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ABSTRACT
Annotation management and data curation has been extensively
studied in the context of relational databases. However, existing an-
notation management techniques share a common limitation, which
is that they are all passive engines, i.e., they only manage the anno-
tations obtained from external sources such as DB admins, domain
experts, and curation tools. They neither learn from the available
annotations nor exploit the annotations-to-data correlations to fur-
ther enhance the quality of the annotated database. Delegating such
crucial and complex tasks to end-users—especially under large-
scale databases and annotation sets—is clearly the wrong choice.
In this paper, we propose the Nebula system, an advanced and
proactive annotation management engine in relational databases.
Nebula complements the state-of-art techniques in annotation man-
agement by learning from the available annotations, analyzing their
content and semantics, and understanding their correlations with
the data. And then, Nebula proactively discovers and recommends
potentially missing annotation-to-data attachments. We propose
context-aware ranking and prioritization of the discovered attach-
ments that take into account the relationships among the data tu-
ples and their annotations. We also propose approximation tech-
niques and expert-enabled verification mechanisms that adaptively
maintain high-accuracy predictions while minimizing the experts’
involvement. Nebula is realized on top of an existing annotation
management engine, and experimentally evaluated to illustrate the
effectiveness of the proposed techniques, and to demonstrate the
potential gain in enhancing the quality of annotated databases.

Categories and Subject Descriptors
H.2 [Database Management]: Systems—Relational Databases

Keywords
Proactive Annotation Management; Keyword Search; Annotated
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1. INTRODUCTION
Data curation and annotation is becoming an integral component

to modern relational database systems. This is due to several fac-
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tors including: (1) Many emerging applications that use database
systems, especially scientific applications [6, 10, 21, 28], rely on
data curation for capturing various types of metadata information,
e.g., attaching related articles to the data, highlighting erroneous
or conflicting values, and capturing the data’s lineage. (2) Annota-
tions do not follow the rigid schema of relational databases, instead
a single annotation can be attached to individual table cells, rows,
columns, or arbitrary sets and combinations of them. And thus, an-
notation management gives end-users and higher-level applications
the flexibility to annotate their data in a seamless way. And (3) The
increasing scale of the generated annotations as well as their rich-
ness in semantics have triggered the need for querying the annota-
tions in more systematic and efficient ways, and for incorporating
them into the data processing cycle.

For the aforementioned reasons, annotation management has
been extensively studied in the context of relational databases,
e.g., [9, 13, 16, 18, 20]. These techniques address several as-
pects ranging from efficient storage and indexing [18, 20], ab-
stract querying and propagation [9, 16, 20], summarization and
summary-aware annotation propagation [22, 32], view-related an-
notations [13, 25], and semantic annotations [11, 12, 14, 16, 19].
However, the growing scale of the managed datasets and their an-
notations, and the increasing rate at which both the data and the
annotations are dynamically changing, pose new challenges to an-
notation management that have not been addressed before. One of
these challenges—which is the key focus of this paper—is that in
many cases the database may become “under annotated”. That is,
a given annotation may not be attached to all data tuples to which
the annotation applies. The following scenarios highlight various
reasons that cause a database to be under annotated.

Motivation Scenario 1− Embedded References to DB Objects:
Common uses of annotations include attaching documents or arti-
cles to specific data tuples, and linking free-text comments to data
values. For example, referring to Figure 1, a biological scientist
“Bob” investigating a set of genes may attach a related scientific
article to one of his genes-under-investigation JW0013. Whereas,
another scientist “Alice” may attach a comment to one of her
genes-of-interest JW0019. Interestingly, each of these annotations
apply to (and are related to) other tuples in the database beyond
those to which they are manually attached. For example, the article
also references gene names yaaB and yaaI, and refers to protein
G-Actin. Similarly, Alice’s comment references genes JW0014
and grpC. Unfortunately, there are many reasons that may hin-
der Bob and Alice from creating these missing attachments, e.g.,
Bob and Alice may not know that the other objects actually exist in
the database—A scientists usually focuses on a small subset of the
data—, Bob may not have time to read the entire article, extract all
its references to other objects, and then search the database to add
the links, and Alice may not be willing to put any effort in attaching
her comment to gene JW0014 since that gene is not of interest to
her. As a result, the database becomes under annotated.



GID Name Length Seq Family 

JW0013 grpC 1130 TGCT… F1 

JW0014 groP 1916 GGTT… F6 

JW0015 insL 1112 GGCT… F1 

… … … … … 

JW0018 nhaA 1166 CGTT… F1 

JW0019 yaaB 905 TGTG… F3 

JW0012 Yaal 404 TTCG… F1 

JW0027 namE 658 GTTT... F4 

From the exp, it 
seems this gene is 
correlated to   
   JW0014  
     or grpC 

Gene name yaal 

gene yaaB 
protein G-Actin  

Figure 1: Example of Under-Annotated DB.

Motivation Scenario 2− Implicit Correlations Between Anno-
tations and Data: In real-world applications, correlations between
the annotations and the data may exist. For example, continuing
with our demonstration in Figure 1, some genes in the database
may get annotated with “Rounded Flag” and “Triangle Flag" an-
notations as indicated in the figure. By analyzing the correlations
between the annotations and the data, we may discover that most
genes having value F1 in the Family column have an attached
“Rounded Flag” annotation. Such correlation suggests that gene
JW0012 is probably missing this annotations. Correlations may
even exist among the annotations themselves. Unfortunately, man-
ually defining correlation patterns between the annotations and the
data, e.g., by DB admins, may not be feasible. This is because
these correlations may not be known in advance, hard to capture
and express, dynamically changing over time, or even not 100%
conformed. As a result, links and associations between the annota-
tions and the data can be easily missed without detection.

These real-world scenarios are common in many applications,
and they yield the database under annotated. As a result, crucial and
valuable information can be lost, and the benefits from annotation
management may decrease over time. Nevertheless, the state-or-art
techniques in annotation management, e.g., [9, 15, 20, 32], are all
passive systems that only manage the available annotations. The
underlying assumption in these techniques is that the completeness
in annotating the data is a task that is performed outside the anno-
tation management engine, i.e., delegated to end-users and higher-
level applications. Clearly, this assumption is error prone, imprac-
tical in some cases, and does not scale as motivated by the above
scenarios. Instead, we need an advanced and proactive annotation
management engine that is capable of learning from the available
annotations, analyzing their associations and correlations with the
data, and discovering and recommending potentially new attach-
ments between the annotations and the data.

In this paper, we propose the “Nebula” system, a proactive an-
notation management engine in relational databases. We will fo-
cus only on addressing the challenges of the 1st motivation sce-
nario, i.e., the discovery and management of embedded references.
Nebula extends the annotation management engine with advanced
capabilities for analyzing and extracting semantics from annota-
tions, identifying potential references and relationships to other
database objects, and proactively providing recommendations for
establishing these missing attachments. The key challenges to be
addressed include:

(1) Identifying and extracting potential keywords from an anno-
tation that possibly reference other objects in the database. This
is a challenging task not only because the annotation itself can be
a large document or free-text value, but also because the database
objects are dynamically changing, too many to easily enumerate,
and can be referenced in different ways.

(2) Searching the database for objects matching the identified
keywords. DBMSs are optimized for structured query search, e.g.,
SQL queries. However, searching based on keywords requires ad-

vanced techniques and always involves uncertainty in the answer—
not to mention that the generated keywords themselves inherit a
degree of uncertainty since they are automatically generated.

(3) Ranking and prioritizing the predicted attachments. It is not a
straightforward task especially because the ranking should not de-
pend only on the confidence generated from the database search,
but it should also capture the relationships between the data tu-
ples and whether or not they have other annotations in common.
Therefore, such annotation-related context need to modeled and in-
tegrated within the system.

(4) Verifying the predicted attachments. Depending solely on ei-
ther of the system-generated confidence estimations or the domain
experts to verify the attachments may not be a practical solution.
We need a hybrid verification approach that offers high confidence
in the attachments while minimizing the involvement of domain
experts and DB admins.

The overall processing stages and key contributions of Nebula
are presented in Appendix A- Figure 16. These contributions are
summarized as follows:
• Introducing the new problem of proactive annotation manage-

ment. We propose formal definition and modeling for the concept
of “annotated database” and the problem of “discovery and man-
agement of embedded references”. We also propose quantification
criteria for “under-annotated databases”. (Section 3)
• Developing techniques for extracting the potential keywords

(embedded references) from the annotations and translating them to
keyword queries to identify the corresponding database objects. In-
stead of re-inventing the wheel, we leverage the existing work in the
area of keyword search over RDBMSs with substantial extensions
and optimizations to solve the problem at hand. (Sections 4, 5)
• Proposing several refinement and optimization techniques

that include: (1) Adjusting the predictions’ ranking based on
the annotations’ context and the relationships among the data tu-
ples, (2) Sharing the search execution among multiple concurrent
queries, and (3) Developing approximate searching techniques that
search only a very small—but highly promising—subset of the data
records instead of searching the entire database. (Section 6)
• Developing assessment criteria and adaptive verification tech-

niques for verifying the predicted attachments. The techniques
learn from training datasets and previously verified annotations to
balance between achieving a high prediction accuracy and mini-
mizing the involvement of domain experts. (Section 7)
• Implementing the Nebula prototype engine on top of an exist-

ing annotation management system [18]. As such, Nebula builds
on existing annotation-related functionalities, e.g., seamless stor-
age, organization, and propagation of annotations, and adds the
proposed proactive capabilities. The experimental evaluation us-
ing real-world workloads demonstrates the effectiveness of the pro-
posed techniques in predicting the missing attachments, e.g., some
of the proposed optimizations achieve up to 15x speedup without
sacrificing the accuracy. (Section 8)

2. RELATED WORK
Data curation and annotation is an emerging research topic due to

the increasing virtue and merit of the collected metadata in modern
applications. In the context of relational databases, various tech-
niques have been proposed to address different aspects of anno-
tation management. The techniques in [18, 20] focus on providing
efficient storage organization, indexing and compact representation
for the annotations. Some techniques, e.g., [9, 16, 20], focus on ex-
tending the query algebra and operators to seamlessly propagate
the annotations at query time. While other techniques focus on
supporting special types of annotations, e.g., provenance annota-
tions [11, 12, 16], hierarchical annotations [15, 23], belief annota-
tions [19], and summary-based annotations [31, 32].



