
FusionDB: Conflict Management System for Small-Science
Databases

Karim Ibrahim, Nathaniel Selvo, Mohamad El-Rifai, and Mohamed Eltabakh
Computer Science Department, Worcester Polytechnic Institute

Worcester, MA, USA
kaibrahim@cs.wpi.edu, nselvo@cs.wpi.edu, melrifai@cs.wpi.edu,

meltabakh@cs.wpi.edu

ABSTRACT
In this paper, we demonstrate the FusionDB system; an ex-
tended relational database engine for managing conflicts in
small-science databases. In small sciences, groups—each con-
sists of few scientists—may share and exchange parts of their
own databases among each other to foster collaboration. The
goal of such sharing, especially when done at early stages of
the discovery process, is not to build a warehouse or a uni-
fied schema, instead the goal is to compare and verify results,
detect and assess conflicts, and possibly modify or re-design
the discovery process. FusionDB is designed to meet the re-
quirements and address the challenges of such sharing model.
We will demonstrate the key functionalities of FusionDB in-
cluding: (1) Detecting conflicts using a rule-based model over
heterogeneous schemas, (2) Assessing conflicts and providing
probabilistic estimates for values’ correctness, (3) Extended
querying capabilities in the presence of conflicts, and (4) Pro-
viding curation operations to help scientists resolve and in-
vestigate conflicts according to different priorities. FusionDB
is realized on top of PostgreSQL DBMS.

Categories and Subject Descriptors
H.2.1 [Database Management]: Logical Design—Data
models, Schema and subschema

Keywords
Conflict management; databases; scientific data.

1. INTRODUCTION
Database management systems play a key role in support-

ing scientific applications in various domains such as in bi-
ology, chemistry, physics, and earth and ocean sciences. In
these applications, most discoveries and innovations are not
driven by centralized processing, instead, they are fueled by
small sciences where many small-scale groups of scientists are
conducting their own experiments, collecting measurements,
and storing their own data in local databases. Then, related

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s). Copyright is held by the author/owner(s).
CIKM’13, Oct. 27–Nov. 1, 2013, San Francisco, CA, USA.
ACM 978-1-4503-2263-8/13/10.
http://dx.doi.org/10.1145/2505515.2508205.

groups working on the same (or similar) objects/subjects may
collaborate by exchanging and sharing parts of their own data
with each other. Such collaboration and sharing of data can
be done at early stages of the discovery process with the aim
for comparing and verifying results with each other, detect-
ing and assessing conflicts as early as possible, and possibly
refining experimental setups or adjusting parameters. These
goals are different from those of traditional data integration
systems, e.g., [10, 12, 7, 11], that aim for building a unified
and consistent warehouse. Thus, the system requirements
and desired functionalities in small-science data sharing can-
not be fulfilled using existing data integration systems.

Sharing data in small sciences involve several novel and
unique data management challenges w.r.t conflict manage-
ment and resolution for several reasons:

(1) Scientific databases inherently contain conflicts
that cannot be avoided or eliminated. This is because
there no single authority for curating the data, different in-
terpretations and observations may lead to different values,
and different scientists may have different beliefs about their
data. Therefore, trying to create a single consistent instance
over the shared data— as in the traditional data integration
systems, e.g., [7, 11, 8, 4]— may not be applicable.

(2) Availability of conflicting data for analysis and
querying. Although conflicting data may sometimes lead to
confusion, scientists do prefer to have all the data available—
even if conflicting—for analysis, querying, and comparison
with other values. Therefore, discarding conflicting data as
early as possible outside the database system—as in update
exchange systems, e.g., [6, 5, 9]— is not desirable as it causes
the lose of valuable information before even doing any anal-
ysis over the data.

(3) Ability to automatically assess conflicts and pro-
vide recommendations. Scientists are of great need for au-
tomatic mechanisms for detecting possible conflicts, assessing
them, and probably providing evidence-based recommenda-
tions on which values are more likely to be correct (or wrong).
Moreover, if a scientist wants to investigate conflicts, then
which ones have higher priorities to start with? Certainly,
different scientists may have different priorities. Delegating
these tasks to end-users–as in current conflict-resolution tech-
niques, e.g., [5, 8, 9]— is usually an overwhelming and error-
prone task.

