
Duplicate Elimination in Space-partitioning Tree Indexes ∗

M. Y. Eltabakh1 Mourad Ouzzani2 Walid G. Aref1
1Computer Science Department, Purdue University
2Cybr Center, Discovery Park, Purdue University

{meltabak, mourad, aref}@cs.purdue.edu

Abstract

Space-partitioning trees, like the disk-based trie,
quadtree, kd-tree and their variants, are a family of ac-
cess methods that index multi-dimensional objects. In the
case of indexing non-zero extent objects, e.g., line segments
and rectangles, space-partitioning trees may replicate ob-
jects over multiple space partitions, e.g., PMR quadtree,
expanded MX-CIF quadtree, and extended kd-tree. As a re-
sult, the answer to a query over these indexes may include
duplicates that need to be eliminated, i.e., the same object
may be reported more than once. In this paper, we propose
generic duplicate elimination techniques for the class of
space-partitioning trees in the context of SP-GiST; an exten-
sible indexing framework for realizing space-partitioning
trees. The proposed techniques are embedded inside the
INDEX-SCAN operator. Therefore, duplicate copies of the
same object do not propagate in the query plan, and the
elimination process is transparent to the end-users. Two
cases for the index structures are considered based on
whether or not the objects’ coordinates are stored inside
the index tree. The theoretical and experimental analysis il-
lustrate that the proposed techniques achieve savings in the
storage requirements, I/O operations, and processing time
when compared to adding a separate duplicate elimination
operator in the query plan.

1 Introduction

Space-partitioning trees are a family of access methods
that index multi-dimensional objects, e.g., disk-based trie
variants [2, 8, 13], quadtree variants [12, 14, 16, 19, 23],
and kd-tree variants [6, 7, 17, 20]. Space-partitioning trees
are used as supporting structures in a variety of applications
such as GIS, data mining, and CAD/CAM applications. In
the case of indexing non-zero extent objects, e.g., line seg-
ments, and rectangles, space-partitioning trees may repli-
cate the indexed objects over multiple space partitions, e.g.,

∗This work was supported in part by the National Science Foundation
under Grants IIS-0093116 and IIS-0209120

the PMR quadtree [19], expanded MX-CIF quadtree [1, 21],
RR quadtrees [22], and extended kd-tree [17]. As a result,
the answer to a query over these indexes may include dupli-
cates that need to be eliminated, i.e., the same object may
be reported more than once. For example, in Figure 1, we
illustrate indexing two line segments, L1 and L2, using a
PMR quadtree. Each object is attached to all space parti-
tions it intersects with. Given an intersection query Q, we
want to report all objects that intersect with Q. This will
result in reporting L1 four times because Q intersects with
partitions 1, 9, 10, and 11. Moreover, L2 will be reported
twice because Q intersects with partitions 7, and 12.

Eliminating the duplicates of an object can be performed
by using the traditional database duplicate elimination tech-
niques i.e., adding the DISTINCT operator to the query
plan. However, this approach is not efficient for the follow-
ing reasons. First, removing the duplicates resulting from
the underlying access methods should be transparent to the
end-users. End-users do not have to be aware of which ac-
cess method is used to answer the query and whether or not
this access method generates duplicates. Second, the use of
a separate operator to eliminate the duplicates is an expen-
sive operation as it involves an additional sorting or hashing
phase in the query plan. This overhead can be reduced or
completely avoided if these duplicates are eliminated at the
INDEX-SCAN operator.

In this paper, we propose generic duplicate elimination
techniques for the class of space-partitioning trees in the
context of SP-GiST [3, 4]. SP-GiST is an extensible index-
ing framework for realizing the class of space-partitioning
trees inside database engines [11]. The proposed duplicate
elimination techniques are embedded inside the SP-GiST
INDEX-SCAN operator. They ensure that the INDEX-
SCAN operator reports each object that satisfies a given
query only once independent of how many times the ob-
ject is replicated inside the index. We consider two cases
for the index structures based on whether or not the objects’
coordinates are stored inside the index tree. For indexes
that store the objects’ coordinates, we propose a technique,
termed Consistency Reference, that computes a point CR

1

1

3 4

6

7 8

9 10

11 12

1 2 3 4

5 6 7 8

9 10 11 12

R

L1 L1 L1

L1

L2

L2 L2

L1 L2

Space partitionsPMR quadtree

Q

Figure 1. PMR quadtree

for each object satisfying the user’s query. The object is
reported only when the partition being processed contains
CR. For indexes that do not store the objects’ coordinates,
we use hashing techniques inside the INDEX-SCAN oper-
ator to eliminate the duplicates as early as possible, i.e., be-
fore retrieving the objects’ coordinates to avoid performing
I/O operations. The theoretical and experimental analysis
illustrate that the proposed approach achieves savings in the
storage requirements, I/O operations, and processing time
compared to the stand-alone DISTINCT operator approach.

The contributions of the paper are summarized as fol-
lows:

1. We present generic duplicate elimination techniques
for the class of space-partitioning trees. The pro-
posed techniques are embedded inside the INDEX-
SCAN operator instead of using an expensive stand-
alone DISTINCT operator.

2. We implement the proposed techniques inside the
PostgreSQL version of SP-GiST. The theoretical and
experimental analysis illustrate the efficiency of the
proposed techniques with respect to storage require-
ments, I/O operations, and processing time compared
to the stand-alone DISTINCT operator approach.