Despite the contributions offered by the above techniques, a
common limitation to all of them is that they are all passive systems
that manage only the available annotations. Detecting whether or
not a database is under-annotated and discovering the missing at-
tachments is beyond the scope of these techniques. The techniques
proposed in [18, 25] offer mechanisms for automating the attach-
ment of annotations to data tuples by enabling the curator (anno-
tator) to specify predicates over the database as part of an annota-
tion’s definition. As such, newly added data tuples satisfying these
predicates will have the corresponding annotation automatically at-
tached to them. However, these techniques cannot be applied to the
problem at hand since they deal only with structured predicates in
the form of SQL queries (over the DB schema) without taking the
annotations’ content into account.

In some domains, e.g., scientific applications, publically avail-
able databases may go under a curation process [1, 2, 3, 29]. In this
process domain experts manually curate the data, ensure correct
and high-quality annotations are attached to the data, and poten-
tially add or remove further attachments between the annotations
and the data. Certainly, this curation process is very time con-
suming, error prone and does not scale well, and more importantly
consumes valuable cycles from domain experts and scientists. The
proposed Nebula system is not intended to entirely eliminate the
curation process. Instead, it is a complementary system by which a
significant effort in discovering missing attachments and relation-
ships between the data and the annotations can be automated. And
hence, freeing domain experts to do what they know best, which is
scientific experimentation.

Another related area of research is the keyword search in rela-
tional database. It is related to the proposed work because the em-
bedded references are ultimately a set of keywords scattered within
the annotations. Existing keyword search techniques, e.g., [5, 7, 27,
30], have made it feasible to execute unstructured queries (a.k.a.
keyword queries) over structured databases. Some techniques re-
quire a pre-processing phase over the data and building appropriate
indexes before answering queries [5, 27, 30]. Other techniques
rely on metadata information, e.g., schema information, data types,
domain constraints, in generating candidate SQL queries that may
answer the keyword query [7]. Nebula will leverage such exten-
sive work and existing techniques without re-inventing the wheel.
However, as we will discuss in Section 4, a naive approach that re-
lies solely on keyword search techniques would not be a practical
solution and will not lead to the desired results. Therefore, Neb-
ula uses such techniques as one component—which can be black
box—within a bigger processing framework.

3. PROBLEM STATEMENT
In this section, we formally define an annotated database, and

formulate the problem of proactive annotation management (Stage
0 in Figure 16).

Definition 3.1 (Annotated Database). An annotated database D is
modeled as a weighted bipartite graph D = {A, T , E}, where set
A consists of nodes representing the available annotations, set T
consists of nodes representing the data tuples in the database, and
the edges E represent the associations and attachments between the
annotations and the data tuples in a many-to-many relationship.

Figure 2 illustrates an example of an annotated databaseD. Each
edge e(a ∈ A, t ∈ T ) ∈ E is assigned a weight e.w ∈ [0, 1] rep-
resenting the confidence in this edge. E consists of two types of
edges: (1) Solid-line edges (called True Attachments), and these
are the attachments manually established by external sources, e.g.,
end-users, DB admins, and curators. These edges are assumed to
be correct and 100% accurate, i.e., have e.w = 1, as illustrated
in Figure 2. And (2) Dotted-line edges (called Predicted Attach-
ments), and these are the edges that Nebula proactively predicts to

           A 
 (Set of annotations) 

    T 
(set of tuples) 

E�
(set of attachments) 

0.9 

0.7 

0.85 

0.9 

Predicted Attachments 
(Confidence < 1) 

True Attachments 
(Confidence = 1) 

Figure 2: Modeling of an Annotated Database D.

be missing attachments, and assigns an estimated confidence value
(e.w < 1) to each of them. When a Predicted Attachment edge e is
verified and accepted by the system (Section 7), e changes its type
to a True Attachment edge with e.w = 1.

In an ideal world represented by an ideal database Dideal =
{A, T , Eideal}, each annotation a ∈ A is attached to all (and only
those) data tuples in T to which a is related. And hence, Eideal
contains neither false-negative (denoted by FN ) nor false-positive
(denoted by FP ) edges, i.e., Dideal.FN = Dideal.FP = 0. In our
context, an annotation is said to be related to a data tuple according
to the following definitions.

Definition 3.2 (Embedded Reference). An embedded reference to
a tuple t within an annotation a is defined as a set of keywords
{k1, k2, ..., km} not necessarily consecutive within a’s text that
collectively refer to and identify t.

Definition 3.3 (Annotation-to-Data Relationship). An annotation
a is said to be related to data tuple t if a is manually attached to t,
or a contains an embedded reference to t.

For example, Alice’s comment in Figure 1 contains two
embedded references, which are “gene...JW0014” and
“gene...grpC”. And thus, Alice’s comment is related to the
JW0019 gene tuple (since it is manually attached to it), and to the
JW0013 and JW0014 gene tuples (since it contains an embedded
reference to each of them).

Unlike the ideal database Dideal, a real-world database D may
diverge from Dideal. The following two evaluation metrics will
measure the quality of D w.r.t Dideal using the set-difference se-
mantics between the two sets Eideal and E as follows:

D.FN = |Eideal − E| / |Eideal|, ∈ [0, 1] (1)

D.FP = |E − Eideal| / |E|, ∈ [0, 1] (2)

whereD.FN captures the ratio of the false-negative edges in E , i.e.,
the edges in Eideal that are missing in E . Whereas, D.FP captures
the ratio of the false-positive edges in E , i.e., the edges in E that
are not present in Eideal. Based on Equations 1 & 2, an annotated
database D without any predicted edges, i.e., without dotted-line
edges, is guaranteed to have D.FP = 0, but D.FN might be large.
Our goal is thus, to minimize D.FN by discovering the missing
attachments, while keeping D.FP as small as possible.

Definition 3.4 (Discovery of Embedded References). Given an
annotation a ∈ A, which is manually attached to data tuples
{t1, t2, ..., tk} ⊂ T , our goal is to discover all other data tuples
{t′1, t

′
2, ..., t

′
m} ⊂ T (if any) to which a is related, i.e., ∃ e(a, t′i) ∈

Eideal & e(a, t′i) /∈ E , ∀ 1 ≤ i ≤ m. 1

1We assume that spam-like annotations, e.g., an annotation that ref-
erences all (or most) data tuples, do not exist. Detecting and han-
dling this type of annotations is beyond the scope of this paper [26].



Definition 3.5 (Annotation’s Focal). The focal of a given anno-
tation a ∈ A is denoted as Foc(a), and defined as Foc(a) =
{t1, t2, ..., tk}⊂ T , where t1, t2, ..., tk are the data tuples to which
a is manually attached.

For example, referring to Bob’s annotation in Figure 1, the ar-
ticle’s focal is the JW0013 gene tuple. Moreover, according to
Definition 3.4, Bob’s article may have three potential missing at-
tachments to the JW0019 and JW0012 gene tuples, as well as a
missing attachment to the G-Actin protein tuple (if they exist in
the database). As will be presented later, the annotation’s focal—as
part of the annotation’s context—will play a key role in the discov-
ery process w.r.t searching and ranking .

4. NAIVE BASELINE APPROACH
A naive approach to solve the problem at hand is to directly ap-

ply any of the existing keyword search techniques to discover the
data tuples related to a given annotation a. The naive approach
involves the following two main steps: (1) Passing annotation a
as input to a keyword search technique, i.e., the annotation’s con-
tent becomes a sequence of keywords to the search technique, and
(2) The search technique would search the entire database to iden-
tify the data tuples satisfying the input keywords. Without loss
of generality, Nebula uses the keyword search technique proposed
in [7] as it has shown superiority over other techniques, and it incor-
porates metadata repositories—which are already part of Nebula’s
system—into its computations.

As a brief overview, the algorithm in [7] starts by assigning
weights to each of the input keywords capturing whether a key-
word has a potential mapping to a schema item, e.g., a table name
or column name, or a database value. It is possible to have sev-
eral of these potential mappings for each keyword. From these
mappings, the algorithm constructs what are called configurations,
where each configuration captures one possible semantics of the
keyword query. And then, each configuration maps to one or more
SQL queries over the database. Each query has an assigned confi-
dence weight that captures the algorithm’s estimated confidence of
matching this query with the intended semantics. Finally, the pro-
duced data tuples from the SQL queries represent the answer to the
keyword query, each tuple inherits the confidence of its query.

