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Abstract Data curation and annotation are indispensable
mechanisms to a wide range of applications for capturing
various types of metadata information. This metadata not
only increases the data’s credibility and merit, and allows
end-users and applications to make more informed deci-
sions, but also enables advanced processing over the data
that is not feasible otherwise. That is why annotation man-
agement has be extensively studied in the context of scien-
tific repositories, web documents, and relational database
systems. In this paper, we make the case that cloud-based
applications that rely on the emerging Hadoop infrastructure
are also in need for data curation and annotation, and that the
presence of such mechanisms in Hadoop would bring value-
added capabilities to these applications.

We propose the “CloudNotes” system, a full-fledged
MapReduce-based annotation management engine. Cloud-
Notes addresses several new challenges to annotation man-
agement including: (1) Scalable and distributed process-
ing of annotations over large clusters, (2) Propagation of
annotations under the MapReduce’s blackbox execution
model, and (3) Annotation-driven optimizations ranging
from proactive prefetching and colocation of annotations,
annotation-aware task scheduling, novel shared execution
strategies among the annotation jobs, and concurrency con-
trol mechanisms for annotation management. These chal-
lenges have not beed addressed or explored before by the
state-of-art technologies. CloudNotes is built on top of the
open-source Hadoop/HDFS infrastructure, and experimen-
tally evaluated to demonstrate the practicality and scalabil-
ity of its features, and the effectiveness of its optimizations
under large workloads.
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1 Introduction

Data curation and annotation is the process of attach-
ing auxiliary metadata information—usually referred to as
“annotations”—to the base data. Annotations can have a
broad range of usage and diverse semantics, e.g., highlight-
ing erroneous or conflicting values, attaching related arti-
cles or documents, encoding the provenance information,
and linking statistics and quality measures to the data. That
is why annotation management has been extensively studied
in the context of relational database systems [10,13,15,22,
26,27,50,52]. Most of these techniques build generic frame-
works for managing annotations, e.g., storage, indexing, and
propagation (reporting) at query time.

In parallel, the infrastructure development has evolved
to the cloud-based scalable, and highly distributed systems
such as the MapReduce and Hadoop infrastructures [19,42].
Hadoop/HDEFS is currently a backbone system for many
emerging applications, e.g., log processing [35], business
enterprises [1,8,45], clickstream analysis, and scientific ap-
plications [28,53]. In this paper, we will first make the
case that these Hadoop-based applications are also in need
for data curation and annotation, and that the presence of
such annotation management mechanisms in Hadoop would
bring value-added capabilities to these applications. And
then, we will introduce the proposed “CloudNotes” system,
the first MapReduce-based annotation management engine.

1.1 Motivation Scenario: Management and Handling of
Data Qualities

Most Hadoop-based applications, e.g., log processing, click-
stream analysis, and scientific applications, collect and man-
age data coming from multiple sources. Each source may
have different credibility and trustiness degrees that affect
the records’ qualities. For example, in log processing [35]
the data can be periodically collected from hundreds of
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sites and thousands of servers worldwide. The collected
log records may thus have different qualities based on their
sources, the accuracy of their values, the absence or presence
of certain fields, how and when they are transmitted or ob-
tained, etc. Similarly, scientific applications are increasingly
leveraging Hadoop infrastructure because of its desirable
properties to science domains, e.g., its flexible and unstruc-
tured data model, and the NoSQL computing paradigm [28,
53]. In these applications, data can be collected from many
labs, generated using different instruments and experimen-
tal setups, and have different levels of curation. Based on
these factors, the data records within a given dataset may
have different degrees of qualities. Therefore, a very crucial
and value-added workflow to all these applications would
consist of the following four steps:

(1) Assessment of Qualities: In which an automated tool,
e.g., a map-reduce quality assessment job(s), executes over
the data, considers all the factors mentioned above, and es-
timates a quality score for each record. It is even practical
in some applications to have several of these quality assess-
ment tools, each is producing its own quality estimates. This
step is the only easy and feasible step to perform in plain
Hadoop—assuming that the needed quality-related factors
are already available within the data.

(2) Attachment to Base Data: In which the metadata infor-
mation (e.g., the estimated quality scores) need to be linked
back and attached to its data records. This step is not feasi-
ble in Hadoop since the data files are “read only”, and there
is no way to attach auxiliary information to their records.
Even the ugly solution of storing the annotations manually
in separate files, which reference the data file has serious
drawbacks. This is because the annotations may be incre-
mentally added in small batched over time (which degrades
the retrieval performance), the data records may not have
unique identifiers, e.g., primary keys, to facilitate their refer-
ence across files—which is very common in Hadoop-based
applications, and more seriously, developers have to manu-
ally modify (and complicate) each query on the data in order
to retrieve back the metadata. Therefore, there is no easy and
efficient way to link annotations to the data in plain Hadoop.

(3) Automated Propagation: In which the records’ anno-
tations (the quality scores) should automatically and seam-
lessly propagate along with their data records as inputs to
users’ tasks. If achieved, then the annotations can be incor-
porated into the processing cycle as fits each application’s
semantics, e.g., one application may discard the records be-
low a certain quality threshold from its processing, while
another application may output only the low-quality records
for further investigation. Clearly, the propagation of the
metadata into the users’ tasks (map-reduce jobs) in not pos-
sible with the current technology in Hadoop.

(4) Reflection on Outputs: In which the metadata on the
input data may be reflected on the output data produced
from a given processing. For example, a map-reduce job
processing the data, e.g., an aggregation or model-building
tasks, may not only produce new output results, but also es-
timates the qualities of the produced results based on the
inputs’ qualities, and attach these estimates (as metadata) to
the new records. As a result, end-users and higher-level ap-
plications will have better insights about the results, and can
make more informed decisions. Unfortunately, the reflection
of the inputs’ metadata on the outputs is not a viable opera-
tion without building an end-to-end annotation management
engine in Hadoop infrastructure.

This scenario is by no means exclusive, and many other
applications would benefit from building an annotation man-
agement engine in Hadoop. For example, a scientific appli-
cation, e.g., in biology, may periodically need to link newly
published articles to subsets of its data, e.g., a new scientific
article is published on the genes belonging to the Cyrokine
Receptor families. In this case, the application may need to
run a map-reduce job over the data to identify the qualifying
genes, and then attach a link of the new article over each of
them. Another example from log processing in which a com-
plex workflow is computing aggregations and statistics over
the data. The application wants to keep track of the prove-
nance of the output records, i.e., attaching the provenance
information as annotations to each output record. As will be
discussed in detail in Sections 6 and 7, a general-purpose an-
notation management engine—such as CloudNotes—can be
used for lineage tracking, whereas provenance-specific sys-
tems, e.g., [6,7,9,38], cannot be used for general-purpose
data annotation and curation.

1.2 Design Guidelines and Driving Principles

The landscape of Big Data infrastructures is very diverse
ranging from fully unstructured no data model with black-
box query paradigm (Hadoop/HDFS) to fully structured data
model with declarative query constructs (Impala, Presto,
Hive/Hadoop), from disk-based processing (Hadoop/HDFS,
Hive/Hadoop) to memory-based processing (Spark), and
from batch-oriented processing (Hadoop/HDFS) to record-
oriented processing (HBase). Because of their fundamental
differences, the design methodology and objectives of a cor-
responding annotation management engine would be also
fundamentally different (more details are in Section 6).

In general, three key aspects in annotation manage-
ment are greatly influenced by the underlying infrastructure,
which are: (1) The interaction with the annotation manage-
ment engine, i.e., the mechanisms by which the annotations
are added and/or retrieved, (2) The granularities at which
annotations are supported, and (3) The propagation and pos-
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sible transformations that can be automatically supported on
top of the raw annotations.

In CloudNotes, we opt for Hadoop/HDFS due to its
popularity, flexible data model, and the diverse applications
for which Hadoop/HDFS is the ideal infrastructure (as those
highlighted in Section 1.1). This is evident from the count-
less projects and applications proposed in literature on top
of Hadoop/HDFS. CloudNotes’s objective is thus to bring
the annotation management capabilities to these applica-
tions without forcing them to migrate their data to some
other infrastructures. As a result, applications would get the
benefits of annotation management while retaining the ad-
vantages of having a flexible data model with no structure
known in advance, and the efficient execution of complex
workloads involving full scans, aggregations, and joins.

The inherent characteristics of Hadoop/HDFS would in-
fluence CloudNotes’s design as follows:

e Automated Creation and Consumption of Anno-
tations: In RDBMSs, end-users may manually investigate
and annotate their data. However, in Hadoop-based applica-
tions, such manual investigation and curation is not practi-
cal. Instead, the assumption is that the annotations will be
produced by automated processes (map-reduce jobs), and
also consumed and leveraged by other automated processes
(map-reduce jobs). And it can be the case that the same job
acts as both a producer and a consumer of the annotations.

