
Exploiting Soft and Hard Correlations in Big Data Query
Optimization

Hai Liu, Dongqing Xiao, Pankaj Didwania, Mohamed Y. Eltabakh

Worcester Polytechnic Institute (WPI), Computer Science Department, MA, USA
{hliu2, dxiao, pdidwania, meltabakh}@cs.wpi.edu

ABSTRACT
Big data infrastructures are increasingly supporting datasets that
are relatively structured. These datasets are full of correlations
among their attributes, which if managed in systematic ways would
enable optimization opportunities that otherwise will be missed.
Unlike relational databases in which discovering and exploiting the
correlations in query optimization have been extensively studied,
in big data infrastructures, such important data properties and their
utilization have been mostly abandoned. The key reason is that
domain experts may know many correlations but with a degree of
uncertainty (fuzziness or softness). Since the data is big, it is very
challenging to validate such correlations, judge their worthiness,
and put strategies for utilizing them in query optimization. Exist-
ing techniques for exploiting soft correlations in RDBMSs, e.g.,
BHUNT, CORDS, and CM, are heavily tailored towards optimiz-
ing factors inherent in relational databases, e.g., predicate selectiv-
ity and random I/O accesses of secondary indexes, which are issues
not applicable to big data infrastructures, e.g., Hadoop.

In this paper, we propose the EXORD system to fill in this
gap by exploiting the data’s correlations in big data query op-
timization. EXORD supports two types of correlations; hard
correlations—which are guaranteed to hold for all data records,
and soft correlations—which are expected to hold for most, but
not all, data records. We introduce a new three-phase approach
for (1) Validating and judging the worthiness of soft correlations,
(2) Selecting and preparing the soft correlations for deployment by
specially handling the violating data records, and (3) Deploying
and exploiting the correlations in query optimization. We propose
a novel cost-benefit model for adaptively selecting the most benefi-
cial soft correlations w.r.t a given query workload while minimizing
the introduced overhead. We show the complexity of this problem
(NP-Hard), and propose a heuristic to efficiently solve it in a poly-
nomial time. EXORD can be integrated with various state-of-art
big data query optimization techniques, e.g., indexing and parti-
tioning. EXORD prototype is implemented as an extension to the
Hive engine on top of Hadoop. The experimental evaluation shows
the potential of EXORD in achieving more than 10x speedup while
introducing minimal storage overheads.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 9, No. 12
Copyright 2016 VLDB Endowment 2150-8097/16/08.

1. INTRODUCTION
Most big data applications involve numerous correlations and

relationships among their data attributes. These correlations range
from “hard correlations” that must be satisfied by all data tuples, to
“soft correlations” that are satisfied by most (but probably not all)
data tuples. For example, in transaction log applications, a zip code
attribute may imply the location attributes, e.g., city and state (hard
correlation), while in online marketing applications, a delivery date
can be within 3 to 10 days of the shipping date in most cases (soft
correlation). In general, a “correlation” from one attribute A1 to
another attribute A2 means that their values are not independent.
Instead, a value in A1 provides some knowledge about the corre-
sponding value in A2, e.g., A1’s value may determine a unique
value, a possible range, or a set of values for the corresponding
A2 attribute. In traditional database systems, defining these corre-
lations has an immense advantage in both data integrity [10], and
query optimization [2, 14, 16, 17].

Unfortunately, in the emerging big data applications and their
scalable infrastructures, e.g., Hadoop [22], the data integrity
check is usually bypassed for several legitimate reasons including:
(1) The data is usually uploaded in the form of large batches of files
of GBs or even TBs of records, and thus it is impractical to scan and
check them against the integrity constraints, and (2) Given the com-
plexity of big data, it is common that most correlations and seman-
tic constraints are not 100% conformed. And thus, in most cases,
domain experts can only provide their “expectations” or “beliefs”
on which correlations should hold without guarantees. Because of
these reasons, none of the existing big data infrastructures facilitate
defining or capturing these correlations. And hence, such important
data properties have been abandoned by the state-of-art optimiza-
tion techniques in big data.

In this paper, we argue that although checking and enforcing the
data integrity may not be practical in big data applications, still cap-
turing these correlations can be very beneficial to query optimiza-
tion. This is especially true because exiting big data infrastructures
are increasingly used for structured and/or semi-structured data,
where some knowledge about the data is assumed to be known,
e.g., Hive [23], Pig [11], and Impala [20]. As mentioned above, a
key challenge is that domain experts may only be able to provide
their expectations on the possible correlations without guarantees,
and there can be many of such candidates with no clear evidence
on which ones are truly useful. We will show that the management
of these soft correlations although challenging due to their inherent
uncertainty, it is very rewarding w.r.t query optimization.

Motivation Scenario 1− Online Marketing and Usage of Data
Indexing: Analytics over transaction logs generated from online
marketing is a typical big data application. An example of soft
correlations that may exist among the data attributes is that the
delivery date in most cases (but not necessarily all cases) is within

3 to 10 days from the shipping date. Assume the dataset already has
an index on the shipping date to efficiently answer queries involving
a selection predicate on that attribute, e.g., [4, 6, 8]. However,
the crucial limitation of these techniques is that queries involving
selection predicates on the delivery date cannot be optimized, and
would require a full scan over the data (unless another index is
created on the delivery date). Moreover, given the correlation’s
uncertainty, a query issuer cannot manually translate the predicate
to a corresponding one on the shipping date (by going backward 3
to 10 days), and then filtering the results. This blind re-writing may
miss some tuples satisfying the original query but not conforming
with the soft correlation.

Motivation Scenario 2− Airline Analytics and Usage of Data
Partitioning: Airline analytics companies manage very large data
about customer requests, flight status, seat availability, and airport
traffics. Most of the major airports worldwide have a unique three-
character code, called IATA, which identifies the airport, and hence
identifies its city and country. However, many small airports—
usually with very limited traffic—do not have IATA code (denoted
as “***”), and thus this “***” code neither identifies the city nor
the country. Therefore, there is a soft correlation from the airport
code to the country, i.e., for most (but not all) records the airport
code uniquely determines the country. Assume the data is already
partitioned on the country attribute to optimize certain queries [9,
15]. The limitation now is that queries involving predicates on the
airport code would require a full scan over the data without making
any use of the available partitioning. The challenge is that in the
general case, the values violating the correlation may not be known
in advance, e.g., each country may assign random code for these
small airports of infrequent traffic, and thus manual re-writing to
optimize the query is not feasible.

Clearly, the soft correlations mentioned above open big opportu-
nities for query optimization—especially if we can systematically
leverage the special organization that is already present in the data,
e.g., indexing [4, 6, 8] or partitioning [9, 15], without the need to
create additional ones. This is crucial because building auxiliary
structures over big data is a very expensive process w.r.t both time
and storage [6, 8, 9], and thus should be kept to minimal whenever
possible. Our experimental evaluation also confirms the substantial
overheads involved in creating additional partitioning or indexes,
which makes it almost impractical to create many of these over a
single dataset (Results will be discussed in Figure 6). Therefore,
by leveraging the possible correlations among the data attributes,
the usage and benefits of the existing techniques (on few targeted
attributes) can be extended beyond these attributes without paying
these significant costs, and eventually a broader class of queries can
be optimized.

Exploiting soft correlations in query optimization is not a new
problem and it has been previously studied in the context of re-
lational databases, e.g., [2, 14, 16, 17]. However, most of these
techniques have objectives that are specific only to RDBMSs and
not applicable to the new emerging Hadoop-like infrastructures.
For example, CORDS [14] exploits a correlation between a pair
of attributes A1 and A2 to provide more accurate selectivity es-
timation for their conjunctive predicates at query time, and enable
generating better query plans. On the other hand, Correlation Maps
(CM) [16] and CORADD [17] aim at avoiding the random I/O ac-
cesses that may result from a blind usage of secondary indexes on
un-clustered attributes, and instead they try to leverage any existing
correlation that may link these un-clustered attributes to the clus-
tered attribute on which the relation is sorted.

These issues of predicate selectivity and random vs. sequen-
tial access patterns are fundamental in RDBMSs. However, they

are not applicable to the highly-distributed big data infrastructures,
e.g., Hadoop. First, the physical execution plan in Hadoop is
fixed—either map-only job or map-reduce job—and predicate se-
lectivity does not play any role in optimizing this execution plan.
Second, with the distributed nature of big data both in storage and
retrieval, the data is usually not sorted on a specific attribute, and
there is no notion of clustered vs. un-clustered attributes. Third,
since the emerging infrastructures are highly distributed, there is no
notion of random vs. sequential accesses, instead execution tasks,
e.g., map tasks in Hadoop, are assigned to where the data resides,
which is called data locality. And Fourth since there is no notion
of random accesses, it is always safe in Hadoop-like systems to use
indexes to answer selection queries regardless of their predicate se-
lectivity. These fundamental differences warrant the need for new
correlation exploitation tools that target the new big data distributed
infrastructures (More detailed discussion is provided in Section 6).

In this paper, we propose the “EXORD” system for Exploiting
soft and hard correlations in big data query optimization (Refer to
Figure 1). EXORD is distinct from the existing techniques men-
tioned above in three key aspects, which are:

(1) Infrastructure Type: EXORD is the first correlation ex-
ploitation tool targeting the emerging Hadoop-like infrastructures,
which are fundamentally different from RDBMSs in their distribu-
tion nature, query processing, data retrieval, and index access pat-
terns. Our objective is to avoid full scan plans whenever possible.

(2) Domain Knowledge: All existing techniques are discovery-
based, where they put the extreme assumption of having no knowl-
edge about the possible correlations that may exist in a given
dataset. This assumption puts various restrictions on the correla-
tions that can be captured, e.g., BHUNT [2] is only limited to nu-
merical attributes and the correlations must be in the form of a sim-
ple algebraic expression of one operator {+, -, *, or /}. In contrast,
EXORD puts the more practical assumption that domain experts
have some knowledge on the possible correlations that may exist in
the dataset. And hence, they can define “hard correlations” (with
certainty) and “soft correlations” (with fuzziness). Correlations
in EXORD can be between any pair of attributes either numerical
or categorical, and the relationship logic may range from complex
expressions to general look-up functions.

(3) Optimized Resource Management: Preparing the soft cor-
relations to be usable by the query optimizer involves a cost for
handling the violating records. Therefore, given a set of candidate
correlations and limited system resources, deciding on which ones
to select and be more beneficial to a given query workload turns
out to be a complex NP-Hard optimization problem. EXORD in-
troduces a novel cost-benefit model for soft correlations augmented
with a heuristics-based algorithm under which it adaptively and
dynamically selects the most beneficial correlations in a practical
polynomial time.