Limitations of Naive Approach: Clearly, the naive approach
has severe limitations and drawbacks that affect not only the per-
formance, but also the accuracy in producing the expected results.
These limitations include:
• Vague and Imprecise Input: Keyword search techniques ex-

pect as input a short sequence of related keywords—usually less
than 5 keywords. In contrast, in our case, an input annotation can
be a general comment or big article (Refer to Bob’s and Alice’s an-
notations in Figure 1). As a result, the keyword search technique
will encounter significant degradation in accuracy due to the im-
precise input, produce very noisy results that most likely will be
worthless, and will take substantial time in processing many input
keywords. Therefore, the challenge is to pre-process the input an-
notation, identify potential keywords that are more likely to be em-
bedded references, and then form meaningful and concise keyword
query(s) that existing techniques can handle efficiently.
• Absence of Annotation-Related Context: Keyword search tech-

niques are oblivious to the annotation-related context. For example,
in keyword search, an input query is not attached to any data tuples.
And hence, the query has no starting or focal point that may affect
the produced answerset. In contrast, each annotation has a focal,
which may affect the desired answerset, e.g., affecting the selec-
tion of the candidate attachments as well as their ranking and con-
fidence weights. For example, since Alice’s comment is attached to
one of the genes, this increases the chance that the highlighted key-
word “JW0014” from the comment is also referring to another

Concept TableName Referenced BY 

Gene Gene Gene.ID | Gene.Name 

Gene Family Gene Gene.Family 

Protein Protein PID |  (PName & PType) 

… …. …. 

ConceptRefs Table (Part of NebulaMeta) 

The different concepts 
that may be referenced 
within annotations 

Which DB table 
stores this concept  

Most expected ways to 
reference the concept 
inside annotations 

Concept TableName Referenced BY 

Gene Gene Gene.ID | Gene.Name 

Gene Family Gene Gene.Family 

Protein Protein PID |  (PName & PType) 

… …. …. 

ConceptRefs Table (Part of NebulaMeta) 

DB concepts that 
may be referenced 
within annotations 

Which DB table 
stores this concept  

The expected ways 
to reference the 
concept inside 
annotations 

Figure 3: Example of Nebula’s Auxiliary Information.

gene— especially if such pair of genes has other annotations in
common. Therefore, the challenge is to incorporate and integrate
the annotation-related context into the search process to the extent
that searching the entire database can be avoided.
• Lack of Optimizations and Verifications: Our problem involves

several optimization opportunities and design issues that are be-
yond the scope of the standard keyword search techniques. For
example, existing techniques are designed to answer one query at a
time. In contrast, in our problem, a single annotation may generate
multiple keyword queries at once. Therefore, handling these mul-
tiple queries as a group opens new opportunities not only for op-
timizing their execution, but also for correlating and ranking their
results. Moreover, the predicted attachments between the annota-
tions and the data need to be verified through some mechanisms—
depending on the application’s sensitivity, the verification may ei-
ther be fully-automated or require experts’ involvement.

5. FROM ANNOTATIONS TO KEYWORD
QUERIES

In this section, we present techniques for pre-processing a given
annotation, identifying the potential embedded references, and
forming keyword search queries from those references (Stage 1
in Figure 16). To construct meaningful keyword queries, Nebula
relies on a variety of auxiliary information sources, e.g, domain
knowledge, lexical and semantic database repositories, syntactic
patterns and descriptions in the data, etc. The goal is to assign
weights to the different words in the annotation capturing the prob-
ability that a word would be part of an embedded reference vs. be-
ing a regular English word. And then, based on these probabilities,
we generate potential keyword queries.

5.1 Nebula’s Auxiliary Information
Nebula integrates a variety of sources into its metadata reposi-

tory, called “NebulaMeta”, which includes: (1) Publically avail-
able lexical and semantic knowledge databases, e.g., WordNet [4],
which maintain synonyms and hyponyms of the English words.
(2) Domain and expert knowledge capturing the synonyms and
equivalent names of the database tables and columns—especially
that the table and column names may have abbreviations with-
out obvious semantics, e.g., a column name “GID” will have an
equivalent name like “Gene ID” that is more semantically clear.
(3) Domain information for the different columns in the database
as well as any available ontologies and vocabularies, e.g., the val-
ues within a Gene.Function column may follow a specific on-
tology. In this case, these ontologies will be stored—along with
their links to the database columns—in NebulaMeta. And then,
during the search phase, estimating whether or not a given key-
word w references a database column, e.g., Gene.Function,
will depend on whether or not w is present in the corresponding
ontology. (4) Syntactic description and patterns of the column val-
ues, e.g., the values in the Gene.ID column in Figure 1 conform
with the regular expression of JW[0...9]4, whereas the values in
the Gene.Name column usually consist of four letters following
the regular expression of [a...z]3[A...Z]. These patterns can be even
extracted using automated techniques, e.g., [8]. (5) Samples drawn
randomly from specific database columns (See the ConceptRefs ta-



                                 QueryGeneration() 
 

Input:    
         - a = Input Annotation 
         - NebulaMeta = Nebula’s Auxiliary Information sources      
         - Cutoff threshold ε 
 

Output: 
         - Set of keyword search queries Q = {q1, q2, …, qn}   
 
Step 1. Generation of Concept-Map 

For (each word w in a) Loop 
      For (each table or column name c in ConceptRef) Loop 

      // Estimate the probability that w maps to c 
              Compute p(w,c) based on NebulaMeta  
      End Loop 
      If ( p(w,c) < ε  for all c) Then  

    replace w in the Concept-Map with ‘-’ 
       End If 
End Loop  

 
Step 2. Generation of Value-Map 

For (each word w in a) Loop 
      For (each column c in ConceptRef) Loop 

      // Estimate the probability that w maps to domain(c) 
              Compute d(w,c) based on NebulaMeta  
      End Loop 
      If ( d(w,c) < ε  for all c) Then  

    replace w in the Value-Map with ‘-’ 
       End If 
End Loop  

 
Step 3. Overlaying maps & Context-Based Adjustment 
     Context-Map ! Overlay Concept-Map and Value-Map.  
     Context-Map ! ContextBasedAdjustment(Context-Map). 
 
Step 4. Generating the keyword search queries 
        Q ! ContextMap-To-Queries(Context-Map). 

!"!"!"!" !"!"!"!" !"!"!"!"
!"!"!"!" !"!"!"!"
!"!"!"!" !"!"!"!" !"!"!"!" !"!"!"!"
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!"!"!"!"
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!"!"!"!"

Concept-Map 

Value-Map 

Context-Map 

Matching Pattern Reward 

Type-1             {                  }  
(related to the same concept)  

+ β1% 

Type-2               {              } 
(related to the same concept)  

+ β2%   (< β1 ) 

Type-3               {              } 
(related to the same concept)  

+ β3 %  (< β2 ) 

, , 

, 

, Map to table T1 
with probability p1 

Map to table T2 
with probability 
p2 

Map to column 
c’s domain with 
probability d1 

!"!"!"!" !"!"!"!"
!"!"!"!"
!"!"!"!" !"!"!"!" !"!"!"!"

!"!"!"!"
!"!"!"!"

!"!"!"!"
!"!"!"!" !"!"!"!"
!"!"!"!" !"!"!"!"

!"!"!"!"

Mapping to a table name 
Mapping to a column name 

Mapping to a column value (domain) 

(a) Pseudocode generating keyword queries from annotation a 

(b) Signature Maps 

(c) Context-Based Matching Types 

(d) From Context-Map to Keyword Queries  

                                   ContextMap-To-Queries() 
Input:  - Context-Map 
             - α = Influence range size    // Number of words on both sides  
Output: Set Q = {q1, q2, …, qn}  // Set of keyword queries 
 

1.  For (each word w in Context-Map) Loop 
2.        w.bestMapping ! the highest-weight mapping of w 
3.       w. bestMatch ! Search within w.range for the best matching 
4.        If (w.bestMatch exists) Then 
5.             Generate new query q = the keywords of w.bestMatch 
6.              Set q.weight = Σ (v.weight) �v in  w.bestMatch keywords 
7.              Q ! add query q 
8.        Else If (w.range is empty and w is hexagon shape) Then 
9.               w’ ! The closest rectangle or triangle keyword before w 
10.              If (w’ has a mapping matching with w.bestMaping) Then 
11.                   Form a new query q and add it to Q as in Lines 5-7. 
12.              End If           
13.        End If 
14.   End Loop 
15.  Eliminate duplicates within Q by keeping the highest-weight  
        q in each group. 
16.  Normalize the weights within Q by dividing by the largest weight. 

From the exp, it 
seems this gene is 
correlated to   
   JW0014  

From the exp, it 

seems this gene is 

correlated to   

   JW0014  

Figure 4: Extracting Keyword Search Queries From Annotation a.

ble below) if they have no attached ontology or syntactic patterns.
And (6) Domain and expert knowledge capturing the key concepts
in the database, and the most probable ways, i.e., columns’ combi-
nations, for referring to these concepts within the annotations.

As an example, the ConceptRefs system table in Figure 3 is part
of NebulaMeta. It stores the key concepts in a biological database
and the most probable ways for referencing them inside the annota-
tions. For example, among the key concepts are Gene, Protein, and
Gene Family (1st column). Concepts do not have to belong to sep-
arate database tables, e.g., the genes and gene families are stored in
the same Gene table (2nd column). The 3rd column captures the
most probable ways by which a concept may be referenced within
an annotation, e.g., a gene is most probably referenced by either its
GID or Name columns, while a protein is more likely to be refer-
enced using either its PID column, or the combination of PName
and PType columns. In the context of this paper, we assume that
populating the ConceptRefs table is performed by the domain ex-
perts 2.

