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ABSTRACT
Jaql is a declarative scripting language for enterprise data analysis
powered by a scalable runtime that leverages Hadoop’s MapReduce
parallel programming framework. Jaql is used in IBM’s Cognos
Consumer Insight [6], the announced InfoSphere BigInsights [3],
as well as several research projects. Through these interactions
and use-cases, we have focused on the following core design prin-
ciples: (1) a flexible data model, (2) reusability, (3) varying lev-
els of abstraction, and (4) scalability. The data model is inspired
by JSON and can be used to represent data that varies from flat,
relational tables to collections of semi-structured documents. To
support the various phases of data analysis, Jaql is able to operate
without knowledge of the schema of the data; queries can evolve
towards partial or rigid schema definitions over time. Reusability
is provided through the use of higher-order functions, and by pack-
aging related functions and their required resources into modules.
While Jaql is declarative, it is built from layers that vary in their
level of abstraction. Higher levels allow concise specification of
logical operations (e.g., join), while lower levels blend in physi-
cal aspects (e.g., hash join or MapReduce job). We have exposed
such functionality so that it is easier to add new operators or to
pin down an execution plan for greater control. Finally, Jaql auto-
matically rewrites scripts to use Hadoop’s MapReduce for parallel
data processing, when possible. Our experimental results illustrate
that Jaql scales well for real and synthetic workloads and highlights
how access to lower-level operators enabled us to parallelize typi-
cally sequential flows for scalably analyzing large datasets.

1. INTRODUCTION
The overwhelming trend towards digital services, combined

with cheap storage, has generated massive amounts of data
that enterprises need to effectively gather, process, and analyze.
Techniques from the data warehousing and high-performance com-
puting communities are invaluable for many enterprises. However,
oftentimes their cost or complexity of scale-up discourages the
accumulation of data without an immediate need [9]. As valuable
knowledge may nevertheless be buried in this data, related and
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complementary technologies have been developed. Examples in-
clude Google’s MapReduce [11], its open-source implementation
Apache Hadoop [15], and Microsoft’s Dryad [18]. These systems
are conducive to the “collect first, ask questions later” principle.
Web-centric enterprises, which were both developers and early
adopters of such scaled-up architectures, quickly recognized
the value of higher-level languages within this environment, as
evidenced by Google’s Sawzall [33], Microsoft’s DryadLINQ [42],
Yahoo’s work on Apache Pig [30], and Facebooks’s work on
Apache Hive [38].

Traditional enterprises are increasingly experimenting with—
and, in some cases, relying on—such scaled-up architectures. In
this context, Jaql is used most notably by IBM in several products,
including Cognos Consumer Insights [6] and the announced
BigInsight’s [3] for building data centric applications and for ad
hoc data analysis. The workloads from these products, as well
as from various research projects are diverse and range from
analyzing internal data sources for intranet search [2], cleansing
and integrating multiple external data sources for the financial and
government sectors [35, 1], developing and using models through
Monte Carlo simulation [41], monitoring network data for security
purposes [25], analyzing both transaction and system log data, and
employing collaborative filtering techniques to predict customer
behavior [28] [10]. Such use cases guided the development of the
Jaql language and its processing system.

In this paper, we describe the Jaql (JSON Query Language)
project [16], which at its core consists of two main components:
(1) Jaql, a declarative scripting language for enterprise data anal-
ysis, and (2) the Jaql system, which includes the query compiler
and processing subsystems. We refer to all three—the project,
the language, and the system—as Jaql and disambiguate only
when needed. Jaql is used to develop data processing flows that
are executed in parallel on Hadoop’s MapReduce implementa-
tion, when possible. Jaql is influenced by Pig [30], Hive [38],
DryadLINQ [42], and others, but has a unique focus on the
following combination of core design principles: (1) a flexible data
model, (2) reusable and modular scripts, (3) the ability to specify
scripts at varying levels of abstraction, henceforth referred to as
physical transparency, and (4) scalable query processing.

We now summarize how Jaql addresses its design goals.
Flexible Data Model: Jaql’s data model is based on JSON, a

simple text format and standard (RFC 4627). As a result, Jaql’s
data model is sufficiently flexible to handle semi-structured doc-
uments, which are often found in the early, exploratory stages of
data analysis (such as logs), as well as the structured records that
are often produced after data cleansing stages. Jaql is able to pro-
cess data without or with only partial schema information, which
is also useful for exploration. For enhanced efficiency, Jaql can en-



force and exploit rigid schema information for both type checking
and improved performance. In addition, since JSON was designed
for data interchange, there is a low impedance mismatch between
Jaql and user-defined functions written in a variety of languages.

Reusability and Modularity: Jaql blends ideas from program-
ming languages along with flexible data typing to enable encap-
sulation, composition, and ultimately, reusability and modularity.
Borrowing from functional languages, Jaql supports lazy evalua-
tion and higher-order functions, i.e., functions are treated as first-
class data types. Jaql is able to work with expressions for which the
schema is unknown or only partially known. Consequently, users
only need to be concerned with the portion of data that is relevant
to their task. Finally, many related functions and their correspond-
ing resources can be bundled together into modules, each with their
own namespace.

Physical Transparency: Jaql exposes every internal physical
operators as functions in the language, and allows users to com-
bine various levels of abstraction within a single Jaql script. Thus
the convenience of a declarative language is judiciously combined
with precise control over query execution, when needed. Such low-
level control is somewhat controversial but provides Jaql with two
important benefits. First, low-level operators allow users to pin
down a query evaluation plan, which is particularly important for
well-defined tasks that are run regularly. After all, query optimiza-
tion remains a challenging task even for a mature technology such
as an RDBMS. This is evidenced by the widespread use of the op-
timizer “hints”. Although useful, such hints only control a limited
set of query execution plan features (such as join orders and access
paths). Jaql’s physical transparency goes further in that it allows
full control over the execution plan.

The second advantage of physical transparency is that it enables
bottom-up extensibility. By exploiting Jaql’s powerful function
support, users can add functionality or performance enhancements
(such as a new join operator) and use them in queries right
away. No modification of the query language or the compiler
in necessary. The Jaql rewriter exploits this design principle to
compile high-level declarative expressions to lower-level function
calls, which also have a valid representation in Jaql’s syntax. This
well-known compiler design pattern is called source-to-source
compilation ( see [23] for an example) and, to the best of our
knowledge, Jaql is the first data processing language that exploits
this technique and makes it available to users.

In summary, physical transparency offers users a complete spec-
trum of control– declarative expressions are preferable when they
work, hints cover the common lapses in optimization, and physical
transparency offers direct access an Jaql plan when needed.

Scalability: Jaql is designed to parallelize scripts over collec-
tions of relatively small semi-structured objects distributed among
a cluster of commodity servers. The achieved scalability is es-
sential for both large datasets and expensive per-object computa-
tions. By focusing on such collections, many of the innovations
developed for shared nothing databases are applicable. Some of
these techniques—such as parallel scan, repartitioning, and paral-
lel aggregation—are also present in MapReduce, along with fault-
tolerance and dynamic scheduling to circumvent hardware and soft-
ware failures. Given a script, Jaql translates it into an evalua-
tion plan consisting of MapReduce jobs and, when necessary, in-
termediate sequential steps. Results in Section 6 show that Jaql
scales well and illustrates how physical transparency enabled us to
parallelize typically sequential flows for scalably analyzing large
datasets.

The remainder of the paper is organized as follows. We review
related work in Section 2. Jaql’s data model and schema is de-

scribed in Section 3. We discuss the Jaql language in Section 4,
and the system implementation in Section 5. Section 6 contains the
experimental results. Finally, we conclude in Section 7.