¢ Single-Granularity Annotations: Annotation man-
agement engines typically support annotating the data at the
finest granularity provided by the underlying data model.
For example, in RDBMSs, annotations can be at the gran-
ularity of table cells, rows, columns, etc. [10,26], and in
array-based systems, annotations are defined at the granu-
larity of array cells [49]. Supporting annotations at a smaller
granularity, e.g., a sub-value within a table cell, becomes an
application-specific task and encoded by the application.

CloudNotes inherits the same principle. Since HDFS
has a single unit of granularity, which is the object formed
from the InputFormat layer and passed to the mapper layer,
CloudNotes supports annotating the data at this granularity.
Annotating a smaller granularity, e.g., assigning a quality
score for a specific sub-field within an object, is still feasi-
ble, but the field references has to be encoded and manipu-
lated by the application within the annotation itself.

¢ Blackbox Annotation Propagation: Hadoop uses a
blackbox map-reduce computing paradigm, where the ac-
tual computations and transformations applied to the data
are unknown. As a result CloudNotes’s objective is not to
blindly apply transformations on the annotations, but instead
to seamless bring the annotation and curation capabilities
handy to the Hadoop-based application developers to inte-
grate them into the processing cycle as fits each application’s
semantics. For example, the annotations should propagate
along with their data whenever accessed without having the

developer to code that in each query, or worry about how
and where the annotations are stored, how they propagate,
or any system-level optimizations to make that happen.

1.3 Challenges

As we target building an annotation management engine
in a new context and infrastructure (compared to the well-
studied traditional DBMSs), several unique challenges arise
including:

(1) Managing Jobs of Different Behaviors with Pos-
sible Interactions and Conflicts: In plain Hadoop, users’
jobs have one behavior, which is reading some existing
datasets and generating new datasets. In CloudNotes that is
not the case. Submitted jobs can be purely accessing the
datasets (neither adding nor retrieving annotations), only
adding annotations to exiting (or new) datasets, only retriev-
ing annotations, or a mixture of these behaviors, e.g., one job
can retrieve exiting annotations, add new annotations to its
input, create new dataset, and annotate this dataset. Ensuring
correct execution among these job types is a new challenge
to be addressed.

(2) Expensive Annotation Jobs: Unlike RDBMSs in
which annotating few records can be efficiently performed,
e.g., using indexes, annotating the data in CloudNotes is
expensive, i.e., it requires running expensive Hadoop jobs
over large data files to probably annotate few qualifying
records. Therefore, categorizing these annotation jobs, and
optimizing their execution is new to annotation manage-
ment techniques. Even exiting Hadoop-based provenance
systems, e.g., [6,7,38], do not face such challenge because
their metadata information are system-generated during the
regular execution.

(3) Non-Trivial Sharing and Concurrency Among
Annotation Jobs: Sharing execution among Hadoop jobs
(which are read-only jobs) has been previously explored as
one type of query optimization [36]. However, annotation
jobs have the unique characteristic of being read/write jobs
in the sense that one job can be annotating a given dataset,
while another job is reading the same dataset and retrieving
its annotations. This opens new challenges of concurrency
control among the jobs, which is new to Hadoop, as well as
investigating mechanisms for creating possible sharing op-
portunities while guaranteeing correct execution.

(4) Annotation Propagation in Distributed Environ-
ment: Annotations in CloudNotes will be generated, stored,
and propagated in a fully distributed manner. These issues
of scalability and distributed processing of annotations have
not been addressed by existing techniques that focus mostly
on centralized DBMSs. On the other hand, Hadoop-based
provenance techniques only generate metadata, but never
address the challenges of propagating them back whenever
the data is accessed.
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1.4 Summary of Contributions

The key contributions of this paper are summarized as fol-
lows:

e Extending the MapReduce infrastructure
(architecture- and functionality-wise) by embedding a
fully distributed annotation management engine into its
execution model. We introduce high-level abstract in-
terfaces that enable applications to annotate their data.
We also investigate several storage schemes for efficient
organization of annotations.

e Developing automated annotation propagation mech-
anisms for transparently carrying the annotations along with
their data to users’ map-reduce jobs. We propose optimiza-
tions for efficient propagation including annotation-aware
task scheduling, proactive prefetching of annotations, and
annotation-to-data colocation.

e Proposing a new approach for shared execution among
multiple annotation jobs to minimize their total overhead.
We propose a categorization of the annotation jobs into dif-
ferent types, and model their relationships using a depen-
dency graph that guides the sharing strategy while guaran-
teeing correct execution. We also introduce a concurrency
control mechanism among the data-related and annotation-
related jobs for preventing inconsistent states and dirty-
reads over the annotations.

e Building the CloudNotes prototype engine on top of
the Hadoop/HDEFS infrastructure and experimentally eval-
uating its features and functionalities. We compare Cloud-
Notes with other related work and systems, e.g., plain
Hadoop, Ramp [38], and HadoopProv [7], to illustrate the
broader applicability of CloudNotes and the effectiveness of
the proposed optimizations.

o CloudNotes opens the new research direction of build-
ing annotation management engines over Big Data infras-
tructures. As will be highlighted in Section 6, the diversity
of these infrastructures introduces numerous challenges to
annotation management that have not been explored before.

The rest of the paper is organized as follows. In Sec-
tion 2, we present an overview on CloudNotes’s archi-
tecture. In Sections 3 and 4, we introduce the extended
annotation-aware MapReduce engine, and the annotation
propagation mechanisms, respectively. In Section 5, we
present several optimization techniques and design issues in
CloudNotes. The related work and experimental analysis are
presented in Sections 6, and 7, respectively. Finally the con-
clusion remarks are included in Section 8.

2 CloudNotes Overview

The architecture of CloudNotes is presented in Figure 1(a).
CloudNotes extends the MapReduce infrastructure by intro-
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Fig. 1 CloudNotes Architecture.

ducing new components (solid-gray boxes), i.e., the Anno-
tation Coordinator, Annotation Manager, and Annotation
Repository components, as well as extending other exist-
ing components (double-lined boxes), i.e., the Annotation-
Aware Job Tracker, and the Annotation-Aware Task Tracker.
The Annotation Repository is a distributed storage layer for
storing the annotations. It is a hybrid system consisting of
both the HBase and HDFS storage engines. The Annotation
Manager is a distributed single-threaded component running
on each slave node in the cluster (similar to a task tracker in
Hadoop). The Annotation Manager performs several func-
tionalities including: (1) The communication with the local
map and reduce tasks to either accept and organize their
newly added annotations (annotation addition), or retrieve
the existing annotations from the Annotation Repository and
deliver them to users’ tasks (annotation propagation), and
(2) Interacting with the Annotation Repository component
for storing or retrieving annotations in a distributed fashion.
The Annotation Manager is the heart of CloudNotes as it
performs most of the reading and writing tasks of annota-
tions in a totally distributed fashion to ensure scalable and
bottleneck-free execution.

The Annotation Coordinator is a centralized compo-
nent running on the master node, and it performs several
functionalities including: (1) Managing the metadata infor-
mation related to annotations, e.g., whether a specific set
of annotations is stored in HBase or HDFS, and whether
or not a given job requires annotation propagation, and
(2) Communicating with the distributed Annotation Man-
agers and passing instructions to them for optimizing the
users’ tasks that read the annotations from the Annotation
Repository. Finally, the Annotation-Aware Job Tracker and
Task Trackers are extended versions of the standard com-
ponents in Hadoop. They communicate with their counter-
part components, i.e., Annotation Coordinator, and Annota-
tion Managers, respectively, to provide better scheduling for
annotation-related jobs and tasks.
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CloudNotes provides an optimized infrastructure for two
basic functionalities, which are: (1) Annotation Addition
(the ability to annotate data), and (2) Annotation Propaga-
tion (the ability to retrieve the annotations associated with a
given data object). Figure 1(b) illustrates these two function-
alities in the context of map-reduce jobs. Conceptually, map
functions should be able to annotate both their input and out-
put data. This is true even under the case of map-reduce jobs
where the map’s output is intermediate. In contrast, reduce
functions should be allowed to annotate only their output
data since their inputs will be purged after the job’s comple-
tion. With respect to annotation propagation, map functions
should be able to access the annotations associated with their
input data, e.g., the HDFS file under processing. Moreover,
reduce functions should be able to access the annotations
passed to them from the map functions.

3 Annotation-Aware MapReduce Execution Model

In this section, we focus on developing the building blocks
of the annotation management mechanism in CloudNotes.

3.1 Annotation Addition

In order to annotate the data in a transparent way, we intro-
duce a unique object identifier (Old)—similar to the tuple
Ids or primary keys in relational databases. These OlIds will
enable high-level applications to reference specific data ob-
jects, add new annotations, or retrieve existing annotations,
without being exposed to the underlying storage and repre-
sentation complexities.

Annotating Input Data—(Map-Side): As presented in
Figure 2, we propose extending the InputFormat class in
Hadoop by creating a wrapper around the RecordReader
function. The wrapper augments a unique Object Identifier
(OId) to each reported key-value pair. The OId objects con-
sist of the file’s Id (unique path within HDFS), the block
Id (the block’s start offset within the file), and the record’s
relative order RelOrder (the relative order within the block
starting from 1 in each block).