5.2 Signature Maps and Queries Generation

5.2.1 Generation of Signature Maps
We outline the key steps in the query-generation algorithm

(called QueryGeneration()) in Figure 4(a). The algorithm’s inputs
include: (1) an input annotation a (which is newly inserted into
the database), (2) the NebulaMeta auxiliary information, and (3) a
cutoff threshold ε. The algorithm starts by generating two types of
maps, called signature maps, which emphasize and highlight the
important keywords within annotation a.

2In extreme cases, a module can be developed for learning from
the available annotations the key concepts in the database that they
frequently reference, and by which column(s). However, this is
beyond the scope of this paper.

Step1 in the algorithm generates the Concept-Map. This map
highlights the words that are more likely to reference a table name
or a column name included in the ConceptRefs auxiliary table. The
algorithm loops over each word w in the annotation (outer loop),
and each table name and column name c included in ConceptRefs
(inner loop), and estimates a matching weight between them, i.e.,
p(w, c). To compute p(w, c), we consider whether or not: (1) w is
exactly matching c, (2) w is matching equivalent names of c (de-
fined by domain experts), or (3) w is matching synonyms of c. The
first two matching types give higher weight than the third type, oth-
erwise the weight is zero. If w does not have a good matching with
any of the concepts, i.e., p(w, c) < ε, ∀c, where ε is an input
threshold, then w is ignored and replaced with ‘−’ in the Concept-
Map as depicted in Figure 4(b). For the ease of illustration and
further discussion, we use a rectangle, and triangle shapes to indi-
cate potential mappings from the word to either of a table name, or
a column name, respectively. Notice that each of the emphasized
words may have multiple potential mappings.

The second generated map is called Value-Map (Step 2 in the
QueryGeneration() algorithm). This map highlights the keywords
that are more likely to reference a value within the database—more
specifically a value in any of the columns included in the Concep-
tRefs auxiliary table. The algorithm loops over each word w in the
annotation (outer loop), and each of the target columns c, and com-
putes a weight indicating the probability that w belongs to the do-
main of c, i.e., d(w, c). To compute d(w, c), we consider whether
or not: (1)w has the same data type as c, (2)w belongs to c’s ontol-
ogy (if any), (3) w follows c’s regular expression pattern (if any),
and (4) w has good matching with c’s drawn sample (if c has no as-
sociated ontology or regular expression pattern). The more positive
matching of these factors, the higher the weight. Similar to Step 1,
if d(w, c) < ε, ∀c, then w is ignored and replaced with ‘−’ in the
Value-Map as depicted in Figure 4(b). Each emphasized word in



Value-Map—highlighted as a hexagon shape—may have multiple
potential mappings to different column domains, each with differ-
ent d(w, c) probability.

In Step 3, the algorithm overlays the two maps on top of each
other such that the emphasized words will be put into the others’
context. The generated map is referred to as the Context-Map as
illustrated in Figure 4(b). The next step is to adjust the assigned
weights—either p(w, c) or d(w, c)—depending on the surround-
ing context and how well the mappings will match with the neigh-
bors’ mappings. Therefore, QueryGeneration() will call Function
ContextBasedAdjustment() to adjust the probabilities as will be de-
scribed in the next section.

5.2.2 Context-Based Weight Adjustment
Before describing how the weights are adjusted based on the sur-

rounding context, we will first introduce the matching types used
in the adjustment process. We identify three types of matching
based on the context, which are summarized in Figure 4(c). Type-1
matching (the strongest match) means that we are able to form a
matching that consists of a table name, column name, and a value
within that column. This is indicated in Figure 4(c) by having a
set of three shapes {rectangle, triangle, hexagon}. For example,
if words {“gene”, “Id”, “JW0018”} are within one context, then
they form a Type-1 matching. As a result, the probabilities of map-
ping the 1st word to the gene table, the 2nd word to the ID column
within that table, and the 3rd word to a value within this column
should all be rewarded and increased. The Type-2 matching is a
weaker match but still common. It means that a matching can be
formed consisting of a table name and a database value (without a
column name), e.g., a comment may include “gene yaaB”. Again
the mappings that result in such a match will be rewarded, but with
a smaller benefit compared to Type-1 matching. Finally, the Type-
3 matching in which the formed matching consists of the column
name and a value (without a table name). This is the weakest match
and its rewarding is smaller compared to the other types.

Based on these context-based matching types, the Con-
textBasedAdjustment() Function works as follows (A pseduocode
of the function is presented in Appendix A- Figure 17). The func-
tion loops over each word w in Context-Map and creates an influ-
ence range around w, called w.range. The influence range w.range
is α words to the left and to the right of w, where α is an input
parameter to the function. This range represents the surrounding
context of w within which the matching patterns are most likely
to be found. Therefore, for each potential mapping of w, referred
to as w.mapping, the function will search within w.range if any of
Type-1 matchings can be formed. If any, then for each match, the
weight of w.mapping will be increased by β1 precent. Otherwise,
the search continues to the lower-ranked matches, i.e., Type-2 fol-
lowed by Type-3 matches. The best match of these types will incre-
ment the weight of w.mapping by β2, or β3 percent, respectively,
where β3 < β2 < β1 as indicated in Figure 4(c).

5.2.3 Generation of Keyword Search Queries
The last step of the QueryGeneration() algorithm is to form po-

tential keyword queries from the Context-Map (Step 4). The al-
gorithm is outlined in Figure 4(d). The algorithm will first loop
over each keyword w, and only w’s highest-weight mapping will be
considered, say w.bestMapping (Line 2). Based on this mapping,
the algorithm will form the best possible matching within w’s in-
fluence rage (w.range), i.e., forming Type-1 match, and if not then
forming Type-2 match, and if not then forming Type-3 match (Line
3). This best match (if any) will form a keyword search query
q = {k1, k2, k3} (for Type-1 matching), or q = {k1, k2} (for
Type-2 or Type-3 matching). We then set the weight of q to be the
sum of weights assigned to its keywords’ selected mappings, and
then add it to the output set Q (Lines 5-7).

                                  IdentifyRelatedTuples() 
 

Input: Q = { q1, q2, …, qn}   // Set of keyword queries,  
            D ! the annotated database  
 

Output: T = {t1, t2, …, tx}  // Set of candidate tuples   
 

Step 1: Executing the keyword queries 
1.  For (each query q in Q) Loop 
2.        q.answer = KeywordSearch(q, D)     //each tuple t has t.conf [0, 1] 
3.         For (each tuple t in q.answer) Loop 
4.               t.conf = t.conf x q.weight       //incorporate the query’s weight 
5.          End Loop    
6.         T ! add q.answer to T 
7.  End Loop 

Step 2: Group tuples and reward the frequent ones 
9.  Group tuples in T based on tuples content 
10.  For (each group g of tuple t) Loop 
11.           t.conf = Σ ti.conf, forall ti in g  
 

Step 3: Normalize the weights 
12.  maxC = maximum confidence in T 
13.   For (each t in T) Loop 
14.         t.conf /= maxC      
15.   End Loop   
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Figure 5: Identifying DB tuples Related to annotation a.

We consider one important special case while generating the key-
word queries, in which the concept keyword (a rectangle or triangle
shape), may appear earlier in the text and it may not repeat with
each of the following values (a hexagon shape) belonging to this
concept. This case is common in human writing as studied in [17,
24]. For example, in Alice’s comment the keyword “gene” is
not repeated before the keywords “JW0014” or “grpC” since
the context is already around genes. To address this special case
(Lines 8-12), the algorithm checks if a hexagon-shape keyword w
has an empty influence range w.range. If that is the case, then the
algorithm searches backward (starting from w’s position) until it
finds the closest concept, i.e., a rectangle- or triangle-shape key-
word, say w’. If w.bestMapping and a mapping from w’ can form
a Type-2 or Type-3 match, then a keyword query q = {w′, w}
will be formed. Otherwise, w will be ignored. The last steps of
the ConceptMap-To-Queries() Function (Lines 15-16) are to elimi-
nate any duplicates within Q by keeping only the highest-weight q
from each group, and then normalize the weights of the remaining
queries to be between [0, 1].

6. EXECUTION, REFINEMENT, AND OP-
TIMIZED PROCESSING

The next step after generating the set of keyword queries Q
is to execute them (Stage 2 in Figure 16). In the following, we
will present the basic version of the execution algorithm, and then
propose several refinement and optimization strategies to enhance
its performance and accuracy. Due to space limitations, we will
omit one of the proposed optimizations, which concerns the shared
query execution among the keyword queries in Q. In summary, the
underlying keyword search technique in [7] will generate for each
query q ∈ Q one or more candidate SQL query(s), each captures
a potential semantic of q (Refer to Section 4). Therefore, Nebula
exploits possible sharing opportunities among the SQL queries in-
stead of executing them in isolation.

6.1 Basic Execution Algorithm
The IdentifyRelatedTuples() algorithm in Figure 5 outlines the

key execution steps. In Step 1, each keyword query q ∈ Q is sub-
mitted to the search technique in [7] for execution—As indicated
before, any other technique can be used (Line 2). Each tuple t



in the answerset will be assigned a confidence value t.conf that is
computed by internal criteria specific to the underlying search tech-
nique. Nevertheless, Nebula adjusts this confidence according to
the query’s weight q.weight by multiplying them together (Lines
3-6). And then, the answerset is added to the final output T . In the
next step (Step 2), the algorithm rewards the tuples that appear in
the answerset of more than one query. The intuition is that if a tu-
ple t satisfies multiple queries generated from the same annotation,
then this increases the probability that t is actually related to the
annotation. Therefore, the algorithm groups the tuples, and sums
the confidences within each group (Lines 9-11). Finally, in Step
3, the confidences are normalized relative to the largest confidence
value (Step 3). By the end of this step, T will contain the final out-
put set of the candidate data tuples that are likely to be referenced
by annotation a. Each tuple t carries a confidence t.conf ∈ [0, 1]
reflecting Nebula’s confidence of this attachment.