2. RELATED WORK
Many systems, languages, and data models have been developed

to process massive data sets, giving Jaql a wealth of technologies
and ideas to build on. In particular, Jaql’s design and implementa-
tion draw from shared nothing databases [12, 37], MapReduce [11],
declarative query languages, functional and parallel programming
languages, the nested relational data model, and XML. While Jaql
has features in common with many systems, we believe that the
combination of features in Jaql is unique. In particular, Jaql’s use
of (higher-order) functions is a novel approach to physical trans-
parency, providing precise control over query evaluation.

Jaql is most similar to the data processing languages and sys-
tems that were designed for scaled-out architectures such as Map-
Reduce and Dryad [18]. In particular, Pig Latin [30], Hive [38],
and DryadLINQ [42] have many design goals and features in com-
mon. Pig Latin is a dynamically typed query language with a flexi-
ble, nested relational data model and a convenient, script-like syn-
tax for developing data flows that are evaluated using Hadoop’s
MapReduce. Hive uses a flexible data model and MapReduce but
its syntax is based on SQL, and it is statically typed. Microsoft’s
Scope [7] has similar features as Hive, except that it uses Dryad
as its parallel runtime. In addition to physical transparency, Jaql
differs from these systems in three main ways. First, Jaql scripts
are reusable due to (higher-order) functions. Second, Jaql is more
composable: all language features can be equally applied to any
level of nested data. Finally, Jaql’s data model supports partial
schema, which assists in transitioning scripts from exploratory to
production phases of analysis. In particular, users can contain such
changes to schema definitions without a need to modify existing
queries or reorganize data.

While SQL, Jaql, and Pig Latin are distinct data processing lan-
guages, Microsoft’s LINQ [24], Google’s FlumeJava [8], and the
Cascading project [5] offer a programmatic approach. We focus on
LINQ, due to its tighter integration with the host language (e.g.,
C#). LINQ embeds a statically typed query language in a host
programming language, providing users with richer encapsulation
and tooling that one expects from modern programming environ-
ments. DryadLINQ is an example of such an embedding that uses
the Dryad system for its parallel runtime. Jaql functionality dif-
fers in three main ways. First, Jaql is a scripting language and
lightweight so that users can quickly begin to explore their data.
Second, Jaql exploits partial schema instead of a programming lan-
guage type system. Finally, it is not clear whether DryadLINQ
allows its users to precisely control evaluation plans to the same
degree that is supported by Jaql’s physical transparency.

Sawzall[33] is a statically-typed programming language for
Google’s MapReduce, providing domain specific libraries to easily
express the logic of a single MapReduce job. In comparison, Jaql
scripts can produce data flows composed of multiple MapReduce
jobs.

A key ingredient for reusability is for functions to be poly-
morphic, often through table-valued parameters [19]. Examples
of systems that support such functionality include AsterData’s
SQL/MapReduce [13] and Oracle’s pipelined table functions [31].
AT&T’s Daytona [14] is a proprietary system that efficiently
manages and processes massive flat files using SQL and procedural
language features. NESL [4] is a parallel programming language
that specializes on nested data. In contrast, Jaql is designed to
process semi-structured, self-describing data and its support for



higher-order functions offer more options for reusability.
RDBMS’ and native XML data management systems offer a

wide range of flexibility for processing semistructured data and
have had a significant influence on Jaql’s design. For reusability,
Jaql includes many of the features found in XQuery [40] such as
functions and modules/namespaces. However, we are not aware
of an XQuery implementation that also supports higher-order func-
tions. In addition, except for DB2’s PureXML [17] and MarkLogic
Server [27], most XQuery systems have not been implemented for
shared-nothing architectures. Finally, Jaql’s physical transparency
is a significant departure from such declarative technology.

3. DATA MODEL AND SCHEMA
Jaql was designed to process large collections of semi-structured

and structured data. In this section, we describe Jaql’s data model,
called JDM, and schema language.

3.1 Data Model
Jaql uses a very simple data model: a JDM value is either an

atom, an array, or a record. Most common atomic types are sup-
ported, including strings, numbers, nulls, and dates. Arrays and
records are compound types that can be arbitrarily nested. In more
detail, an array is an ordered collection of values and can be used to
model data structures such as vectors, lists, sets, or bags. A record
is an unordered collection of name-value pairs—called fields—and
can model structs, dictionaries, and maps.

Despite its simplicity, JDM is very flexible. It allows Jaql to op-
erate with a variety of different data representations for both input
and output, including delimited text files, JSON files, binary files,
Hadoop’s sequence files, relational databases, key-value stores, or
XML documents.

Textual Representation. Figure 1 shows the grammar for the
textual representation of JDM values. The grammar unambiguosly
identifies each data type from the textual representation. For ex-
ample, strings are wrapped into quotation marks ("text"), num-
bers are represented in decimal or scientific notation (10.5), and
booleans and null values are represented as literals (true). As
for compound types, arrays are enclosed in brackets ([1,2]) and
records are enclosed in curly braces ({a:1, b:false}). Note that
JDM textual representation is a part of Jaql grammar, thus we use
terms JDM value and Jaql value interchangeably. Also note that
this representation closely resembles JSON, a popular and stan-
dardized text format for data exchange. In fact, Jaql’s grammar and
JDM subsumes JSON: Any valid JSON instance can be read by
Jaql. The converse it not true, however, as JDM has more atomic
types. This resemblance has multiple advantages. While JSON
was designed for JavaScript, it has been found useful as a format
for data exchange between programs written in many different pro-
gramming languages, including C, C++. C#, Java, Python, and
Ruby, to name just a few. Due to its closeness to JSON, Jaql can
readily exchange data with all those languages.

Example 1 Consider a hypothetical company KnowItAll, Inc.
that maintains a repository of documents. The following is an
excerpt in JDM’s textual representation.

[
{ uri: "http://www.acme.com/prod/1.1reviews",
content: "Widget 1.1 review by Bob ...",
meta: { author : "Bob",

contentType: "text",
language: "EN" } },

{ uri: "file:///mnt/data/docs/memo.txt",

<value> ::= <atom> | <array> | <record>
<atom> ::= <string> | <binary> | <double> |

<date> | <boolean> | ’null’ | ...
<array> ::= ’[’ ( <value> (’,’ <value>)* )? ’]’
<record> ::= ’{’ ( <field> (’,’ <field>)* )? ’}’
<field> ::= <name> ’:’ <value>

Figure 1: Grammar for textual representation of Jaql values.

<schema> ::= <basic> ’?’? (’|’ <schema>)*
<basic> ::= <atom> | <array> | <record>

| ’nonnull’ | ’any’
<atom> ::= ’string’ | ’double’ | ’null’ | ...
<array> ::= ’[’ ( <schema> (’,’ <schema>)*

’...’? )? ’]’
<record> ::= ’{’ ( <field> (’,’ <field>)* )? ’}’
<field> ::= (<name> ’?’? | ’*’) (’:’ <schema>)?

Figure 2: Grammar for schema

content: "The first memo of the year ...",
meta: { author: "Alice",

language: "EN" } },
...

]

Relationship to other data models. Jaql’s data model con-
sciously avoids many complexities that are inherent in other semi-
structured data models, such as the XQuery Data Model (XDM)
and the Object Exchange Model (OEM). For example, Jaql’s data
model does not have node identity or references. As a consequence,
Jaql does not have to deal with multiple equality semantics (object
and value) and Jaql values are always trees (and not graphs). These
properties not only simplify the Jaql language, but also facilitate
parallelization.