The Olds provide an abstraction and referencing mech-
anism to the objects formed from the InputFormat layer
(which is the processing unit in Hadoop/HDFS). This ab-
straction is similar to that proposed in other systems [6,7,23,
38]. However, the main difference is that the OIds in Cloud-
Notes are visible to the map and reduce functions because
they are the developers’ gateways for manipulating and re-
trieving the annotations. Throughout the paper and for the
ease of presentation, we assume that a given dataset is al-
ways accessed by a single InputFormat, and hence the ob-
jects to be processed and/or annotated always have the same
offsets. Existing techniques that reference the HDFS objects
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Fig. 2 Annotation-Enabled Mapper Class.

either for indexing or provenance tracking, e.g., [6,7,23,38],
have the same assumption as it very rare for a dataset to be
read by different InputForms each forming different record
structures and boundaries. !

The mapper class of Hadoop will be also extended
such that the Map() function will accept triplets in the
form of (Key, Value, InOId) instead of the stan-
dard (Key, Value) pairs as depicted in Figure 2. On
top of the OID data type, we introduce several annotation-
based manipulation interfaces. One of these interfaces is the
InOId.AddAnnotation (AnnValue) for adding a new an-
notation to the data object corresponding to the /nOId identi-
fier. For example, continuing with our motivation scenarios,
the Map() function illustrated in Figure 3 may attach links
of scientific articles to the Cyfokine Receptor gene records
as indicated in Lines 4-5. Also, the function may estimate
the quality of each record based on its content (Line 7), and
then attach this estimate to its corresponding record (Line
8). It is worth highlighting that the added annotations will
not be written in the regular way to HDFS, instead they will
be collected by the local Annotation Manager for optimized
storage as will be discussed in Section 3.2.

Annotating Final Output Data—(Map and Reduce
Sides): Although the InOId input parameter provides a
mechanism for annotating the input data of a map function,
annotating the output data is still a challenge. For example,
the Map() function in Figure 3 may need to copy the qual-
ity score(s) of its input records to the produced output, or
even carry the provenance along with the output. We will

! The assumption of a single InputFormat for a given dataset can be
easily relaxed in CloudNotes by extending the OID object to maintain
both the start and end offsets of the formed records. As such, annota-
tions will be attached to “byte segments” within the file. Annotations
can then propagate along with these byte segments independent from
the used InputFormat.
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Map (Key k;, Val v;, OID InOld)
// Parsing and other processing

/[Attach a scientific article’s link to the Cytokine Receptor genes
If (geneFamily = ‘Cytokine Receptor’) Then
InOId.addAnnotation(“Link to article: <URL>");

/[Attach quality-related annotations from tool Assessmentl
scorel = Assessment1(V;) ; //Returns a score based on the content
InOId.addAnnotation(“Assessment! estimated quality: ” + scorel);

® NS kW D=

N4

. //Derive and produce an output record <Out.key, Out.value>
10. OutOld = OutputReporter(Out.key, Out.value);

11. //Attach the input’s quality score to the output
12. OutOld.addAnnotation (“Passed quality from input:” + scorel);

13. //Carry the provenance information
14. OutOld.addAnnotation (“Provenance: ” + InOld);

Fig. 3 Example of the Annotation-Based Interfaces (Annotating the
input and output of Map-Only Job).

now present the mechanism for annotating a job’s final out-
put, i.e., the map output in a map-only job, or the reduce
output in a map-reduce job. Passing the annotations over the
intermediate data is presented in Section 4.2.

In order to facilitate annotating the output data on-the-
fly, i.e., while being produced and even before writing them
to local disk or HDFS, we extend the reporting mechanism
in Hadoop. The extended reporting mechanism keeps track
of and returns the position of each newly produced record
within the output buffer (See the OutputReporter() inside the
map function in Figure 3, Line 10). This returned OutOId
can now be used within the same Map() function to anno-
tate the desired output records. The pseudocode in Figure 3
illustrates that after the Map() function produces an output
record (Line 10), it annotates that record with input’s quality
score (Line 12), and also carry its provenance information
along with it (Lin 14). In general, an application’s semantics
can be more complex, e.g., have multiple inputs contributing
to a single output.

Reduce-side annotations are even more straightforward
because reducers are allowed to annotate only their output
data. In this case, reducers will use the same mechanism
as that of annotating the map-output data, i.e., the report-
ing mechanism in reducers will return back an OutOId for
each produced output record, and then the same Reduce()
function can add annotations to this record as desired. It is
important to emphasize that the proposed extensions and in-
terfaces enable applications to embed the process of annotat-
ing the data—either inputs or outputs—with the actual and
regular processing of the data, i.e., it is not mandated to have
special data scans or customized jobs dedicated for the an-
notation process.

3.2 Annotation-Based Storage Scheme

In CloudNotes, the output of a map or reduce task can
be categorized into two types: (1) The regular key-value
pair records (the data records) that are stored directly into
HDFS, and (2) The newly added annotations having a 4-ary
schema consisting of: {OId, Value, Curator, Timestamp},
where Old is the object’s identifier being annotated, which
references either an already existing data object (e.g., map-
input annotation), or a new data object being created (e.g.,
reduce-output annotation), Value is the annotation’s content,
Curator is the job’s Id, and Timestamp is the job’s start-
ing timestamp. In this section, we investigate different stor-
age schemes for efficient storage of annotations, namely
“Naive”, “Enhanced”, and “Key-Based”.

The three schemes share a common mechanism for pass-
ing the annotations from the task side (map or reduce) to the
Annotation Manager. They differ only on how the Anno-
tation Manager organizes and stores the annotations in the
Annotation Repository. The common mechanism is illus-
trated in Figure 4. When a user’s Map() or Reduce() func-
tion issues an AddAnnotation () command, the new an-
notation will be buffered in a local buffer within the task.
When the buffer is full or the task completes, the buffer’s
content is sent out to the Annotation Manager (See the top-
left box in Figure 4). This task-level buffer is fully transpar-
ent from end-users, and it is maintained by the mapper and
reducer classes in CloudNotes. The buffer does not have to
be large, e.g., it may hold only 10s of annotations. Despite
that, its presence is crucial for reducing the communication
traffic between users’ tasks—which can be many executing
concurrently—and the Annotation Manager.

On the Annotation Manager side, it maintains a dynamic
main-memory hash table H that holds a number of buckets
equals to the number of tasks running simultaneously on its
node, i.e., each task (map or reduce) ¢; has a corresponding
bucket U;. The number of buckets can be either pre-defined
at the job starting time, or dynamic and get increased as
more tasks start on the same node. Each bucket can grow dy-
namically as needed as long as the total size of H is below a
pre-defined upper bound M. When the Annotation Manager
receives new annotations from task ¢; (Case I in Figure 4),
the annotations will be added to the corresponding bucket U;
if space permits. Otherwise, the Annotation Manager selects
the largest bucket in [ and flushes its content to the Anno-
tation Repository (The F1ush () function) to free space for
the new annotations. The Annotation Manager also receives
periodic messages from the local Task Tracker regarding the
completion of tasks (Case I in Figure 4). If task ¢; completes
successfully, then its corresponding bucket U; is flushed to
the Annotation Repository. Otherwise, U; is discarded,

The key differences among the three storage schemes are
in the Flush () function as discussed in sequel and sum-
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Task Class (Mapper or Reducer)

User’s Map() or Reduce() Function

OId. AddAnnotation(....)

Task Tracker

- Buffer the new annotations in a task-level buffer (Buff)
- If (Buffis full or Task completes) Then
- Send Buft’s content to Annotation Manager

Sending newly added
annotations (Buff’s content)

Annotation Manager

Sending the task-
completion status

* Data Structures:
- Maintains a hash table (H) of max size M consisting of one bucket U; for each
active local task (map or reduce) t;.

* CaseI: Receipt of New Annotations From Task t;:
If (H has free space) Then
- Insert the new annotations into U,
Else
- Select the largest bucket in H, say U,
- Flush (U,) // Flush U, to Annotation Repository and free its space
- Insert the new annotations into U;

* Case II: Receipt of EndTask t; From Task Tracker:
If (successful completion) Then
- Flush (U)) // Flush U; to Annotation Repository and free its space
Else
- Discard U;’s content and free its space
- If (U; has been flushed before) Then
- Delete and rollback the effect from previous flush operations.

Fig. 4 Functionalities of the Annotation Manager.

marized in Figure 5. In this section, we focus only on the
storage of annotations on permanent data, i.e., outputs from
mappers in a map-only job or from reducers.