The rest of the paper proceeds as follows. In Section 2,
we present the related work. In Section 3, we overview the
SP-GiST framework. The proposed duplicate elimination
techniques are presented in Section 4. Section 5 describes
the implementation inside SP-GiST. The theoretical and ex-
perimental analysis are presented in Sections 6 and 7, re-
spectively. Section 8 contains concluding remarks.

2 Related Work

Duplicate elimination in databases is usually performed
by adding a separate DISTINCT operator to the query plan.
Several techniques have been proposed to realize the DIS-
TINCT operator [10, 18]. Typically, a non-blocking hash-
ing technique is used when the expected number of distinct
tuples can fit into main memory. Otherwise, a blocking du-
plicate elimination technique is used. Duplicate elimination
is known to be an expensive operation as it involves an ad-
ditional sorting or hashing phase. Therefore, several tech-

niques have been proposed to eliminate duplicates more ef-
ficiently in the context of spatial data. In [9], an on-line
technique has been proposed to eliminate duplicates over
spatial join operations. The technique computes a unique
point x for each pair of joined spatial objects. A joined pair
is reported from the JOIN operator only when x is inside
the space partition being processed. The technique avoids
adding a separate DISTINCT operator over the JOIN op-
erator in the query plan. However, the technique proposed
in [9] is limited to spatial join operations. In contrast, our
proposed techniques can be used to handle duplicate elimi-
nation over any spatial operation because they are built in-
side the INDEX-SCAN operator. For example, if the spatial
join is built on top of the proposed INDEX-SCAN operator,
then the JOIN operator does not need to handle the dupli-
cates because each object will be reported only once from
the INDEX-SCAN operator. Another technique for elim-
inating duplicates in spatial databases has been proposed
in [5], . The technique maintains a data structure, active
border, that represents the border between the space parti-
tions that have been processed and those that have not. An
object is reported only when all the partitions that intersect
with the object have been processed, i.e., covered by the
active border. The technique proposed in [5] is an algorith-
mic approach that can be used to traverse or retrieve objects
from the index tree. However, the technique is not practical
to be implemented as an operator inside a database engine
because of its complexity.

3 SP-GiST

SP-GiST [3, 4, 11, 15] is an extensible indexing frame-
work that broadens the class of supported indexes to in-
clude a wide variety of space-partitioning trees, e.g., disk-
based trie variants, quadtree variants, and kd-trees. Space-
partitioning trees differ from each other in various ways.
For example, tree structures may or may not support node
shrinking where empty partitions inside each node can be
omitted. Other variations include the bucket size of leaf
nodes, the support for various data types, and the splitting of
nodes (when to trigger a split and how node splitting is per-
formed). As an extensible indexing framework, SP-GiST
allows developers to instantiate a variety of index structures
in an efficient way through pluggable modules and without
modifying the database engine.

SP-GiST provides a set of internal methods that are
common for all space-partitioning trees, e.g., the Insert(),
Search(), and Delete() methods. The internal methods are
the core of SP-GiST. To handle the differences among the
various SP-GiST-based indexes, SP-GiST provides a set of
interface parameters and a set of external method interfaces
(for the developers).

The interface parameters include:

• NodePredicate: specifies the predicate type at the in-

2

PMR quadtree kd-tree
PathShrink = LeafShrink, NodeShrink = Flase PathShrink = NeverShrink, NodeShrink = False
BucketSize = B BucketSize = 1

Parameters NoOfSpacePartitions = 4 NoOfSpacePartitions = 2
NodePredicate = Quadrant (x1, y1, x2, y2) NodePredicate = “left”, “right”, or blank
KeyType = Line Segment KeyType = Point

If (inserted line segment intersects E.quadrant) If (level is odd AND q.x satisfies E.p.x)
Consistent(E,q,level) Return True OR (level is even AND q.y satisfies E.p.y)

Else Return False Return True, Else Return False

Decompose the space into four equal partitions Put the old point in a child node with
Distribute the line segments in P according to predicate “blank”

PickSplit(P,level) their intersection with the new partitions Put the new point in a child node with
Return False predicate “left” or “right”

Return False

Table 1. Instantiations of the PMR quadtree and kd-tree using SP-GiST.

dex nodes.
• KeyType: specifies the data type stored at the leaf

nodes.
• NumberofSpacePartitions: specifies the number of dis-

joint partitions produced at each decomposition.
• PathShrink: specifies how the index tree can shrink.
• NodeShrink: specifies whether the empty partitions

should be kept in the index tree or not.
• BucketSize: specifies the maximum number of data

items a data node can hold.
• ObjectReplication: specifies whether or not the index

allows replicating an object over multiple partitions.
• MaintainCoordinates: specifies whether or not the in-

dex stores the objects’ coordinates.

The SP-GiST external methods include the PickSplit()
method that specifies how the space is decomposed and
how the data items are distributed over the new partitions.
PickSplit() is invoked by the internal method Insert() when
a node is full and splitting is needed. Another exter-
nal method is Consistent() that specifies how to navigate
through the index tree. Consistent() is invoked by the inter-
nal methods Insert() and Search() to guide the tree naviga-
tion.

In Table 1, we illustrate the instantiation of the PMR
quadtree and kd-tree using SP-GiST. Notice that from the
developer’s point of view, coding of the external methods in
Table 1 is all what the developer needs to provide.