3.2 Schema
Jaql’s ability to operate without a schema, particularly in con-

junction with self-describing data, facilitates exploratory data anal-
ysis because users can start working with the data right away, with-
out knowing its complete type. Nevertheless, there are many well
known advantages to schema specification, including static type
checking and optimization, data validation, improved debugging,
and storage and runtime optimization. For these reasons, Jaql al-
lows and exploits schema specifications. Jaql’s schema and schema
language are inspired by XML Schema [39], RELAX NG [34],
JSON schema [21], and JSONR [20]. The schema information
does not need to be complete and rigid because Jaql supports partial
schema specification.

Jaql uses a simple pattern language to describe schemas, see Fig-
ure 2. The schema of an atomic type is represented by its name,
e.g., boolean or string. The schema of an array is represented
by using a list of schemas in brackets, e.g., [boolean, string].
Optionally, usage of ... indicates that the last array element is re-
peatable, e.g., [string, double ...]. The schema of records
are defined similarly, e.g., {uri: string} describes a record
with a single field uri of type string. Question marks indicate op-
tionality (for fields) or nullability (otherwise). We refer to a schema
as regular if it can be represented with the part of the language just
described. Regular schemas give a fairly concise picture of the ac-
tual types in the data. In contrast, irregular schemas make use of
wildcards—such as nonnull or any for values of arbitrary type,
* for fields of arbitrary name, or omission of a field’s type—or
specify different alternative schemas (using |). In general, irregu-
lar schemas are more vague about the data. The simplest irregular



schema is any; it matches any value and is used in the absence of
schema information.

Example 2 The excerpt of the KnowItAll data shown in Example 1
conforms to the following regular schema:

[ { uri: string, content: string,
meta: { author: string, contentType?: string,

language: string }
} ... ],

where ? marks optional fields. This schema is unlikely to gener-
alize to the entire dataset, but the following irregular schema may
generalize:

[ { uri: string, content: any, meta: {*: string} }
... ].

The ability to work with regular and irregular schemas allows Jaql
to exploit schema information in various degrees of detail. In con-
trast to many other languages, Jaql treats schema as merely a con-
straint on the data: A data value (and its type) remains the same
whether or not its schema is specified.1 This makes it possible to
add schema information—whether partial or complete—as it be-
comes available without changing the data type or any of the ex-
isting Jaql code. For example, initial screening of the KnowItAll
dataset might be performed using schema [{*}...], which in-
dicates that the data is a collection of arbitrary records. When
in later phases, as more and more information becomes available,
the schema is refined to, say, [{uri:string,*}...], all existing
code can be reused as is, but will benefit from static type checking
and increased efficiency. In contrast, refinement of schema often re-
quires a change of data type, and consequently query, in many other
languages. For example, a dataset of arbitrary records is modeled
as [{fields:map}...] in Pig Latin [30] and LINQ [24], which
both support flexible map containers that can store heterogeneous
data. When information about field uri becomes available, it is
propagated by pulling uri out of fields. The schema and data
type becomes [{uri:string, fields:map}...] and all refer-
ences to uri in the query have to be modified.

4. LANGUAGE
This section describes the core features of the Jaql language. A

series of examples is used to emphasize how the language meets its
design goals of flexibility, reusability, and physical transparency.

4.1 A Simple Example
Jaql is a scripting language. A Jaql script is simply a sequence of

statements, and each statement is either an import, an assignment,
or an expression. The following example describes a simple task
and its Jaql implementation.
Example 3 Consider a user who wants to gain some familiarity
with the KnowItAll data by learning which fields are present and
with what frequency. Figure 3 shows a conceptual data flow that
describes this task. The data flow consists of a sequence of “op-
erators”; example data is shown at various intermediate points.
The read operator loads raw data—in this case from Hadoop’s
Distributed File System (HDFS)—and converts it into Jaql values.
These values are processed by the countFields subflow, which
extracts field names and computes their frequencies. Finally, the
write operator stores the result back into HDFS.

This task is accomplished by the following Jaql script:
1In contrast, parsing the same XML document with or without an
XML Schema may result in different XQuery data model instances
with different data types.

[
{ uri: ‘file..’, content, …},
{ uri: ‘http…’, meta: {…},… },
…

] [
[ ‘uri’, ‘content’ ],
[ ‘uri’, ‘meta’ ],
…

]

read

Example Data

Data Flow

HDFS

[
{ name: ‘uri’, num: 27},
{ name: ‘content’, num: 23},
{ name: ‘meta’, num: 15},  
…

]

[
‘uri’, 
‘content’,
‘uri’, 
‘meta’,
…

]

transform expand group

write

countFields

(a)

(b)

(c) (d)

HDFS

Figure 3: Conceptual data flow for counting fields

1. import myrecord;
2.
3. countFields = fn(records) (
4. records
5. -> transform myrecord::names($)
6. -> expand
7. -> group by key = $ as values
8. into { name: key, num: count(values) }
9. );
10.
11. read( hdfs("docs.dat") )
12. -> countFields()
13. -> write( hdfs("fields.dat") );

Lines 11–13 in the example script correspond directly to the con-
ceptual data flow of Figure 3. Jaql uses a pipe syntax (->) which
was inspired by Unix pipes. The pipe syntax explicitly shows the
data flow in a Jaql script, making it easier to read and debug. We
chose this syntax to avoid defining variables (as in Pig Latin[30]),
or WITH clauses (as in SQL), for every computational step. The
pipe syntax is also more readable than the functional notation (as in
XQuery[40]), when a series of functions are invoked back to back.

In Example 3, read, hdfs, countFields, and write are func-
tions; their composition and invocation constitutes an expression.
The remaining part of the script concerns countFields. Line 1
is an import statement that imports several record-related functions
from the myrecord module. Lines 3–9 constitute the assignment
that defines the countFields function, which is discussed in detail
in the Section 4.3.

4.2 Core Expressions
Jaql has several expressions for manipulating data collections,

including transform, expand, filter, join, sort, group by,
multi-input group by (equivalent to Pig’s co-group [30]), merge,
tee, and split. Note that some of these expressions (such as join,
group by, filter) can be found in database management systems,
while others (such as transform, merge, tee, split) are typical for
ETL engines. A complete discussion of these expressions is beyond
the scope of this paper, but see [16].

This section illustrates some of the core expressions using our
running example. Consider lines 4–8 of Example 3 as well as the
corresponding data shown in Figure 3. The transform expression
applies a function (or projection) to every element of an array. It
has the form e1->transform e2, where e1 is an expression that
describes the input array, and e2 describes the transformation. In
lines 4 and 5 of the example, e1 refers to the records variable, and
e2 invokes the names function from the myrecord module. The
invocation makes use of Jaql’s default iteration variable $; most
expressions allow renaming this variable using the each keyword.
For example, ...->transform each r myrecord::names(r)
illustrates how $ can be renamed to r. The names function itself



takes as input a record and produces an array of field names (rep-
resented as strings). The output after transform is shown Fig-
ure 3(b). The expand expression in line 6 unnests the array of field
names, cf. Figure 3(c).

The subsequent group by expression counts the number of
occurrences of each distinct field name. In contrast to SQL’s
GROUP BY, Jaql’s group by expression allows arbitrary Jaql
values as grouping key (including arrays and records) and does
not necessarily perform aggregation. The grouping key and array
of all values in the group are accessible via iteration variables.
In the example, these variables are named key and values. The
expression in the into clause is used to construct the result of
the group by. Here, we construct a record with two fields name
and num, the latter by applying the count aggregate function to
values. As with the grouping key, the result of aggregation can
be an arbitrary Jaql value.

