now introduce the design
of the TARDIS indexing framework. For ease of presentation,
we start by giving an overview on the whole framework, and
then the construction of the global and local indices in detail.



……

Tardis-G

Tardis-L

Indexed Time Series

Master Node
Worker Nodes

Target Node

Query

Fig. 6: TARDIS Key Components and Search Process.

A. TARDIS Overview

TARDIS consists of two level indices as illustrated in Figure
6. TARDIS Global Index (Tardis-G) is a centralized global
index maintained in the master node. It is used for efficiently
identifying the target partition in a distributed system. The
compactness of the index tree structure is controlled by a
split threshold G-MaxSize. TARDIS Local Index (Tardis-L) is
a distributed local structure to index the data entries within
a single partition. Both structures are sigTree-based indices
with a different content only at the leaf nodes. The leaf nodes
of Tardis-G store the partition information, i.e., pointers to
where they are located in the cluster, whereas the leaf nodes of
local Tardis-L store the actual time series objects. The overall
index framework is constructed given an initial cardinality, a
word length, two split thresholds for Tardis-G and Tardis-L
leaf nodes (these notations are summarized in Table I).

B. TARDIS Global Index (Tardis-G)

Tardis-G is a lightweight sigTree structure that resides in the
master node of the cluster. It is the entry point for the index
search. Unlike other iSAX-based indices which are constructed
based on the representations of time series as they are loaded
gradually, it is based on statistics collected from the cluster
nodes in a distributed way. The construction consists of the
following steps.

Data Preprocessing: The dataset is sampled at the block
level and each time series is converted to a pair of values
consisting of the iSAX-T signature and the frequency. This is
performed by the worker nodes in parallel. A percentage of
blocks are randomly chosen to reduce the disk access. The
generation of pairs is completed by a single map-reduce job.
All time series (ts,rid) are transformed to (isaxt(b), freq:1) in
the map phase, and then aggregated to [(isaxt(b), freq(b))] in
the reduce phase, where b represents the initial cardinality.

Node Statistic: The node statistics are collected for each
layer in ascending order. The [(isaxt(b), freq(b))] generated
previously is processed to retrieve [(isaxt(i), freq(i))] in which
each entry is the information of a node in the ith layer.
isaxt(i) means the iSAX-T signature of a node and freq(i)
means the frequency of this signature. In other words, the
quantity of time series under this node. The procedure of
the ith layer involves the following operations: (1) Map that
converts (isaxt(b), freq(b)) to (isaxt(i), freq(b)); (2) Reduce that
aggregates (isaxt(i), freq(b)) to [(isaxt(i), freq(i))] which is the
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Fig. 7: Tardis-G Structure, the word length is 8 so the signature
uses 2 letters to hex each bit cardinality.

collected result for ith layer; (3) Judge that decides to stop
collection or not: if max[freq(i)] exceeds the G-MaxSize, filter
out (isaxt(b), freq(b)) contained by leaf nodes in ith layer and
continue (i+1)th layer, otherwise, stop to finish this step. Note
that the entries in [(isaxt(b), freq(b))] are filtered out layer by
layer, though the whole size is small. Finally, we get several
groups of [(isaxt(i), freq(i))] with their respective layer id.

Skeleton Building: The index structure is constructed and
the node information collected is put in the right places. All
collected information is sent to the master. It is completed
layer by layer in ascending order using a tree insertion
mechanism. Root node is the entry point. Each inserted node
recursively matches the internal node at each layer. Take node
(isaxt(3):“0202ff”, freq(3):550) in Figure 7 for example, it
starts from the root node, finds the matched node isaxt:“02”
in 1st layer, and then isaxt:“0202” in 2nd layer, finally reaches
its position in 3rd layer. During this process, we observe that
isaxt(3):“0202ff” is converted for 2 times in this traversal path.
The master node is not the bottleneck of this process due to the
small size of tree. To facilitate retrieving siblings’ information
from the parent node, all nodes are doubly linked.

Partition Assignment: The goal is to package all under-
utilized sibling leaf nodes into as few partitions as possible
to facilitate parallel processing. Distributed infrastructures,
like Hadoop and Spark [13], prefer to launch parallel tasks
over large files rather than too many tasks over small files
because the big data is processed in the unit of a partition
or a block. Assembling sibling leaf nodes together has two
benefits: (1) all records are similar at the parent node level;
(2) the partition is represented by the signature of the parent
node to facilitate pruning the search space. In addition, sibling
leaf nodes are indexed into finer granularity by the Tardis-L at
each partition even though assembled together. Our problem
can be considered as a Partition Packing problem.