We realized the SP-GiST framework [3, 4] inside
PostgreSQL to include the family of space-partitioning
trees [11]. The proposed duplicate elimination techniques
are implemented inside the PostgreSQL version of SP-
GiST.

4 Duplicate Elimination in Space-
partitioning Trees

Duplicates may occur in space-partitioning trees that
have the following two properties: (1) they index non-

zero extent objects, and (2) they replicate the indexed ob-
jects over multiple space partitions. Examples of such
trees include the PMR quadtree [19], the expanded MX-CIF
quadtree [1, 21], the RR quadtree [22], and the extended kd-
tree [17]. Other index structures such as the kd-tree, point
quadtree, and trie do not generate duplicates because they
index zero-extent objects, e.g., points, and characters.

Space-partitioning trees that have the problem of gen-
erating duplicates may or may not store the objects’ coor-
dinates inside the index tree. For example, if the indexed
objects are polygons, then storing the objects’ coordinates
inside the index can be expensive. In this case, only the ob-
jects’ identifiers are stored inside the index, and the objects’
coordinates are stored in a separate table. In Section 4.1,
we consider the problem of duplicate elimination in indexes
that store the objects’ coordinates. In Section 4.2, we con-
sider the complementary case.

4.1 Duplicate Elimination in Coordinate main-
tained Indexes

Coordinate-maintained indexes have the property that
the objects’ coordinates can be retrieved without perform-
ing any extra I/O operations. We make use of this property
to design a duplicate elimination technique, termed Consis-
tency Reference, that requires neither extra space nor extra
I/O operations. Consistency Reference is based on the idea
of reporting an object at a certain point that is computed at
the query run-time [5, 9]. Consistency Reference is embed-
ded inside the SP-GiST INDEX-SCAN operator.

Consistency Reference computes, at the query run-time,
a zero-extent object, e.g., Point, called CR, for each
database object O satisfying a given query Q. CR is com-
puted each time O is encountered, i.e., if O is encountered
m times, then CR will be computed m times. O will
be reported from the INDEX-SCAN operator to the next
operator in the query pipeline only when the space partition
being processed contains CR. Since CR is a zero-extent

3

DB Object Type O Query Type Q Operator CR Definition
Line segment Line segment Intersection CR = {point P : P ∈ O and P ∈ Q}

Window Intersection CR = {point P ∈ O′
: P.x ≥ P ′.x ∀ P ′ ∈ O′};

where O′ is the intersected line segment between O and Q

Contains
Point Contained in CR = {point P : P = Q}

Rectangle Line segment Intersect CR = {point P ∈ O′
: P.x ≥ P ′.x ∀ P ′ ∈ O′};

where O′ is the intersected line segment between O and Q

Contained in
Window Intersect CR = {point P ∈ O′

: P.x ≥ P ′.x and P.y ≥ P ′.y ∀ P ′ ∈ O′};
where O′ is the intersected rectangle between O and Q

Contains
Contained in

Point Contained in CR = {point P : P = Q}

Table 2. Computing CR for various data types and query operators

Consistency Reference Stand-alone DISTINCT operator approach
Storage No storage is required A hash table is used to store the identifier of each reported object

Scalability The technique scales with the increase If the size of the hash table exceeds the main memory,
of the size of the output relation then a blocking duplicate elimination technique will be used

I/O Operations No I/O operations are required If a blocking technique is used, then I/O operations are
performed

Table 3. A comparison between the Consistency Reference technique and the stand-alone DISTINCT
operator approach.

object, then it is guaranteed that CR belongs to only one
space partition. Hence, O will be reported once.

Definition (Consistency Reference CR): For a non-
zero extent object O that satisfies a given query Q, CR is
a zero-extent object that belongs to O and participates in
making O satisfy Q.

According to the definition, the CR of an object O
against query Q has to satisfy two conditions: (1) CR be-
longs to O, and (2) CR participates in making O satisfies
Q. These two conditions ensure that CR belongs to a space
partition that will be processed by Q. Therefore O will not
be missed. The exact criterion for computing CR depends
on the data type of the database objects, e.g., Line Segment,
or Rectangle, and the type of the query, e.g., intersection,
overlapping, or containment query. This criterion is pro-
vided by the developer of the index structure.

In Figure 2, we illustrate an example for the Consis-
tency Reference technique. We consider an intersection
query Q over a PMR quadtree that indexes line segments.
The criterion for computing CR for a line segment O
satisfying Q can be defined as follows:

CR = {point P ∈ O′ : P.x ≥ P ′.x ∀ P ′ ∈ O′}; where

O′ is the intersected line segment between O and Q.

The criterion selects the point with the largest X-axis
value on the intersected line segment between O and Q.

The space partitions in Figure 2 are processed clock-wise
in the following order: 1, 9, 10, 11, 12, and 7. Partitions 6,
8, 3, and 4 are skipped because they do not intersect Q.
When we process partition 1, we find that L3 does not sat-
isfy Q, therefore, L3 will be skipped. However, L1 satisfies
Q, therefore, we compute the CR point for L1, i.e., L1-CR.
Since L1-CR is outside partition 1, then partition 1 will not
report L1. Similarly, partitions 9 and 11 will not report L1

for the same reason. L1 will be reported only when par-
tition 10 is processed. When we process partition 12, we
find that the CR point of L2, i.e., L2-CR, belongs to parti-
tion 12. Therefore, partition 12 reports L2. When partition
7 is processed, L3 and L4 will be skipped because they do
not intersect with Q, and L2 will not be reported because
L2-CR is outside partition 7.