Jaql treats all its expressions uniformly. In particular, there is
no distinction between “small” expressions (such as additions) and
“large” expressions (such as a group by). As a consequence, all ex-
pressions can be used at both the top-level and within nested struc-
tures. Jaql is similar to XQuery [40] and LINQ [24] in this respect,
but differs from Pig Latin [30] and Hive [38] which provide little
support for manipulating nested structures without prior unnesting.
Limiting the language to operate on mostly the top level or two may
simplify the implementation and early learning of the language but
becomes tedious when manipulating richer objects.

4.3 Functions
Functions are first-class values in Jaql, i.e., they can be assigned

to a variable, passed as parameters, or used as a return value. Func-
tions are the key ingredient for reusability: Any Jaql expression
can be encapsulated in a function, and a function can be parame-
terized in powerful ways. Also, functions provide a principled and
consistent mechanism for physical transparency (see Section 4.5).

In Example 3, the countFields function is defined on lines
3–9 and invoked on line 12. In Jaql, named functions are cre-
ated by constructing a lambda function and assigning it to a
variable. Lambda functions are created via the fn expression;
in the example, the resulting function value is assigned to the
countFields variable. The function has one parameter named
records. Although not shown, parameters can be constrained by
a schema when desired.

Jaql makes heavy usage of the pipe symbol -> in its core expres-
sions. Although this symbol has multiple interpretations in Jaql, the
expression to the left of -> always provides the context for what is
on the right-hand side. Thus, e1->e2 can be read as “e1 flows into
e2”. Lines 12 and 13 in the example script show a case where the
right-hand side is not a core expression but a function invocation.
In this case, the left-hand side is bound to the first argument of the
function, i.e., e->f(. . .) ≡ f(e, . . .). This interpretation unifies
core expressions and function invocations in that input expressions
can occur up front. User-defined functions thus integrate seam-
lessly into the language syntax.

To see this, compare the Jaql expressions

read(e1) -> transform e2 -> myudf() -> group by e3

to the equivalent but arguably harder-to-read expression

myudf(read(e1) -> transform e2) -> group by e3.

4.4 Extensibility
Jaql’s set of built-in functions can be extended with user-defined

functions (UDF) and user-defined aggregates (UDA), both of which

can be written in either Jaql or an external language. Such func-
tions have been implemented for a variety of tasks, ranging from
simple string manipulation (e.g., split) to complex tasks such as
information extraction (e.g., via System T [22]) or statistical anal-
ysis (e.g., via R and SPSS2). As mentioned before, the exchange
of data between Jaql and user code is facilitated by Jaql’s use of a
JSON-based data model.

Example 4 Continuing from Example 3, suppose that the user
wants to extract names of products mentioned in the content field.
We make use of a UDF that, given a document and a set of extrac-
tion rules, uses System T for information extraction. The following
Jaql script illustrates UDF declaration and invocation:

1. systemt = javaudf("com.ibm.ext.SystemTWrapper");
2.
3. read( hdfs("docs.dat") )
4. -> transform { author: $.meta.author,
5. products: systemt($.content, rules) };
6.
When run on the example data, the script may produce

[ { author: "Bob", products: { acme: ["Widget 1.1",...],
knowitall: ["Service xyz",...] } },

{ author: "Alice", products: [ ... ] }, ... ].

Example 4 illustrates how functions and semi-structured data are
often used in Jaql. The javaudf function shown on line (1) is an
example of a function that returns a function that is parameterized
by a Java class name c, and when invoked, knows how to bind
invocation parameters and invoke the appropriate method of c. As
a result, Jaql does not distinguish between native Jaql functions
and external UDFs and UDAs—both can be assigned to variables,
passed as parameters, and returned from functions.

The sample result from Example 4 illustrates a common usage
pattern– per string (e.g., $.content), SystemT enriches each
record with extracted data. In this case, the SystemT rules found
multiple products produced by multiple companies (e.g., “acme”
and “knowitall”). More generally, the extracted information
includes additional attributes, such as where in the original input
it was found. As a result, the relatively “flat” input data is
transformed into more nested data. Often, the script shown in
Example 4 is followed by additional steps that filter, transform or
further classify the extracted data— Jaql’s composability is crucial
to support such manipulation of nested data.

Functions that are implemented using external programs are sim-
ilarly used by Jaql. The externalFn function wraps the invocation
of an external program into a function, which can then be assigned
to a variable and invoked just like any other function. The support
for external programs include several other notable features. First,
data must be serialzed to and from the external process. For this,
Jaql’s I/O capability is re-used so that data can be converted flexi-
bly between Jaql and the format that the external program expects.
Second, the protocol by which Jaql interacts with the external pro-
gram has been abstracted and made pluggable. Two protocols have
been implemented to inter-operate with programs: (1) bulk invoca-
tion and (2) value invocation. With bulk invocation, Jaql sends all
data to the program while using a second thread to asynchronously
consume the program’s output. While efficient, a complication with
bulk invocation is that the external program must consume all data,
which makes it cumbersome to send just a projection of the data
to the program, then correlate its result back to the original data.
For such cases, per-value invocation is used to synchronously send
2See http://www.r-project.org and http://www.spss.com.



a value to the program and receive its output. For both protocols,
Jaql re-uses the same process for as long as it can. Bulk invocation
is supported in Hadoop (e.g., Hadoop Streaming), Pig and Hive
whereas value invocation is supported for UDF’s. Neither system
unifies push and pull into a single abstraction, which lets Jaql users
easily switch between various implementations.

4.5 Physical Transparency
Physical transparency—i.e., the exposure of lower-level abstrac-

tions in the language—enables bottom-up extensibility to get func-
tionality first and abstraction later. The sophisticated Jaql user can
add a new run-time operator by means of a new (perhaps higher-
order) function. The new operator can be used immediately, with-
out requiring any changes to Jaql internals. If the operator turns out
to be important enough to the Jaql community, a Jaql developer can
add new syntax, rewrites, statistics, or access methods to Jaql itself.
In a traditional database system design, all of these tasks must be
accomplished before new run-time functionality is exposed, which
makes adding new operators a daunting task.

Example 5 Consider a log dataset that resembles many Apache
HTTP Server error logs or Log4J Java application logs. This
dataset contains a sequence of log records with the following
schema:

{ date: date, id: long, host: string, logger: string,
status: string, exception?: string, msg?: string,
stack?: string }

The data in our example log is stored in a text file and origi-
nally intended for human consumption. The log records are gener-
ated in increasing date order, so the files are sorted by the times-
tamp. There are two types of log entries in the file based on the
status field: a single line ’success’ record or a multi–line ’excep-
tion’ record. All records have the first five fields separated by a
comma. When the status is ’exception’, the next line contains the
type of exception and a descriptive message separated by a colon.
The next several lines are the stack trace.

To form a single logical record, multiple consecutive lines need
to be merged into single record. The following script uses Jaql’s
built–in tumbling window facility to glue the exception lines with
the standard fields to create a single line per record for easy pro-
cessing in later steps:

1. read(lines(’log’))
2. -> tumblingWindow( stop = fn(next) isHeader(next) )
3. -> transform cleanRec($)
4. -> write(lines(’clean’));

The read in line (1) reads the file as a collection of lines.
Next in line (2), the function tumblingWindow is a higher–order
function that takes an ordered input and a predicate to define the
points where the window breaks3. The isHeader function returns
true when the next line starts with a timestamp and has at least 5
fields. The cleanRec function combines the header and all the ex-
ception lines into a single line by escaping the newlines in the stack
trace.