As illustrated in Figure 1, the core features of EXORD are
infrastructure-independent, and hence they are applicable to big
data query optimization in general. As a proof of concept, EXORD
prototype is built on top of the Hadoop infrastructure—as one of the
most popular big data platforms—and it uses Hive as its high-level
query engine. We opt for Hive since it assumes a known structure
for the data, which facilitates defining the correlations among the
data attributes.

The key contributions of this paper are summarized as follows:
• Proposing “EXORD” as the first system for exploiting the

data’s correlations in big data query optimization. EXORD real-
istically put the assumption that domain experts may not guaran-
tee with certainty many of the correlations, and thus EXORD in-
troduces and supports the two types of hard and soft correlations.
(Section 2)

Indexing
Techniques

Materialization
Techniques

Partitioning
Techniques

Big Data Infrastructure (E.g., Hadoop)

…	

Preparation
Phase

Deployment
Phase

Strategy for
Handling
Violations

Use in Query
Optimization

EXORD Engine
Validation Validation

Validation

Statistics
collection

Selection &
Optimization Deployment

Cost-based
selection

Exploitation in
query re-writing

Figure 1: EXORD Utilization and Phases.

• Introducing a new multi-phase approach for managing soft
correlations, which consists of a Validation Phase, followed by
a Selection & Optimization Phase, and then a Deployment &
Exploitation Phase. Throughout these phases EXORD decides
whether or not a given soft correlation is worthy of being used,
and what is the best strategy to prepare it for deployment. We pro-
pose two different strategies, namely Exclusion, and Materializa-
tion, for handling the violation records, each is suited for specific
cases. (Section 3)
• Proposing a novel cost-benefit model for soft correlations, and

mapping the selection of the most beneficial ones for optimizing a
given query workload to the well-known submodular knapsack op-
timization problem. As an NP-Hard problem, we propose a sound
heuristic to efficiently solve the selection problem in a practical
polynomial time. (Section 3)
• Proposing an algorithm for exploiting the soft and hard corre-

lations in query optimization. We experimentally utilize EXORD
on top of two well-known optimization strategies in Hadoop, which
are the indexing, and partitioning strategies. EXORD extends the
benefits of these strategies beyond their targeted attributes to opti-
mize a broader class of queries. (Section 4)
• Implementing EXORD as an extension to Hive query engine

on top of Hadoop. The extensions do not require any changes to
Hadoop, and hence they are easily portable across versions. The
system’s empirical evaluation shows that EXORD enables opti-
mization opportunities that the state-of-art techniques fail to dis-
cover. These optimizations lead to up to 12x speedup compared to
the naive full-scan evaluation plans. (Section 5)

2. PRELIMINARIES
In this section, we define the target queries to be optimized by

EXORD, and formally introduce our definition of correlations.

DEFINITION 2.1 (TARGET QUERIES). A target query Q in
EXORD is a query involving an equality predicate on an attribute
A1 that has no associated access methods—other than a full scan—
to check its predicate. The primary objective of EXORD is to lever-
age any available correlations related to A1 to re-write Q in terms
of other attributes that have more efficient access methods, e.g.,
indexing or partitioning, to evaluate their predicates.1

DEFINITION 2.2 (CORRELATION). A correlation C over a
given dataset is a directed relationship from one attribute, called

1The equality predicates can be relaxed and extended to range
predicates but under some restrictions and properties that need to
hold for the values being queried. However, for the ease of presen-
tation, we will focus only on equality predicates.

“source”, to another attribute called “destination”. The cor-
relation defines how the source’s values can be mapped to
the destination’s values. C is defined as a five-ary vector
〈Src, Dest, Type, Granularity, F ()〉, where, Src, and Dest,
are the source, and destination attributes of the correlation, re-
spectively, Type is the correlation’s type as either “Hard” or
“Soft”, and Granularity is the granularity of mapping from a given
source’s value to the destination value(s), and it takes either of the
values “Singleton” (one-to-one mapping), “Range” (one-to-range
mapping), or “List” (one-to-list mapping). Finally, Function F(s)
is the mapping function that takes a value s ∈ Src and returns
its corresponding mapping in Dest. Depending on the granular-
ity, F(s) returns either of a single value (for “Singleton”), a list of
values (for “List”), or a record {lower, upper} (for “Range”).

Example 1: Referring to our motivation scenar-
ios, the correlation in Scenario 1 can be formulated
as: 〈deliveryDate, shippingDate, “Soft′′, “Range′′, F ()〉,
where for a given delivery date d, F (d).lower = (d -
10 days), and F (d).upper = (d - 3 days). In con-
trast, the correlation in Scenario 2 can be formulated as:
〈airportCode, country, “Soft′′, “Singelton′′, F ()〉, where for a
given airport code a, Function F () lookups a small table having
the list of distinct airport codes and returns the corresponding
country (For the special code “***”, the function returns Null).

In general, EXORD treats Function F ()—which is provided by
the system admin—as a black box without the need to know its
internal logic. The only requirement is that F () should be a low-
cost light-weight function that can be executed with a very little
cost per record. This requirement does not limit the applicability
of the system since the Src and Dest attributes are not restricted
to any specific data type or domain and they can be numerical or
categorical. Moreover, F () may range from any mathematical or
algebraic expression, to general lookup functions that search some
auxiliary structures and perform the mappings—as long as this aux-
iliary structure is relatively small (few MBs) and can be distributed
to the main memory of each machine in the distributed system.
Most correlation examples studied in literature, e.g., [2, 16, 17],
fall under this scope.

DEFINITION 2.3 (HARD CORRELATION). A hard correla-
tion C is a correlation having C.Type = “Hard” and it is guar-
anteed to hold for all records in the dataset D.

Unlike hard correlations, soft correlations have a degree of un-
certainty and not all of them are useful, e.g., the violations for a
given correlation can be too many. Therefore, depending on the de-
gree of violations, we categorize soft correlations into Valid (use-
ful) and Invalid (useless) as follows.

DEFINITION 2.4 (VALID SOFT CORRELATION). For a soft
correlation C of C.Type = “Soft”, let Φ(C) denotes the set of
distinct violating values in C.Src (with cardinality |Φ(C)|), and
Γ(C) denotes the set of violating records in the dataset (with cardi-
nality |Γ(C)|). Given two user-defined thresholds MaxVioDistinct
> 1 and MaxVioRec > 1, C is called a ”valid” soft correlation iff
either (or both) of the following two conditions is met:

(1) |Φ(C)| ≤ MaxVioDistinct,
(2) |Γ(C)| ≤ MaxVioRec

DEFINITION 2.5 (INVALID SOFT CORRELATION). A soft
correlation C of C.Type = “Soft”, is called ”invalid” iff C is not a
valid soft correlation.

According to Def. 2.4, EXORD considers a soft correlation to
be valid (useful) under two cases. The first case is where the num-
ber of distinct violating values in the correlation’s source attribute
is less than a given threshold MaxV ioDistinct regardless of the
number of violating records. This case captures the scenarios where
there can be many violating records, but possibly because of few
distinct values that are repeating in these records. The second case
is where the set of violating records is smaller than a given thresh-
old MaxV ioRec even if the number of distinct violating values
is large. Typically, MaxV ioDistinct << MaxV ioRec. As we
will present in Section 3.2, EXORD offers two different strategies
for managing these two cases.

3. EXORD: BASIC FRAMEWORK
We propose a three-phase approach to manage the soft corre-

lations as depicted in Figure 1. In the 1st phase (The Validation
Phase), EXORD collects few statistics to identify the valid soft cor-
relations. In the 2nd phase (The Selection & Optimization Phase),
the system selects and prepares a possibly subset of the valid soft
correlations that are the most beneficial for a given query work-
load. This selection is based on a novel cost-benefit that works
under limited system resources. The 3rd phase is the Deployment
& Exploitation Phase in which the correlations are used at runtime
for query re-writing and optimization. In the following, we present
the first two phases, while the 3rd phase is presented in Section 4.

3.1 Validation Phase
Assume a dataset D and a set of soft correlations in their valida-

tion phase V = {C1, C2, ..., Cn}. Since scanning the dataset can
be an expensive operation over big data, EXORD will not perform
a dedicated job on D to collect the needed statistics. Instead, the
system waits for the first user’s job that is going to scan the data
anyway, and then piggybacks the statistics collection task over this
job. More specifically, the user’s map task will be encapsulated
within a larger system-created map task, and before the execution
of the user’s code on an input record r, r is tested against each soft
correlation Ci ∈ V according to its granularity as follows:

Correlation Granularity Test Format
Singleton Dest = Ci.F(Src)
Range Dest ≥ Ci.F(Src).lower And

Dest ≤ Ci.F(Src).upper
List Dest in Ci.F(Src)

For each correlation, each mapper reports two types of statistics:
(1) The number of records violating Ci (without reporting the ac-
tual records), and (2) Either the distinct violating values (Φ(Ci)) if
their number is lessMaxV ioDistinct, or a flag indicating that the
number has exceeded the allowed threshold. Notice that the goal is
not to enumerate all distinct violating values otherwise it becomes
an expensive map-reduce job by itself. Instead, each mapper keeps
maintaining the seen-so-far distinct violating values in its memory
until the given threshold is exceeded (if happened). And as we will
demonstrate in the experiment section, MaxV ioDistinct is typi-
cally set to few thousands, e.g., 10, 000 or less, and in this case the
mapper’s consumed memory is very small, e.g., less than 1MB.

After all mappers are completed, a centralized task aggre-
gates the results to compute |Γ(Ci)|, and the final duplicate-
free set of Φ(Ci) (or a flag indicating that its size exceeded
MaxV ioDistinct). Based on these statistics and according to
Def. 2.4, each correlation is marked as either Valid (and advances
to subsequent phases) or Invalid (and get eliminated from any fur-
ther consideration). The statistics and the status of each correlation
are maintained in the system’s Metadata Repository, which will be
highlighted in Section 5.1.

3.2 Selection & Optimization Phase
Unlike hard correlations that are ready for exploitation by the

query optimizer, the valid soft correlations need to be first prepared
by specially handling the violations and putting strategies for guar-
anteeing correct query execution. This handling involves a storage
cost, which may vary significantly from one correlation to another.
Moreover, not all correlations have the same usefulness degree w.r.t
query optimization. For example, the system may pay the cost of
preparing many valid soft correlations while they are of little or no
actual benefit to the current query workload, which may lead to a
significant waste in system resources.

In this section, we propose a novel cost-benefit model to auto-
matically and adaptively select the correlations based on their costs
and benefits w.r.t to a given query workload and under limited sys-
tem resources. We show that this optimization problem is very
complex, and can be formulated as a submodular knapsack prob-
lem, which is known to be an NP-Hard problem [21]. And then, we
propose a heuristic to efficiently solve it in polynomial time.