In this paper, we demonstrate FusionDB system; an ex-
tended relational database management system for support-
ing data sharing in small sciences. In Figure 1, we illustrate
the underlying sharing model where one site Shost, e.g., a
small scientific lab, may collect a set of databases, denoted by

!"#$%&

!'& !(& !)&

*"#$%&

*'&

*(&
*)&

!"#$%&'())
*+#,-.)

!"#$!%&'($)$!*+,-./,$

+,--'& ./01& 2& 3$#45/6748%9:;&$7<%"5%=$5>&2&

!(,(0"#$!(,(0%&'($)$ 1&23425($
*+,-./,13(67$

13/.(,*&'289$
*+,-./,13(67$

+,--'& ./01& 2& 3$#45/6748%9:;&
$7<%"5%=$5&

=65%#4=6%=%5&
$7<%"=$5&

/0-1,-)21,34$&5)6"7-)9'&;$&?&
&&8197-&!"#$%@A5<5&&=$&A"&
&&8197-&!'@A5<5(&=$&A'&
&&:4-0-&A"@AB*&C&A'@A5<5DB*&
&&;#$&5&!"#$%"&'(?A"@:=E5>&A'@A5<5D:=E5F&
&&&<&=&&&)*+',-+%"&'(?A"@AG/<6H#<>&&
&&A'@I=30J3$5G/<6H#<I05K>&&&&
&&A'@I0#%53<G=E347G/<6I05KFFL&&

:;/5<7!(,($

:=7!(,(>$

Figure 1: FusionDB Model.

!"#$%&

!'& !(& !)&

*"#$%&

*'&

*(&
*)&

!"#$%&'())
*+#,-.)

!"#$!%&'($)$!*+,-./,$

+,--'& ./01& 2& 3$#45/6748%9:;&$7<%"5%=$5>&2&

!(,(0"#$!(,(0%&'($)$ 1&23425($
*+,-./,13(67$

13/.(,*&'289$
*+,-./,13(67$

+,--'& ./01& 2& 3$#45/6748%9:;&
$7<%"5%=$5&

=65%#4=6%=%5&
$7<%"=$5&

/0-1,-)21,34$&5)6"7-)9'&;$&?&
&&8197-&!"#$%@A5<5&&=$&A"&
&&8197-&!'@A5<5(&=$&A'&
&&:4-0-&A"@AB*&C&A'@A5<5DB*&
&&;#$&5&!"#$%"&'(?A"@:=E5>&A'@A5<5D:=E5F&
&&&<&=&&&)*+',-+%"&'(?A"@AG/<6H#<>&&
&&A'@I=30J3$5G/<6H#<I05K>&&&&
&&A'@I0#%53<G=E347G/<6I05KFFL&&

:;/5<7!(,($

:=7!(,(>$

Figure 2: Example of rule-based matching.

D1, D2, ..., Dk, from several other collaborating sites. Each
of these databases has its own structure (schema) and they
will all be stored locally at site Shost along with Shost’s own
database Dhost. Each database Di provided by site Si can be
only a small subset of the database at that site. In the model,
any site can be a host and may receive data from other sites,
and in this case each host should run a separate instance of
FusionDB system. FusionDB manages the collected datasets
and provides the following key novel functionalities:

(1) Rule-based Conflict Detection: FusionDB allows
the host site, e.g., Shost in our example, to define a set of
rules, called matching rules, for matching records and val-
ues. These rules will guide the system to automatically find
the records that should compare with each other (entity res-
olution), how they should compare (comparison mechanism),
and how to measure the degree of conflict if exists (quantify-
ing the degree of conflict).

(2) Conflict Assessment: If conflicts exist, then a cru-
cial task is to predict and estimate—with a certain degree
of confidence— which among the conflicting values are er-
roneous and which ones are correct. FusionDB provides a
conflict assessment mechanism using a probabilistic model
and integrates it in query processing.

(3) Curation Mechanisms for Conflict Resolution:
FusionDB enables scientists to prioritize the existing conflicts
for possible resolution or further investigation. We provide
different curation operators for different prioritization, e.g.,
conflicts that affect the largest number of queries are the
ones to investigate first, or conflicts with the least degree of
mismatch are the ones to resolve first.

(4) Conflict-aware Query Processing: FusionDB
extends the relational query operators to offer conflict-
aware querying capabilities, e.g., users can query only non-
conflicting tuples, can specify thresholds to eliminate tuples
above a certain degree of conflicts, and can propagate the
conflict information along with their queries answers.