Order–sensitive operations like tumbling windows are notori-
ously more difficult to parallelize than multi–set operations. At
this stage, Jaql is not clever enough to automatically parallize this
script, so it runs sequentially. For small logs, this is acceptable,
3A complete discussion of all the window facilities requires an ar-
ticle in its own right. For the purposes of this paper, a basic under-
standing is sufficient.

but for large logs we clearly need to do better. A user of a tra-
ditional database system might make a feature request and wait
several years for a solution to be delivered. Physical transparancy
allows the power user to implement a solution at a lower level of
abstraction.

Example 6 Imagine somebody found a way to run tumbling win-
dows in parallel. Perhaps not supporting the full generality of
the builtin windowing support, but enough to solve the problem
at hand. Then we could use this function as a replacement for the
original function. The following script is very similar to the pre-
vious one, but the read and tumblingWindow have been composed
into a single function, ptumblingWindow, that runs in parallel:

ptumblingWindow(lines(’log’), isHeader)
-> transform cleanRec($)
-> write(lines(’clean’));

The new script remains at a fairly high level, even though it is
exploiting low–level operations via ptumblingWindow.

The key to ptumblingWindow’s implementation is split manipu-
lation. Ordinarily, Hadoop is responsible for partitioning an input
into splits and assigning each split to a single map task. Fortunately,
Hadoop’s API’s are very flexible, making it easy to re-define how a
given input is partitioned into splits. For ptumblingWindow, we di-
rectly access the splits and manipulate them using Jaql to redefine
the splits so that the semantics of tumblingWindow are preserved.
Each task processes its split and peeks at the next split to handle
the case where a partial, logical record spans a split boundary.

While the implementation of ptumblingWindow consists of a
handful of simple functions, these functions access very low-level
Hadoop API’s so is unlikely to be understood by the casual
user. The level of abstraction that is needed is comparable to
directly programming a MapReduce job. However, physical
transparency enabled a solution to the problem and functions
allowed these details to be hidden in the implementation of the
top-level ptumblingWindow function. In addition, ptumbling-
window is sufficiently abstract so that it can be applied to any
collection. Using features like the ones described here, we have
built parallel enumeration, sliding windows, sampling, and various
join algorithms, to name a few.

4.6 Error Handling
Errors are common place when analyzing large, complex data

sets. A non-exhaustive list of errors includes corrupt file formats,
dynamic type errors, and a myriad of issues in user-defined code
that range from simple exceptions, to more complicated issues such
as functions that run too long or consume too much memory. The
user must be able to specify how such errors effect script evaluation
and what feedback the system must supply to improve analysis.

Jaql handles errors by providing coarse-grained control at the
script level and fine-grained control over individual expressions.
For coarse-grained control, core expressions (e.g., transform,
filter) have been instrumented to adhere to an error policy. The
policies thus far implemented control if a script is aborted when
there is: (1) any error, or (2) more than k errors. When an error
occurs, the input to the expression is logged, and in the case where
errors are permitted, the expression’s output is skipped.

For fine-grained control, the user can wrap an arbitrary expres-
sion with catch, fence, or timeout functions. The catch func-
tion allows an error policy to be specified on a specific expression
instead of at the script level. The fence function evaluates its input
expression in a forked process. Similar to externalFn, Jaql sends
and receives data in bulk to the forked process or per value. The
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timeout function places a limit on how long its input expression
can run. If exceeded, an exception is thrown.

Since fine-grained error handling is implemented using Jaql
functions, composing them and having them work in parallel using
MapReduce comes for free. Consider the following expression:
read(hdfs("docs.dat"))
-> transform catch( timeout( fence(

fn(r) myudf(r.content)
), 5000), $.uri);

This expression is evaluated as a parallel scan (e.g., a Map-only
job). Each map task (e.g., parent process) processes a partition of
the input and evaluates myudf in a child process that it forks (once
per map task). Each invocation of myudf is passed an input record,
r, and limited to 5 seconds. If an exception occurs or the operation
times out, the script-level error policy is used and $.uri is logged.

5. SYSTEM IMPLEMENTATION
At a high-level, the Jaql architecture depicted in Figure 4 is sim-

ilar to most database systems. Scripts are passed into the system
from the interpreter or an application, compiled by the parser and
rewrite engine, and either explained or evaluated over data from the
I/O layer. Jaql modules provide organization and abstraction over
reusable components, which are introspected during compilation.
Scripts may bind variables to values, or more often to expressions
that serve as temporary views. This section describes the major
components of the architecture, starting from the lowest layer.

5.1 I/O Layer
The storage layer is similar to a federated database. Rather than

requiring data to be loaded into a system-specific storage format
based on a pre-defined schema, the storage layer provides an API to
access data in-situ in other systems, including local or distributed
file systems (e.g., Hadoop’s HDFS, IBM’s GPFS), database sys-
tems (e.g., DB2, HBase), or from streamed sources like the Web.
Unlike federated databases, however, most of the accessed data is
stored within the same cluster and the API describes data partition-
ing, which enables parallelism with data affinity during evaluation.
Jaql derives much of this flexibility from Hadoop’s I/O API.

Jaql reads and writes many common file formats (e.g., delimited
files, JSON text, Hadoop Sequence files). Custom adapters are eas-
ily written to map a data set to or from Jaql’s data model. The input
can even simply be values constructed in the script itself.

Input / output descriptors are open-ended structures used to de-
scribe storage objects that are passed to the read and write func-
tions, among others. A descriptor is a record with a simple schema:
{adapter:string, *:any}. The adapter field refers to an in-
ternal adapter object: a Java class name in our implementation.

The remaining fields are interpreted by the adapter. Most HDFS
files use the default Hadoop adapter, which extends the input de-
scriptor to include a format and converter field. The format

field refers to a Hadoop InputFormat class that provides access
to HDFS files or other storage objects; the converter translates
the Java objects into Jaql’s data model. Converters may expect
additional parameters in the descriptor, e.g., information needed
to decode lines in the file. Similar functionality is provided for
OutputFormats.

The descriptors exemplify the power of irregular schemas. The
read function simply requires a record with an adapter field. Be-
cause the descriptor often provides parameters for several objects,
like an adapter and a converter, the descriptor schemas do not form
a type hierarchy. Instead they are more like mixin types, using mul-
tiple inheritance to mix the fields needed for each of the objects.
The default result schema [any...] of a read is also irregular;
it produces an array of values. However, the adapter may refine
the result schema. This flexibility in descriptors and results allows
users to quickly implement access to new storage objects.

5.2 Evaluation
Jaql relies on Hadoop’s MapReduce infrastructure to provide

parallelism, elasticity, and fault tolerance for long-running jobs on
commodity hardware. Briefly, MapReduce is a parallel program-
ming framework that breaks a job into map and reduce tasks. Each
map task scans a partition of an input data set—e.g., an HDFS file
spread across the cluster—and produces a set of key-value pairs. If
appropriate, the map output is partially reduced using a combine
task. The map output is redistributed across the cluster by key so
that all values with the same key are processed by the same reduce
task. Both the combine and reduce tasks are optional.

Unlike traditional databases, MapReduce clusters run on less re-
liable hardware are significantly less controlled; for example Map-
Reduce jobs by definition include significant amounts of user code
with their own resource consumption, including processes and tem-
porary files. Hence, MapReduce nodes are significantly less stable
than a DBA managed database system, which means that nodes fre-
quently require a reboot to clean out remnants from previous tasks.
As a result, the system replicates input data, materializes interme-
diate results, and restarts failed tasks as required.