It is important to highlight that while searching for the relevant
tuples given a keyword query, the underlying search algorithm in-
ternally leverages the FK-PK relationships among the database ta-
bles to produce meaningful related tuples (Line 2). That is why
Nebula does not re-examine or adjust the weights based on these
relationships. Moreover, Nebula does not explicitly take the struc-
tural similarity among the data tuples into account because, by de-
fault, all tuples inside a single table will have the same structure.
And thus, this property cannot effectively discriminate between tu-
ples in the database. Instead, we incorporate another, more effec-
tive, property based on the annotations’ focal as described in the
next section.

6.2 Focal-Based Confidence Adjustment
An annotation’s focal (Def. 3.5) can be leveraged in different

ways to enhance Nebula’s accuracy in discovering the embedded
referenced. We will first introduce a new data structure, called “An-
notations Connectivity Graph” (a.k.a ACG). ACG is illustrated in
Figure 6, where each annotated tuple in the database is represented
by a node in the graph. An edge e(ti, tj) connects two tuples ti and
tj iff there are common annotations between the two tuples. Each
edge has a weight e.weight (indicated by αi in Figure 6) represent-
ing the ratio between the common annotations to the total number
of annotations attached to both ti and tj tuples. The ACG struc-
ture is incrementally built offline by Nebula as more annotations
are attached to the data tuples.

The intuition behind using ACG to adjust the confidence of the
candidate data tuples is as follows. Assume annotation a has two
tuples in its focal, i.e., Foc(a) = {t1, t4} as illustrated in Figure 6.
After analyzing a and extracting the potential embedded references,
the data tuples produced from the IdentifyRelatedTuples() Function
are T = {t3, t5, t7, tx}, where tx is not even present in ACG.
Certainly, the fact that t3 is connected to both t1 and t4, i.e., already
share other annotations with them, increases Nebula’s confidence
that a might also be referencing t3—especially if α1 and α2 are
closer to 1. The same applies to t5 but with slightly less confidence
degree since t5 shares some annotations with only one focal tuple,
i.e., t4. Whereas, for t7 and tx, the ACG structure does not suggest
an increase in their confidence.

To reflect the ACG structure on the candidate tuples’ confidence,
we extend Step 2 in IdentifyRelatedTuples() Function (Refer to
Figure 5) by adding the following lines of code after the grouping
step, i.e., after the loop in Lines 10-11.

For (each t ∈ T) Loop
For (each e(t, f) ∈ ACG, ∀ f ∈ Foc(a)) Loop

t.conf += e.weight x t.conf

End For
End For

t1 

t2 

t3 

t4 

t5 t6 t7 

α1 α2 

α3 

… 
… 

… 
… 

… 

Annotation a’s Focal (Initial attachments)   

Graph nodes (database tuples) 

Each edge e(ti, tj) indicates that ti & tj share common annotations.  
The e.weight (α) is the ratio between the common annotations to 
the total annotations attached to ti & tj.  

t10 

t11 

Figure 6: Annotations Connectivity Graph (ACG).

That is, for each direct edge each e(t, f) between tuple t and one of
the annotation’s focal f , t’s confidence will be increased according
to the e’s weight. The higher the weight and the larger the num-
ber of direct edges to focal tuples, the higher the reward that tuple
t receives. The adjustment model can be easily extended to take
into account the shortest path—in terms of the number of hops—
between t and each focal tuple instead of only the direct edges. In
this case, tuple t7, for example, will get some reward based on its
4-hop distance from t4, e.g., by multiplying the weights of the in-
between edges. However, Nebula currently incorporates only the
direct edges to adjust the weights since the latter extension is se-
mantically weaker and may cause model overfitting.

6.3 Approximate Searching with Focal-Based
Spreading

The key intuition here is that as the ACG structure gets mature
over time, i.e., models more and more annotations, the graph gets
relatively stable and not many new edges are added. In this case,
there is a good chance that the embedded references in a given an-
notation will be referring to direct (or close) neighbors of the anno-
tation’s focal. And thus, instead of searching the entire database—
which is a very expensive operation—, we can focus the search
only on the neighbors of the annotation’s focal. Towards this goal,
we first introduce the notion of ACG stability as follows.

Definition 6.1 (ACG Stability). The ACG structure is said to be
stable iff for the most recent batch of annotations of size B with
total number of attachments to database tuples M (M ≥ B) , the
number of newly added edges to ACG is N , where N/M < µ.

where the batch size B, and the stability threshold µ < 1 are con-
figuration parameters. The ACG’s stability property—which is a
Boolean value— changes from one batch to another. For ease of
computations, the system considers non-overlapping batches (not
sliding batches). That is, when the current batch collects B an-
notations, the ACG’s stability property will be re-computed based
on that batch. And then, the counters are reset for the next batch.
When the ACG structure is marked as stable, then Nebula follows
the intuition described above, and searches only neighbors of the
annotation’s focal.

We investigated several variants of implementing this intuition
inside Nebula. One variant, called Fixed-Scope, is to search a
fixed K-hop neighbors of the annotation’s focal. This is performed
by extending Step 1 in Figure 5 and replacing Lines 1- 2 by the
following lines:

- miniDB = Form a materialized view of the K-hop

neighbors of tuple f in ACG, ∀f ∈ Foc(a)

- For (each query q ∈ Q) Loop
- q.answer = KeywordSearch(q, miniDB)

...
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Figure 7: Metadata Profile for Dynamic Selection of K.

That is, the system will perform the keyword search opera-
tion over a mini database miniDB consisting of only the K-hop
neighbors of the annotation’s focal, where K is a parameter that
specifies the radius around the focal tuples. For example, refer-
ring to Figure 6, the 1-hop neighbors of annotation a consists of
{t2, t3, t5, t10, t11}. Each tuple in miniDB will follow the schema
of its own table, and thus creating a materialized mini version of
the original database.

A key question in the focal-based spreading search is: How
to specify the value of K? Blindly setting K to a large value
may cause unnecessarily processing overhead, while setting it to
a small value may cause the accuracy to be unacceptably low.
To help guiding this decision, Nebula creates and maintains a
profile on how the ACG structure changes over time. The profile
is a simple histogram structure consisting of an array of integers,
called Bucket, and is built as follows. Assume an annotation a
with focal tuples Foc(a), for which Nebula predicts a set of True
Attachment tuples T = {t1, t2, ...., tx}. This means that a will be
attached to each of these tuples, and hence an edge will be added to
ACG between each ti and each of the focal tuples Foc(a) (unless
the edge already exists). Before adding these edges, Nebula will
perform the following step.

For (each t ∈ T) Loop
- S = shortest path from t to any of Foc(a)

assuming un-weighted ACG.

- //Update the profile

- profile.Bucket[S.length] += 1;

End For

While computing S, we assume un-weighted ACG since we care
about the smallest number of hops from t to reach any of the an-
notation’s focal. And then, we update the profile by increment-
ing the bucket corresponding to S.length, i.e., Bucket[S.length]
is incremented by 1. The intuition is that, if we were to discover
t by searching only the neighbors of the annotation’s focal, then
K would need to be at least equal to S.length (or larger), other-
wise t would have been missed. By accumulating more points in
the profile over time, the distribution of points across the different
buckets would give us a good guidance on where to setK (See Fig-
ure 7). For example, according to the example profile illustrated in
Figure 7, by setting by setting K = 2, or K = 3, we expect to
discover 71%, or 93% of the candidates, respectively. The reason
is that based on the history, 71%, and 93% of the candidates pro-
duced from the entire database search were 2-hop, and 3-hop away
from at least one of the focal tuples, respectively. The profile can
be then used either by the DB admins to manually select K, or by
the system to automatically select K given a desired accuracy.

7. VERIFICATION AND ASSESSMENT
So far, we presented various techniques and optimizations for

discovering and predicting the missing attachments of a given an-
notation a to a set of data tuples T = {t1, t2, ..., tx}. In this sec-
tion, we address how these predicted attachments are verified and
how the different techniques are assessed (Stage 3 in Figure 16).
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Figure 8: Verification Bounds and Assessment Variables.

Definition 7.1 (Verification Task). A verification task v is defined
as v = (vid, a, t, confidence, evidence), where vid is a unique
system-generated identifier, a is an annotation, t is a database tu-
ple to which Nebula predicted a missing attachment, confidence is
the estimated confidence of the attachment, and evidence is the set
of evidences supporting Nebula’s prediction. The result of v is a
Boolean decision of either accepting the attachment (becomes a
True Attachment), or rejecting and discarding the attachment.