Definition 5: [Leaf Partitions Packing] Given a list of n leaf
nodes under an internal (or root) node L = {l1, l2, · · · , ln}
and a partition capacity C, the Partition Packing problem is
to group leaf nodes into as few partitions as possible, such
that the sum of each partition is no greater than C.

Since it is an NP-hard optimization problem [14], the exact
algorithms typically leverage the branch-and-bound strategy
which uses approximate algorithms to compute the bounds.
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Fig. 8: Pipeline of Tardis-L Construction.

We adopt first fit decreasing (FFD) [14] which is the best
known approximate algorithm with time complexity O(nlogn)
and worst-case performance ratio 3/2, to solve this problem.
It sorts all leaf nodes by the record number in descending
order, and then inserts each leaf node into the first partition
with sufficient remaining space. After finishing packing, the
partition ids in the descendant nodes are synchronized to the id
list of ancestor nodes to facilitate future information retrieval
of sibling nodes.

C. TARDIS Local Index (Tardis-L)
Tardis-L is an sigTree-based structure that indexes data

entries within each partition. TARDIS leverages the high
I/O rate and powerful in-memory computation of distributed
infrastructures to construct local structures for all partitions
in parallel. The data pipeline in Figure 8 shows the overall
procedure. It involves the following steps:

Data Shuffle: Each record is shuffled to the target partition
based on the assigned partition id. This step is finished in one
map-reduce job by workers. Before starting the job, the master
broadcasts the Tardis-G to all workers as the partitioners for
the reduce operation. It resides in the memory of the workers
until the job is done. In the map phase, each time series (ts,
rid) in Table I is read and converted to (isaxt(b), ts, rid). In
the reduce phase, they are aggregated into matched partitions
in two sub-steps: (3.1) each time series obtains the partition
id by traversing the partitioner; and (3.2) shuffle each to the
target partition using the distributed infrastructure. The data
entries within partitions are out of order after repartitioning.

Local Structure Construction: The Tardis-L is constructed
within each partition to organize data entries. This step is
implemented in mapPartition operation in Figure 8 using the
tree insertion mechanism: each data entry (isaxt(b), ts, rid)
enters at the root node of local index, and then traverses to the
matched leaf node. If the leaf node contains more data entries
than the given split threshold, it is promoted into an internal
node and split all entries to ≤ 2w leaf nodes. Meanwhile, each
node in the traversal path increases the quantity of records by
one. Note that both Tardis-G and Tardis-L employ a similar
insertion mechanism to construct the sigTree but three key
differences exist: (1) Scope: Tardis-G is a complete dataset
whereas Tardis-L corresponds to one partition; (2) Element:
Tardis-G inserts the information of nodes whereas Tardis-L
inserts time series entries; (3) Split: Tardis-G finishes nodes
split in statistics collection phrase whereas Tardis-L splits
nodes in the index construction phase.

Bloom Filter Index Construction: A small size local index
is built for the Exact-Match query. Bloom Filter [15] is a space
efficient probabilistic data structure to test whether an element
is a member of a set. It can raise false positive but not false
negative. The iSAX-T signature is used as the input for Bloom
Filter because: (1) it is already contained by each data entry
so no extra conversion is needed; (2) a given initial cardinality
and a high fan-out guarantee a high probability of one-to-one
relationship between each time series and its signature. The
Bloom Filter index is synchronously generated with the Tardis-
G in mapPartition operation in Figure 8: when each data entry
is inserted during Tardis-G construction, isaxt(b) is encoded
into bloom filter data structure at the same time.

V. TARDIS QUERY PROCESSING

TARDIS supports classical Exact-Match queries and kNN-
Approximate queries. While for some problems, finding the
exact match item is essential, for many data mining applica-
tions of massive time series [10] an approximate query pro-
cessing may be all that is required. Take big data visualization
[16] for example, Tableau [17] takes 71 mins to plot a scatter-
plot for a dataset with 2 billion tuples. In contrast, only 3
seconds are taken to produce practically the same visualization
by carefully choosing 1 million tuples. In this spirit, TARDIS
supports very fast approximate searches, as only single disk
access is required.