The Jaql interpreter begins evaluation of the script locally on
the computer that compiled the script, but spawns interpreters on
remote nodes using MapReduce. A Jaql script may directly in-
voke MapReduce jobs using the mapReduceFn function of Jaql, but
more often a Jaql script is rewritten into one or more MapReduce
jobs, as described in Section 5.3.2.

The mapReduceFn function is higher-order; it expects in-
put/output descriptors, a map function, and an optional reduce
function. Jaql includes a similar function, mrAggregate, that is
specialized for running algebraic aggregate functions4 in parallel
using MapReduce. mrAggregate requires an aggregate parame-
ter that provides a list of aggregates to compute. During evaluation
of mapReduceFn or mrAggregate, Jaql instructs Hadoop to start
a MapReduce job, and each map (reduce) task starts a new Jaql
interpreter to execute its map (reduce) function.

Of course, not everything can be parallelized, either inherently
or because of limitations of the current Jaql compiler. Therefore,
some parts of a script are run on the local computer. For example,
access to files in the local file system obviously must run locally.

5.3 Compiler
The Jaql compiler automatically detects parallelism in a Jaql

script and translates it to a set of MapReduce jobs. The rewrite
4Algebraic aggregation functions are those that can be incremen-
tally evaluated on partial data sets, such as sum or count. As a
result, we use combiners to evaluate them.



engine generates calls to mapReduceFn or mrAggregate, moving
the appropriate parts of the script into the map, reduce, and ag-
gregate function parameters. The challenge is to peel through the
abstractions created by variables, higher-order functions, and the
I/O layer. This section describes the salient features used during
the translation.

5.3.1 Internal Representation
Like the internal representation of many programming lan-

guages, the Jaql parser produces an abstract syntax tree (AST)
where each node, called an Expr, represents an expression of the
language (i.e., an operator). The children of each node represent
its input expressions. Other AST nodes include variable definitions
and references, which conceptually create cross-links in the AST
between each variable reference and its definition. Properties
associated with every Expr guide the compilation. The most
important properties are described below.

Each Expr defines its result schema, be it regular or irregular,
based on its input schemas. The more complete the schema, the
more efficient Jaql can be. For example, when the schema is fully
regular, storage objects can record structural information once and
avoid repeating it with each value. However, even limited schema
information is helpful; e.g., simply knowing that an expression re-
turns an array enables streaming evaluation in our system.

An Exprmay be partitionable over any of its array inputs, which
means that the expression can be applied independently over par-
titions of its input: e(I, ...) ≡ ]P∈parts(I)e(P, ...). In the ex-
treme, an Expr may be mappable over an input, which means that
the expression can be applied equally well to individual elements:
e(I, ...) ≡ ]i∈Ie([i], ...) These properties are used to determine
whether MapReduce can be used for evaluation. The transform
and expand expressions are mappable over their input. Logically,
any expression that is partitionable should also be mappable, but
there are performance reasons to distinguish these cases. For ex-
ample, the lookup function in a hash-join is only partitionable over
its probe input because we do not want to load the build array for
every probe value.

Most expressions are purely functional, meaning that they eval-
uate each input expression once to produce their value and they do
not have any external effects. However, an Expr may be nonde-
terministic (e.g., randomDouble) or side-effecting (e.g., write),
which restricts the types of rewrites performed by the system. An
Expr may also declare that it selectively or repeatedly evaluates
child expressions.

An Expr may deny remote evaluation. For example, the
mapReduceFn function itself is not allowed to be invoked from
within another MapReduce job because it would blow up the
number of jobs submitted and could potentially cause deadlock if
there are not enough resources to complete the second job while
the first is still holding resources.

An Expr may be evaluable at compile-time, given that its in-
puts are constants. Evaluating expressions at compile-time obvi-
ously eliminates run-time work, potentially to a large degree if the
expression is inside of a loop. More importantly, constants can
be freely inlined (to be later composed) without creating repeated
work and they improve transparency so that important constants
can be found. For example, Jaql must determine the adapter in
the I/O descriptor to determine the schema of a read expression.
Note that all expressions have an output schema— in many cases
schemas are determined during compilation. Such schema infer-
ence is used by Jaql to improve the space efficiency of its storage
formats. The idea is that if more information is known about the
structure of the data, a more compact storage format can be used.

In particular, such techniques are used between the map and reduce
steps, thereby reducing I/O bandwidth for both disks and network.

5.3.2 Rewrites
At present, the Jaql compiler simply consists of a heuristic

rewrite engine that greedily applies approximately 40 transfor-
mation rules to the Expr tree. The rewrite engine fires rules
to transform the Expr tree, guided by properties, to another
semantically equivalent tree. In the future, we plan to add dynamic
cost-based optimization to improve the performance of the declar-
ative language features, but our first priority is providing physical
transparency to a powerful run-time engine.

The goal of the rewrites is to peel back the abstractions created
for readability and modularity, and to compose expressions sep-
arated for reusability. The engine simplifies the script, discovers
parallelism, and translates declarative aspects into lower-level op-
erators. The most important rules are illustrated in Example 7 and
described below.

Example 7 Steps in rewriting a function call.

1. f = fn(r) r.x + r.y;
2. f({x:1,y:2});
⇒ (fn(r) r.x + r.y)({x:1,y:2}); // variable inline
⇒ (r = {x:1,y:2}, r.x + r.y); // function inline
⇒ {x:1,y:2}.x + {x:1,y:2}.y; // variable inline
⇒ 1 + 2; // constant field access
⇒ 3; // compile-time computable

Variable inlining: Variables are defined by expressions or val-
ues. If a variable is referenced only once in a expression that is
evaluated at most once, or the expression is cheap to evaluate, then
the variable reference is replaced by its definition. Variable inlining
opens up the possibility to compose the variable’s definition with
the expressions using the variable.

Function inlining: When a function call is applied to a Jaql
function, it is replaced by a block5 in which parameters become lo-
cal variables: (fn(x) e1)(e2) ⇒ (x = e2, e1). Variable in-
lining may further simplify the function call.

Filter push-down: Filters which do not contain non-
deterministic or side-effecting functions are pushdown as low
as possible in the expression tree to limit the amount of data
processed. Filter pushdown through transform, join, and group
by is similar to relational databases [12], whereas filter pushdown
through expand is more similar to predicate pushdown through
XPath expressions [32], as expand unnests its input data. For
example, the following rule states that we can pushdown the pred-
icate before a group by operator if the filter is on the grouping key.

e1 → group by x = $.x into { x, n : count($) }
→ filter $.x == 1 ≡

e1 → filter $.x == 1 → group into { $.x, n : count($)}
Field access: When a known field of a record is accessed, the

record construction and field access are composed: {x: e,
...}.x ⇒ e . A similar rule applies to arrays. This rule forms
the basis for selection and projection push-down as well. The im-
portance of this property was a major reason to move away from
XML. Node construction in XQuery includes several effects that
prevent a simple rewrite rule like this: node identity, node order,
parent axis, sibling axis, and changing of primitive data types when
an item is inserted into a node.

To MapReduce: After the inlining and composition, Jaql
searches for sequences of expressions that can be evaluated in a
5A block expression is a parenthesized sequence of expressions
separated by commas, with optional local variable assignment. The
result of a block is the value of its last expression.
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single MapReduce job. It looks for a read followed by a second
sequence of partitionable expressions, followed by a write to a
distributed output. If the group is not present, a map-only job is
produced. If the group is only used inside of algebraic aggregates,
an mrAggregate call is produced6. Otherwise, a mapReduceFn
call is produced. The partitionable expressions before the group
and the grouping key expression are placed in the map function.
(The map function is called once to process an entire partition, not
per element.) Any expressions after the aggregates and the second
sequence of partitionable expressions are placed in the reduce
function. The group may have multiple inputs (i.e., co-group), in
which case each input gets its own map function, but still a single
reduce function is created. The rewrite must consider expressions
that are nondeterministic, are side-effecting, or disallow remote
evaluation.