Naive Storage Scheme: This is the baseline scheme
in which the Flush () function writes the new annota-
tions directly into HDFS files without special pre-processing
or optimizations. For simplicity, lets consider first a map-
only job (with a unique Id JoblId) processing an input
data file Fj,, and producing an output data file F,;. All
newly generated annotations from mapper m; processing
HDFS block B; in Fj, will be stored in a corresponding
HDEFS file F,,_p,—jobrd- An annotation record within the
file will be in the form of: <Old.RelOrder, Value, Cura-
tor, Timestamp>. For better organization, all annotation files
related to Fj,—across all jobs—will be stored under one
directory called F;,-Annotations. This organization and
naming convention is important as it will later simplify the
retrieval of annotations at propagation time at the block level
as discussed in Section 4. Notice that in CloudNotes anno-
tations are always linked to physical files in HDFS not di-
rectories. In the case of processing a directory as input to a
job—which is a valid operation in Hadoop— then Fj,, will
refer to each physical file under this directory independently.

As summarized in Figure 5, the key advantage of the
Naive scheme is its simplicity. However, it has major disad-
vantages including: (1) the Naive scheme is blind to the fu-
ture retrieval pattern of the annotations, where annotations
over a data block B; are always retrieved with that block.

7
Naive Enhanced Key-Based
Storage engine HDFS HDFS HBase
Load on HDFS file Frequent Frequent updates (addition & | Prefetching files
system creation of deletion) of annotation files during execution

small anno. files

Need for a periodic No
daemon process

Yes, for merging and deleting | No
small annotation files

Freezing State No Yes, for the daemon process No

Yes, normalization and
compression

Optimized annotation | No
representation

Yes, normalization
and compression

Annotation-to-data No Yes. Needs locality-aware Yes. Needs

locality placement policy prefetching from
HBase

Performance Slowest Competitive to Key-Based Competitive to

Enhanced

Fig. 5 Summary of Annotations’ Storage Schemes.

This leads to an un-guided random placement of the annota-
tions in HDFS, and as studied in [24], intelligent placement
and colocation or related data has significant positive impact
on retrieval performance. And (2) the Naive scheme is also
blind to the creation pattern of the annotations, where the
annotations can be added over time by many jobs and each
may add few annotations, and also a single annotation can be
attached to many data records. This leads to the creation of
many small annotation files which is extremely inefficient
because HDFS is optimized only for writing/reading big
batches of data [44]. Moreover, it introduces un-necessary
redundancy that increases the I/O overhead at the creation
and retrieval times. The Enhanced and Key-Based schemes
will address these limitations in different ways.

Enhanced Storage Scheme: The Enhanced scheme of-
fers two main improvements over the Naive scheme. First, it
deploys a periodic daemon process that processes the anno-
tation files under each annotation directory and merges the
small files into larger ones. In the merge process, the anno-
tation files are merged at the block level, i.e., files belong-
ing to different blocks will not be merged. The reason is to
preserve the efficiency of annotation retrieval—at the block
level—during propagation time (Section 4). Therefore, un-
der a given annotation directory, all annotation files of block
B;, i.e., having a name like “F},,_p,_.”, will be merged to-
gether to a new file “Fy,_ B, —merged”-

During the execution of the daemon process, the Anno-
tation Repository enters a freezing state in which no map-
reduce jobs can access the annotations. The daemon pro-
cess is triggered by the Annotation Coordinator on all of the
cluster nodes at once. The freezing state during the merge
process is important to guarantee the consistency and cor-
rectness of the annotations retrieved by users’ jobs. More
specifically, the merge process will need to delete a set of
small files (say n files), and add a new file. These n+1 op-
erations are not atomic and they may take few seconds de-
pending on the number of files and their sizes. During this
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period, a concurrent user job (if allowed) may read incon-
sistent and incorrect annotations. However, to minimize the
freezing duration, the merge step of the small files into the
big one is performed without any freezing, and the big file
is created in a temporary directory hidden from users’ jobs.
Only before deleting the old files and copying the new file
to its final location, the Annotation Coordinator starts the
freezing state.

The second enhancement is providing better organiza-
tion and optimized representation before writing the annota-
tions to HDFS, i.e., compaction and locality-aware storage.
This functionality is provided by the F1lush () function as
depicted in Figure 6. The function receives a set S' of an-
notation records to store (These annotations are for a sin-
gle HDFS block B;). In Step 1, the records will be grouped
based on the annotation’s content, and thus an annotation
that appears multiple times on many records will form one
group. The reason behind this reorganization is to create bet-
ter chances for compression (Steps 2 and 3). For example,
the annotations on a single object are usually distinct and no
compression can be performed, whereas a single annotation
can be attached to many objects, and hence Step 1 avoids
such redundancy by reorganizing the annotations.

Steps 2 and 3 will then transform all the OIds within
each group, more specifically the Old.RelOrder values, to
a bitmap representation, and then compress it using RLE
compression technique as illustrated in Figure 6. This rep-
resentation is very compact even if a single annotation is at-
tached to many data records or to an entire data block. As the
experimental evaluation will confirm (Figure 17), the com-
pression introduces minimal overhead when adding the an-
notations, while achieving big savings when retrieving and
propagating them.

After compressing the representation of the annotations
(set G”), CloudNotes will try to colocate the storage of G”
along with the corresponding data block B; in HDFS. The
reason is that the annotation files will be always read in con-
junction with their data files, and hence colocating them on
the same data nodes should yield faster data access, less
network congestion, and an overall better performance as
reported in [24]. Therefore, the Enhanced scheme uses a
locality-aware placement policy for storing the annotation
files on the same set of nodes holding B;’s data (Steps 4, 5).

It is worth highlighting that both optimizations are best
effort approaches. That is, the compaction operation is per-
formed only within the input set S—which can be a sub-
set of the annotations on a given data block— and hence
the same annotation may still appear multiple times per
block. Moreover, the locality-aware placement policy does
not guarantee 100% colocation, e.g., if the data nodes stor-
ing B; are near-full or down, then the annotation files will be
stored on other data nodes. The best effort approach ensures

Enhanced.Flush() Function
/1 Set of K annotation records on block B in file Fy,
1<i<K

* Input
S = { <Old,, Value;, Curator;, Timestamp;> },

» Compaction
1. Group S based on the annotations’ content A; ={Value;, Curator;, Timestamp;}
G = {<A, [Old,.RelOrder, Old,.RelOrder, ....] >}

2. For each entry in G, replace the list of relative orders by a bitmap
G’ = {<A,;,000011100000000010....>}

3. Compress the bitmap using Run-Length Encoding (RLE)
G”={<A;, 041(3)...>}

* Locality-Aware Placement Strategy
4. Identify the cluster nodes on which the replicas of B, are stored
5. Store the entries of G” in HDFS files on these nodes (Best Effort)

Fig. 6 Flush Function under the Enhanced Storage Scheme.

that CloudNotes is elastic enough and resilient to failures
under the different circumstances. The key characteristics of
the Enhanced storage scheme are summarized in Figure 5.

Key-Based Storage Scheme: Unlike the other two
schemes, the Key-Based scheme leverages HBase as the pri-
mary storage for storing the annotations. This is because
HBase suits more the annotations’ workload, which involves
possibly frequent incremental additions of small batches as
well as key-based retrieval based on the block Id at propaga-
tion time. In the Key-Based scheme, the F1ush () function
will perform the same compaction steps as in the Enhanced
scheme (Step 1-3 in Figure 6), and then set G” will be stored
in the key-value HBase store. The key will be the data block
Id (B;) while the value will be set G”. As summarized in
Figure 5, the Key-Based scheme has several advantages over
the Enhanced scheme including: (1) The annotations related
to a given data block are automatically grouped together (for
free) since they are stored in HBase based on the block Id,
(2) No need for a periodic daemon process, and (3) There is
no freezing state.

Unfortunately, these desirable features do not come for
free. The limitation of the Key-Based scheme is that colo-
cating the annotations along with their related data blocks
becomes a tricky operation since they are stored in different
storage systems. To overcome this limitation, we propose in
Section 5.2 an extension to the Key-Based scheme based on
a new proactive and prefetching mechanism. This mecha-
nism predicts the assignment patterns between a job’s tasks
and the slave nodes, and prefetches the corresponding anno-
tations even before they are requested.

4 Annotation Propagation

In this section, we present the annotation propagation mech-
anisms in CloudNotes, i.e., automatically carrying the exist-
ing annotations to the map-reduce jobs.
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4.1 Map-Side Annotation Propagation

Abstract Propagation Interface: For easy retrieval of an-
notations, we introduce a new annotation-based interface,
called getAnnotation(), defined on top of the OID identi-
fier class. Therefore, as depicted in Figure 7, within a user’s
Map() function, the new interface can be executed on any
of the input records, i.e., InOId.getAnnotation (),
to retrieve the annotations attached to this record. The in-
terface returns an iterator over a set of annotations hav-
ing the schema of {<value, curator, timestamp>}. Then,
user’s code can manipulate and process these annota-
tions as fits the application’s semantics. In the following,
we present the underlying propagation mechanism of the
getAnnotation () interface. We first introduce the ba-
sic idea, and then extend it to work under given memory
constraints.