A. Exact Match Query

The Exact-Match Algorithm harnesses the TARDIS index
framework to fetch leaf nodes for validation. It is composed
of the following steps: (1) convert the query time series to
its iSAX-T signature; (2) traverse the Tardis-G to identify the
partition; (3) test existence of such signature in the Bloom
Filter index of the partition; if the test result is false, this query
terminates with zero results; (4) if the Bloom Filter search is
positive, then load the partition and traverse the Tardis-L to
retrieve the leaf node, and then lookup the query time series.
The failure of traversal in either Tardis-G or Tardis-L means
a non-existent result.

The algorithm leverages Bloom Filter Index to prevent
the high-latency disk access in the case non-existence with
low false positive in the above 3rd step. As we know, the
distributed infrastructures prefer to store data in large files, for
example, the default block size used by Hadoop and Spark is
64M or 128M . Thus the loading of such file is high latency.
For the Exact-Match query, the query time series either exists
or doesn’t exist in the dataset. In the first case, the access to a
partition is unavoidable. In the second case, however, it may
not be necessary. The algorithm uses the Bloom Filter Index to
test if the partition contains the query time series or not. Due
to the small size, it resides in memory or is read from disk
with low latency. Furthermore, we also provide Exact-Match
Algorithm Non-Bloom Filter which takes more time with the
same query accuracy because one partition has to been loaded
if the partition is identified in the above 2nd step.



Algorithm 1 kNN Approximate: Multi-Partitions Access
Input: qts, k, pth
Output: topK list(dist, rid)

1: • Traverse Tardis-G to identify the partition in the master
2: isaxt = convertToiSaxt(qts)
3: pid = tardisG.fetchP id(isaxt)
4: pidList = tardisG.fetchFromParent(isaxt)
5: if size(pidList) > pth then
6: pidList = randomSelect(pidList, pth)
7: end if
8: • Load all partitions by workers
9: partitions = spark.readHdfsBlock(pidList)

10: • Get the threshold from the partition by one worker
11: partition = partitions.select(pid)
12: node = partitions.fetchKnnNode(isax, k)
13: records = node.fetchRecords().calEuSort(qts)
14: th = records.take(k).last.distance

15: • Scan partitions using the threshold in parallel
16: candidates = partitions.scan(th).calEuSort(qts)
17: return candidates.take(k)

B. kNN Approximate Query
The Target Node Access leverages Tardis-G and Tardis-L to

fetch Target node which is the leaf or internal node with more
data entries than k at the lowest position of Tardis-L. Note that
if it is an internal node, any child node should contains less
data entries than k. The process is composed of the following
steps: (1) convert the query time series to its iSAX-T signature;
(2) traverse the Tardis-G to identify the partition; (3) load the
partition and traverse the Tardis-L to the target node; (4) fetch
all candidates under this node and take the k closest records
as the result.

Besides the Target Node Access algorithm, two optimized
algorithms are proposed based on the intuition that the can-
didate scope can be extended by reducing the word-level
cardinality of iSAX signatures to loosen the bounds. Because
of the approximation of iSAX-based representation, the larger
the candidates scope is, the more accurate the result is.
One Partition Access alogrithm scans the Tardis-L of the
loaded partition to extend the scope whereas Multi-Partitions
Access algorithm harnesses the parallel processing power of
the distributed infrastructure to concurrently exploit sibling
partitions to extend it. Both methods use the low bound feature
of iSAX-T to prune the search space. PAA is used to obtain
a tighter bound since the query time series is provided.

One Partition Access uses the distance of the kth time series
obtained at the 4th step of Target Node Access as the threshold
to prune the search space of Tardis-L from top to bottom. It
collects all candidates in the residual nodes and takes the first
k closest records as the result. Unlike Target Node Access
and One Partition Access, Multi-Partitions Access fetches the
partition list of all sibling partitions in the parent node at
the 2nd step. This list in the upper layers of Tardis-G may
be large. For example, the list size corresponds to the total
of all partitions in Figure 7 because the parent node of leaf
node isaxt(1):“ff” is the root node. In response, a partition
threshold pth is set to control the maximum quantity of
partitions loaded. If the list size exceeds it, pth elements are

Parameters Value
HDFS block size 128 M
Word length 8
Sampling percentage 10%
L-MaxSize 1, 000
Initial cardinality (TARDIS) 64
Initial cardinality (Baseline) 512
Multi-Partition Access threshold: pth 40

TABLE II: Experimental Configuration.