Via these and the remaining rules, scripts are conceptually trans-
lated into a directed-acyclic graph (DAG), where each node is a
MapReduce job or a sequential step.

Example 8 Consider a wroteAbout dataset that contains pairs
of authors and product names (similar to Example 4), and a
products dataset that contains information about individual
products. The wroteAbout dataset is defined as follows:
wroteAbout = read( hdfs("docs.dat") )
-> transform { author: $.meta.author,

products: systemt($.content, rules) }
-> transform each d (

d.products -> transform { d.author, product: $ }
);

-> expand

This definition is similar to the one used in Example 4, but unnests
the products array. More specifically, the inner transform pro-
duces an array of author-product pairs, which is then unnested us-
ing expand. The product dataset is defined as
products = read( hdfs("products.dat") );

The following Jaql script computes two summary files for cate-
gories and authors. Lines 1–3 join the wroteAbout and products
collections. Lines 5–8 count the distinct product categories men-
tioned by each author. Lines 10–13 count the distinct authors
for each product category. The notation R[*].f is short-hand to
project a field from an array of records. The cntDist function is a
user-defined aggregate that computes a count of distinct values in
parallel.
1. joinedRefs = join w in wroteAbout, p in products
2. where w.product == p.name
3. into { w.author, p.* };
4.
5. joinedRefs
6. -> group by author = $.author as R
7. into {author, n: cntDist(R[*].prodCat)}
8. -> write(hdfs(’catPerAuthor’));
9.
10. joinedRefs
11. -> group by prodCat = $.prodCat as R
12. into {prodCat, n: cntDist(R[*].author)}
13. -> write(hdfs(’authorPerCat’));

6Note that in this case a combiner with the same aggregation func-
tion is also produced.

Compilation produces a DAG of three MapReduce jobs as shown
in Figure 5. The DAG is actually represented internally as a block
of mapReduceFn and mrAggregate calls, with edges created by
data-flow dependencies, variables, and read/write conflicts. The
complete compilation result is given in Example 9.

Although our current focus is on generating MapReduce jobs,
Jaql should not be categorized simply as a language for Map-
Reduce. Though Jaql should be useful for manipulating small
collections (an implementation for Javascript running in a Web
browser would be interesting), our focus is on large-scale data
analysis. In this space, many paradigms besides MapReduce were
proposed recently and in the past, e.g., Pregel for graph processing
[26] or ScaLAPACK for matrix computations [36]. Each of these
are designed for certain specialized classes of computation. Our
long-term goal is to glue many such paradigms together using Jaql,
which will increase the types of nodes in the DAG. For example,
we created an iterative, parallel model building function called
buildModel for data-mining tasks that easily expresses, e.g., a
parallel k-means computation.

5.4 Decompilation and Explain
Every expression knows how to decompile itself back into a se-

mantically equivalent Jaql script. Immediately after parsing and
after every rewrite fires, the Expr tree can be decompiled. The
explain statement uses this facility to return the lower-level Jaql
script after compilation. This process is referred to as source-to-
source translation [23].

Example 9 The following is the result of explain for the script
of Example 8. The list of jobs can be visualized as the DAG in
Figure 5.
(// Extract products from docs, join with access log
tmp1 = mapReduce({
input: [ { location: ’docs.dat’, type: ’hdfs’ },

{ location: ’products’, type: ’hdfs’ } ],
output: HadoopTemp(),
map: [fn(docs) (

docs
-> transform

{ w: { author: $.meta.author,
products: systemt(
$.content, ’rules...’ ) }}

-> transform [$.w.product, $] ),
fn(prods) (prods

-> transform { p: $ }
-> transform [$.p.name, $] )

],
reduce: fn(pname, docs, prods) (
if( not isnull(pname) ) (
docs -> expand each d (
prods -> transform each p { d.*, p.* } ))

-> transform { $.w.author, $.p.* } )
}),

// Count distinct product categories per author
mrAggregate({
input: tmp1,
output: { location: ’catPerAuthor’, type: ’hdfs’ },
map: fn(vals) vals -> transform [$.author, $],
aggregate: fn(author, vals)
[ vals -> transform $.prodCat -> cntDist() ],

final: fn(author, aggs) { author, n: aggs[0] },
}),

// Count distinct authors per product category
mrAggregate({
input: tmp1,
output: { location: ’authorPerCat’, type: ’hdfs’ },



map: fn(vals) vals -> transform [$.prodCat, $],
aggregate: fn(author, vals)
[ vals -> transform $.prodCat -> cntDist() ],

final: fn(prodCat, aggs) { prodCat, n: aggs[0] },
})

)

By mandating that every Expr tree supports decompilation, we
ensure that every evaluation plan is expressible in Jaql itself, thus
providing physical transparency. Since the plan in Example 9 is a
valid Jaql query, it can be modified with a text editor and submitted
“as-is” for evaluation. In certain situations where a particular plan
was required, the capability to edit the plan directly, as opposed
to modifying source code, was invaluable. In addition, Example 9
illustrates how higher-order functions, like mapReduceFn, are rep-
resented in Jaql. Note that run-time operators of many database
systems can be viewed as higher-order functions. For example,
hash-join takes two tables as input, a key generation function for
each table, and a function to construct the output. Jaql simply ex-
poses such functionality to the sophisticated user.

Support for decompilation was instrumental in bridging Jaql to
MapReduce and in implementing error handling features (see Sec-
tion 4.6). The MapReduce map and reduce functions are simply
Jaql functions that are serialized into a configuration file and dese-
rialized when the MapReduce job is initialized. For error handling,
the fence function simply decompiles its input, forks a child pro-
cess that expects a Jaql function f , and sends it to the child. Since
functions are part of Jaql’s data model, serialization and deserial-
ization between child and parent is trivial.

Jaql’s strategy is for a user to start with a declarative query, add
hints if needed, and move to low-level operators as a last resort.
Even when a declarative query is producing the right plan, the user
can use explain to get a low-level script for production use that
ensures a particular plan over changing input data.

6. EXPERIMENTAL EVALUATION
In this section, we describe our experiments and summarize

the results. We focused on Jaql’s scalability while exercising
its features to manage nested data, compose data flows using
Jaql functions, call user-defined functions, and exploit physical
transparency. We considered three workloads that are based on:
(1) a synthetic data set designed for XML-based systems, (2) a real
workload that is used analyze intranet data sources, and (3) the log
processing example that is described in Example 6.

Hardware: The experiments were evaluated on a 42-node IBM
SystemX iDataPlex dx340. Each server consisted of two quad-core
Intel Xeon E5540 64-bit 2.8GHz processors, 32GB RAM, 4 SATA
disks, and interconnected using 1GB Ethernet.

Software: Each server had Ubuntu Linux (kernel version
2.6.32-24), IBM Java 1.6, Hadoop 0.20.2, and Jaql 0.5.2.
Hadoop’s “master” processes (MapReduce JobTracker and HDFS
NameNode) were installed on one server and another 40 servers
were used as workers. Each worker was configured to run upto 4
map and 4 reduce tasks concurrently. The following configuration
parameters were overridden in order to boost performance: HDFS
block size was set to 64MB, sort buffer size was set to 512MB,
JVM’s were re-used, speculative execution was turned off, and
4GB JVM heap space was used per task. All experiments were
repeated 3 times and the average of those measurements is reported
here.