In the current implementation, v.evidence contains all the key-
word queries q generated from a for which t is part of the answer.
The objective from reporting v.evidence is to help the DB admins
in the verification process. Since manual verification of all verifica-
tion tasks—which can be many—is not a practical solution, Nebula
relies on two thresholds βlower and βupper as highlighted in Fig-
ure 8, where a verification task v having v.confidence < βlower

will be automatically rejected (discard from the system). Whereas,
if v.confidence > βupper , then v will be automatically accepted
(becomes a True Attachment with 100% confidence). In contrast,
if βlower ≤ v.confidence ≤ βupper , then v would require expert
involvement for verification. In this case, v is called a “pending
verification task”, and stored in a system table for further process-
ing. This table can be queried by database admins (or authorized
users) to report the pending tasks and verify them. To verify a task,
the following extended SQL command is introduced:

[Verify | Reject] Attachement <vid>;

The new command is needed because if the attachment is ver-
ified and accepted, then a sequence of actions will be performed
by the system transparently from end-users. These actions include:
(1) Attaching annotation a to tuple t (it becomes a True Attach-
ment), (2) Updating the ACG structure to reflect the new attach-
ment (Refer to Figure 6), and (3) Updating the metadata profile that
guides the focal-based spreading technique (Refer to Figure 7). No-
tice that the same actions will be performed for each automatically
accepted task whose v.confidence > βupper .

Assessment: The verification decisions will be assessed accord-
ing to four criteria. We assume that the number of attachments be-
tween a and the data tuples in the ideal world Dideal is denoted by
Nideal. The predictions of the system can be categorized into five
categories according to the βlower and βupper bounds as depicted
in Figure 8. The number of automatically rejected predictions is
denoted by Nreject. The number of manually-verified predictions
is denoted by Nverify , which is further divided into Nverify−T

(if the verification is positive), or Nverify−F (if the verification is
negative), such that Nverify = Nverify−T + Nverify−F . Fi-
nally, the number of automatically accepted predictions is denoted
by Naccept, which is further divided into Naccept−T (if the predic-
tion is correct), orNaccept−F (if the prediction is wrong), such that
Naccept = Naccept−T + Naccept−F . Based on these variables,
the assessment criteria is defined as follows.

Definition 7.2 (Assessment Criteria). For a given annotation a,
the prediction of a’s missing attachments is assessed based on four
criteria: (1) The false-negative ratio FN , (2) The false-positive
ratio FP , (3) The manual effort involved in the verification process
MF , and (4) The manual hit ratio (conversion ratio) MH . The
criteria factors are defined as:



      BoundsSetting() 
Input: 
         - Training dataset DTraining,  Tolerance  threshold Ψ  (e.g., 0.1) 
Output: Setting values for βlower and βupper  
 

Step 1: Distort the training dataset  and generate Dincomplete  
1.  For (each annotation a) Loop 
2.        - Remove all of a’s attachments to the data tuples  
3.               which are referenced within a, except one. 
4.  End Loop 
 

Step 2:  Compute the assessment criteria 
5.  For (each annotation a in Dincomplete) Loop 
6.         - Let Nebula predicts the missing attachments 
7.         For (each possible setting of βlower and βupper ) Loop  
8.                - Compute FN, FP, MF, and MH   (w.r.t DTraining)  
9.             End For 
10.  End For 
 

Step 3:  Select the best βlower & βupper  
11.   For (each possible setting of βlower and βupper ) Loop         
12.      - Compute average over all annotations: GFN, GFP, GMF, GMH  
13.  End For   
14.  Select the settings of βlower and βupper that minimizes GMF  
15.         while keeping GFN < Ψ  and GFP < Ψ.  

Figure 9: Adaptively Adjusting βlower & βupper Bounds.

FN = Nideal − (Nverify−T + Naccept−T + Nfocal)

Nideal

FP = Naccept−F

(Nverify−T + Naccept + Nfocal)

MF = Nverify

MH = Nverify−T / Nverify

The FN and FP factors capture the accuracy and completeness
of the prediction, whereas MF and MH capture the required effort
by domain experts in the verification process. Notice that the only
source producing false positives, i.e., FP > 0, is the automatically
accepted predictions that are actually wrong Naccept−F .

Adaptively Adjusting the βlower and βupper Bounds: The
specification of the two bounds βlower and βupper is clearly an im-
portant factor since they affect the accuracy of the accepted/rejected
predictions as well as the balance between automating the verifi-
cation decision vs. involving the domain experts in the process.
For example, if βupper = 1, then no predictions will be automat-
ically accepted and they must be manually verified. In contrast,
if βlower = βupper , then all the predictions will be decided auto-
matically without any expert involvement. The optimal scenario is
to minimize FN and FP with zero involvement from domain ex-
perts, i.e., MF = 0. This is due to the potential long delays in
human actions, the inability to scale to many verification tasks, and
more importantly their valuable time that should not be consumed
in the verification process. However, entirely eliminating the ex-
perts from the process may not be feasible due to the uncertainty
involved in deciding whether or not an annotation is related to a
data tuple. Therefore, βlower and βupper should be adjusted to
generate acceptable FN and FP while minimizing MF .

To help adjusting βlower and βupper to proper values, we peri-
odically deploy the algorithm presented in Figure 9. Nebula uses a
training dataset DTraining in which each annotation a is attached
to all (and only those) tuples related to a. DTraining is built by
selecting a subset of the annotations from the underlying database,
e.g., selecting few 100s of the available annotations, and then man-
ually verifying their attachments and adding any missing ones. And
then, the algorithm distorts the dataset by considering each anno-
tation a and removing all its attachments to the data tuples except
one. The resulted distorted dataset is called Dincomplete (Step 1

in Figure 9). The system will then try to discover the missing at-
tachments (Line 6), and then assess such prediction for different
settings of βlower and βupper (Lines 7-9). Notice that all the vari-
ables defined in Figure 8 can be automatically computed (including
Nverify−F and Nverify−T ) since DTraining dataset is available.
For example, Nverify−F will correspond to the verification tasks
located between βlower and βupper that do not have a matching in
DTraining . In Step 3, we average the assessment measures over
all the annotations for each setting for βlower and βupper , and then
take the best setting that minimizes the expert involvement (MF )
while keeping FN and FP within an acceptable range.

Further enhancements can be applied to the BoundsSetting()
algorithm—which are omitted from Figure 9 for simplicity. These
enhancements include: (1) In Step 1, we may consider different de-
grees of dataset distortion, e.g., we may remove all attachments of
a given annotation except 2 or 3 links, which creates less-distorted
versions of the dataset. And (2) In Step 3, Lines 7-9, instead of
blindly exploring different values of βlower and βupper , we can use
MH factor to guide the adjustment of the bounds. For example,
if MH is high (closer to 1), then this means that most manually-
verified predictions are accepted. In this case, the algorithm may
lower βupper (moving it to the left) to allow accepting more pre-
dictions automatically without passing them for verification.

It is worth mentioning that in practice Nebula does not require
the Dideal dataset to be present—which is the typical cases in real-
world applications. In this case, the assessment criteria can be com-
puted periodically by the domain experts as follows: (1) Given a
set of m newly added annotations, the domain experts will exam-
ine them and identify the True attachments, i.e., Nideal, (2) Nebula
will provide its predictions for each annotation in m divided into
the three categories depicted in Figure 8, i.e., Reject, Verify, and Ac-
cept, and (3) The domain experts will compute the assessment cri-
teria factors for each annotation, and can even compute additional
statistics, e.g., min, max, and average, across the m annotations.

8. EXPERIMENTS
Nebula is implemented on top of an existing annotation manage-

ment system [18], which offers end-to-end annotation management
functionalities, e.g., mechanisms for adding annotations, transpar-
ent storage and indexing, and automated propagation of annotations
along with the queries’ answers at query time. The experiments
are conducted using an AMD Opteron Quadputer compute server
with two 16-core AMD CPUs, 128GB memory, and 2 TBs SATA
hard drive. Figure 10 summarizes the key experimental parameters,
which are described in the following section.

8.1 Experimental Setup and Workloads
Curated Biological Datasets: We use a subset of the UniProt

real-world annotated biological database [3]. UniProt offers a com-
prehensive repository for protein and functional information for
various species. We extracted three main tables including Protein,
Gene, and Publication. The tables are connected through the fol-
lowing relationships: The Protein table has a many-to-one relation-
ship with Gene, and many-to-many relationships with Publication.
The Gene table has also a many-to-many relationship with Publica-
tion. The dataset consists of approximately 750,000 protein records
(≈ 4.7GBs), 1.3 x 106 gene records (≈ 8GBs), and 12 x 106 pub-
lication records (≈ 4.5GBs). Thus, the total size of the dataset is
approximately 18GBs.

We divide the dataset to form three experimental subsets with
different sizes, which are: (1) Small-Size Dataset (Dsmall) in
which we select 10% of the proteins, genes, and their related pub-
lications (≈ 2GBs), (2) Mid-Size Dataset (Dmid) in which we se-
lect 50% of the proteins, genes, and their related publications (≈
9GBs), and (3) Large-Size Dataset (Dlarge) in which we use the
entire extracted records (≈ 18GBs). The NebulaMeta repository
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Figure 10: Summary of Workload Parameters.

is manually populated by adding the two concepts of “Gene” and
“Protein” to the ConceptRefs table, and identifying their ID, and
Name columns to be the referencing columns. We also speci-
fied regular expression patterns over the values in Gene.ID and
Gene.Name columns.

Annotation Workload: We use the publication records in the
dataset to represent the annotations over the gene and protein
records. To create the workload for each of the three datasets, i.e.,
D = {Dsmall, Dmid, orDlarge}, the following procedure is fol-
lowed (A visual representation of the datasets and the workload
mixture is presented in Appendix A- Figure 18):

(1) The annotated dataset D is assumed to be an ideal and com-
plete dataset, i.e., when verifying Nebula’s recommendations, D
will be treated as the reference Dideal dataset.