3.2.1 Correlations Cost Model
EXORD offers two different strategies—each comes with an as-

sociated cost—for preparing a valid soft correlation, namely “Ex-
clusion” and “Materialization”. Each strategy is applicable to a
given soft correlation according to the following definitions:

DEFINITION 3.1 (EXCLUSION STRATEGY). For a given
valid soft correlation C, the “Exclusion Strategy” is applicable to
C iff Condition (1) in Def. 2.4 is True, and it involves copying the
Φ(C) set to EXORD’s Metadata Repository.

DEFINITION 3.2 (MATERIALIZATION STRATEGY). For a
given valid soft correlation C, the “Materialization Strategy” is
applicable to C iff Condition (2) in Def. 2.4 is True, and it involves
copying the Γ(C) set to a separate file, called exception bucket, in
the file system.

As will be discussed in detail in Section 4, the Exclusion strat-
egy relies on logically excluding the violating values from being
re-written or optimized for during the compilation and optimiza-
tion time. And since the decision of such exclusion needs to be
taken very fast (typically in few milli-seconds), the distinct violat-
ing values are not intended to be written to (and read from) the
slow-storage of the main file system, e.g., HDFS. Instead, they are
kept in EXORD’s Metadata Repository—which is a light-weight
relational DBMS. The Exclusion strategy is well suited for the
cases where the number of distinct violating values is small even
if the violating records are many (As in Motivation Scenario 2).
On the other hand, the Materialization strategy relies on physically
copying the violating records into separate files (referred to as “ex-
ception buckets”)—recall that in HDFS, the deletion or update of
the original files is not a possible operation. These exception buck-
ets can be relatively large in size, and thus kept in the file system,
e.g., HDFS. Nevertheless, their access will be only required during
query execution not query optimization.

Given that the storage resources are not infinite, the maximum
resources allotted to EXORD, which are referred to as the Resource
Pool, are defined as follows:

DEFINITION 3.3 (RESOURCE POOL). The Resource Pool is
the maximum allowed storage that valid soft correlations can com-
pete for and consume. It is denoted as RPool = ¡MPool, HPool¿,
where MPool, and HPool are the maximum sizes in the Metadata
Repository, and the file system (HDFS), respectively.

Recall that MPool is the storage space to be used in the case of
the Exclusion strategy, whereas the HPool is the storage space to
be used in the case of the Materialization strategy.

(X	=	10	And		
W	=	20)	

Query	Workload		
W	

Set	of		
Correla:ons	

C1	

C2	

C3	

Q1	

Q4	

Q3	

Q2	

X	è	Y	

W	è	Z	

Coverage(C1) = {Q2, Q3}
Coverage(C2) = {Q2, Q3}
Coverage(C3) = {Q4}

ExclusiveCoverage(C1) = {}
ExclusiveCoverage(C2) = {}
ExclusiveCoverage(C3) = {Q4}

Figure 2: Benefit Factors of Soft Correlations.

Now, the formal cost model of soft correlations is defined as fol-
lows (Hard correlations always has zero deployment cost).

DEFINITION 3.4 (CORRELATION COST). The deployment
cost of a valid soft correlation C to be ready for the query
optimizer is defined as follows:

Cost(C) =

< Φ(C).size, ∞ >, if only Def. 2.4.(1) = True

<∞, Γ(C).size >, if only Def. 2.4.(2) = True

< Φ(C).size,Γ(C).size >, Otherwise

According to Def. 3.4, if only Condition (1) in Def. 2.4 is True,
then the correlation is allowed to compete only for a space in
MPool, whereas if only Condition (2) is True, then it is allowed
to compete only for a space in HPool. And if both conditions are
True, then the correlation is allowed to compete for both resources
(although a higher priority is given to MPool) as will be presented
in Section 3.2.3. Notice that in the cost model, Φ(C).size can be
exactly computed since the Φ(C) set is already available, whereas
Γ(C).size can be only estimated depending on the known |Γ(C)|
and its percentage w.r.t to base dataset.

3.2.2 Correlations Benefit Model
Given a workload of n queries W = {Q1, Q2, Q3, ..., Qn},

the benefit (reward) metric of a valid soft correlation Ci depends
on several factors including: (1) The percentage of queries in W
for which Ci is applicable, i.e., the queries that involve an equal-
ity predicate on Ci.Src column. We refer to these queries as the
Coverage(Ci). (2) The percentage of queries in W for which
only Ci is applicable, i.e., if Ci is not selected for deployment,
then these queries will have no other correlations to optimize them.
We refer to these queries as theExclusiveCoverage(Ci). (3) The
actual execution savings, e.g., the wall clock time, achieved by Ci

from executing a re-written optimized query Q compared to exe-
cuting Q without re-writing. And (4) In addition to these factors,
maximizing the coverage of W while minimizing the overall cost
is also a desirable objective.

As an illustrative example, we present in Figure 2 a set of cor-
relations C1, C2, and C3, and a query workload consisting of four
queries. An edge between a correlation Ci and a query Qj indi-
cates that Ci is applicable to Qj and can be used to re-write and
optimize this query. The edge labels, e.g., “X → Y ”, indi-
cate that the correlation can be used to re-write a predicate on its
source column X in terms of a predicate on its destination col-
umn Y (and Y is assumed to have an associated efficient access
method, e.g., an index). In the figure, we include the Coverage()
and ExclusiveCoverage() sets of each correlation.

Referring to Figure 2, it is evident that correlations may have
different priorities w.r.t each of the four factors mentioned above.
For example, if we consider the 1st factor (based on coverage), then
C1 andC2 will have higher (and equal) priorities overC3, whereas,
if we consider the 2nd factor (based on exclusive coverage), then
C3 gets higher priority. Moreover, according to the 4th factor (W ’s
coverage with minimal cost), if C1 is selected by the system, then
C2’s priority should be significantly lowered since it does not cover
any new queries beyond those covered by C1.

Clearly, including all four factors into the benefit metric makes it
very complicated especially because estimating the execution sav-
ings (The 3rd factor) requires execution statistics, which may not
be available for all correlation-query pairs. To simplify the met-
ric, we make a reasonable and practical assumption that no matter
how a query is optimized, e.g., through indexing or partitioning,
the savings from executing an optimized version will be significant
compared to executing the un-optimized version (full scan). This
implies that, it does not matter which of the two correlations C1 or
C2 to use for optimizing Q2, what matters is to have Q2 covered.
It also implies that EXORD always favors the use of these special
structures over a full scan regardless of the query selectivity. This
is a valid assumption in Hadoop-like infrastructures because under
the way the indexes are built [6, 8] and the data blocks are accessed
in a distributed manner, there is no notion of secondary indexes that
may lead to random data accesses and higher overheads compared
simple sequential scans (this is unlike the case in RDBMSs). As
confirmed by our experiments, even under the worst case where
selectivity is close to 100%, both partition-based and index-based
techniques are safe to choose as they would perform very similar to
a full scan.

Based on this simplifying assumption, the 3rd factor concerning
the actual execution savings can be ignored because all applicable
correlations are now assumed to bring ”enough” and ”acceptable”
benefit. Now, for the remaining three factors, the correlation’s ben-
efit can be formally defined as follows:

DEFINITION 3.5 (STATIC CORRELATION BENEFIT). For a
given workload W of size n queries, and a soft correlation Ci,
the static benefit of Ci is computed as the percentage of queries
for whichCi is either applicable or exclusively applicable. That is:

SBenefit(Ci,W) =
|Coverage(Ci)| + |ExclusiveCoverage(Ci)|

n
.

DEFINITION 3.6 (DYNAMIC CORRELATION BENEFIT). For
a given workloadW , and a soft correlationCi, the dynamic benefit
of Ci is re-computed after the selection of any other correlation as
follows:

Initial State:
DBenefit(Ci,W) = SBenefit(Ci,W), ∀ Ci,

Next State after the selection (and removal) of correlation Cj :
W = W − Coverage(Cj)

DBenefit(Ci,W) = SBenefit(Ci,W), ∀ Ci.

The static correlation benefit (Def. 3.5) basically takes into ac-
count the 1st and 2nd factors, while ignoring the 4th factor. Yet,
its computations are easier since the benefits do not depend on the
previous decisions taken by the system. In contrast, the dynamic
correlation benefit (Def. 3.6) takes the 4th factor into account, and
thus whenever a specific correlation is selected, the benefits of the
remaining correlations need to be re-calculated.

3.2.3 The Optimization Problem
The optimization problem is now to select a subset of valid soft

correlations C with the objective of maximizing the total benefit

Dominance Type Cost(Ci) ≤ Cost(Cj) IFF
Ci 7→ΦΓ Cj (Φ(Ci).size ≤ Φ(Cj).size) And

(Γ(Ci).size ≤ Γ(Cj).size)

Ci 7→Φ Cj (Φ(Ci).size ≤ Φ(Cj).size)

Ci 7→Γ Cj (Γ(Ci).size ≤ Γ(Cj).size)

Table 1: Dominance Notations w.r.t Cost() Comparison.

(
∑
∀Ci∈C Benefit(Ci)) subject to not exceeding the allowed re-

sources (
∑
∀Ci∈C Cost(Ci) ≤ RPool).

Clearly, if the benefit function follows Def. 3.5 (Static benefit),
then the optimization problem maps to the classic “0/1 knapsack”
problem, which is NP-complete, but efficient approximation algo-
rithms exist with computable error bound [13]. On the other hand,
if the benefit function follows Def. 3.6 (Dynamic benefit), which is
semantically stronger, then the optimization problem maps to the
“submodular knapsack” problem, which is even harder to solve or
approximate than “0/1 knapsack” [21].

Because of that, we propose an algorithm that combines and re-
tains the pros of both definitions. This is achieved by combining the
static definition of the correlations’ benefit (Def. 3.5) with a heuris-
tic that captures the essence of the dynamic definition. More specif-
ically, the heuristic will prevent selecting correlations that adds no
(or minimal) value to the already selected ones. The heuristic relies
on the following definition of correlations’ dominance.

DEFINITION 3.7 (CORRELATIONS DOMINANCE).
A correlation Ci (soft or hard) is said to dominate an-
other correlation Cj (soft), denoted as Ci 7→ Cj , iff
Cost(Ci) ≤ Cost(Cj), ExclusiveCoverage(Cj) = φ,
and |Coverage(Cj) − Coverage(Ci)|

|Coverage(Cj)| ≤ ε, where ε is a small
threshold value ∈ [0, 1).