6.1 Synthetic, Semi-structured Workload
We use the dataset from the TPoX benchmark (Transaction Pro-

cessing over XML) [29] to illustrate several of Jaql’s features over
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Figure 6: Scale-up experiment using TPox workload.

semi-structured data. The dataset consists of financial transactions
with five logical entities: Customers, each customer has a set of
Accounts, each account may have Holdings and Orders issued over
that account, and each account/order pair has Security types. We
used the TPoX data generator [29] to generate CustAcc documents
with three levels of nesting; Customer as the top level entity, one
or more Account entities, and zero or more Holding entities, as
the second and third levels of nesting, respectively. We used a
Jaql function to convert the XML documents into Jaql’s data model
while maintaining the same levels of nesting.

We use the following three queries over CustAcc documents:
Q1: For each customer, report the accounts that have holdings
along with the holdings sum under each account.
read(hdfs(’CustAcct’)) -> sumCustAccts();

Q2: As in Q1 while restricting the reported accounts to certain
category, e.g., ”Business”.

read(hdfs(’CustAcct’)) -> sumCustAccts()
-> transform each rec {

Cust: rec.Cust,
BusinessAccts:

rec.Accts -> filter $.AcctCategory =="Business")};

Q3: As in Q1 while reporting only a sample from the accounts
grouped by customers’ countries.
read(hdfs(’CustAcct’)) -> SampleByCountry(1000)

-> filter $.Country == "USA";

These top-level queries are implemented using the following helper
functions:

//Report customer accts w/ holdings and their sums
sumCustAccts = fn( cust ) (
cust
-> transform each t {

Cust: t.Customer.id,
Accts: holdingSums(t.Customer.Accounts)}

);
// Sample N accounts per country.
SampleByCountry = fn( cust, sampleSize )(
cust
-> transform each t {

Country: ValidateCountry(t.Customer.Country),
Accts: holdingSums(t.Customer.Accounts)}

-> group by location = $.Country into {
Country: location,
Sample: $[*].Accts -> top sampleSize}

);
// Sum of holdings for accounts that have holdings
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Figure 7: Scale-up expr. using intranet analysis workload.

holdingSums = fn( accts ) (
accts
-> filter exists($.Holdings)
-> transform each acct {

Acct: acct.id, AcctCategory: acct.Category,
SumHoldings:
acct.Holdings.Position
-> transform $.Quantity -> sum()}

);

These queries illustrate several core Jaql features. First, the
queries are expressed by composing multiple functions that
abstract away where the data is stored and how its formatted.
The body of the functions simply operate on arrays of values,
allowing functions to be re-used across queries. Next, Jaql’s
focus on composable syntax supports data manipulation of
values that are nested multiple-levels deep. For example, the
acct.Holdings.Position is projected and aggregated in
the holdingSums function. Finally, Jaql is able to peel away
the functions and aggressively optimize across function call
boundaries.

Notice that in Q3 the filter predicate will be pushed down, at
compile time, below the group by statement because the predicate
is on the grouping column used inside SampleByCountry(). But,
it cannot be push-down below the transform statement, because the
ValidateCountry() function, which validates the country name, is
an example of a user-defined function with unknown semantics.

In Figure 6, we report the results obtained from scale-up experi-
ments. The dataset size was increased from 40GB to 320GB while
proportionally increasing the cluster size from 5 nodes to 40 nodes.
The results show that Jaql scaled well while evaluating queries that
manipulate deeply nested data. Jaql required approximately the
same amount of time to process larger data sets when using propor-
tionally more hardware. Furthermore, the results illustrate the ben-
efit of the filter push-down rewrite where Q3 FPD (Q3 with filter
push-down enabled) performed about 20% better than Q3 NFPD
(Q3 with filter push-down disabled). Such rewrites are crucial for
Jaql to support functions and achieve better performance.

6.2 Intranet Analysis Workload
Jaql is used at IBM to analyze internal data sources to create

specialized, high-quality indexes as described in [2]. The steps
needed for this process are: (1) crawl the sources (e.g., Web servers,
databases, and Lotus Notes), (2) pre-process all inputs, (3) analyze
each document (Local Analysis), (4) analyze groups of documents
(Global Analysis), and (5) index construction. Nutch is used for
step (1) and Jaql is used for the remaining steps.

For the evaluation, we took a sample of the source data and eval-
uated how Jaql scales as both the hardware resources and data are
proportionally scaled up. Per server, we processed 36 GB of data,
scaling up to 1.4 TB for 40 servers. We focused on steps (2) and
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Figure 8: Scale-up expr. using application log workload.

(3) since these steps manage the most data. The preprocess step (2)
transforms the input into a common schema, and for Web data, re-
solves redirections, which requires an aggregation. The local anal-
ysis step (3) analyzes each document– key functionality includes
language identification and information extraction using SystemT.
These steps exercise many of Jaql’s features which range from
standard data processing operators (e.g., group-by, selection, pro-
jection), to extensibility (e.g., Jaql and Java functions), and semi-
structured data manipulation.

The results are shown in Figure 7. The pre-process phase (step 2)
reads directly from Nutch crawler output and resolves redirections
in the reducer tasks. The time needed to shuffle all data across
the network dominated overall run-time, which explains why the
result for scale-factor 1 was much faster— the shuffle looped back
to the same machine. Most of the other steps used Map-only jobs so
scaling was more predictable. The one exception was at scale factor
30 where the filters in the Local Analysis step was more selective
for that sample of data. Overall, the results illustrate that Jaql scales
well for the given workload.

6.3 Log Processing Workload
We evaluated the scale-up performance of the record cleansing

task from Section 4.5. We generated 30M records per CPU core of
synthetic log data with 10% of the records representing exceptions
with an average of 11 additional lines per exception record, which
resulted in approximately 3.3 GB / core. We varied the number
of servers from 1 to 40, which varied the number of cores from 8
to 320 and data from 26GB to 1TB. The result in Figure 8 shows
that the original sequential algorithm works well for small data,
but quickly gets overwhelmed. Interestingly, the parallel algorithm
also runs significantly faster at small scale than at the high end
(from 1 machine to 2). However, the parallel algorithm scales well
from 2 to 40 machines, drastically outperforming the sequential
algorithm even at a single machine because of its use of all 8 cores.

7. CONCLUSION
We have described Jaql, an extensible declarative scripting lan-

guage and scalable processing system. Jaql was designed so that
users have access to the system internals—highlighting our ap-
proach to physical transparency. As a result, users can add features
and solve performance problems when needed. For example, we
showed how tumbling windows and physical transparency can be
exploited to scalably process large logs. A key enabler of phys-
ical transparency is Jaql’s use of (higher-order) functions, which
addresses both composition and encapsulation so that new features
can be cleanly reused.

Jaql’s design was also molded by the need to handle a wide va-
riety of data. The flexibility requirement guided our choice of data



model and is evident in many parts of the language design. First,
all expressions can be uniformly applied to any Jaql value, whether
it represents the entire collection or a deeply nested value. Sec-
ond, the schema information at every expression can range from
none, through partial schema, to full schema. Thus, Jaql balances
the need for flexibility with optimization opportunities. The per-
formance results illustrate that Jaql scales on a variety of work-
loads that exercise basic data processing operations, functions, and
nested data manipulation.

Jaql is still evolving, and there are many challenges that we plan
to pursue as future work. A non-exhaustive list includes: further
investigation of errors handling and physical transparency, adap-
tive and robust optimization, exploitation of materialized views,
discovery-based techniques for storage formats and partition elimi-
nation, and novel aspects for tools that assist with design as well as
runtime management.
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