In Table 2, we present criteria for computing the CR un-
der various objects data types and query predicates. These
criteria are not unique and other criteria can be used as long
as they satisfy the definition above.

In Table 3, we compare the Consistency Reference
technique against the stand-alone DISTINCT operator ap-

4

1

3 4

6

7 8

9 10

11 12

1 2 3 4

5 6 7 8

9 10 11 12

R

L1 L1 L1

L1, L3

L2

L2 L2,L4, L3

L1 L2

Space partitionsPMR quadtree

Q
L4L3

L1-CR L2-CR

(0,0) X

Y

L5

L6

L6

L5

Figure 2. Example of the Consis-
tency Reference technique

proach. Consistency Reference does not require any extra
storage because CR is computed for each object satisfying
the query on the fly, i.e., when the object is encountered by
the search algorithm. As a result, Consistency Reference
does not perform any I/O operations. On the other hand, the
stand-alone DISTINCT operator approach maintains a hash
table to store a copy of each reported object. If the size of
the maintained hash table exceeds the available main mem-
ory, then a blocking duplicate elimination technique is used
that requires performing disk I/O operations.

4.2 Duplicate Elimination in Non-coordinate-
maintained Indexes

Non-coordinate-maintained indexes are indexes that
store only the objects’ identifiers inside the index. The ob-
jects’ coordinates are stored in a separate table. Hence,
each retrieval of an object’s coordinates requires per-
forming at least one I/O operation. Applying the Con-
sistency Reference technique over the non-coordinate-
maintained indexes is very expensive because Consis-
tency Reference retrieves the coordinates of an object at
each time this object is encountered during the search.

Our proposed duplicate elimination technique for non-
coordinate-maintained indexes is based on hashing tech-
niques. Hashing techniques are well known techniques
for eliminating duplicates in database management sys-
tems [18]. Our approach, termed Embedded Hashing is
based on embedding hashing techniques inside the INDEX-
SCAN operator, which has two advantages: (1) it achieves
transparency to the end-user, and (2) it saves I/O operations
because our approach retrieves the coordinates of each ob-
ject encountered during the search only once independent
of how many times the object is replicated inside the index.

Embedded Hashing performs in the same way as the
standard hashing techniques for eliminating duplicates ex-
cept that it works inside the INDEX-SCAN operator. Em-
bedded Hashing stores the identifiers of the objects encoun-

tered during the search in a hash table to avoid processing
the same object multiple times. When an object O is en-
countered, we search for O in the hash table. If O is found,
then O is skipped because it has been already processed.
Otherwise, we perform an I/O operation(s) to retrieve O’s
coordinates and check whether or not O satisfies the query.
If O satisfies the query, then O will be reported. Other-
wise, O will be skipped. In both cases, O’s identifier will
be stored in the hash table.

Continuing with the example in Figure 2, and assuming
that only the objects’ identifiers are stored inside the index,
the processing of Q is as follows. The processing of parti-
tion 1 will report L1 as it satisfies Q but not L3. Then, both
L1 and L3 will be inserted into the hash table. The pro-
cessing of partitions 9, 10, and 11 will not check L1 again
because L1 is already in the hash table. The processing of
partition 12 will report L2 because L2 is not encountered
before. Then, L2 will be inserted into the hash table. Fi-
nally, the processing of partition 7 will not check L2 or L3

again because both objects are already in the hash table. L4

will be checked, but it will not be reported because it does
not satisfy Q. Then, L4 will be inserted into the hash table.

If the size of the hash table exceeds the available main
memory, we use a blocking hashing technique. In the first
phase of the technique, we store the identifiers of the en-
countered objects during the search in the hash table. In
the second phase, we eliminate the duplicates, and then
retrieve the coordinates of each of the remaining objects
to check them against the query. Since we retrieve the
objects’ coordinates after eliminating the duplicates, then,
Embedded Hashing guarantees that the coordinates of each
encountered object are retrieved only once independent of
how many times the object is replicated inside the index.

In Table 4, we compare Embedded Hashing against the
stand-alone DISTINCT operator approach. In Embed-
ded Hashing, the hash table stores the identifiers of the
encountered objects whether or not they satisfy the query.
Whereas, the hash table maintained by a separate DIS-
TINCT operator stores only the identifiers of the objects
that satisfy the query. In both techniques, the size of the
hash table may exceed the available main memory. There-
fore, both techniques may use a blocking hashing tech-
nique for eliminating the duplicates. The main advantage
of Embedded Hashing over the stand-alone DISTINCT op-
erator approach is in the savings of the I/O operations. Em-
bedded Hashing retrieves the coordinates of each encoun-
tered object, whether or not it satisfies the query, only once.
Whereas, the stand-alone DISTINCT operator approach re-
trieves the coordinates of each encountered object, whether
or not it satisfies the query, every time this object appears.
The reason is that in the latter case, the INDEX-SCAN
operator does not keep track of which objects are already
processed. Thus, each time an object is encountered, the

5

Embedded Hashing Stand-alone DISTINCT operator approach
A hash table is used to store the identifiers of A hash table is used to store the identifiers of the

Storage the encountered objects including objects that objects reported from the INDEX-SCAN operator.
do not satisfy the query

If the size of the hash table exceeds the main If the size of the hash table exceeds the main memory,
Scalability memory then a blocking duplicate elimination then a blocking duplicate elimination technique

technique will be used will be used

Performs one I/O operation for each encountered Performs one I/O operation for each appearance of an
I/O Operations object independent of the objects’ replication. encountered object. This is the case whether the hash

This is the case whether the hash table resides table resides in memory or a blocking technique is used
in memory or a blocking technique is used

Table 4. A comparison between the Embedded Hashing technique and the stand-alone DISTINCT
operator approach.