The heuristic relies on that before solving the optimization prob-
lem, we apply a filtering step that eliminates correlations that are
dominated (or nearly dominated) by other correlations. In other
words, instead of aiming for the optimal solution according to
Def. 3.6 (which is very expensive), we aim for avoiding the worst-
case scenario that Def. 3.5 may generate. According to Def. 3.7, a
soft correlation can be dominated by either a soft or a hard corre-
lation (but not vise versa). Moreover, a correlation that has a non-
empty ExclusiveCoverage() set cannot be dominated by other
correlations. It is worth highlighting that if the ε threshold is set to
zero, then the dominance becomes a “complete dominance”. How-
ever, the heuristic allows for a “near dominance” to be more effec-
tive in filtering out correlations that add little contributions. For
example, if ε = 0.15 and one correlation C1 covers 10 queries,
while another correlation C2 covers seven of these queries plus one
additional new query, then |Coverage(C2) − Coverage(C1)|

|Coverage(C2)| = 0.14,
and thus C1 7→ C2, and C2 can be eliminated (if the other condi-
tions are met).

In Figure 3, we sketch the heuristic-based algorithm for solv-
ing the correlation-selection optimization problem. The algorithm
takes as input a set of n valid soft correlations P , and an observed
query workload W . The outcome is a subset of selected correla-
tions O to deploy along with the deployment strategy assigned to
each one. The algorithm is divided into three main phases: Phase
0 eliminates correlations that are dominated by others, Phase 1
solves the optimization problem for resource RPool.MPool, i.e.,
correlations will compete for the available metadata repository stor-
age, and Phase 2 solves the optimization problem for resource
RPool.HPool, i.e., the remaining correlations will compete for
the available HDFS storage. Given the computational complexity

Workload-Driven Correlation Selection
Inputs:

-  Set of valid soft correlations P = {C1, C2, …, Cn}
-  Query workload W

Output:
 - subset of correlations to deploy O (initially empty)
 along with the deployment strategy for each one.

Phase 0: Heuristic-Based Filtering considering both cost components
-  For (each soft correlation Cj in P) Loop
 - If (Ci Cj) Then Delete Cj from P
-  End For

Phase 1: 0/1 knapsack optimization for resource RPool.Mpool
//Heuristic-Based Filtering considering only Φ(Ci).size component
-  For (each soft correlation Cj in P) Loop
 - If (Ci Cj) Then

 - Add Cj to TempList
 - Delete Cj from P

 - End If
- End For
-  Result = Solve the optimization problem [17]
-  Delete Result from P
-  O ç (Result with assigned “Exclusion” strategy)

Phase 2: 0/1 knapsack optimization for resource RPool.Hpool
//Check correlations in TempList and may return some back
-  For (each correlation Cj in TempList) Loop
 - If (none of Cj’s dominating correlations is in O) & ()

 Then Admit back Cj to P
- End For

//Heuristic-Based Filtering considering only Γ(Ci).size component
-  For (each soft correlation Cj in P) Loop
 - If (Ci Cj) Then Delete Cj from P
- End For
-  Result = Solve the optimization problem [17]
-  O ç O + (Result with assign “Materialization” strategy)

�	

�	

�	

RPool.MPool resource, i.e., compete for the “Exclusion Strat-
egy”. For that purpose the cost function comparison will take only
the �().size component into account. The dominance heuristic
will be applied again to “temporarily” eliminate any dominated
correlations given this new cost function comparisons denoted as
Ci 7!� Cj (Refer to Table 1). After that, the optimization problem
is solved approximately using the “FPTAS” technique in [17]. The
selected correlations will be added to the output set O, and will be
assigned the “Exclusion” strategy.

Phase 2 has the same idea of Phase 1 but with two differences.
First, Phase 2 needs to re-examine each correlations, say Cj , that
is dominated by others in Phase 1 (and hence skipped from the
competition), and checks whether or not any of Cj’s dominating
correlations is actually in the output set O. If not, then Cj is ad-
mitted back to the candidate pool P , and is given a second chance
to compete for RPool.HPool only if �(Cj).size 6= 1. Second,
correlations in Phase 2 will now compete for the RPool.HPool re-
source, i.e., compete for the “Materialization” strategy. Therefore,
the cost function comparison for the dominance relationship will
now rely only on the �().size component, and the dominance is
denoted as Ci 7!� Cj (Refer to Table 1). Finally, the selected
correlations are added to the output set O and assigned the “Mate-
rialization” strategy.

4. DEPLOYMENT & EXPLOITATION
PHASE

The ultimate goal of EXORD is to exploit the available corre-
lations to re-write queries and enable more efficient access plans.
In Figure 5, we present the flowchart of the exploitation procedure.
The procedure takes as input a set of correlations in their deploy-
ment phase Y = {C1, C2, ..., Cn}, a dataset D to be queried, and a
target query Q as defined in Def. 2.1 consisting of a set of conjunc-
tive predicates p1 ^p2 ^ ...pk.4 Set Y includes a mix of hard corre-
lations, and soft correlations along with their deployment strategies
as either Exclusion, or Materialization.

As the first step, the system checks whether any of Q’s predi-
cates, say pk, can enable an access plan other than a full scan, e.g.,
by leveraging indexing or partitioning strategies. If that is the case,
then Q is returned without correlation-driven re-writing. Other-
wise, EXORD tries to re-write any of the predicates using the avail-
able correlations in Y . While searching Y , the priority is given first
to the hard correlations, followed by the Exclusion-based soft cor-
relations, followed by the Materialization-based soft correlations
(The 2nd, 3rd, and 4th conditions in the flowchart, respectively).
The intuition is that hard correlations apply to the entire dataset
D without any restrictions or exceptions, and thus they are given
the highest priority. On the other hand, the Exclusion-based cor-
relations are given higher priority over the Materialization-based
correlations because, as will be explained later, the processing of
the queries optimized using a Materialization-based correlation in-
volves more overhead due to the need for querying the correspond-
ing exception bucket.

Assume the selected correlation is Ci 2 Y , and it will be used
to re-write a specific predicate in Q, say pk, which is in the form
of pk: Ak = sk, where Ak is one of the data’s attributes, and sk

is a constant value. Therefore, Ci.Src = “A00
k , and we assume

Ci.Dest = “B00
k , which is another attribute in D. The re-writing

procedure, which generates a new query Q’ is the same regard-
less of the Ci’s type. That is, the three different correlation-driven

4An analytical query might be more complex, e.g., involving joins
and aggregations. However, Q in our context represents the sub-
query involving only the selection predicates.

Exists predicate pk
enabling non-full-scan

plan?

Exists hard correlation Ci
to re-write predicate pk?

Exists Exclusion-based
correlation Ci to re-write

predicate pk?

Exists Materialization-
based correlation Ci to re-
write predicate pk?

Yes

No

- Return Q to execute on D

-  Q’ = Re-write(Q, Ci, pk)
-  Return Q’ to execute on D

Yes

No

Yes

No

No

Return Q to execute on D
with full-scan plan

-  Return Q to execute on
 D-Ci-ExpBucket

-  Q’ = Re-write(Q, Ci, pk)
-  Return Q’ to execute on D

Yes
-  Union the results

Inputs
-  Query Q consisting of a set of conjunctive predicates P = p1, p2, …pk

 Each pk is in the form of pk: (Attribute Ak = Constant sk)
-  Correlations in deployment phase Y = {C1, C2, …, Cn}
-  Dataset D to be queried.

(Ci.Src = Ak)

(Ci.Src = Ak
And sk Φ(Ci)) �	

(Ci.Src = Ak)

Correlation-Driven Re-Writing

Ci Granularity Augmented Predicate to pk in Q’

Singleton “AND Bk = Ci.F(sk)”

Range “AND (Bk ≥ Ci.F(sk).lower
 And(Bk ≤ Ci.F(sk).upper)”

List “AND Bk in Ci.F(sk)”

Augmentation Rules of Re-Write(Q, Ci, pk: Ak = sk)

Figure 5: Exploitation in Query Optimization Flowchart.

re-writing cases illustrated in Figure 5 (The 2nd, 3rd, and 4th con-
ditions) execute the same Re-Write(Q, Ci, pk: Ak = sk) pro-
cedure. Re-Write augments an additional predicate (in a conjunc-
tive form) to pk, where the format of the new predicate depends on
Ci’s granularity as illustrated in Figure 5 (bottom table).

After generating the new query Q’, the execution plan to gen-
erate the correct results depends on the correlation’s type and the
adopted deployment strategy. That is, in the cases where Ci is a
hard correlation or an Exclusion-based soft correlation, only the
new query Q’ needs to execute on the original dataset D (The 2nd,
and 3rd cases in the flowchart). Whereas, in the case where Ci is a
Materialization-based correlation, executing Q’ on D may not be
enough as it may miss some data records that satisfy Q but in vi-
olation of Ci, i.e., may miss records in �(Ci). Therefore, the new
query Q’ executes on D, and also the original query Q executes
on the execution bucket file D-Ci-ExpBucket, and then the results
union together to generate the final correct results. Since the results
from the two queries are guaranteed to be disjoint, there is no spe-
cial processing needed to eliminate duplicates when constructing
the final answer.

Recall that Q’ contains the newly added predicates on Ci.Dest,
which has an associated efficient access method. And thus, Q’
execution on the big dataset D is expected to be efficient as it avoids
the expensive full-scan plans. On the other hand, the execution of Q
on the exception bucket is also expected to be efficient—although
it uses a full-scan plan—because exception buckets are relatively

Figure 3: Workload-Driven Selection for Correlations.

of [13], which is O(n log n), the proposed heuristic-based algo-
rithm also has computational complexity of O(n log n), where n is
the number of correlations in P .

In Phase 0, we permanently eliminate any correlation Cj that
is dominated by another correlation Ci, where the cost function
comparison takes both components (Φ().size and Γ().size) into
account as summarized in Table 1. This means that Cj cannot
compete against Ci for either of RPool.MPool or RPool.HPool

(denoted as Ci 7→ΦΓ Cj), and thus it is permanently eliminated.
In Phase 1, the remaining correlations will compete for the

RPool.MPool resource, i.e., compete for the “Exclusion Strat-
egy”. For that purpose the cost function comparison will take only
the Φ().size component into account. The dominance heuristic
will be applied again to “temporarily” eliminate any dominated
correlations given this new cost function comparisons denoted as
Ci 7→Φ Cj (Refer to Table 1). After that, the optimization problem
is solved approximately using the “FPTAS” technique in [13]. The
selected correlations will be added to the output set O, and will be
assigned the “Exclusion” strategy.

Phase 2 has the same idea of Phase 1 but with two differences.
First, Phase 2 needs to re-examine each correlation, say Cj , that
is dominated by others in Phase 1 (and hence skipped from the
competition), and checks whether or not any of Cj’s dominating
correlations is actually in the output set O. If not, then Cj is ad-
mitted back to the candidate pool P , and is given a second chance
to compete for RPool.HPool only if Γ(Cj).size 6= ∞. Second,
correlations in Phase 2 will now compete for the RPool.HPool re-
source, i.e., compete for the “Materialization” strategy. Therefore,
the cost function comparison for the dominance relationship will

now rely only on the Γ().size component, and the dominance is
denoted as Ci 7→Γ Cj (Refer to Table 1). Finally, the selected
correlations are added to the output set O and assigned the “Mate-
rialization” strategy.