Fig. 9: Datasets Distribution.

randomly chosen in the list. After loading all these partitions,
Multi-Partitions Access uses the pruning method above to
process all partitions in parallel. It collects all candidates in
the residual nodes and takes the first k closest records as the
result. Algorithm 1 shows the detailed strategy.

VI. EXPERIMENT

We first introduce the implementation and the experimental
setup, and then empirically evaluate the performance of the
index construction, the query processing.

A. Implementation & Setup Details
Implementation. Since the core features of TARDIS are

infrastructure-independent, they are applicable to big data
engines generally. As a proof of concept, TARDIS prototype
has been realized on top of the Apache Spark 2.0.2 [13].
We opt for Spark due to its efficient main memory caching
of intermediate data and the flexibility it offers for caching
hot data. An important design choice of TARDIS is not to
touch the internal of the core spark engine so to be portable.
This allows easy migration of TARDIS into a new version of
Spark released in the future. We implement our approach for
both clustered and un-clustered indices at the local structure.
All data structures and algorithms presented about TARDIS
are built from scratch in Scala and we extend DPiSAX [12]
to support clustered index, Exact-Match query and kNN-
Approximate query as the baseline of evaluation.

Cluster Setup. All experiments were conducted on a cluster
consisting of 2 nodes. Each node consists of 56 Intel@Xeon
E5-2690 processors, 500GB RAM, 7TB SATA hard drive and
runs Ubuntu 16.04.3 LTS with Spark-2.0.2 and Hadoop-2.7.3.
The Spark cluster is deployed in standalone mode.

Datasets. We use one benchmark and three real-world
datasets from different domains for the evaluation. Ran-
domWalk Benchmark Dataset is extensively used as the
benchmark for time series index in other projects [9]–[11],
[18]. This dataset is generated for 1 billion time series with 256
points. Texmex Corpus Dataset [19] is an image dataset which
contains 1 billion SIFT feature vectors of 128 points each.
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Fig. 10: Index Construction Time. (T: TARDIS, B: Baseline, Rw:
RandomWalk, Tx: Texmex, Dn: DNA, Na: Noaa)

DNA Dataset [20] contains assembly of the human genome
collected from 2000 to 2013. Each DNA string is divided into
subsequences of length 192 and then converted into time series
[11]. It contains 200 million time series with 192 points. Noaa
Dataset [21] involves weather and climate data from global
20, 000 stations from 1901 to present. The temperature feature
is extracted into 200 million time series with 64 points. Each
dataset is z-normalized before being indexed. The datasets are
chosen to cover a wide range of skewness with respect to the
values’ occurrence frequencies as illustrated in Figure 9.

As shown in Table II, TARDIS and the baseline systems
adopt the same configuration except the initial cardinality. It
is 64 for TARDIS, whereas the default value of Baseline is
512. For reproducibility, all source code, cluster configuration
and technical report are provided [22].

B. Index Construction
1) Clustered Index: The capacity of a HDFS block is set

as the Tardis-G threshold G-MaxSize in terms of the indexed
time series Take 1 billion time series RandomWalk dataset as
an example, it needs about 10, 189 partitions if each partition
110, 000 data entries. As shown in Figure 10(a), TARDIS
takes 334 mins to finish the index construction process for
1 billion dataset whereas the baseline takes 2, 323 mins. From
200 million to 1 billion in RandomWalk dataset, the index
construction time of TARDIS increases 7.6 times as that of
baseline is 16 times. Figure 10(b) shows the performance in
all datasets and the difference between different datasets are
caused by the time series length and value distribution. Our
new system demonstrates excellent scalability for the large
partition number because the sigTree structure of Tardis-G has
a short height for leaf nodes and iSAX-T signature simplifies
the cardinality conversion to identify the partition for shuffling
operation whereas the partition table derived from the iBT
for the global index introduces high look-up costs and iSAX
signature needs expensive cardinality conversion.