2. SYSTEM OVERVIEW & FEATURES
In this section, we briefly highlight the four novel function-

alities offered by FusionDB. All what is needed from end-
users to utilize the functionalities of FusionDB is to define
the matching rules introduced in Section 2.1.

2.1 Rule-based Conflict Detection
In order to detect conflicts, the system needs first to know

which tuples represent the same object and hence should
be compared with each other. Moreover, the system should
know how to compare these tuples, e.g., which fields to match
and using which functions. These tasks are not straightfor-

r1 r2 r3

r4

r1 r2 r3

r4

(a) Comparable graph (b) Conflict graph (-----) &
 Compatible graph ()

(0/3) (1/2)

(2/3)

(1/2)

Correctness support

Figure 3: Example of tuple-level CorrSupp().

ward especially under heterogeneous schemas. Automated
schema mapping and entity resolution techniques, e.g., [11,
8, 10], usually require user’s intervention, at some point, to
validate the mappings and correct mismatches. In FusionDB,
we deploy a generic and simple user-driven rule-based model
to perform the above tasks using the new Create Matching
Rule command introduced to SQL as follows:

Create Matching Rule [<id>] As (

Table Dhost.R [As <alias>]

Table Di.S [As <alias>]

Where Pred(r, s)

Using F1(r.Ai, ..., r.Aj , s.Ak, ..., s.Am)
[And F2(r.A′

i′ , ..., r.A
′
j′ , s.A

′
k′ , ..., s.A′

m′)
And ...]);

Figure 2 illustrates an example of defining a matching rule
between two tables storing gene information. In the example,
two tuples are comparable to each other if they have the
same IDs (the Where clause), and to decide whether they
are matching or not, the names of the genes are compared
using function NameMatch(), while the gene functions are
compared using function FunctionMatch(). Note that fields
do not have to be one-to-one match as illustrated in the gene
function comparison.

2.2 Conflict Assessment
FusionDB estimates, with a certain degree of confidence,

which among the conflicting values are the erroneous ones
and which are the correct ones. This estimation does not
only help scientists in resolving conflicts by providing use-
ful hints, but it also enables integrating these estimations in
query processing even before resolving the conflicts.

FusionDB computes a degree of confidence, called correct-
ness support, at two granularities, tuple-level and attribute-
level. The correctness support of a given tuple r is defined
as CorrSupp(r) = rm/rn, where rm is the number of tuples
compatible with r, while rn is the total number of tuples com-
parable with r. The example in Figure 3 illustrates the main
idea. Assume that we have 4 tuples r1, r2, r3, and r4 that
are comparable to each other w.r.t function F () according to

the graph depicted in Figure 3(a), e.g., r1 is comparable to
the other three tuples while r2, for example, is comparable
to r1 and r4 only. Assume that according to the matching
rules defined in the system, r1 is conflicting with the other
tuples—as indicated by dashed lines in Figure 3(b)— while
the other tuples are compatible—as indicated by double lines
in Figure 3(b). From Figure 3(b), we observe that r1 is not
supported by any other tuples, and hence its CorrSupp(r1)
= 0/3, while r4, for example, is supported by 2 tuples out
of the 3 comparable tuples, and hence CorrSupp(r4) = 2/3.
The other tuples have correctness support of 1/2.

The attribute-level correctness support is defined as
CorrSupp(r.c) = 1 − rxc/rn, where rxc is the number of
tuples conflicting with r because of r.c, i.e., there is a func-
tion Fi that takes r.c as input and returns a non-zero value,
and rn is as defined before. In contrast to the tuple-level
correctness support, the attribute-level support enables the
query engine to dynamically compute the correctness support
based on only the attributes touched by the query, instead of
the entire record (See Section 2.4).

2.3 Curation Mechanisms
FusionDB provides several curation operators that help sci-

entists resolve and investigate conflicts. The database may
contain many conflicting tuples, and the question is: which
among these conflicts to investigate first? FusionDB offers
the following operators:
• ReportConflicts Γ(R): Where given a relation R—

which can be an output from a select statement— report for
each tuple t ∈ R all conflicting tuples with t. ReportConflicts
operator reports along with the conflicting tuples, the reasons
of the conflict, e.g., which comparison function(s) have failed,
and the conflicting score.
•PrioritizeConflicts Ψ([Γ(R) | ALL], sort type, direction):

Where the first parameter is either a subset of the conflicts
that users want to focus on (they are defined using the
ReportConflicts operator) or all the conflicts in the database
(using the ALL keyword). The sort type parameter specifies
how to sort the conflicts. FusionDB offers three types of
sorting criteria: (1) SCORE—where conflicts are sorted
based on their scores, (2) CNT—where conflicting tuples
are sorted based on how many other tuples they conflict
with, and (3) POPULARITY—where conflicting tuples are
sorted based on how many queries they appear in. The
last parameter in PrioritizeConflicts operator specifies the
sorting direction, i.e., ascending or descending.