• Execution of the Selected Strategy: For a given correlation
C, if the assigned strategy is Exclusion, then no further prepara-
tion is needed since the Φ(C) set is already collected during the
Validation phase, and the correlation advances to the deployment
phase. However, if the assigned strategy is Materialization, then
still an entire scan over the dataset D is needed to report the violat-
ing records and materialize them into an exception bucket file. In
this case, the scan is deferred and piggybacked over the next user-
submitted job (and only thenC advances to the deployment phase),
and the created exception bucket is distinct for each D and C pair,
and named D-C-ExpBucket.

4. DEPLOYMENT & EXPLOITATION
PHASE

The ultimate goal of EXORD is to exploit the available corre-
lations to re-write queries and enable more efficient access plans.
In Figure 4, we present the flowchart of the exploitation procedure.
The procedure takes as input a set of correlations in their deploy-
ment phase Y = {C1, C2, ..., Cn}, a datasetD to be queried, and a
target queryQ as defined in Def. 2.1 consisting of a set of conjunc-
tive predicates p1 ∧p2 ∧ ...pk. Set Y includes a mix of hard corre-
lations, and soft correlations along with their deployment strategies
as either Exclusion, or Materialization.

As the first step, the system checks whether any of Q’s predi-
cates, say pk, can enable an access plan other than a full scan, e.g.,
by leveraging indexing or partitioning strategies. If that is the case,
then Q is returned without correlation-driven re-writing. Other-
wise, EXORD tries to re-write any of the predicates using the avail-
able correlations in Y . While searching Y , the priority is given first
to the hard correlations, followed by the Exclusion-based soft cor-
relations, followed by the Materialization-based soft correlations
(The 2nd, 3rd, and 4th conditions in the flowchart, respectively).
The intuition is that hard correlations apply to the entire dataset
D without any restrictions or exceptions, and thus they are given
the highest priority. On the other hand, the Exclusion-based cor-
relations are given higher priority over the Materialization-based
correlations because, as will be explained next, the processing of
queries under the latter strategy involves more overhead due to the
need for scanning the corresponding exception bucket.

Assume the selected correlation is Ci ∈ Y , and it will be used
to re-write a specific predicate in Q, say pk, which is in the form
of pk: Ak = sk, where Ak is one of the data’s attributes, and sk
is a constant value. Therefore, Ci.Src = “A′′k , and we assume
Ci.Dest = “B′′k , which is another attribute in D. The re-writing
procedure, which generates a new query Q’ is the same regard-
less of the Ci’s type. That is, the three different correlation-driven
re-writing cases illustrated in Figure 4 (The 2nd, 3rd, and 4th con-
ditions) execute the same Re-Write(Q, Ci, pk: Ak = sk) pro-
cedure. Re-Write augments an additional predicate (in a conjunc-
tive form) to pk, where the format of the new predicate depends on
Ci’s granularity as illustrated in Figure 4 (bottom table).

After generating the new query Q’, the execution plan to gen-
erate the correct results depends on the correlation’s type and the
adopted deployment strategy. That is, in the cases where Ci is a
hard correlation or an Exclusion-based soft correlation, only the
new query Q’ needs to execute on the original dataset D (The 2nd,
and 3rd cases in the flowchart). Whereas, in the case where Ci is a
Materialization-based correlation, executing Q’ on D may not be

Exists predicate pk
enabling non-full-scan

plan?

Exists hard correlation Ci
to re-write predicate pk?

Exists Exclusion-based
correlation Ci to re-write

predicate pk?

Exists Materialization-
based correlation Ci to re-
write predicate pk?

Yes

No

- Return Q to execute on D

-  Q’ = Re-write(Q, Ci, pk)
-  Return Q’ to execute on D

Yes

No

Yes

No

No

Return Q to execute on D
with full-scan plan

-  Return Q to execute on
 D-Ci-ExpBucket

-  Q’ = Re-write(Q, Ci, pk)
-  Return Q’ to execute on D

Yes
-  Union the results

Inputs
-  Query Q consisting of a set of conjunctive predicates P = p1, p2, …pk

 Each pk is in the form of pk: (Attribute Ak = Constant sk)
-  Correlations in deployment phase Y = {C1, C2, …, Cn}
-  Dataset D to be queried.

(Ci.Src = Ak)

(Ci.Src = Ak
And sk Φ(Ci)) �	

(Ci.Src = Ak)

Correlation-Driven Re-Writing

Ci Granularity Augmented Predicate to pk in Q’

Singleton “AND Bk = Ci.F(sk)”

Range “AND (Bk ≥ Ci.F(sk).lower
 And(Bk ≤ Ci.F(sk).upper)”

List “AND Bk in Ci.F(sk)”

Augmentation Rules of Re-Write(Q, Ci, pk: Ak = sk)

Figure 4: Exploitation in Query Optimization Flowchart.

enough as it may miss some data records that satisfy Q but in vi-
olation of Ci, i.e., may miss records in Γ(Ci). Therefore, the new
query Q’ executes on D, and also the original query Q executes
on the execution bucket file D-Ci-ExpBucket, and then the results
union together to generate the final correct results. Since the results
from the two queries are guaranteed to be disjoint, there is no spe-
cial processing needed to eliminate duplicates when constructing
the final answer.

5. EXPERIMENTS

5.1 Implementation & Setup Details
Implementation Details: EXORD is implemented as an exten-

sion to Apache Hive 1.2.0. We used MySQL DBMS as the meta-
data repository engine. We extended Hive SQL interface and added
a new command ‘‘Create Correlation ...’’ through which
the database admins can define the soft and hard correlations along
with their parameters—As introduced in Def. 2.2. The metadata
repository stores the defined correlations, their status, the statistics
collected from the validation phase, and the assigned strategy. In
addition, for the Exclusion-based soft correlations, the distinct vio-
lating values are stored in the metadata repository.

Cluster Setup: We used Apache Hadoop infrastructure (ver-
sion 1.1.2). All experiments are conducted on a dedicated local
shared-nothing cluster consisting of 20 compute nodes. Each node
consists of 32-core AMD 3.0GHz CPUs, 128GB of memory, and

ID Source Column Dest Column Short Desc. Strategy

C1 StartAirportIATA StartCountry In most cases, the airport code
determines the country (Refer to
Motivation Scenario 2)

Exclusion

C2 ConfTimestamp RequestTimestamp In most cases, the ConfTimestamp
is within 1 to 5 mins from the
Requesttimestamp

Materialization

C3 TicketPrice TicketClass The price givens an indication on
the ticket class code.

Materialization

Figure 5: Correlations in the Working Dataset.

DataSet
Size

Partitioning (map-reduce Job) Indexing (map-reduce Job)

Storage Time (sec) Storage Time (sec)

500 GBs 1.5 TBs 962 192GBs 2605

1 TB 3 TBs 2173 413GBs 6643

2.3 TBs ~ 7 TBs 4669 1.12TBs 16369

Figure 6: The storage (including 3-way replica) and time overheads of
creating an additional data organization (Partitioning or Indexing) for
Current-Auxiliary (Aux) technique.

2TBs of disk storage, and they are interconnected with 1Gbps Eth-
ernet. We used one server as the Hadoop’s master node, while the
other 19 servers are slave nodes. Each slave node is configured to
run up to 20 mappers and 12 reducers concurrently. The following
Hadoop’s configuration parameters are used: sort buffer size was
set to 512MB, JVM’s are reused, speculative execution is turned
off, and a maximum of 4GB JVM heap space is used per task. The
HDFS block size is set to 128MB with a replication factor of 3.

Datasets (Application & Synthetic): Most of our experimen-
tal evaluation uses an application dataset from the airline ana-
lytics domain. In addition, we generate a synthetic dataset to
stress test some extreme cases and broader ranges of configu-
ration parameters. The application dataset contains airline traf-
fic logs from 100s of airline companies and consists of cus-
tomers’ ticket reservation records. Each record has more than
80 attributes, however the key ones of interest to us include:
StartCountry, StartCity, StartAirportIATA, which de-
fine the starting point of a flight (and similar attributes exist for
the destination point), RequestTimestamp, ConfTimestamp,
which define the timestamp of a user requesting a reserva-
tion, and the timestamp of confirming the reservation, and the
TicketClass, TicketPrice attributes, which define the seat
class and the corresponding price. The total size of the dataset
is around 2.3 TBs, and with the 3-way replication the total size
is around 7 TBs in HDFS. For experimental purposes, we create
three versions of the dataset with different sizes, which are Small
(500GBs), Mid (1.0 TB), and Large (2.3 TBs).

The dataset has several interesting soft correlations. In Figure 5,
we summarize few correlations that will be our focus. Correla-
tion C1 is explained in detail in Motivation Scenario 2 in Section 1.
CorrelationC2 indicates that in the majority of the cases, the confir-
mation timestamp is within 1 to 5 mins after the request timestamp,
however there can certainly be exceptions to this correlation. More-
over, there is a correlation between the ticket price and the ticket
class (Correlation C3), and we are going to synthetically control
such correlation in different ways as will be explained in the exper-
iments.

5.2 Performance Evaluation

5.2.1 Query Execution Gain
We start by studying the gain from using EXORD in query ex-

ecution. We assume the soft correlations described above are al-

ready processed and they are in their deployment phase. As indi-
cated in Figure 5, Correlation C1 uses the Exclusion strategy, while
the remaining correlations use the Materialization strategy. In the
following, we demonstrate the effectiveness of EXORD in the con-
text of both selection and aggregation queries on top of two special
access methods, namely partitioning and indexing.

EXORD is compared against two baseline techniques, which are
referred to as “Current” and “Current-Auxiliary” (or “Aux” for
short). For a given query involving a selection predicate over an
attribute A, Current would perform a full scan over the data since
A—by default—has no special organization associated with it. In
contrast, in Aux, we manually build an additional special organi-
zation over A to efficiently support its queries. In Figure 6, we
report the storage and time overheads involved in building such ad-
ditional organizations. The key observation is that building these
additional organizations involves significant overheads that make it
almost impractical to build several of them over a single dataset. As
the experimental evaluation will show, EXORD can provide very
similar performance to Aux without paying this huge cost upfront.