For the global index, TARDIS takes 10 mins for 1 billion
data whereas the baseline takes about 46 mins in Figure
10(a). TARDIS leverages Block-Level sampling to reduce
data reading time in sampling steps, and harnesses powerful
workers to collect node statistics. Figure 11(a) shows that
TARDIS finishes node statistic, build index tree and partition
assignment in a few minutes even for large datasets. It shows
good scalability to construct global index quickly for different
dataset scales. Note that the master node isnot the bottleneck
even if the index tree construction and partition assignment
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are completed by itself. In contrast, the time of building index
tree taken by the baseline increases linearly as dataset size
increases. Figures 11(b) shows the global index construction
time in all datasets.

For the local index in Figures 10, the difference of two
systems is the read and convert data caused by the partition
id assignment completed by partitioner, since both systems
spend the same time on reading data. Each record in the
baseline takes the character selection into consideration in
the lookup of partition table. The table matching process
and cardinality conversion causes this procedure to be time-
consuming. In contrast, TARDIS leverages the Tardis-G and
iSAX-T signature to finish this process within a short time.
TARDIS takes 66 mins to read and convert data for 1 billion
dataset, whereas the baseline takes 2007 mins. Note that the
time includes the fixed overhead of reading the dataset. In
our technical report [22], we also include the breakdown
construction time for the local indices.

For the Bloom Filter Index construction, the persistence of
data in memory impacts the performance. If the intermediate
data is persisted in memory, no obvious overhead exists
because the cost only corresponds to dumping this small size
index, 66k for each partition, to disk. As shown in Figure
12, when the RandomWalk dataset is less than 400 million,
the difference is negligibly small. In contrast, if it could not
be persisted in memory totally, the intermediate data has to
be persisted in memory and on disk. Taking 1 billion dataset
for example, the construction takes extra 97 mins in which
57 mins are spent on dumping the intermediate result and 40
mins is to read them.

2) Index Size: The Global Index is impacted by the index
structure and dataset size while the local index is impacted also
by the setting for indexed data like initial cardinality. For the
global index, TARDIS keeps the whole sigTree structure as the
index, whereas the baseline saves all leaf nodes as the partition
table. For 1 billion time series in Figure 13(a), TARDIS uses
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Fig. 14: Exact Match Average Query Time.

20 M while the baseline uses 1 M. However, the Tardis-G is
still lightweight to be broadcasted to worker nodes and resides
in RAM. In consideration of the improved efficiency of index
construction and query processing, the trade-off of increased
index size is reasonable. For the local index which excludes
indexed data in Figure 13(b), the difference is mainly caused
by the different initial cardinality. Since sigTree leverages a
large fan-out to reduce the depth of leaf nodes, TARDIS uses
a small value, 64 here, while the baseline uses a large initial
value, 512 by default, to guarantee enough cardinalities for
spliting. For 1 billion RandomWalk time series, TARDIS uses
34.9 G while the baseline uses 43.5 G.

C. Query Performance

1) Exact-Match Query Processing Performance: We eva-
lute the query performance in all datasets. Each experiment
involves 100 time series queries, with the exactly same length
as the time series in the dataset. In particular, 50% are
randomly selected from the dataset while the other 50%
are guaranteed to be not exist in the dataset. The average
query time is measured because the recall rates are all 100%.
Although all queries need to identify the partition in the master
and figure out the existence in workers, the key difference is
caused by the operations in workers because the time taken by
the master node is negligibly small compared with operations
in the workers.

As shown in Figure 14, Tardis-NoBF takes fewer time than
the baseline because of the shorter depth of leaf nodes and
fewer records stored in leaf nodes in the Tardis-L, though both
need to read one partition. In Figure 14(a), Noaa takes more
time because more time series are stored in each partition due
to the short length. In RandomWalk dataset, Tardis-BF has
the best performance with 4 sec, which is about half of the
baseline 9 sec, because the non-existence time series query
avoid loading partitions. Therefore, the Bloom Filter Index
effectively prevents the disk access for such queries. In Figure
14(b), the scale of the dataset has no obvious impact on the
performance since each query only accesses one partition.