INDEX-SCAN operator retrieves the coordinates of this ob-
ject and checks them against the query. The I/O saving of
Embedded Hashing can be significant if the objects’ repli-
cation factor over the space partitions is large.

5 Implementation Inside SP-GiST

We implement the proposed duplicate elimination tech-
niques inside the PostgreSQL version of SP-GiST [11]. The
Consistency Reference technique is implemented as part of
the SP-GiST external methods because it requires that the
developer defines and codes the criteria for computing the
CR objects (Section 5.1). The Embedded Hashing tech-
nique is implemented as part of the SP-GiST internal meth-
ods because they are common for all SP-GiST index struc-
tures (Section 5.2).

5.1 Coordinate-maintained Indexes

To implement the Consistency Reference technique in-
side SP-GiST, we extend the SP-GiST external methods to
include two more functions: Consistency Reference() and
Report Unique(). The developer of an index structure will
provide these functions among the index’s external meth-
ods.

Consistency Reference(Op, E, Q) takes three arguments,
where Op is the operator type, e.g., intersection, over-
lapping, or containment, E is the operator’s left argument
which is a database object, and Q is the operator’s right ar-
gument which is the operator predicate. Based on the op-
erator’s type and arguments, Consistency Reference() com-
putes and returns the CR reference of E. Report Unique(P,
CR) takes two arguments, where P is the partition begin
processed, and CR is the E’s CR computed by Consis-
tency Reference(). Report Unique(P, CR) returns True if
CR belongs to P, and False otherwise.

Consistency Reference() and Report Unique() are called
from the internal function Search() only when the index’s

interface parameters ObjectReplication = True and Main-
tainCoordinates = True (Refer to Section 3). That is, these
functions are used only for indexes that store the objects’
coordinates and allow objects to be replicated over multi-
ple space partitions. Search() is modified to call Consis-
tency Reference() and Report Unique() as follows. When a
leaf object O is encountered, Search() passes O to function
Consistent() to decide whether or not O satisfies the query.
If O does not satisfy the query, then O will be skipped.
Otherwise, Search() calls Consistency Reference() to get
O’s CR, and then calls Report Unique() to check whether
or not O’s CR belongs to the partition being processed.
If Report Unique() returns True, then Search() will report
O. Otherwise, O will be skipped. Notice that, Consis-
tency Reference() and Report Unique() are called only for
leaf objects that satisfy the query.

For indexes that have either ObjectReplication or Main-
tainCoordinates set to False, only the prototype defini-
tion of Consistency Reference() and Report Unique() is
required among the index’s external methods because
Search() will not call them in the first place.

5.2 Non-coordinate-maintained Indexes

Unlike the implementation of the Consistency Reference
technique, Embedded Hashing is fully implemented inside
the SP-GiST core, i.e., the internal methods. Therefore, no
extra coding is required from the index developer side.

The Embedded Hashing technique is implemented in-
side the Search() internal method. The non-blocking Em-
bedded Hashing is implemented inside Search() as follows.
Search() maintains a hash table. Whenever a leaf object O
is encountered, Search() looks for O’s identifier in the hash
table. If O’s identifier is found, then O is skipped because
O is already processed. Otherwise, Search() retrieves O’s
coordinates and passes O to Consistent() to decide whether
or not O satisfies the query. In both cases, Search() adds
O’s identifier to the hash table.

6

Parameter Definition
R The underlying relation
M The memory size in blocks
B The memory block size
N The number of buckets in the hash table

λ(R) The number of distinct objects in R that
satisfy the query

ε(R) The number of distinct encountered objects
in R that do not satisfy the query

α The average number of object replications
encountered during the search

Table 5. The analysis parameters

The blocking Embedded Hashing is implemented inside
Search() as follows. Whenever a leaf object O is encoun-
tered, Search() inserts O’s identifier into the hash table with-
out checking for duplicates. After inserting all the encoun-
tered leaf objects into the hash table, Search() scans the
hash table bucket by bucket to eliminate the duplicates. Af-
ter eliminating the duplicates of a given bucket, Search()
retrieves the coordinates of each object in that bucket and
passes the object to Consistent() to decide whether or not
the object satisfies the query. If the object satisfies the query,
then the object will be reported. Otherwise, the object will
be skipped.

Search() uses Embedded Hashing only when the index’s
interface parameters ObjectReplication = True and Main-
tainCoordinates = False (Refer to Section 3). That is, Em-
bedded Hashing is used only for indexes that do not store
the objects’ coordinates and allow objects to be replicated
over multiple space partitions. Deciding whether a non-
blocking or blocking hashing will be used is based on the
same statistics that the query optimizer uses if a separate
DISTINCT operator is used in the query plan.