Correlation C1: To study the benefits of using Correlation C1,
we first partition the data on the StartCountry attribute. Never-
theless, our equality-based selection query (C1-selection) involves
a selection predicate on the StartAirportIATA attribute instead.
In the query, we experiment with 10 different airport codes (ex-
cluding “***”) from different countries to have diverse selectivity,
and then average their results. The performance of theC1-selection
query is presented in Figure 7(a). The current technique [15] (la-
beled as “Current”) have to perform a full scan over the data, EX-
ORD makes use of Correlation C1 and adds an additional predicate
over the StartCountry which enables leveraging the existing par-
titioning, and “Aux” makes use of the additional partitioning cre-
ated based on StartAirportIATA attribute. As the results show,
both EXORD and Aux achieve a factor of 12x speedup, and their
performance is identical as they both touch only the same relevant
partitions. The key difference between them is that EXORD does
not pay the partitioning overhead reported in Figure 6.

In Figure 7(b), we study a more complex variation of Query C1-
selection, i.e., C1-aggr, in which the query involves an equality-
based selection followed by an aggregation. In this case, the aggre-
gation overhead—more specifically, the shuffling/sorting and the
reduce phase overheads—are the same to all techniques including
EXORD. Yet, the benefits from EXORD are still significant as it
saves around 65% of the job’s execution time, which is mostly due
to the savings in the map phase. Again, EXORD has identical per-
formance to Aux.

Correlation C2: In Figure 8, we demonstrate the usage of Cor-
relation C2 under the presence of indexes. In these experiments,
we build a local Hadoop++ index over the RequestTimestamp
attribute in each partition and use a customized InputFormat to
access the data as introduced in [6]. Our experimental queries
C2-selection and C2-aggr involve a selection predicate on the
ConfTimestamp attribute instead. Correlation C2 uses the Ma-
terialization strategy for storing the violating records in a sepa-
rate exception bucket. The exception bucket sizes are 273MBs,
695MBs, and 1.17GBs for the datasets of sizes 500GBs, 1TB, and
2.3TBs, respectively. We repeat each experiment with 5 different
timestamps, and for each timestamp we execute three experiments
with matching granularities of a Second, Minute, and Hour to have
different selectivities.

In Figure 8(a), we present the results of the selection query C2-
selection. The state-of-art technique [6] (“Current”) have to per-
form a full scan over the data without the use of the index, EXORD
triggers two jobs; one over the entire dataset and leverages the in-
dex, and another one to scan the exception bucket, and “Aux” lever-
ages the additional index built on the ConfTimestamp attribute.
As the results show, EXORD achieves up to 82% reduction in the

0	

200	

400	

600	

800	

1000	

500GB	 1TB	 2.3TB	
0	

300	

600	

900	

1200	

1500	

500GB	 1TB	 2.3TB	
0	

200	

400	

600	

800	

1000	

500GB	 1TB	 2.3TB	
Dataset Size Dataset Size

E
xe

cu
tio

n
T

im
e

(S
ec

)

E
xe

cu
tio

n
T

im
e

(S
ec

)

E
xe

cu
tio

n
T

im
e

(S
ec

)

(a) Selection-Only Job (b) Selection-Aggr. Job

EXORD

Current

Aux

EXORD

Current

Aux

C
ur

re
nt

A
ux

C
ur

re
nt

C
ur

re
nt

E
X

O
R

D

E
X

O
R

D

E
X

O
R

D

A
ux

A
ux

1TB 2.3TB 500GB

Excep Bucket Processing

Dataset Processing

E
xe

cu
tio

n
T

im
e

(S
ec

)

Dataset Size
(a) Selection-Only Job

0	

300	

600	

900	

1200	

1500	

500GB	 1TB	 2.3TB	

Excep Bucket Processing

Dataset Processing

Aggr Job

A
ux

C
ur

re
nt

C
ur

re
nt

E
X

O
R

D

E
X

O
R

D

E
X

O
R

D

A
ux

A
ux

1TB 2.3TB 500GB
Dataset Size

(b) Selection-Aggr Job

C
ur

re
nt

Figure 7: Study of Correlation C1 (Use of Partitioning).

0	

200	

400	

600	

800	

1000	

500GB	 1TB	 2.3TB	
0	

300	

600	

900	

1200	

1500	

500GB	 1TB	 2.3TB	
0	

200	

400	

600	

800	

1000	

500GB	 1TB	 2.3TB	
Dataset Size Dataset Size

E
xe

cu
tio

n
Ti

m
e

(S
ec

)

E
xe

cu
tio

n
Ti

m
e

(S
ec

)

E
xe

cu
tio

n
Ti

m
e

(S
ec

)

(a) Selection-Only Job (b) Selection-Aggr. Job

EXORD

Current

Aux

EXORD

Current

Aux

C
ur

re
nt

A
ux

C
ur

re
nt

C
ur

re
nt

E
X

O
R

D

E
X

O
R

D

E
X

O
R

D

A
ux

A
ux

1TB 2.3TB 500GB

Excep Bucket Processing

Dataset Processing

E
xe

cu
tio

n
Ti

m
e

(S
ec

)

Dataset Size
(a) Selection-Only Job

0	

300	

600	

900	

1200	

1500	

500GB	 1TB	 2.3TB	

Excep Bucket Processing

Dataset Processing

Aggr Job

A
ux

C
ur

re
nt

C
ur

re
nt

E
X

O
R

D

E
X

O
R

D

E
X

O
R

D

A
ux

A
ux

1TB 2.3TB 500GB
Dataset Size

(b) Selection-Aggr Job

C
ur

re
nt

Figure 8: Study of Correlation C2 (Use of Indexing).

0	

250	

500	

750	

1000	

1250	

1500	

0	

200	

400	

600	

800	

1000	

1	Class	 10	Classes	 50	Classes	 500	Classes	 765	Classes	C
ur

re
nt

A
ux

A
ux

A
ux

A
ux

A
ux

EXORD EXORD EXORD EXORD EXORD
1 Class 10 Classes 50 Classes 500 Classes 763 Classes

Excep Bucket Processing

Dataset Processing

E
xe

cu
ti

on
 T

im
e

(S
ec

)

Selectivity (# TicketClasses out of 763 Classes) & Violation %

(a) Selection-Only Job

C
ur

re
nt

A
ux

A
ux

A
ux

A
ux

A
ux

EXORD EXORD EXORD EXORD EXORD
1 Class 10 Classes 50 Classes 500 Classes 763 Classes

Excep Bucket Processing

Dataset Processing

Aggr Job

E
xe

cu
ti

on
 T

im
e

(S
ec

)

Selectivity (# TicketClasses out of 763 Classes) & Violation %

(b) Selection-Aggr Job

Figure 9: Study of Correlation C3 (Use of Partitioning over the 2.3TBs Dataset).

query time compared to Current, and the only additional overhead
compared to Aux is the processing of the exception bucket—which
is relatively very small compared to the data.

In Figure 8(b), we present the performance of the ag-
gregation Query C2-aggr in which we aggregate over the
StartAirportIATA attribute and calculate the count of the entries
after applying the selection predicate. Both the Current and Aux
techniques execute the query in a single map-reduce job, whereas
EXORD executes three jobs (one selection over the entire dataset,
one selection over the execution bucket, and then one aggregation
on the output of the first two jobs). Again, EXORD achieves around
50% reduction in the query time compared to Current and has a
slight overhead compared to Aux. Yet, this overhead is negligible
compared to the pre-processing overhead that Aux pays to build the
index, which would require around 150 of such C2-aggr queries to
just redeem the index-building overhead.

Correlation C3: For Correlation C3, we use the largest
dataset of size 2.3TBs which contains 763 distinct codes in the
TicketClass attribute, and we partition the data based on that
attribute. We synthetically assign price ranges for the class codes
such that some ranges are unique to specific classes, i.e., given a
price in that range it maps to a single ticket class, while other ranges
map to several (or all) classes. The purpose of such assignment is to
have various selectivities as will be described next. In these exper-
iments, we vary the percentage of the records violating the price-
class correlation over the values of {0.1%, 0.5%, 1%, 5%}, which
lead to the exception bucket sizes of {1.9GBs, 11.4GBs, 22GBs,
97.3GBs}, respectively.

In Figures 9(a) and 9(b), we illustrate the performance of
the selection query (C3-selection), and its extended aggregation
query (C3-aggr), respectively. The selection predicate is on the
TicketPrice attribute. On the x-axis of the figures, we vary the
TicketClass selectivity of the price predicate such that the price
maps to either 1, 10, 50, 500, or 763 (All) classes. The overall
record selectivity from the predicate is kept the same of approx-
imately 10% of the input data. For both experiments, the Cur-
rent technique would perform a single job (either a map-only for
C3-selection, or a map-reduce for C3-aggr) that scans the entire
dataset. In contrast, EXORD would perform two map-only jobs for

C3-selection, and an additional third map-reduce job for C3-aggr.
On the other hand, Aux makes use of the additional partitioning cre-
ated on the TicketPrice attribute and can answer both queries in
a single job as in the Current technique.

As the results show, both EXORD and Aux are very efficient
compared to Current and their performance increases relative to
the number of relevant partitions that need to be touched. In the
worst case, where all partitions need to be touched, Aux performs
identical to Current, and EXORD has a slight overhead due to the
processing of the exception bucket (and triggering three jobs in-
stead of one in the case of C3-aggr in Figure 9(b)).

Synthetic Dataset. We generate a synthetic dataset of size 1TB
(3 TBs with replication) to stress test the query selectivity and
violation percentage parameters. The dataset is generated as fol-
lows. Each record consists of four attributes; namely Id, Field1,
Field2, and Tail. The first three attributes are integers, and the
Tail attribute is a large text field of size 3KBs. Our focus is
on Field1 (which has an index by default), and Field2 which
has a soft correlation (based on a simple mathematical formula) to
Field1. Field1 has the domain range between 1 and 106. The
tested query is a selection query over Field2 with a range predi-
cate that varies the record selectivity from 1% to 100% as indicated
in Figure 10, and within each selectivity degree, the correlation’s
violation percentage varies from 0% (Hard correlation) to 40%.

In Figure 10, we compare Current (which performs a full scan),
Aux (which builds and leverages an additional index over Field2),
and EXORD. The key insights from the figure are that: (1) Allow-
ing large exception buckets may hurt the performance and may di-
minish the savings from exploit the correlation. Typically is it rec-
ommended to only accept correlations, i.e., consider them as valid
according to Def. 2.4, only if the violation’s percentage is around or
below 10% of the base data. A more concrete recommendation is to
have the upper bound on the exception bucket size, i.e., MaxVioRec
in Def. 2.4, equal to the amount of data that can be processed by a
single wave (or at most two waves) of mappers. For example, in our
cluster setup, we have 400 concurrent mappers and each processes
128MBs of data, which leads to 51GBs that can be processed in a
single wave of mappers. In Figure 10, the 1% and 5% violations fit
in one wave, while 10% fits in two waves (and it doubles for 20%

0	

200	

400	

600	

800	

0%	 1%	 5%	 10%	20%	40%	 0%	 1%	 5%	 10%	20%	40%	 0%	 1%	 5%	 10%	20%	40%	 0%	 1%	 5%	 10%	20%	40%	 0%	 1%	 5%	 10%	20%	40%	 0%	 1%	 5%	 10%	20%	40%	

1%	 10%	 20%	 40%	 80%	 100%	

Excep Bucket Processing

Dataset Processing

C
ur

re
nt

A
ux

C
ur

re
nt

A
ux

C
ur

re
nt

A
ux

C
ur

re
nt

A
ux

C
ur

re
nt

A
ux

C
ur

re
nt

A
ux

EXORD EXORD EXORD EXORD EXORD EXORD

Selectivity (1% to 100%) & Violation (0% to 40%)

1% 10% 20% 40% 80% 100%

E
xe

cu
ti

on
 T

im
e

(S
ec

)

Figure 10: Synthetic datasets under various selectivity and violation percentages.