2.4 Conflict-aware Query Processing
FusionDB extends the querying mechanism to seamlessly

integrate the conflict information into query processing. Two
“conceptual” attributes have been added to each tuple in the
database, namely CorreSupp and RelCorrSupp. CorreSupp
is of type double and represents the tuple-level correctness
support, while RelCorrSupp is of type array[double] and rep-
resents all the attribute-level correctness supports for the
give tuple. These attributes are not actually materialized in
the database, but can be referenced in the select statement
like regular attributes. The other extension provided by Fu-
sionDB is the automatic propagation of the attribute-level
CorrSupp values along with the queries’s answers, i.e., each
attribute value gets annotated with is CorrSupp value. For
SPJ (select-project-join) queries, each value gets annotated
with a single CorrSupp value, while in the case of aggregation,

duplicate elimination, and set operators, each value may get
annotated with an array of CorrSupp values resulted from
merging multiple identical tuples into one.

3. DEMONSTRATION SCENARIO
We demonstrate the features of FusionDB over a set of

publically-available biological databases. More specifically,
we will use Genobase, EcoCyc, PortEco, and ColiBase. Each
dataset has its own schema for storing gene-related informa-
tion of E.coli. organism. All datasets store information for
about 4,100 genes (for a single strain), however, they are not
all identical and there are many conflicts in the overlapped
information. In the demonstration, we treat one dataset,
e.g., Genebase, as the host database, and the others will
be the sharing-sites databases. And then, we will illustrate,
through a Java-enabled GUI, the functionalities presented in
Section 2.

4. RELATED WORK
As highlighted in Section 1, the goals and motivation for

data sharing in small sciences are unique, which makes state-
of-art techniques fall short in managing conflicts in small-
science databases. For example, data integration systems,
e.g., [7, 8, 12], along with their involved technologies in
schema mapping [11, 10, 4], entity resolution [12, 3], ETL
(Extract-Transform-Load) techniques [2, 3], and data ware-
housing [1], aim for creating a single consistent instance of the
database and they try to resolve conflicts before building the
integrated version of the data. Update-Exchange systems [6,
5, 9] resolve conflicts outside the DBMS and try to keep the
database instance at each site consistent. Hence, conflicting
data are not available for future analysis or querying.

5. REFERENCES
[1] Data modeling techniques for data warehousing. IBM Corp.,

1998.
[2] S. Chaudhuri and et. al. Robust and efficient fuzzy match

for online data cleaning. In SIGMOD, pages 313–324, 2003.
[3] P. Christen. A Survey of Indexing Techniques for Scalable

Record Linkage and Deduplication. TKDE, 24(9):1537–1555,
2012.

[4] H. Elmeleegy and et. al. Leveraging query logs for schema
mapping generation in U-MAP. In SIGMOD, pages
121–132, 2011.

[5] W. Gatterbauer and et. al. Data conflict resolution using
trust mappings. In SIGMOD, pages 219–230, 2010.

[6] Z. Ives and et. al. The ORCHESTRA Collaborative Data
Sharing System. SIGMOD Rec., 37(3):26–32, 2008.

[7] M. Lenzerini. Data integration: A theoretical perspective,
2002.

[8] F. Naumann and M. H Lussler. Declarative Data Merging
With Conflict Resolution. In International Conference on
Information Quality, pages 212–224, 2002.

[9] Y. Qi and K. S. Candan. Ficsr: Feedback-based
InConSistency Resolution and query processing on
misaligned data sources. In SIGMOD, pages 151–162, 2007.

[10] E. Rahm and P. Bernstein. A survey of approaches to
automatic schema matching. The VLDB Journal,
10(4):334–350, 2001.

[11] P. Shvaiko and et. al. A Survey of Schema-Based Matching
Approaches. pages 146–171, 2005.

[12] M. Yakout and et. al. Behavior Based Record Linkage.
PVLDB, 3(1):439–448, 2010.