Basic Propagation Mechanism: Assume a user’s job
processing an input HDFS file Fj,,, and that each map task
m; 1s assigned a data block B; in Fj,. Since the basic
unit of processing in Hadoop is a data block, then Cloud-
Notes also retrieves the annotations at the data-block level.
In order to perform this functionality, the mapper class in
CloudNotes has been extended by introducing a new func-
tion, called AnnotationFetcher (), as illustrated in
Figure 7. AnnotationFetcher () is a hidden function
from end-users, and it automatically executes at the begin-
ning of each map task and before the start of the user-defined
Map() function.

The AnnotationFetcher () of a map task m; per-
forms two main functionalities (See Figure 7): (1) Re-
trieving the annotations attached to data block B; from
the Annotation Repository, and (2) Re-organizing these
annotations for faster access by the user-defined Map()
function. In the case of the Naive and Enhanced storage
schemes, AnnotationFetcher () will retrieve B;’s an-
notations by reading all annotation files having a name like
“Fin—p,—." under directory F;,-Annotations. In contrast,

Fig. 8 Annotation Propagation Under Memory Constraints.

in the case of the Key-Based scheme, the annotations will be
retrieved from HBase based on block Id B;.

While retrieving B;’s annotations from the Anno-
tation Repository, AnnotationFetcher () will also
re-organize them in memory such that a propaga-
tion request from the user-defined Map() function, i.e.,
OId.getAnnotation (), can be efficiently answered.
For this purpose, AnnotationFetcher () builds a two-
level main-memory data structure as depicted in Figure 7.
The 1°¢ level is the AnnotationEntry table that stores a single
entry for each distinct annotation on B; (<value, curator,
timestamp>), while the 2"¢ level is the ObjectToAnnotation
table that stores a record’s Id in B;, i.e., OId, and a bitmap
indicating the entries in AnnotationEntry that are linked to
this OId. The ObjectToAnnotation table is sorted on the
OId values. For example, referring to Figure 7, the first en-
try in ObjectToAnnotation indicates that the 10*" record in
B; has three annotations attached to it stored in the entries
number 1, 5, and 8 in AnnotationEntry.

Incorporation of Memory Constraints: Annota-
tion propagation should be a light-weight process that
does not consume much memory, otherwise users’
tasks may suffer from a memory shortage. Hence, the
AnnotationFetcher () function always operates un-
der memory constraints. In CloudNotes, a small percent-
age of the task’s assigned memory, e.g., 10% or 15%,
is allocated to the annotation propagation process. Conse-
quently, if B;’s annotations and their data structures pre-
sented in Figure 7 cannot fit in the allocated memory, then
AnnotationFetcher () needs to retrieve the annota-
tions in an iterative manner using the procedure presented
in Figure 8.

In Line 1, the TruncatedFlag is initialized to False indi-
cating that the function will try to put as many annotations as
they can fit in the allocated memory. For each retrieved an-
notation, if space permits, it will be added to the data struc-
tures AnnotationEntry and ObjectToAnnotation (Lines 3-4).
Otherwise, AnnotationFetcher () will limit its focus
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to only the top half of the ObjectToAnnotation table, i.e., it
will try to keep in memory only the annotations related to
the leading subset of B;’s records while dropping the others
(Lines 9-12). In this case all annotations in AnnotationEntry
that are attached only to the lower half will be eliminated
from this iteration (Line 10), and the TruncatedFlag will be
set to True (Line 11). For the subsequent retrieved annota-
tions, if space permits, the annotation will only update the
data structures up to the LastOId, and no new OIds larger
than LastOId will be considered (Lines 5-7). If the function
runs out of space again, the same algorithm repeats in an
iterative manner.

In this iterative version, the user-defined Map() func-
tion will be called by the mapper class until the LastOId
record tracked by the AnnotationFetcher () func-
tion is reached. And then, the mapper class will inter-
rupt the calling of the Map() function, and re-executes
AnnotationFetcher () to prepare the annotations on
a new set of coming data records. In these subsequent ex-
ecutions, B;’s annotations will be read from the local file
system—Not HBase or HDFS—since they are already re-
trieved in the first iteration and stored locally.

4.2 Reduce-Side Annotation Propagation

In map-reduce jobs, the map function may annotate the data
records passing to the reduce function. These annotations
should propagate along with their <key, value> pairs, and
be seamlessly accessible within the user-defined Reduce()
function. CloudNotes does not put any prior assumptions or
restrictions on the annotations passing to the reduce func-
tion. The assumption is that the output records from a map
function are, by default, un-annotated. Map() functions can
freely annotate their outputs as suits the semantics of a given
application, e.g., copying the input annotations (or subset
of them) to the output, adding new annotations, etc. The
main reasons for this assumption are that: (1) CloudNotes
is a generic annotation-based engine that does not put prior
restrictions or assumptions on how annotations should be
generated, (2) Map-reduce jobs may involve blackbox func-
tions, and thus the semantics of a given job may be unknown
to CloudNotes, and (3) Given the developed annotation-
based interfaces, it would require very minimal effort from
developers—two or three lines of code— to add new annota-
tions to the map’s output, or even copy the annotations from
the inputs to the outputs.

Managing Annotations on Intermediate Data: From
the end-users’ perspective, there is no difference between
annotating the map’s output in a map-only job or in a map-
reduce job. The mechanism introduced in Section 3.1 for
annotating map-side outputs is the same in both cases. How-
ever, the Annotation Manager will manage the intermediate
annotations in a different way as follows. Assume an output

A AT I I I I I T I LI LT T LTI )
&, shuiming amd sorting S0
Shuffling and Sortin
@[<Key Ky List [V’i1, Vigs oevr VVia>]

Reducer Task Class

AnnotationExtractor (Key k;, List [v*;;, V'3, ..., V0D

1- Segment each v’ to <v;,, Old,,, Annotations>, 1<x<n
2- Organize the Olds and annotations in memory
3- Call user’s Reduce(k;, [v;, Vi, -.., Vi, ], [OId;;, Old;,, ..., OId; ])

Reduce (Key k;, ValueList [v;;, v, ..., v;,], OIDList [Old;,,
Old,, ..., OId,])

Fig. 9 Annotation Propagation in Reduce-Side Functions.

record from the map function < k;, v; >, which will be
assigned a unique object identifier OutrOId;. This is the OlId
returned from the reporter interface within the Map() func-
tion as presented in Section 3.1. The only internal difference
is that the OurOlId; will now reference an intermediate local
file instead of a permanent HDFS file in the case of map-
only job. Conceptually, the OurOId; is just a placeholder to
carry the annotations to the Annotation Manager, which will
be then concatenated into the value field, and the intermedi-
ate local file will not be referenced again. More specifically,
the added annotations on OutOlId; will be collected by the
Annotation Manager, and then a new corresponding output
record < k;, v > will be formed such that:

vi =v; || separator || OutOId; || annotations

That is, the key k; of the output record will remain un-
changed, while the value v; will be extended to carry the
OutOId; and its attached annotations. After forming the
modified output record < k;, v} >, all subsequent steps in-
cluding writing the intermediate data to local disks, and the
shuffling and sorting phases will execute in the same stan-
dard way as in Hadoop without any change. This is because
the shuffling and sorting phases depend only on the k; com-
ponent, which has not been changed.

Reduce-Side Extensions: At the reduce side, re-
ducers will now receive pairs in the form of <
ki, [v}1,vls,...;v,,] >, where k; is an output key, and
Vs s U, are all modified output values correspond-
ing to k;. To process such input, we introduce two main
extensions to the reducer class in CloudNotes as de-
picted in Figure 9. First, we introduce a new function,
called AnnotationExtractor (), which will automat-
ically execute before the user-defined Reduce() function.
AnnotationExtractor () is a hidden function from
end-users and it is responsible for segmenting the modi-
fied values vggE, V1 < x < n, and separating the original

map-generated values v;, from their corresponding identi-
fiers OutOld;, and annotation values. The function will or-
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ganize the OlIds and their annotations in main memory, and
then call the user-defined Reduce() function.

The second extension involves extending the signa-
ture of the Reduce() function as depicted in Figure 9.
The new signature accepts triplets in the form of: <
ki, [vi1,vi2, ..., Vin], [OutOld;1, OutOld;2, ..., OutOld;,] >, where
k; is a single input key, v;1, ..., v;, are the data values as-
sociated with k;, and OutOld;;, ..., OutOld;,, are the Olds
corresponding to each value. With the new input signature,
it becomes feasible for user’s code to retrieve the annotations
associated with any of the input values—Using the interface
OId.getAnnotation () as illustrated in Figure 9. Re-
call that the input OIds to a Reduce() function are used only
for the annotation propagation purpose. >

4.3 Special Annotation Propagation Cases

In some cases, a user’s map-reduce job—which can be a
blackbox job—may not be interested in propagating the ex-
isting annotations, i.e., the Map() or Reduce() functions do
not involve the execution of the getAnnotation() method. In
these cases, it is an unnecessary overhead and waste of re-
sources for CloudNotes to retrieve the annotations from the
Annotation Repository, and then make no use of them. To
optimize these cases, we introduce two new Boolean con-
figuration parameters at the job level, i.e., “MapSideAnno-
tationPropagation”, and “ReduceSideAnnotationPropaga-
tion”, that inform the system whether or not the Map(), and
Reduce() functions require annotation propagation, respec-
tively. These two parameters will be sent by the Annotation-
Aware Job Tracker to all tasks of the job. When the Map-
SideAnnotationPropagation is set to False, the execution of
the AnnotationFetcher () function within the mapper
class (Figure 7) will be by-passed, and hence no annotations
will be retrieved from the Annotation Repository.