6 Theoretical Analysis

In this section, we analyze theoretically the proposed du-
plicate elimination techniques. For each technique, we ana-
lyze the memory requirements (in blocks), and the disk I/O
operations. The CPU processing time is considered only for
techniques in which no I/O operations are performed. The
parameters used in the analysis are summarized in Table 5.

We compare the Consistency Reference technique
against the stand-alone DISTINCT operator approach in
Table 6. Consistency Reference is only a memory-based
technique, i.e., it has no disk-based analysis. Consis-
tency Reference does not require any extra storage and does
not perform any I/O operations. In Consistency Reference,
each time an object is encountered, the technique checks the
object against the query, and if the object satisfies the query,
then the object’s CR is computed. The number of these en-
counters is [λ(R) + ε(R)] ∗ α. Checking an object against
the query and computing the object’s CR are assumed to

take O(1) processing time. Therefore, the overall CPU pro-
cessing time is [λ(R) + ε(R)] ∗ α.

The memory-based stand-alone DISTINCT operator ap-
proach maintains a hash table of size λ(R)/B blocks. The
technique does not perform any I/O operations. In this tech-
nique, the INDEX-SCAN operator checks the encountered
objects against the query [λ(R) + ε(R)] ∗ α times. Then,
the INDEX-SCAN operator reports α ∗ λ(R) objects to the
DISTINCT operator. The DISTINCT operator searches for
each of the α ∗ λ(R) objects in a hash table bucket of av-
erage size λ(R)/N . Therefore, the overall CPU processing
time is [λ(R) + ε(R)] ∗ α + [α ∗ λ2(R)]/N .

If the size of the hash table exceeds the available main
memory, then a disk-based blocking hashing technique is
used. The blocking technique uses the entire memory to
process the hash table buckets. The size of the hash table is
[α ∗ λ(R)]/B blocks. The table will be written to and then
read from the disk to eliminate the duplicates. Therefore,
the total number of I/O operations is 2 ∗ [α ∗ λ(R)]/B.

To summarize the results presented in Table 6, Consis-
tency Reference involves neither storage overhead nor I/O
operations and its CPU processing time is less than that of
the stand-alone DISTINCT operator approach. Hence, in-
dependently from the objects distribution and the replica-
tion factor α, the Consistency Reference technique outper-
forms the stand-alone DISTINCT operator approach.

The comparison between the Embedded Hashing tech-
nique and the stand-alone DISTINCT operator approach for
non-coordinate-maintained indexes is presented in Table 7.
Both techniques may use a blocking hashing technique if
the hash table cannot fit entirely into memory. The memory-
based version of Embedded Hashing stores in the hash table
the identifier of each encountered object including objects
that do not satisfy the query. Hence, the size of the hash
table is [λ(R)+ε(R)]/B. Embedded Hashing retrieves the
coordinates of each of the encountered objects only once.
Assuming that each retrieval requires one I/O, then the to-
tal number of I/O operations performed by the technique is
λ(R) + ε(R). On the other hand, the memory-based stand-
alone DISTINCT operator approach stores in the hash table
the identifiers of the objects that satisfy the query. Hence,
the size of the hash table is λ(R)/B. In the stand-alone
DISTINCT operator approach, the INDEX-SCAN opera-
tor retrieves the coordinates of an object each time the ob-
ject appears. Therefore, the number of I/O operations is
[λ(R) + ε(R)] ∗ α.

With respect to the disk-based processing, both tech-
niques will use the entire memory to process the hash table
buckets. In Embedded Hashing, the size of the hash table
to be written to and read from the disk is [λ(R)+ ε(R)]∗α.
After eliminating the duplicates from the hash table, Em-
bedded Hashing retrieves the coordinates of each of the re-
maining objects to check them against the query which re-

7

Consistency Reference Stand-alone DISTINCT operator
Memory-based Memory-based Disk-based

Memory
requirements 0 λ(R)/B M

Disk I/O 0 0 [2 ∗ α ∗ λ(R)]/B

CPU time [λ(R) + ε(R)] ∗ α [λ(R) + ε(R)] ∗ α + [α ∗ λ2(R)]/N

Table 6. Analysis of the coordinate-maintained duplicate elimination techniques

Embedded Hashing Stand-alone DISTINCT operator
Memory-based Disk-based Memory-based Disk-based

Memory
requirements [λ(R) + ε(R)]/B M λ(R)/B M

Disk I/O λ(R) + ε(R) [λ(R) + ε(R)]∗ [λ(R) + ε(R)] ∗ α [λ(R) + ε(R)] ∗ α+
[(2 ∗ α)/B + 1] [2 ∗ α ∗ λ(R)]/B

Table 7. Analysis of the non-coordinate-maintained duplicate elimination techniques

quires [λ(R) + ε(R)] I/O operations. Therefore, the total
number of I/O operations is [(λ(R) + ε(R)) ∗ α ∗ 2]/B +
[λ(R)+ε(R)] = [λ(R)+ε(R)]∗[(2∗α)/B+1]. In the stand-
alone DISTINCT operator technique, the INDEX-SCAN
operator retrieves the coordinates of an object each time
the object is encountered which requires [λ(R) + ε(R)] ∗α
I/O operations. Then, the INDEX-SCAN operator reports
α ∗ λ(R) objects to the DISTINCT operator which stores
these objects in the hash table. The hash table will be writ-
ten to and then read from the disk. Therefore, the total num-
ber of I/O operations is [λ(R)+ε(R)]∗α + [2∗α∗λ(R)]/B.