2) kNN-Approximate Query Processing Performance: The
ground truth is critical for evaluation. However, the naive
method, which calculates the distance between query time
series and each record in the dataset to obtain the top k nearest
neighbors, is impractical due to the prohibitive time cost. We
instead leverage TARDIS to quickly figure out the ground
truth: for each qi in Q = {q1, · · · , qp}, use the low bound
feature of Tardis-G to filter out “large” partitions and then
use this feature of Tardis-L to filter out nodes in the residual
partitions; if the candidates number within the residual nodes
equals or exceeds k, we take the top k nearest neighbors as
the ground truth for qi. Note that a threshold (7.5 in our paper)
is given for above filtering processes in advance.

In contrast with DPiSAX [12] that considers the query
answering time for 10-NN, we study the effect of query
processes, k value and dataset size to evaluate the search
quality and search speed. Search quality is measured by recall
and error ratio that are standard metrics in high dimension
nearest neighbor query [23], [24]. Search speed is measured
by average query time. Given a query q, the set of exact K
nearest neighbors is G(q) = {g1, · · · , gk} and the query result
is R(q) = {r1, · · · , rk}. recall is defined as:

recall =
|G(q) ∩R(q)|
|G(q)|

(5)

Obviously, the recall score is less than 100%. In the ideal
case, 100% means all the k nearest neighbors are returned.
error ratio is defined as:

error ratio =
1

k

k∑
j=1

ED(q, rj)

ED(q, gj)
(6)

It measures how close the distance of the K nearest neighbors
found are compared to that of the exact K nearest neighbors.
The value is larger than 1.0 and the idea case is 1.0.

As shown in Figure 15 and 16, TARDIS fetches a better
performance in both the recall and the error ratio than the
baseline. It is credited to TARDIS’s word-level similarity and
the extended candidates scope. At first, we study the effect of
different query processes using the case of 400 million dataset
and 500 k value in Figure 15. For the recall, the baseline is
1.5% while Target Node Access is about 6.7%, One Partition
Access is 18.9% and Multi-Partitions Access is 43.4%. For
the error ratio, the baseline is 1.42 and Target Node Access is
about 1.19, One Partition Access is 1.07 and Multi-Partitions
Access is 1.03. For average query time, the baseline takes
about 9.8 sec while Target Node Access takes about 7.5 sec,
One Partition Access is 7.7 sec and Multi-Partitions Access
is 9.9 sec. One Partition Access has better performance com-
pared with Target Node Access because scanning the partition
results in a larger candidates scope. Note that Multi-Partitions
Access has obvious advantage because the extended candidate
scope derives from sibling partitions. Even more partitions are
loaded, the average query time of Multi-Partitions Access is
similar to that of the baseline because of concurrently process.

As shown in Figure 16(left), the performance under dif-
ferent dataset sizes follows the same pattern aforementioned,
particularly the error ratio and the average query time. The
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recall of Multi-Partitions Access decrease faster than others
and the error ratio is the same as others. This tendency results
from that the distance of records in one partition tends to be
small but the ground truth disperse over more partitions. The
error ratio increases and the recall decreases because the large
dataset size leads to a dispersedness of the ground truth. The
key point is that any iSAX-based signature is an approximate
rather than exact representation. The average query time does
not change significantly because the partition number loaded
for all query processes has no change.

In Figure 16 (right), we evaluate the effect of different k
values on the benchemark dataset. The performance is affected
greatly by the candidate scope determined by the granularity
of target node. The lowest level for target node is leaf node.
For the same L-MaxSize 1000, however, the average leaf node
size of TARDIS is 32 whereas the baseline is 634 caused by
the different fan-out. The recall for the baseline has no obvious
change. The slight increase of Target Node Access means
that the target node of TARDIS more effectively holds similar

0% 100% 

1% 5% 10% 20% 40% 100% 

RandomWalk Texmex DNA Noaa

(b) Ratio of Tardis-G Size(a) Ratio of construction time

(c) MSE of partition distribution (d) Ratio of error ratio (Top500)

0% 

25% 

50% 

75% 

100% 

1% 5% 10% 20% 40% 100% 
Sampling	Percent

70% 

80% 

90% 

100% 

1% 5% 10% 20% 40% 100% 
Sampling	Percent

0% 

25% 

50% 

75% 

1% 5% 10% 20% 40% 100% 
Sampling	Percent

98% 

99% 

100% 

101%

102%

1% 5% 10% 20% 40% 100% 
Sampling	Percent

Fig. 17: Impact of Sampling Percentage

time series because of the word-level similarity and both One
Partition Access and Multi-Partitions Access decrease due to
the dispersedness of the ground truth for larger k value.