Similarly, when the ReduceSideAnnotationPropagation
is set to False, any annotations produced from the Map()
functions on the intermediate data will be automatically
discarded. Furthermore, the AnnotationExtractor ()
function within the reducer class (Figure 9) will be by-
passed. As a result, the shuffling and sorting phase as well
as the reduce function will encounter no extra overhead if no
annotation propagation is required.

5 Optimizations & Design Issues

In this section, we introduce several advanced features of
CloudNotes including optimizing the annotation addition

2 The Olds passed to a reduce task are implemented using the same
Iterator mechanism currently used for passing the values. Therefore, if
the inputs’ size is too large to fit in memory, they are streamed from
disk as needed in the same standard way.

across different jobs (Section 5.1), optimizing the annota-
tion propagation under the Key-Based storage scheme (Sec-
tion 5.2), and the consideration of concurrency control and
fault tolerance (Section 5.3).

5.1 Lazy and Shared Annotation Addition

Traditional Hadoop jobs are read-only data-centric jobs,
i.e., reading exiting datasets and generating new datasets.
In contrast, CloudNotes jobs have diverse types and behav-
iors ranging from annotation-only jobs, data-only jobs, to
data-annotation jobs. In this section, we propose a catego-
rization of these jobs, and model their relationships using a
dependency graph. Based on this modeling, we introduce a
sharing and lazy evaluation strategy that reduces execution
overheads while ensuring correct execution.

In CloudNotes, a map-only job may scan an input file,
and annotate each record not matching a specific format as
“corrupted record and should be skipped”. We refer to this
type of jobs as “annotation-only” jobs, and we propose a
lazy and shared execution strategy that combines multiple
annotation-only jobs in a single plan.

Since users’ jobs may involve blackbox Map() and Re-
duce() functions, CloudNotes depends on few newly intro-
duced configuration parameters to capture some important
annotation-related properties. In order to know whether or
not a given job is an annotation-only job, we introduce a
new configuration parameter, called “AnnotationOnlyJob”,
which is set (True or False) during the job’s configuration
phase. It is worth highlighting that only map-only jobs can
have this parameter set to True. In contrast, jobs including
of a reduce phase cannot be annotation-only jobs because re-
ducers must produce output data, otherwise their execution
becomes meaningless. The second Boolean configuration
parameter is the “MapSideAnnotationPropagation” that in-
forms the system whether or not the user’s job (more specif-
ically the map-side) involves annotation propagation. These
two configuration parameters will be taken into account by
the Annotation-Aware Job Tracker when scheduling jobs as
presented in Figure 10.

The flow chart in Figure 10(a) illustrates the execution
procedure of the Annotation-Aware Job Tracker when re-
ceiving a new job J,, while Figure 10(b) illustrates an exam-
ple. The Annotation-Aware Job Tracker maintains a depen-
dency graph G for tracking the dependencies among a set of
annotation-only jobs annotating the same input HDFS file.
G will be divided into levels as illustrated in Figure 10(b),
where the jobs in the same level do not depend on each other,
and hence they can share their execution.

When a new job J, is submitted, the Job Tracker checks
if J, is not an annotation-only job, then J, will be di-
rectly scheduled for execution in the standard way. Oth-
erwise, J, will be added to the dependency graph G. If
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New Job J,

(a) Flow chart of the
Annotation-Aware
Job Tracker

- Dependency Graph G
(initially empty)

J,.AnnotationOnly False
Job?
1, MapSideAnnotation
Propagation ? %
Mandatory

1 MapSideAnnotatioi False Refresh Point

(b) Example of a Dependency Graph G

consisting of six annotation-only jobs (3
levels). The jobs” indexes indicate their

Schedule J,

AddJ, to G's
current level

True | End-Of-Level

Refresh Point submission order in CloudNotes. Only
*J.MapSideAnnotationPropagation =
True’. For the other jobs it is set to False.
Jobs within each level, e.g., {j;, I, I;},

will share their execution.

- Increment G’s level by one
- Add J to the new level
- Increment G’s level by one

Fig. 10 Lazy & Shared Execution of Annotation-Only Jobs.

Jo.MapSide Annotation Propagation is set to False, then
J; does not depend on the existing annotations and it will
be added to G’s current level. For example, assume Jobs J7,
Js, and J3 are all annotating an input file F;,, and they are
not accessing the existing annotations. Then, The three jobs
will be added to G’s 1°? level as illustrated in Figure 10(b).
In contrast, if J,. M apSide Annotation Propagation is set
to True, then J, reads the annotations of previous jobs, and
hence .J, will be added in a separate level in G to ensure that
it will execute after the previous ones (See J4 Job in G). In
addition, the subsequent jobs of .J, cannot share the same
level with J,, and they have to start from a new level. Oth-
erwise J, may read some of their annotations, which leads
to incorrect execution. For example, Jobs J5 and Jg in Fig-
ure 10(b) will be added in a separate level after J,’s level.

This lazy and shared execution strategy enables Cloud-
Notes to group several annotation-only jobs together. These
jobs do not need to be submitted in a single batch, e.g.,
they may be submitted to CloudNotes in isolation from each
other over a period of time. Yet, the Annotation-Aware Job
Tracker will be able to buffer these jobs and combine them
for later execution only when needed.

Processing the pending jobs in GG has to be performed
level-by-level starting from the top level L1. For each level,
CloudNotes creates a single jumbo map-only job that exe-
cutes all of the jobs” Map() functions in that level in any se-
quential order, e.g., J1, J2, and J3, will all share the same in-
put scan, and a jumbo map function will call the jobs’ Map()
functions in any order. As indicated in Figure 10(a), there
are three Refresh Points at which the Annotation-Aware Job
Tracker executes the pending jobs in G and updates the an-
notations. These refresh points provide a tradeoff mecha-
nism between being more eager or lazy in evaluating the
annotation jobs.

The first point is a mandatory refresh point at which a
none annotation-only job is submitted and this job is access-

ing the existing annotations, and thus any pending annota-
tions must be refreshed (marked with *). In the case where
the graph is large, the user’s job may experience a delay as
it has to wait for a longer period of time until the annotation
jobs are executed. To limit such effect, CloudNotes consid-
ers the second and third refresh points (marked with **). In
the second refresh point, End-Of-Level Refresh Point, a new
level will be added to G, and thus the previous level will not
be enlarged any more and no further sharing opportunities
can be added. In this case, the jobs of this previous level can
execute together and be removed from the graph. The third
refresh point, Max-Size Refresh Point, ensures that even if
no new levels will be added, there is still a limit (though a
system-defined parameter) on the number of the annotation
jobs that can be grouped in one level. If this limit is reached,
G will be refreshed and the pending jobs are eliminated.

In general, our experimental analysis confirms that in-
creasing the sharing opportunities minimizes the overall ex-
ecution overhead (Section 7.4). However, a user’s job may
be penalized if it has to wait for other annotation jobs to be
performed (the Mandatory Refresh Point). As such, the other
two refresh points should be triggered frequently enough to
reduce the triggering of the mandatory refresh point, but not
too frequently to the extent of having no sharing, which con-
sumes way more system resources and may also delay other
users’ jobs. As a rule of thumb, the End-Of-Level Refresh
Point should be triggered whenever possible. In contrast, the
max limit for the Max-Size Refresh Point should be set by the
system’s admins depending on the frequency of submitting
users’ jobs, which will be discussed in more detail in the
experiment section.

5.2 Prefetching and Annotation-Aware Task Scheduling

One of the advantages of the Enhanced storage scheme over
the Key-Based scheme is that the former can colocate the
annotation files with the data files, and hence enhances the
propagation performance. To bring this benefit to the Key-
Based storage scheme, we propose a prefetching mecha-
nism that Annotation Managers on the different slave nodes
will adopt. The basic idea is that Annotation Managers will
proactively prefetch annotations for future map tasks from
HBase to their local file systems, and hence when a map
task starts, it can read the prefetched annotations from its
local storage (if available). Our objective is to design mech-
anism that is: (1) Predictive, where the Annotation Man-
ager tries to anticipate which data blocks will be processed
on which nodes as this information is not known for certain
in advance, (2) Lightweight and does not consume much
resources, (3) Asynchronous and does not require synchro-
nization between nodes, and (4) Best effort and does not
have to provide hard guarantees—Recall that colocation in
the Enhanced scheme is already a best effort approach.
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Task Tracker & Annotation Manager on Cluster Node N
- Input variable RepFactor /I'F;,’s replication factor
- Input variable MapsinParallel // Number of J’s map tasks that can run in parallel

- Local variable AggressiveFactor // [0, 1] controls how aggressively to prefetch

1. // Launch task m; from job J that reads data block F;,.B;

2. If (JMapSideAnnotationPropagation = False ) Then

3 - Launch m;, . J needs no access to annotations.