(2) A workload over D is created by selecting a mixture of an-
notations, which will act as the new annotations to be inserted into
the database. The workload consists of four distinct sets, denoted
as L50, L100, L500, L1000, where each Lm consists of a total of 15
annotations, each of a max size of m bytes.

(3) The 15 annotations within each Lm are selected such that
they are divided equally across three distinct subsets (5 from each
subset), which are denoted as L1−3, L4−6, and L7−10. Set Li−j

contains annotations having a number between i and j (inclusive)
of embedded references to the Gene and/or Protein tables (See
Figure 18). For example, “L100.L4−6” is a set in the workload that
contains 5 annotations, each of a max size of 100 bytes, and each
contains between 4 to 6 embedded references to the gene and/or
protein records. This step involves a manual effort to identify the
publications that have the desired number of embedded references
under each group 3. The workload is designed in such way to ensure
the inclusion of annotations with various sizes as well as diverse
number of embedded references.

(4) The ACG structure for dataset D is built from the FK-PK re-
lationships between the publication records and the gene and pro-
tein records, i.e., two tuples—from any of the Protein and Gene
tables—having common a publication will have an edge between
them in ACG. The only exception is that the annotations used in
the workload, i.e., part of theLm sets, do not participate in building
the ACG. This is because they will be treated as new annotations.
The ACG is built at once and not in an incremental fashion.

As summarized in Figure 10, the other important parameters in-
clude the cutoff threshold ε, which is used in generating the sig-
nature maps, the distortion degree ∆, where an annotation a with
∆ = x means that all of a’s links to the gene and protein records
will be dropped except x links, and parameter K, which represents
the number of considered hops in the focal-based spreading search.

3Set “L50.L7−10” was always empty since not as many embedded
references can fit within a 50-char annotation. Therefore, we sub-
stituted the missing annotations by additional ones added to L1−3

and L4−6 subsets.

8.2 Performance Evaluation
Generation of Keyword Queries: In Figure 11, we focus on

studying the performance of generating the keyword queries from
a given annotation. These experiments are independent of the
database size since they focus only on analyzing the annotation’s
content. Therefore, we use the workload created from the largest
dataset Dlarge. Each experiment is repeated 15 times, one for each
annotation in Lm, and the average values are presented in the fig-
ures. In the Naive approach, the entire annotation is assumed to
be a single query, and thus we assume the needed time to gener-
ate the query in this case is zero. In Nebula , the generation goes
through three phases, which are: (1) The generation of the Con-
cept and Value signature maps, (2) The overlaying and context-
based weight adjustment, and (3) The generation of the keyword
queries. The execution time taken by each of these phases is il-
lustrated in Figure 11(a). We study the performance under various
cutoff threshold (ε) and annotation sets (Lm), which are presented
on the x-axis. As illustrated in Figure 11(a), the first phase (map
generation) takes around 2/3 of the execution time, and then the
other two phases consume around 1/3 of the time. As the cutoff
threshold gets larger, less number of keywords qualify to be added
to the signature maps, and thus less work is needed to align them
and generate candidate keyword queries.

In Figure 11(b), we present the number of generated keyword
queries from the previous experiment under the different Lm and ε
values. The cutoff threshold ε = 0.4 is clearly very low and causes
the number of generated queries to be relatively high—Recall that
each annotation has less than 10 embedded references, and thus
in the ideal case, we should expect around 10 keyword queries.
This large number of generated queries is due to the fact that many
keywords from the annotation will pass the 0.4 threshold. In con-
trast, for ε = 0.6 & 0.8 the thresholds are tighter and less number
of queries are generated. Although this is a good sign, this figure
does not capture whether or not the queries represent the actual em-
bedded references within the annotation. Therefore, we manually
investigate the generated SQL queries and check whether a query
refers to something other than an embedded reference (False Posi-
tive), or some embedded references are not captured by any query
(False Negatives). We report the results in Figure 11(c).

The presented numbers in Figure 11(c) indicate that for ε = 0.4
no embedded references were missed, i.e., the false negative per-
cent is zero. However, very large percentage of the generated
queries search keywords that are not embedded references, e.g.,
91% of the generated queries in the case of L1000 are false posi-
tives. The 0.6 cutoff is superior over the 0.4 value since the 0.6
threshold also has zero false negatives but significantly less false
positives (as well as less number of total queries as illustrated in
Figure 11(b)). The tightest threshold 0.8 misses few embedded ref-
erences, yet its false positive results are very low compared to the
other values, e.g., it has zero false positives under L50. Even under
larger annotation sizes, e.g., L1000, where the false positive per-
centage reaches 54% for ε = 0.8, the effect is not as severe as in
the cases of ε = 0.4 or 0.6 because: (1) The number of queries for
the 0.8 threshold is relatively very small (Refer to Figure 11(b)),
and (2) As the number of false-positive queries becomes smaller,
less noise propagates to the subsequent phases, i.e., the tuple-level
weight adjustment (Section 6.1), and the focal-based confidence
adjustment (Section 6.2). And thus, these phases become more ef-
fective and produce better-quality results.

In general, there is no golden value for ε that works the best in
all cases. However, as our experiments show, and has been also re-
ported in literature in related keyword search problems [7], values
between 0.5 and 0.8 usually yield good results. In the rest of the ex-
periments, we will exclude the 0.4 threshold from the comparison
as it has no advantage over the 0.6 threshold.
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Figure 12: Performance of Candidate Tuple Generation.

Execution of Keyword Queries: After generating the keyword
queries, we study their execution performance in Figure 12. The
x-axis presents the different database sizes as well as the various
annotation sets Lm under each database. The comparison includes
the Naive approach in which the keyword query includes the en-
tire content of the annotation. In Figure 12(a), we measure the
total execution time, i.e., the time of one query in the case of the
Naive approach, and the sum of the execution times from the n
queries generated from Nebula. As indicated in the figure, the
Naive approach is five orders-of-magnitudes slower than the other
two cases; Nebula-0.6 (using ε = 0.6), and Nebula-0.8 (using
ε = 0.8). Moreover, under larger annotation sets, e.g., L100 or
larger, it was not even feasible to execute the Naive approach.

The performance between Nebula-0.6 and Nebula-0.8 is rela-
tively comparable. The differences in execution time are mainly
due to the number of queries being executed as well as the number
of produced tuples, which is depicted in Figure 12(b). The number
of produced tuples from the queries again confirm that the Naive
approach is useless as it returns 100s of thousands of tuples under
the smallest annotation set L50. This is due to the keyword query
itself being very imprecise, and hence the underlying search tech-
nique returns a significant portion of the database. It is important
to highlight that for Nebula-0.6 and Nebula-0.8 the number of re-
turned tuples does not grow in the same ratio as the database size
grows. This is because many of the queries are on columns with
unique values, and thus the increase in the database size does not
necessarily reflect on the number of returned tuples.

Referring back to Figure 12(a), the reported execution time of
Nebula’s techniques represent the sum of times from executing
each keyword query in isolation, i.e., no multi-query sharing. This
is the default mode, especially if the underlying keyword search
technique is used as black box. Nevertheless, as we highlighted in
Section 6, if we enable shared execution among the SQL queries
generated from the keyword search technique, then significant sav-
ings can be achieved. For completeness, we report in Figure 13 the
performance gain from such query sharing. We repeat the same
experiment as in Figure 12(a) while comparing Nebula-0.6 and

Nebula-0.8 with their sharing-enabled variants. The results indi-
cate around 40% to 50% speedup in execution time while produc-
ing the same number of output tuples.

Finally, the performance of executing the keyword queries us-
ing the approximate focal-based spreading technique is presented
in Figure 14. In this experiment, we set the database to the largest
oneDlarge, the cutoff threshold to ε = 0.6 (as it has zero false neg-
atives), and the annotation set to L100 (an average-size set). More-
over, there is no sharing while executing the queries. This exper-
iment is sensitive to the number of initial attachments between an
annotation and the database records (the focal points). Therefore,
we vary the distortion degree ∆ over the x-axis, which controls the
number of focal points that an annotation will have, and measure
the performance under various values ofK, i.e., the number of hops
around each focal point. The results in Figure 14(a) illustrate that
the execution time is around 15x faster than the basic search with-
out sharing. Moreover, when compared with multi-query sharing,
it is around 8x faster. This is mostly due to searching a small—but
highly-promising—subset of the database.

Clearly, as the two key parameters ∆ andK increase, the number
of the searched tuples will increase, which will reflect on increasing
both the execution time (Figure 14(a)), and the number of produced
tuples (Figure 14(b)). By comparing Figures 12(b) and 14(b), we
observe that the number of produced tuples is significantly less in
the latter case. Therefore, the advantages of the focal-based spread-
ing search are not limited only to speeding up the execution time,
but also to reducing the verification overhead, which will be stud-
ied next. We repeated the experiments in Figure 14 using different
dataset sizes and cutoff ε thresholds, and the insights from the re-
sults are almost the same, i.e., significant gain in execution time
and an order-of-magnitude reduction in the candidate tuples.

Verification and Assessment: Since the ideal database Dideal

is known in our experiments, i.e., for a given annotation a we know
all of its attachments to the database tuples, then the assessment
criteria introduced in Definition 7.2 can be easily computed. Even
the expert-verified factors Nverify−F and Nverify−T can be au-
tomatically computed, i.e., Nverify−T represents all the candidate
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Figure 13: Shared Query Execution.
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Figure 14: Focal-Spreading Approximate Search.
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Figure 15: Evaluation of the Verification and Assessment Criteria.

tuples that lie between βlower and βupper and their links to a ex-
ist in Dideal, while Nverify−F represents those tuples that lie be-
tween βlower and βupper and their links to a do not exist inDideal.
This is under the assumption that experts do not make errors. The
evaluation is repeated 15 times, once for each annotation in L100,
and the average values are presented in the figures.