It is worth noting that Embedded Hashing may use the
disk-based version while the stand-alone DISTINCT oper-
ator technique uses the memory-based version. The rea-
son is that the size of the hash table maintained by Em-
bedded Hashing is larger than that of the other technique.
However, as illustrated in Table 7, the number of I/O op-
erations performed by the disk-based Embedded Hashing
is less than the number of I/O operations performed by the
memory-based version of the stand-alone DISTINCT oper-
ator technique, assuming that (2 ∗ α)/B + 1 < α.

To summarize the results presented in Table 7, Embed-
ded Hashing requires larger hash table than the stand-alone
DISTINCT operator technique. However, the number of
I/O operations performed by Embedded Hashing is around
factor of α less than that performed by the stand-alone DIS-
TINCT operator technique.

Notice that, in the case where no duplicates are present,
i.e., each object is encountered only once during the search,
the cost of the above techniques can be easily derived by set-
ting the replication factor (α) to 1. In this case, the Consis-

 Main Memory Storage Requirements

0

10

20

30

40

50

500K 1M 2M 4M 8M 16M

Relation Size (No. of Keys)

S
to

ra
ge

 (K
by

te
)

Stand-alone (Intersection)

Stand-alone (Containment)

CR (Intersection)

CR (Containment)

Figure 3. Coordinate-maintained indexes:
Storage requirements

tency Reference technique still outperforms the stand-alone
technique with respect to memory, disk, and CPU require-
ments. For the hashing techniques, if the search results can
fit into memory, then the stand-alone operator is preferred as
it requires less memory. Otherwise, the Embedded Hashing
technique is preferred as it requires less I/Os.

7 Experimental Analysis

In this section, we study experimentally the performance
of the proposed duplicate elimination techniques against the
stand-alone DISTINCT operator approach. We perform the
experiments from within the PostgreSQL version of SP-
GiST [11]. We consider two types of queries: an inter-
section query (find all objects that intersect the query box),
and a containment query (find all objects that are contained

8

 Execution Time

0

300

600

900

1200

1500

1800

500K 1M 2M 4M 8M 16M

Relation Size (No. of Keys)

Ti
m

e
(m

se
c)

Stand-alone (Intersection)

Stand-alone (Containment)

CR (Intersection)

CR (Containment)

Figure 4. Coordinate-maintained indexes: Ex-
ecution time

 Main Memory Storage Requirements

0

10

20

30

40

50

60

500K 1M 2M 4M 8M 16M

Relation Size (No. of Keys)

S
to

ra
ge

 (K
by

te
)

Stand-alone (Intersection)

Stand-alone (Containment)

Embedded Hashing (Intersection)

Embedded Hashing (Containment)

Figure 5. Non-coordinate-maintained in-
dexes: Storage requirements

inside the query box). Both queries have the same coordi-
nates, i.e., the same query box. We run the experiments over
a PMR quadtree that indexes line segments and an extended
kd-tree that indexes rectangles. The results from both in-
dexes show similar behavior. We present only the results
obtained from the PMR quadtree because of the space lim-
itations. The generated line segments are uniformly dis-
tributed over the two dimensional space. Half of the line
segments are very small in length, and hence, their replica-
tion factor is very small, while the other half are large in
length, and hence, their replication factor is relatively large.

Figures 3 and 4 depict the performance of the Con-
sistency Reference technique against the stand-alone DIS-
TINCT operator approach. Figure 3 illustrates that Con-
sistency Reference does not require any additional storage,
whereas the stand-alone DISTINCT operator approach re-
quires an additional storage to maintain a hash table. The
figure illustrates that the intersection query requires more
storage because its answer set is larger than that of the con-
tainment query. With respect to the execution time, Figure 4
illustrates that Consistency Reference requires around 50%
of the time taken by the stand-alone DISTINCT operator
approach. The reason is that Consistency Reference saves

 Number of I/O Requests

0

5000

10000

15000

20000

25000

30000

500K 1M 2M 4M 8M 16M

Relation Size (No. of Keys)

I/O
 R

eq
ue

st
s

Stand-alone (Intersection)

Stand-alone (Containment)

Embedded Hashing (Intersection)

Embedded Hashing (Containment)

Figure 6. Non-coordinate-maintained in-
dexes: I/O Requests

 Execution Time

0

5

10

15

20

25

500K 1M 2M 4M 8M 16M

Relation Size (No. of Keys)

Ti
m

e
(s

ec
)

Stand-alone (Intersection)

Stand-alone (Containment)

Embedded Hashing (Intersection)

Embedded Hashing (Containment)

Figure 7. Non-coordinate-maintained in-
dexes: Execution time

the manipulation time of the hash table, e.g., insertion and
searching times.