4. Else If (m;, is the 1* task of J/ on Node N) Then

5. - Launch m,. AnnotationFetcher() will retrieve B;’s annotations from HBase

6. // Prefetch for future expected tasks

7 - Prepare a list of F;’s data blocks stored in N succeeding B; & Set F;,

8 - PrefetchCnt = (|[Fy,.\|/ RepFactor ) x AggressiveFactor

9 - Randomly select PrefetchCnt blocks from F;, = PrefetchListy;,

10. - Order the block Ids in PrefetchListy;, \ and prefetch the first
MapsiInParallel entries from the list

11. - Send PrefetchListg;,  to the Annotation-Aware Job Tracker in the heart beat

12. Else

13. - If (B/s annotations are prefetched) Then

14. - Launch m;,.

15. - AnnotationFetcher() will retrieve B; s annotations from local disk
16. - Advance in PrefetchListg;,  and prefetch for the next block

17. - Else

18. - Launch m;,.

19. - AnnotationFetcher() to retrieve annotations from HBase

20. - If (a previous prefetch was missed) Then

21. - Advance in PrefetchListy;,  until the smallest Id after B,
22. -End If

23. End If

Fig. 11 Prefetching Mechanism for Key-Based Storage Scheme (Exe-
cuting task m; from job J on Node N).

The main steps of the prefetching mechanism are pre-
sented in Figure 11. Assume a user’s job J is reading an
input HDFS file F},,, and map task m; processing block B;
will run on a cluster node N. If J does not involve annota-
tion propagation, then no prefetching will take place (Lines
2-3). Otherwise, if m; is the 1°¢ task in J to run on node NV,
then m; will retrieve its annotations remotely from HBase
(Line 5), and then the Annotation Manager on N will try to
prefetch the annotations for the future anticipated map tasks
(Lines 6-11).

The anticipation and prediction made by the Annotation
Manager rely on the data locality property that the sched-
uler usually tries to maintain, i.e., a map task processing data
block B; will run, with a high probability, on a node storing
B;. Previous studies have shown that the standard Hadoop
scheduler achieves more 92% locality success under replica-
tion factors of 2 or 3 [24]. Therefore, CloudNotes relies on
this property to perform the prefetching mechanism. In ad-
dition, as will be described later in this section, the prefetch-
ing information will be passed to the Annotation-Aware Job
Tracker to further increase the chances of making use of the
prefetched annotation data on specific nodes.

In order to specify the source from which the annota-
tions should be retrieved, the Annotation Manager will pass
such instructions to the AnnotationFetcher () func-
tion within the mapper class, e.g., Lines 5, 15, and 19. To
start prefetching, the Annotation Manager needs to predict
which map tasks within job J will run on its node N. In
order to do this, it will first identify all F},’s data blocks
stored in node N (called F;,_ ), and then estimates how
many of J’s map tasks will run on N (called PrefetchCnt)
(Lines 7-8). For example, if the number of blocks stored in
N is |Fj,—n|, and Fj, has a replication factor RepFactor,
then with a high probability the number of map tasks that
will be assigned to node N is |F;,—n| / RepFactor (Line
8). The Annotation Manager will then randomly select a
number of entries equals to PrefetchCnt from F,, _n, and
send these entries to the Annotation-Aware Job Tracker in
the next heartbeat (Line 9-10).

As indicated in Line 8, we incorporate an aggressive-
ness factor (AggressivenessFactor) that ensures the Anno-
tation Manager will not get overloaded with the prefetch-
ing task. This parameter is adaptively set by the Annota-
tion Manager for each job independently, i.e., if the load on
node N is not high, then for a newly coming job, the Anno-
tation Manager may set AggressivenessFactor to 1. In this
case, it will try to prefetch the annotations for the entire pre-
dicted list. In contrast, if the load becomes higher, then for
the next job the AggressivenessFactor may be set closer to
0 indicating that the Annotation Manager will put less ef-
fort in the prefetching task. As indicated in Lines 11, 16,
and 21, the Annotation Manager will not prefetch its en-
tire list at once, instead the prefetching is performed in a
progressive manner as the job advances, i.e., as some of the
prefetched blocks are either processed, or missed (their tasks
are assigned to other nodes), then more prefetching opera-
tions will take place (Lines 16, and 21, respectively).

Lines 13-22 in Figure 11 handle the processing of
subsequent tasks assigned to node N. If the annotations
of the data block B,; are already prefetched, then the
AnnotationFetcher () function will read them from
the local file system (Line 15), otherwise it will query the
HBase engine to retrieve them (Line 19). Notice that it is
possible that B;’s related annotations may not be prefetched
even though B; is in the prefetch list PrefetchListp_;n— N,
e.g., the Annotation Manager did not have enough time to
prefetch B;’s annotations before having the task assigned to
node N. Yet, since the prefetching mechanism is best-effort,
CloudNotes will operate normally and the task will retrieve
the annotations from HBase.

Finally, to further increase the chances that the
prefetched annotation information will be used, the
Annotation-Aware Job Tracker will collect the prefetch lists
(PrefetchListr_;,_ ) sent from the different nodes, and in-
corporate this information into the task scheduling policy,
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i.e., when scheduling a map task, a higher priority will be
given to data nodes that can achieve both the data and an-
notation locality. If not possible, then the default scheduling
policy of Hadoop takes place.

It is worth highlighting that we opt for designing a fully-
distributed asynchronous prefetching mechanism instead of
having the Annotation Coordinator controls this process be-
cause of the following reasons: (1) The Annotation Coordi-
nator would still rely on the data locality property to pre-
dict where tasks would run, and this information is already
known to each cluster node in isolation, (2) The proposed
prefetching mechanism allows for the same annotation in-
formation to be prefetched on multiple nodes. While this
may add some unnecessary overhead, it is a desirable fea-
ture that should be kept even under centralized decision as it
gives more choices and flexibility to the task scheduler, and
(3) It is not desirable to overload the Annotation Coordina-
tor with information such as the load on each node, which
ones are busy or free, etc. In a Hadoop-like environment, it is
preferred to take such decisions independently and accord-
ingly adjust the prefetching effort of each node (refer to the
AggressivenessFactor in Figure 11). Because of these fac-
tors, we opt for the proposed mechanism over a centralized
alternative.

5.3 Concurrency Control and Fault Tolerance

Concurrency Control: Concurrent execution in Cloud-
Notes requires a special consideration since multiple con-
current jobs can be adding and/or retrieving annotations over
the same data file at the same time. For example, the follow-
ing figure illustrates two concurrent jobs Jy and Jg access-
ing the same data file F},,, where Jy is adding annotations
while Jp is retrieving annotations.

Jw is adding annotations to File F;
Jobs’

; Iy e @ @—@——¢--~""end time

g 25 25) /
/
Jp — x—”
t, t
Jgis retrieving F, ’s annotations

If Jy’s added annotations become instantaneously vis-
ible after each task to Jg, then inconsistent execution may
occur, e.g., task Jp.t; will read the annotations generated
from task Jyr.g; but not the annotations from the rest of
Jw’s tasks because they did not execute yet. In addition,
Jw may fail at any time, and thus Jg should not access
Jw’s annotations before its successful completion. More-
over, if Jy’s annotations become visible to other jobs only
when Jyy completes, then inconsistent execution may still
occur, e.g., task Jg.to will be able to read Jy’s annotations

while the previous tasks in Jg did not have access to Jy’s
annotations.

To solve these concurrency issues, CloudNotes deploys
a simple concurrency control mechanism that is based on
enforcing two rules: (1) A job’s output annotations are not
visible to other jobs until the job’s successful completion,
and (2) A job starting at time ¢ reads the annotations gener-
ated from only the jobs finished before ¢. These rules ensure
that no job will read dirty or partial annotations from other
jobs. Enforcing these two rules is in fact straightforward un-
der the different storage schemes. For example, under the
Naive and Enhanced schemes, the names of the newly cre-
ated annotation files in HDFS from a running job Jy will be
prefixed with a special prefix “_femp” that makes these files
invisible to other jobs. At Jy’s completion, the Annotation
Coordinator will rename these files to their final names and
set their last modification time to Jy,’s completion times-
tamp. Meanwhile, when a job Jg is propagating the anno-
tations, the AnnotationFetcher () function within the
mapper class (Refer to Figure 7) will be responsible for read-
ing only the related annotation files whose last modification
time is smaller than Jg’s start timestamp.