0	

200	

400	

600	

800	

1000	

500GB	 			 1TB	 			 2.3TB	
0	

2	

4	

6	

8	

10	

12	

14	

500GB	 			 1TB	 			 2.3TB	
0	

0.5	

1	

1.5	

2	

2.5	

3	

3.5	

500GB	 			 1TB	 			 2.3TB	
Dataset Size Dataset Size Dataset Size

Jo
b

E
xe

cu
tio

n
T

im
e

(S
ec

)

E
xe

 T
im

e
O

ve
rh

ea
d

%

E
xe

 T
im

e
O

ve
rh

ea
d

%

3 Correlations 12 Correlations 24 Correlations 6 Correlations

(a)   No Piggybacking (Dedicated Job) (b) Piggybacking over Map-Only Job (c) Piggybacking over Map-Reduce Job

Figure 11: Validation Overhead of Soft Correlations.

and 40%). And (2) Even with bigger selectivity percentage, e.g.,
80% and 100%, the overheads from the index processing and the
exception bucket are relatively small compared to Current—if we
exclude the un-recommended settings of 20% and 40% violations.
These overheads are between 5% for Aux and EXORD-0% viola-
tion, and 11% for the EXORD-10% violation. The index overhead
is due to increasing the dataset size (by around 10%), and hence
increasing the I/O cost.

5.2.2 Validation and Preparation Overheads
We now focus on evaluating the overheads involved in the vali-

dation and preparation of soft correlations.
Validation Overheads: In Figure 11(a), we show the validation

overhead if it were to be performed as a separate system-triggered
map-only job without piggybacking. This experiment verifies the
importance of piggybacking to avoid the high encountered over-
head. The figure shows the execution time for each of the three
dataset sizes while validating the the three correlations C1, C2, and
C3. The small stacked bars illustrate the additional time overhead
in the cases of having 6, 12, and 24 correlations to be validated in-
stead of just 3 correlations (these correlations are replicas of the 3
correlations with slight variations). The key observation is that a
dedicated scan over the data just to validate the correlations can be
expensive, especially in the case of large datasets.

In Figures 11(b) and 11(c), we illustrate the piggybacking per-
formance that EXORD applies over a map-only, or map-reduce job,
respectively. As expected, if the validation task is piggybacked over
a map-reduce job, then the overhead is negligible, and many cor-
relations can be verified at the same time since the additional CPU
cost for checking more correlations is almost entirely masked by
the job’s own execution time. In the case of the map-only job, the
additional overhead percentage ranges from 3% to 13% (See Fig-
ure 11(b)). It is worth highlighting that as the dataset gets larger,
the scanning overhead of reading the data from HDFS and starting
more map tasks dominates the overall cost, and thus the additional
CPU time becomes less apparent.

0	

3	

6	

9	

12	

15	

18	

273M	 695M	 1.17G	 1.9G	 11.4G	 22G	 97G	
Exception Bucket Size

Ex
e

Ti
m

e
O

ve
rh

ea
d

%

Map-Reduce Piggybacking

Map-Only Piggybacking
Values Insertion Time

1 12.6 msec

10 22.9 msec

100 43 msec

1000 0.97 sec

10,000 8.32 sec

(a)   Exclusion Strategy: Insertion
into SHARC DB Repository

(b) Materialization Strategy: Overhead to create
 Exception Buckets

Figure 12: Preparation Overhead of Soft Correlations.

Preparation Overheads: For the Exclusion strategy, the prepa-
ration overhead involves the insertion of the violating values into
EXORD’s metadata repository, which is a MySQL DB. The over-
head of this task is tiny and negligible as it takes few seconds for
the values to be inserted into the database. For completeness, we
report in Figure 12(a) the time overhead to insert a number of val-
ues varying from 1 (which is the case for correlation C1) to 10,000
into MySQL database. On average, each value is 20 bytes, and the
database table has a B+-tree index built before inserting the values.

For the Materialization strategy, the preparation overhead in-
volves a piggybacked job to collect the violating records and copy
them to an exception bucket. In Figure 12(b), we report this over-
head under the two cases of piggybacking the preparation job over a
user’s map-only job (scanning and reporting 10% of the data) and a
map-reduce job (aggregating over the entire dataset). On the x-axis,
we consider the creation of the exception buckets corresponding to
the Correlations C2 and C3 studied in Section 5.2.1, and the y-axis
shows the overhead percentage to the user’s job. As expected, the
overhead depends on the exception bucket’s size, and it is clearly
much smaller if the user’s job is map-reduce job. However, in EX-
ORD, we perform the piggybacking over the first user’s job regard-
less of whether it is a map-only or map-reduce. This is because the
savings in query execution are significant and they redeem the paid
overhead in just one job.

5.2.3 Optimizations of Correlation Selection
In this section, we evaluate the proposed heuristic-based al-

gorithm for correlation selection under limited resources. We
enumerated 16 different correlations that the domain experts be-
lieve to exist in our working dataset. For example, in addi-
tion to the three correlations presented in Figure 5, other sim-
ilar correlation include: StartAirportIATA → StartCity,
DestAirportIATA → DestCountry, DestAirportIATA →
DestCity, and RequestTimestamp→ ConfTimestamp. Other
interesting correlations include ToFlightDays → Purpose, and
ToFlightDays→ Duration. Capturing these correlations is not
only important w.r.t query optimization, but also important w.r.t
the business logic and providing better pricing models. In addition

0	

20	

40	

60	

80	

100	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	11	12	13	14	15	16	17	18	19	

Correlation Id

(a)   Exception Bucket Size

E
xc

ep
ti

on
 B

uc
ke

t S
iz

e
(G

B
s)

0	

10	

20	

30	

40	

50	

60	

0	 0.15	 0.3	 Sta:c	Def	

Dominance Threshold ε

E
rr

or
 %

Ex & Cov Factors: 0-2

Ex & Cov Factors: 2-3

Ex & Cov Factors: 4-4

(b) Accuracy of the Correlation Selection Algorithm

Qualifying for
Exclusion

Figure 13: Heuristic-Based Correlation Selection.

to these correlations, we replicated the TicketPrice attribute in
correlationC3 three more times, and replicatedC3 along with these
new attributes. The purpose of this replication is to have the four vi-
olation percentages studied in Figure 9(a) all present in the dataset
at once. Therefore, the selection pool has 19 soft correlations.

We then execute a validation task to collect statistics on these
correlations. In Figure 13(a), we illustrate the exception bucket
sizes for the 19 correlations (ordered by the size). Only 4 out of
the 19 correlations qualify for the Exclusion strategy. Therefore, to
simplify our experimental setup, we assume that these 4 qualified
correlations will all fit in the metadata allowed poolMpool since the
total combined sizes of their violating values are less than 1MB. We
then focus on the optimization selection problem of the remaining
16 correlations competing for the Hpool resource.

To setup the experiment, we vary the available resource pool
Hpool over the values 100GBs, 150GBs, and 200GBs, and the
Γ().size costs of the 16 correlations are set according to the re-
sults in Figure 13(a). The benefit model of the correlations is cre-
ated as follows. We build a workload of 50 queries, and distribute
these queries over the ExclusiveCoverage(), and Coverage()
sets according two configuration parameters, namely ExFactor,
andCovFactor. TheExFactor, which varies over the values {0,
2, 4}, defines the number of queries that are exclusively assigned to
correlations (random assignment). And then, for the remaining cor-
relations, each will be replicated between 2 to CovFactor times
over the Coverage() set of some different correlations (random
assignment). The CovFactor varies over the values of {2, 3, 4}.
For example, if CovFactor is set to 3, then each query is repli-
cated either 2 or 3 times (random selection within this range), and
the corresponding correlations are also chosen randomly.

As discussed in Section 3.2.3, the computational complexity of
the proposed heuristic-based algorithm for correlation selection is
O(n log n), where n is the number of correlations. In contrast, the
optimal brute-force algorithm is exponential as it entails enumer-
ating all permutations of the 16 correlations of all sizes from 1 to
16 (no repetition, but the order matters) and selecting the highest-
benefit feasible solution.

We omit the detailed results of the heuristic-based algorithm
under each configuration of the three changing variables Hpool,
ExFactor, and CovFactor, due to space limitations. In sum-
mary, the execution time is in the order of milliseconds ranging
from 34 to 52 milliseconds. In these experiments, the dominance
threshold ε (in Def. 3.7) is set to 0.15. In contrast, the brute-force
algorithm is prohibitively expensive and a single execution takes
around 7.8 Days (187.2 Hours). We executed the brute-force algo-
rithm under three selected configurations to get their ground-truth
optimal solution, which are: {150GBs, 0, 2}, {150GBs, 2, 3},
and {150GBs, 4, 4}, where the numbers correspond to the Hpool,
ExFactor, and CovFactor, respectively. Clearly, the brute-force
algorithm is not a practical solution.

Regarding the accuracy of the heuristic-based algorithm, we fo-
cus on the three configurations for which we obtained the optimal
highest-benefit selection, and test the heuristic-based algorithm un-

der three values for the dominance threshold ε as depicted in Fig-
ure 13(b). In addition, we suppress the heuristic and thus the algo-
rithm now maps to the static definition of the correlations’ benefits
(Def.3.5). The y-axis of Figure 13(b) shows the error percentage
computed as 100 ∗ (opt − approx)/opt, where opt and approx,
are the optimal and the approximated values, respectively.

As the results in Figure 13(b) show, the static definition yields a
relatively high error rate. This is due to unnecessary selection of
correlations having high overlap in their coverage. When ε is set to
zero, the error rate is also high because in this case the heuristic-
based algorithm is filtering out only the correlations that are com-
pletely dominated by others, which are very few. The 0.15 and 0.3
threshold values give much better results as they are more flexible
in their dominance definition, and they can filter out correlations
that offer minor contributions even if they are not completely dom-
inated by others. As a conclusion, the proposed heuristic-based
algorithm is a practical algorithm compared to the non-practical
brute-force search algorithm. The accuracy of the results is within
an acceptable range, especially since the optimization effort is typ-
ically a best effort task in the first place.