To measure the performance in the case of the non-
coordinate-maintained indexes, we store the objects’ co-
ordinates in a separate table outside the index tree. Any
coordinate retrieval operation is counted as one I/O re-
quest. Figures 5, 6, and 7 depict the performance of
the duplicate elimination techniques of the non-coordinate-
maintained indexes. Figure 5 illustrates that the proposed
hashing technique requires more storage than the stand-
alone DISTINCT operator approach. This is because Em-
bedded Hashing stores all encountered objects including
objects that do not satisfy the query. In Embedded Hashing,
the intersection and containment queries have the same stor-
age overhead because the required storage depends on the
encountered objects not on the objects that satisfy the query.
In Figure 6, we present the number of I/O requests per-
formed by each technique. The stand-alone DISTINCT
operator approach performs much more I/O requests be-
cause it retrieves the coordinates of the encountered objects
each time an object appears, whereas Embedded Hashing
retrieves the coordinates of each encountered object only
once. The intersection and containment queries require

9

the same number of I/O requests because this number de-
pends on the encountered objects not on the objects that
satisfy the query. In Figure 7, we present the execution time
taken by each technique. The figure illustrates that Embed-
ded Hashing requires less execution time since it performs
less I/O operations.

8 Conclusion

We presented generic duplicate elimination techniques
for the class of space partitioning trees in the context of
SP-GiST. The proposed techniques are implemented inside
the SP-GiST INDEX-SCAN operator. Hence, we avoid us-
ing an expensive stand-alone DISTINCT operator in the
query plan. We considered two cases for the index struc-
tures based on whether or not the objects’ coordinates are
stored inside the index tree. We proposed the Consis-
tency Reference technique to eliminate duplicates in in-
dexes that store the objects’ coordinates and the Embed-
ded Hashing technique to eliminate duplicates in indexes
that do not store the objects’ coordinates. The theoreti-
cal and experimental analysis illustrate the efficiency of the
proposed techniques with respect to storage requirements,
I/O operations, and processing time compared to adding a
separate duplicate elimination operator in the query plan.

Acknowledgments

The work of Mourad Ouzzani was supported in part by a
Lilly Endowment grant and a US DHS (PURVAC) grant.

References

[1] D. J. Abel and J. L. Smith. A data structure and algorithm
based on linear key for a rectangle retrieval problem. In
IJCV, pages 1–13, 1983.

[2] W. G. Aref, D. Barbará, and P. Vallabhaneni. The handwrit-
ten trie: Indexing electronic ink. In SIGMOD, pages 151–
162, 1995.

[3] W. G. Aref and I. F. Ilyas. An extensible index for spatial
databases. In SSDBM, pages 49–58, 2001.

[4] W. G. Aref and I. F. Ilyas. Sp-gist: An extensible database
index for supporting space partitioning trees. J. Intell. Inf.
Syst., 17(2-3):215–240, 2001.

[5] W. G. Aref and H. Samet. Hashing by proximity to process
duplicates in spatial databases. In CIKM, pages 347–354,
1994.

[6] J. L. Bentley. Multidimensional binary search trees used for
associative searching. Commun. ACM, 18(9):509–517, 1975.

[7] J. L. Bentley. Multidimensional binary search trees in
database applications. IEEE TSE-5:333–340, 1979.

[8] W. A. Burkhard. Hashing and trie algorithms for par-
tial match retrieval. ACM Transactions Database Systems,
1(2):175–187, 1976.

[9] J. Dittrich and B. Seeger. Data redundancy and duplicate de-
tection in spatial join processing. In ICDE, page 535, 2000.

[10] R. Elmasri and S. B. Navathe. Fundamentals of database
systems. In Benjamin/Cummings, Redwood City, 1989.

[11] M. Y. Eltabakh, R. H. Eltarras, and W. G. Aref. Space-
partitioning trees in postgresql: Realization and perfor-
mance. In ICDE, pages 100–111, 2006.

[12] R. A. Finkel and J. L. Bentley. Quad trees: A data structure
for retrieval on composite keys. Acta Inf., 4:1–9, 1974.

[13] E. Fredkin. Trie memory. Commun. ACM, 3(9):490–499,
1960.

[14] I. Gargantini. An effective way to represent quadtrees. Com-
mun. ACM, 25(12):905–910, 1982.

[15] T. M. Ghanem, R. Shah, M. F. Mokbel, W. G. Aref, and J. S.
Vitter. Bulk operations for space-partitioning trees. In ICDE,
pages 29–40, 2004.

[16] G. Kedem. The quad-cif tree: A data structure for hierarchi-
cal on-line algorithms. In conference on Design automation,
pages 352–357, 1982.

[17] T. Matsuyama, L. V. Hao, and M. Nagao. A file organization
for geographic information systems. In IJCV, pages 303–
318, 1984.

[18] H. G. Molina, J. D. Ullman, and J. Widom. Database sys-
tems: The complete book. In Prentice Hall, 2001.

[19] R. C. Nelson and H. Samet. A population analysis for hier-
archical data structures. In SIGMOD, pages 270–277, 1987.

[20] J. T. Robinson. The k-d-b-tree: a search structure for large
multidimensional dynamic indexes. In SIGMOD, pages 10–
18, 1981.

[21] H. Samet. The design and analysis of spatial data structures.
In Addison-Wesley, Reading MA, 1990.

[22] C. A. Shaffer. Application of alternative quadtree represen-
tations. In Ph.D. dissertation, TR-1672, Computer Science
Departement, Univ. of Maryland, Collage Park, MD, 1986.

[23] F. Wang. Relational-linear quadtree approach for two-
dimensional spatial representation and manipulation. TKDE,
3(1):118–122, 1991.

10