In Figure 15, we fix the annotation set to L100, and the database
to the largest one Dlarge. We then evaluate each of the four as-
sessment criterion under eight different configurations (the x-axis),
which include the basic algorithm without approximation under
two cutoff thresholds Nebula−0.6 and Nebula−0.8, and six con-
figurations for the focal-based approximate searching with vari-
ous ∆ and K parameters. In Figure 15(a), the verification bounds
βlower and βupper are automatically adjusted using the algorithm
presented in Section 7. The DTraining dataset is built by ran-
domly selecting 500 annotations from the database, and manually
verifying their attachments. The algorithm has set the bounds to
βlower = 0.32 and βupper = 0.86. The results show that there
is no single configuration that dominates the others in all criteria
factors. Nevertheless, in general, Nebula−0.8 is performing better
than Nebula−0.6, especially when considering the manual effort
needed from the experts’ side (the MF factor). Yet, Nebula−0.8
introduces around 20% false negatives. The second observation is
that the focal-based approximate techniques are performing very
well, especially under K = 3 or K = 4.

In the above experiment, we exclude the evaluation of the Naive
approach w.r.t. the assessment criteria since it does not scale to an-
notation sizes beyond L50 (Refer to Figure 12). However, to con-
firm the infeasibility of this approach, we computed the assessment
factors {FN , FP , MF , MH} for the L50 case in which 587,040
tuples have been returned (Figure 12(b)), and the results are {0,
0.93, 318427, 1.6e− 5}, respectively. This means that for a single
annotation, the domain experts will need to verify 318,427 annota-
tions from which only 5 will be accepted. These numbers provide a
clear evidence that Nebula enables a new functionality in annotated
databases that is not possible otherwise.

In Figure 15(b), we evaluate an extreme case in which we man-
ually set the verification bounds βlower = βupper = 0.5. In this
case, there will be no expert involvement in the verification pro-
cess. The results show that the FP values get significantly higher,
and hence the techniques create many wrong associations between
the annotation and the data tuples. Moreover, the FN values also
get higher by a noticeable percentage. We repeated the same exper-
iment by setting βlower and βupper to the same value (but different
from 0.5), and in all cases the FN and FP were relatively very high
compared to the results in Figure 15(a). Our conclusion is that it
may not be feasible to entirely exclude the experts from the verifi-
cation process while achieving good results. However, the results
in Figure 15(a) are promising and show that with a reasonable in-
volvement, we can achieve acceptable results.

9. CONCLUSION
In this paper, we presented the un-addressed problem of proac-

tive annotation management in relational databases. We focused
on one sub-problem, which is the discovery and management of
embedded references within the annotations. To address this prob-
lem, we proposed the Nebula engine that complements the state-of-
art in annotation management with proactive capabilities. The key
contributions introduced by Nebula are: (1) Proposing techniques
for analyzing the annotations’ content and discovering the embed-
ded references, (2) Extending the state-of-art in RDBMS-based
keyword search techniques to efficiently search and find the data tu-
ples corresponding to the embedded references, (3) Proposing vari-
ous annotation-aware optimizations including focal-based weight
adjustment, approximate searching with focal-based spreading,
and multi-query shared execution, and (4) Developing an expert-
enabled verification mechanisms that adaptively minimize the ex-
perts’ involvements while maintaining high-accuracy predictions.
The experimental evaluation illustrates the significant gain in en-
hancing the quality of annotated databases, the effectiveness of the
proposed optimization techniques, and the reduction in the time-
and resource-consuming process of manual curation.
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APPENDIX

A. SUPPORTING FIGURES
In this section, we include several supporting and illustrative fig-

ures. Figure 16 presents the main processing stages of the Neb-
ula system along with the key contributions in each stage, which
are: Stage 0: The modeling of an annotated database, the insertion
of new annotations, and identifying the focal points (Section 3),
Stage 1: The analysis of the annotation’s content, constructing sig-
nature maps, and the generation of keyword-search queries (Sec-
tion 5), Stage 2: The execution of the queries either over the entire
database, or over a small subset surrounding the focal points (Sec-
tion 6), and Stage 3: The verification of the generated candidate at-
tachments and assessing the results’ quality (Section 7). Figure 17
presents a detailed pseudocode for the ContextBasedAdjustment()
Function, which is introduced in Section 5.2.2, and called from the
QueryGeneration() Function (Figure 4(a)). The function adjusts
the weights assigned to each candidate keyword in the annotation
based on the keyword’s surrounding context. Finally, Figure 18
presents a visual representation of the experimental datasets and
the annotation workload based on which Nebula is evaluated (Sec-
tion 8).



Nebula’s Main Processing Stages. Nebula has three 
main processing stages triggered by the insertion of a 
new annotation (Stage 0), which are: 
 

Stage 1:  In which the annotation’s content is analyzed, 
the metadata information (NebualMeta) is consulted, and 
signature maps are generated. The signature maps 
highlight the keyword combinations that potentially 
represent embedded references. Those combinations will 
create a pool of keyword-search queries.   
 

Stage 2: In which the queries are executed to produce 
candidate attachments between the new annotation and 
other tuples in the DB. Nebual has two execution modes: 
(1) Full DB Search, and (2) Approximate Focal-
Spreading Search. In both modes, NebulaMeta plays a 
key role in adjusting the confidence degree, and/or 
limiting the search space. The results are candidate 
attachments called “verification tasks”. 
 
Stage 3: In which the verification tasks are either 
automatically accepted, automatically rejected, or 
manually verified by experts (depending on their 
confidence scores). Nebula deploys adaptive algorithms 
to set the bounds between these three decisions. The goal 
is to achieve a high-quality prediction while maintaining 
experts’ involvement to a minimal acceptable degree.   
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Figure 16: The Main Processing Stages of Nebula.

ContextBasedAdjustment() 
Input:  - Context-Map 
             - α = Influence range size                            // Number of words on both sides  
 

Output: Updated Context-Map   
 

1.  For (each word w in Context-Map) Loop 
2.         w.range = Form an influence range around w of size α (both sides) 
3.          For (each potential mapping w.mapping of w) Loop  
4.                 If (w.mapping can form with other mappings in w.range a  Type-1 match) Then 
5.                        Increment w.mapping weight by β1% for each match 
6.  Else If (w.mapping can form with other mappings in w.range a Type-2 match) Then 
7.                        Increment w.mapping weight by β2% for each match 
8.  Else If (w.mapping can form with other mappings in w.range a Type-3 match) Then 
9.                        Increment w.mapping weight by β3% for each match 
10.  End If 
11.            End Loop 
12.  End Loop 

(d) Adjusting the mappings’ weights based on the context 

ContextBasedAdjustment() Function (Section 5.2.2).  The 
function loops over each word w in Context-Map and creates an 
influence range around w called “w.range” (Line 2). The influence 
range w.range is α words to the left and to the right of w. This range 
represents the surrounding context of w within which the matching 
patterns are most likely to be found.  
 
For each potential mapping of w, referred to as w.mapping, the 
function will search within w.range for any of  Type-1 matching. If 
any can be formed, then for each match, the weight of w.mapping 
will be increased by  β1% (Lines 4-5). Otherwise, the search 
continues to the lower-ranked matches, i.e., Type-2 and Type-3 
matches, as illustrated in Lines 6-10. Any match of these types will 
increment the weight of w.mapping by β2%, or β3%, respectively. 

Figure 17: Pseduocode of the ContextBasedAdjustment() Function.

An annotated dataset D = {Dsmall, Dmid, or Dlarge }. D is assumed to be the ideal database (Dideal).  
The extracted workload is a small subset from D as indicated below.  

15 annotations in total, 
each of max size 50 bytes. 
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L4-6 

L7-10 L1-3 

15 annotations in total, each 
of max size 100 bytes. 
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Set L500 

5 annotations 
from each of: 

L4-6 

L7-10 L1-3 

15 annotations in total, each 
of max size 1000 bytes. 

Set L1000 

5 annotations 
from each of: 

L4-6 

L7-10 L1-3 

15 annotations in total, each 
of max size 500 bytes. 

Workload: Four annotation sets, which will be treated as new 
annotations. Nebula’s performance and recommendations will be 
evaluated based on this mixture of workload. Total: 60 annotations.  
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ACG: The ACG structure is built from all 
the annotations in the dataset D except 
those in the workload. It will be built at 
once not incrementally. 

Li-j: A set of annotations, each contains a number of 
embedded references between i and j. 

Experimental Datasets and Workload (Section 8.1).  
Nebula is evaluated under three datasets Dsmall, Dmid, 
Dlarge. From each dataset, a workload is extracted as 
illustrated in the figure. The total number of 
annotations within a workload is 60 divided into 4 
disjoint groups: L50, L100, L500, and L1000.  The 
annotations in each group are further selected from 3 
disjoint subsets: L1-3, L4-6, and L7-10. 
 
The ACG structure is built from all of the annotations 
in the dataset (Dsmall, Dmid, or Dlarge) excluding the 
annotations selected within the workload. 

Figure 18: Visual Representation of the Experimental Datasets and the Extracted Annotation Workload.