6. RELATED WORK
Query Optimization in Big Data. Query optimization in big

data is a fundamentally important problem, especially because
(1) the datasets to be processed are getting very large, (2) the ana-
lytical queries are increasing in complexity and may take hours to
execute if not carefully optimized, and (3) the pay-as-you-go cost
model for cloud computing adds additional urgency for optimized
processing. Because of these reasons, various aspects of query
optimization have been studied on the emerging highly-scalable
infrastructures, e.g., Hadoop [22]. These optimizations include
techniques such as indexing [4, 6, 8], pre-partitioning [15], re-
organization and colocation [9], materialization and re-usability of
intermediate results [3, 7, 19], among many others.

Although the aforementioned optimizations have shown to be
very effective in saving system’s resources and execution time, they
do not come for free. Instead, they usually encompass significant
overheads w.r.t time and storage [4, 7, 8, 9] (Refer also to our re-
ported results in Figure 6). The proposed EXORD system is com-
plementary to and can work in conjunction with most of the exist-
ing techniques, e.g., indexing either local indexes [4, 6] or global
indexes [8], pre-partitioning [9, 15], and materialization [7]. The
key advantage is that EXORD would enable optimizing a broader
class of queries (beyond those on a single indexed or partitioned
attribute) with minimal additional cost. Without EXORD, existing
systems either perform a full scan, which is up to 10x slower, or
pay the high cost of building more auxiliary structures, and still get
almost the same performance as in EXORD.

Data Correlations in Relational DBs. Correlations represent
important features of the data, which if effectively captured and
leveraged would lead to significant improvement in query pro-
cessing [2, 14, 16, 17]. That is why discovering and exploiting
correlations have been extensively studied in RDBMSs including
functional dependencies [12, 18, 24], conditional functional de-
pendencies [1, 10], soft correlations [2, 14, 16, 17], and denial
constraints [5]. The closest techniques to EXORD (in sprit) in-
clude BHUNT [2], CORDS [14], Correlation Maps (CM) [16],
and CORADD [17], which all try to discover and exploit soft cor-
relations in query optimization. However, these techniques are
either heavily tailored towards the processing mechanism of re-
lational DB—which is fundamentally different from Hadoop-like
infrastructures—and thus they are not applicable in our context [14,
16, 17], or very restricted in their correlation definition compared
to EXORD [2].

In more details, CORDS [14] tries to discover only the presence
of correlations between pairs of attributes (sayA1 andA2) and esti-
mate their strength without keeping track of the detailed mappings
from one attribute to the other. This is because CORDS objective
is not query re-writing but instead providing better estimation for
predicate selectivity for queries involving conjunctive predicates,
e.g., over A1 and A2. This is crucial in RDBMSs because un-
der the typical assumption of independence the estimated selectiv-
ity can be way off, which leads to bad query plans and significant
un-necessary overheads. However, in Hadoop-like infrastructures
there is no notion of conjunctive predicate selectivity or different
query plans; it is always a single plan (map-only for certain types
of jobs or map-reduce for other types). Even more, predicate se-
lectivity in general is not critical in Hadoop-like systems because
as we discussed in Section 1 (and confirmed by the experimental
evaluation), it is safe to always leverage an index (or partitioning)
if exist instead of a full scan regardless of the selectivity.

The CM [16] and CORADD [17] techniques have the obser-
vation that secondary indexes (on un-clustered attributes) usually
have poor performance due to the random access of disk pages.
However, if such un-clustered attributes are correlated with the
clustered attribute (on which the relation is sorted), then by re-
writing the query and adding predicates on that clustered attribute
a significant performance gain can be achieved. The two systems
have focused on capturing such mappings using new compressed
data structures, called Correlation Maps (CMs), instead of the tra-
ditional secondary indexes [16], and providing better design for the
database in the form of materialized views and recommendations
for their clustered attributes [17]. Again, these issues although fun-
damental in RDBMSs, they are not applicable to Hadoop-like in-
frastructures. First, big datasets typically do not have a clustered
attribute on which the entire dataset is sorted. Second, as we high-
lighted in Section 3.2.2, there is no notion of a random vs. sequen-
tial accesses in Hadoop-like systems.

On the other hand, BHUNT [2] has the same objective as EX-
ORD, which is capturing the soft correlations and the mapping
mechanism from one attribute to another, and then using that for
query re-writing and adding additional predicates. However, as an
automatic discovery tool, BHUNT puts strong restrictions on the
correlations that can be captured. First, the attributes A1 and A2

have to be numerical (numbers or dates), and second their mapping
has to be an algebraic expression in the form of (A1 ⊕ A2), where
⊕ is one of {+, -, *, /}. This significantly limits the applicabil-
ity of the system in big data applications. In contrast, EXORD is
a validation tool, which enables defining correlations on attributes
of any data type, and domain experts can provide more complex
and broader ranges of mappings, e.g., complex expressions or even
look-up functions searching auxiliary metadata information.

7. CONCLUSION
We proposed the EXORD system for exploiting the data’s corre-

lations in the context of big data query optimization. EXORD sup-
ports two types of correlations; the hard correlations—which are
guaranteed to hold for all data records, and the soft correlations—
which hold for most of the data records with a degree of uncertainty.
We introduced a multi-phase approach for the validation, selection,
and deployment of the soft correlations. We proposed a novel cost-
benefit model that maps the adaptive selection of the most ben-
eficial soft correlations w.r.t a given query workload to the well-
known submodular knapsack optimization problem. And as an
NP-Hard problem, we proposed a heuristic-based algorithm to effi-
ciently solve it in a polynomial time. EXORD is an infrastructure-
independent system that can be integrated with various big data
query optimization techniques, e.g., indexing, partitioning, and ma-
terialization. Our prototype is implemented as an extension to the
Hive engine on top of the Hadoop infrastructure. The experimental

evaluation has shown that, with minimal overheads, EXORD can
optimize a broader class of queries and speeds them up by more
than 10x compared to the state-of-art techniques.

8. REFERENCES
[1] P. Bohannon, W. Fan, F. Geerts, X. Jia, and A. Kementsietsidis.

Conditional functional dependencies for data cleaning. In IEEE
ICDE, pages 746–755, 2007.

[2] P. Brown and P. J. Haas. BHUNT: automatic discovery of fuzzy
algebraic constraints in relational data. In VLDB, pages 668–679,
2003.

[3] Y. Bu, B. Howe, M. Balazinska, and M. D. Ernst. Haloop: efficient
iterative data processing on large clusters. Proc. VLDB Endow.,
3(1-2):285–296, 2010.

[4] S. Chen. Cheetah: a high performance, custom data warehouse on
top of mapreduce. Proc. VLDB Endow., pages 1459–1468, 2010.

[5] X. Chu, I. F. Ilyas, and P. Papotti. Discovering denial constraints.
PVLDB, 6(13):1498–1509, 2013.

[6] J. Dittrich, J.-A. Quiané-Ruiz, A. Jindal, Y. Kargin, V. Setty, and
J. Schad. Hadoop++: Making a yellow elephant run like a cheetah
(without it even noticing). In VLDB, volume 3, pages 518–529, 2010.

[7] I. Elghandour and A. Aboulnaga. Restore: reusing results of
mapreduce jobs. Proc. VLDB Endow., 5(6):586–597, 2012.

[8] M. Y. Eltabakh, F. Özcan, Y. Sismanis, P. Haas, H. Pirahesh, and
J. Vondrak. Eagle-Eyed Elephant: Split-Oriented Indexing in
Hadoop. In Proceedings of the 16th International Conference on
Extending Database Technology (EDBT), pages 89–100, 2013.

[9] M. Y. Eltabakh, Y. Tian, F. Özcan, R. Gemulla, A. Krettek, and
J. McPherson. Cohadoop: Flexible data placement and its
exploitation in hadoop. PVLDB, 4(9):575–585, 2011.

[10] W. Fan, F. Geerts, X. Jia, and A. Kementsietsidis. Conditional
Functional Dependencies for Capturing Data Inconsistencies. ACM
Trans. Database Syst., 33(2):6:1–6:48, 2008.

[11] A. Gates, O. Natkovich, and et.al. Building a highlevel dataflow
system on top of mapreduce: The pig experience. PVLDB,
2(2):1414–1425, 2009.

[12] Y. Huhtala, J. Kärkkäinen, P. Porkka, and H. Toivonen. TANE: an
efficient algorithm for discovering functional and approximate
dependencies. Comput. J., 42(2):100–111, 1999.

[13] O. Ibarra and C. Kim. Fast approximation algorithms for the
knapsack and sum of subset problems. Journal of the ACM,
22:463–468, 1975.

[14] I. F. Ilyas, V. Markl, P. Haas, P. Brown, and A. Aboulnaga. Cords:
Automatic discovery of correlations and soft functional
dependencies. In In SIGMOD, pages 647–658, 2004.

[15] D. Jiang, B. C. Ooi, L. Shi, and S. Wu. The performance of
mapreduce: an in-depth study. Proc. VLDB Endow., pages 472–483,
2010.

[16] H. Kimura, G. Huo, A. Rasin, S. Madden, and S. B. Zdonik.
Correlation Maps: A Compressed Access Method for Exploiting Soft
Functional Dependencies. PVLDB, 2(1):1222–1233, 2009.

[17] H. Kimura, G. Huo, A. Rasin, S. Madden, and S. B. Zdonik.
CORADD: correlation aware database designer for materialized
views and indexes. PVLDB, 3(1):1103–1113, 2010.

[18] H. V. Nguyen, E. Müller, P. Andritsos, and K. Böhm. Detecting
correlated columns in relational databases with mixed data types. In
SSDBM, pages 30:1–30:12, 2014.

[19] T. Nykiel, M. Potamias, C. Mishra, G. Kollios, and N. Koudas.
Mrshare: sharing across multiple queries in mapreduce. Proc. VLDB
Endow., pages 494–505, 2010.

[20] J. Russell. Couldera-Impala. O’Reilly Media, 2013.
[21] Z. Svitkina and L. Fleischer. Submodular approximation:

Sampling-based algorithms and lower bounds. SIAM J. Comput.,
40(6):1715–1737, 2011.

[22] The Apache Software Foundation. Hadoop. http://hadoop.apache.org.
[23] A. Thusoo, R. Murthy, J. S. Sarma, Z. Shao, N. Jain, P. Chakka,

S. Anthony, H. Liu, and N. Zhang. Hive - a petabyte scale data
warehousing using hadoop. In ICDE, 2010.

[24] J. Ullman. Principles of database and knowledge-base systems.
volume 1, 1988.