Note that Multi-Partitions Access keeps the best accuracy
even if k value varies. For the error ratio, the turning point
of the baseline in Figure 16(d) is caused by the promotion of
target node position from a leaf node to an internal node in
the iBT structure. When k is less than 500, the target node is
a leaf node with the large candidate scope 634. One Partition
Access is the up bound of recall and the low bound of error
ratio for Target Node Access, because the candidate scope of
One Partition Access becomes similar to that of Target Node
Access as the k increases but One Partition Access is the best
case of Target Node Access. The average query time does not
change significantly because the partition number loaded for
all query processes stay consistent for different k values.

D. Impact of Sampling
Since the sampling percentage impacts the estimation of

iSAX-T representation distribution which determines the con-
struction and index quality. The construction quality is mea-
sured by construction time and global index size while the
index quality is measured by error ratio which evaluates the
cohesiveness of partition and MSE of partition size distribution
which evaluates partition size distribution estimation. Like his-
togram method, the last metric gets the probability distribution
of partition sizes, with the 15 megabyte bucket interval, and
then calculates the Mean squared error (MSE).



We compare 1%, 5%, 10%, 20%, 40% percentage with
the 100% case. In Figure 17(a), the sampling method greatly
decreases the global index construction time in all datasets. In
Figure 17(b), the smaller the percentage is used, the smaller
the index is generated because the sampling method get part
of the representations. However, the Tardis-G generated from
1% data is able to support the shuffle operation of the whole
dataset. In Figure 17(c), the small percent has large MSE value
and the 10% has the similar effect as the 100% in all datasets.
We run Top-500 kNN-Approximate query to get the error
ratio of Multi-Partitions Access. In Figure 17(d), the small
percentage leads to high ratio of error ratio.

VII. RELATED WORK

Recent advances in sensor, network and storage technolo-
gies have sped up the process of generating and collecting
time series. Similarity queries, the fundamental problem of
time series data mining, relies on the summarization and
indexing of massive datasets. The literature on these topics
is vast; see paper [2] and references therein for useful surveys
and empirical comparisons. The iSAX-based indexing family,
such as iSAX [10], iSAX2.0 [11] and Adaptive Data Series
Index (ADS) [25], demonstrates good scalability for bulk-
loading mechanism in centralized machine. The round bin split
policy [10] and the statistic-base split policy [11] are proposed
for the binary split. While both iSAX and iSAX2.0 build
indices over the dataset up-front and leverage these indices
for query process, ADS [25] shifts the costly index creation
steps from the initialization time to the query processing time.
It interactively and adaptively builds parts of the index only
for the subsets of data on which the users pose queries. All
aforementioned methods are based on a centralized machine.

The authors [26] propose a distributed system which con-
structs vertical inverted tables and horizontal segment trees
based on the PAA summarization of time series data. However,
the work in [26] cannot handle our target scale of billions of
time series objects (they only experimented with 1K, 10K,
and 100K objects). Moreover, it is explicitly stated in [26] for
large k > 50, their kNN query performance degrades quickly
and converges to the brute force search. in contract, TARDIS
is designed for scalable k as well, e.g., k in thousands.

Several other recent distributed systems have been proposed
for managing different aspects of time series data. For exam-
ple, Druid [27] and Gorilla [28] focus only on the storage and
compression aspects in a distributed environment. In contrast,
SciDB [29] focus on distributed linear algebra and statistical
operations on time series data, and BTrDB [30] addresses
primitive operations on big time series data such as selection,
projection, and simple aggregations. All of these systems op-
erate at the record-level, e.g., they support insertion, deletion,
and update of time series records. TARDIS is fundamentally
different from these systems as it a batch oriented and designed
for other complex operations such as kNN queries.

VIII. CONCLUSIONS

In this paper, we propose TARDIS, a scalable distributed in-
dexing framework to index and query massive time series. We
introduce sigTree and iSAX-T signature to simplify and speed

up the compact index construction in distributed environments.
Particularly, the word-level similarity feature of sigTree ef-
fectively keeps better similarity of time series. Additionally,
optimized similarity query processes leverage this flexible
framework to improve the performance. Our experiments over
the synthetic and real world datasets validate that our new
approach dramatically reduces the index construction time and
substantially improves the query accuracy.
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