In the case of the Key-Based scheme, the annota-
tions generated from a running job Jy, will be written
to a temporarily table in HBase. The Annotation Coordi-
nator will move the content of this table to the main ta-
ble only when Jy completes successfully. It will also en-
sure that the unique version numbers assigned to the writ-
ten records is larger than or equal to Jy’s completion
timestamp. For a job Jp propagating the annotations, the
AnnotationFetcher () function will ensure that the re-
trieved annotation records have a version number smaller
than Jpg’s start timestamp. Notice that the timestamp checks
performed by the AnnotationFetcher () function in-
volve minimal overheads because they are not applied per
annotation. Instead, they are applied at a larger granularity,
i.e., an HDFS file level (in the cases of Naive and Enhanced
schemes), and an entire task’s output level, which is written
as a single record in HBase (in the case of the Key-Based
scheme).

Fault Tolerance: Fault tolerance and recovery manage-
ment is an inevitable component in all modern infrastruc-
tures. Some techniques manage failures by either providing
partial results [31], re-doing the entire transaction [47], or
re-doing the sub-tasks that have failed [48]. Hadoop fault
tolerance belongs to the last category, and it is known for its
simplicity and efficiency.

CloudNotes fully retains the desirable fault tolerance
feature of plain Hadoop. For example, at the Job Failure
level, the job’s output annotations (if any) have not been vis-
ible to the outside world until the failure as discussed above,
and thus they will be directly purged by the Annotation Co-
ordinator. At the Task Failure level, the Annotation Manager
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for each task is keeping track of whether the failed task has
flushed any of its output annotations (if any) to the Annota-
tion Repository, and in this case such flush operations will
be rolled back (See Case Il in Figure 4). Handling a Reduce
task failure in CloudNotes is of no difference to that in plain
Hadoop because the annotations on the intermediate data
are embedded within the data. And thus, the data and their
annotations will be automatically re-retrieved for the new
reducer. A failed mapper task will be re-scheduled by the
Annotation-Aware Job Tracker using the same scheduling
policy that targets achieving both the data locality and an-
notation locality (whenever possible). For that purpose, the
prefetching information received by the Job Tracker from
the different nodes (Section 5.2) remain unchanged as long
as there is no node failure.

A Node Failure in CloudNotes includes the failure of
either the node’s local file system (Data Node), its Task
Tracker, or its Annotation Manager. In this case, the Job
Tracker will exclude this node from its list and discard its
prefetching information. Moreover, the Job Tracker will in-
form the Annotation Coordinator to delete any annotation
outputs produced from tasks that will be re-executed. The
Annotation Coordinator will identify those to-be-deleted
outputs by the job’s unique Id along with the block Ids pro-
cessed by these tasks. Notice that the storage of permanent
annotations is either handled by HDFS and replicated on dif-
ferent nodes (in the case of the Naive and Enhanced storage
schemes), or handled by HBase (in the cases of the Key-
Based scheme). In both cases, a node failure will not cause
a loss of annotation information. The highest level of fail-
ure is a Cluster Failure in which one of the master node’s
components, i.e., Name Node, Job Tracker, or Annotation
Coordinator, fails. In this case the entire cluster needs to be
re-started, and all outputs of incomplete jobs will be purged.

6 Related Work

Query and Workflow Optimizations in MapReduce. As
an open-source infrastructure, Hadoop/HDFS has been a
very attractive platform for several research activities, e.g.,
high-level query languages [29,39], indexing techniques
and query optimization [11,21,32], physical data-layout op-
timizations [4,24], workflow management techniques [9, 18,
20,37], among many others. Several of these techniques
use the concept of “annotations” in specific context to
carry special types of metadata information. For example,
Nova [37] is a workflow management system on top of
Pig/Hadoop. It uses special type of system-defined annota-
tions to annotate the workflow graph with execution hints,
e.g., the transfer mode of the data between processes, and
the output format and schema of each task. Another sys-
tem is the Stubby engine [33], which leverages the annota-

tions for capturing the processing flow, collecting execution
statistics, and profiling jobs’ performance.

Nova and Stubby systems are not annotation manage-
ment systems, instead they use process- and workflow-
centric annotations that are system generated to optimize
execution. CloudNotes is fundamentally different from these
systems because it is a data-centric general-purpose annota-
tion management engine, where the annotations are tied to
the data not to processes or workflows, added by the applica-
tions to carry various types of metadata ranging from quality
measures to auxiliary related documents, and also get auto-
matically propagated whenever the data is accessed.

Provenance Management in MapReduce. Lineage trac-
ing in Hadoop has been studied in literature, e.g., [6,7,9,
38]. The Ramp system [38] focuses on tracking the data
provenance within map-reduce jobs, i.e., it assigns artifi-
cial OIDs for each input data record, and then Ramp pro-
duces each output record along with its provenance infor-
mation (the contributing input OIDs). The work proposed
in [18] tracks the provenance in the Kepler+Hadoop sys-
tem designed for scientific workflows. It extends the build-
ing blocks of Kepler, e.g., the actor nodes, to capture and
propagate the provenance in the distributed Hadoop sys-
tem. These techniques have shown to introduce significant
processing overhead from provenance tracking, e.g., around
75% to 150% [7]. The HadoopProv [7] and MrLazy [6] sys-
tems addresses this issue of high overhead by separating the
provenance tracking of the map and reduce phases (each
phase writes its provenance information to disk separately),
and then joining their results (only when needed) through
another query to construct the final output-to-input lineage
information.

The above mentioned techniques are all coarse-grained
as the logic of the map and reduce functions is assumed to be
blackbox, e.g., each output from a reduce function is linked
to all its inputs (a concrete example is given in Section 7,
Figure 19(c)). The Lipstick technique in [9] overcomes this
limitation in the context of Pig workflows. Since Pig is a
high-level declarative query engine, the Lipstick technique
can track fine-grained record-level provenance information.
Newt [34] is another fine-grained lineage tracking system,
which uses the lineage information for debugging and track-
ing the errors in execution workflows. Newt further enables
data mining and deeper analytics on top of the extracted lin-
eage information for data cleaning. The techniques proposed
in [3,5] also enable provenance analytics and visualization
through a multi-layered architecture system.

All of the aforementioned techniques are focusing on a
specific problem, which is provenance tracking. Although
of a great importance to diverse applications, provenance
tracking systems are distinct from general-purpose annota-
tion management and curation engines. That is, (1) They
cannot serve the diverse application scenarios presented in
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Sections 1 and 7, (2) Their metadata information—which
is the lineage information—carry only execution-driven and
system-generated information, whereas modern applications
usually have a much broader range of metadata information
to be systematically captured and maintained, and (3) The
tracked provenance information is isolated from the data at
query time, i.e., if an application queries a data file F', there
is no mechanism by which F’s provenance information is
automatically propagated with the data. Developers have to
manually code (in each query) a retrieval mechanism of the
provenance information—which is a tedious, error-prone,
and complicated process.

CloudNotes is complementary to these techniques, and
it overcomes the above mentioned limitations. On one hand,
CloudNotes’s annotations: (1) Are generated and created by
the applications (not by the execution workflows), (2) Can
carry different types of metadata information ranging from
quality measures, provenance information, error highlights,
auxiliary related articles or docs, etc., and (3) Propagate au-
tomatically as the data is queried, and thus application de-
velopers can directly leverage them in the data analytics cy-
cle without the need to complicate the code of each query.
On the other hand, CloudNotes addresses new challenges
not present in the provenance-tracking systems, e.g., catego-
rization and optimization of the annotation jobs via depen-
dency graphs, annotation propagation supported by under-
lying prefetching, colocation, and compression techniques,
and addressing the concurrency control among the data- and
annotation-based jobs.

Annotation and Provenance Management in Relational
Databases. Annotation management has been extensively
studied in the context of relational DBMSs [10,26,27,41].
Several of these systems focus on extending the relational
algebra and query semantics for propagating the annotations
along with the queries’ answers [10,26]. Other systems sup-
port special types of annotations, e.g., treating annotations
as data and annotating them [16], and capturing users’ be-
liefs as annotations [25]. In spite of their evident contribu-
tions, all of these techniques have focused on the central-
ized relational databases, and hence none of them is ap-
plicable to scalable, distributed, and cloud-based platforms
such as Hadoop. Compared to these systems, CloudNotes
is the first to bring the annotation and curation capabilities
to Hadoop-based applications. Since relational DBMSs and
the Hadoop/HDFS infrastructure are fundamentally distinct,
CloudNotes is also profoundly distinct in its design, fea-
tures, and capabilities from the traditional annotation man-
agement engines.

In relational database, since the data’s structure is
known in advance, the annotation management techniques,
e.g., [10,14,26,41], as well as the provenance tracking
techniques, e.g., [12,15], have addressed the challenges
of multi-granular annotations, e.g., on specific table cells,

rows, columns, etc. Some techniques as in the SubZero sys-
tem [49] address the provenance at the array-cell granularity
within an array data model. Unlike these systems, Cloud-
Notes is built on top of the HDFS file system where no
knowledge about the data organization is known (except
the objects formed by the InputFormat layer). Therefore,
in CloudNotes, the annotations are systematically managed
only at that object-level granularity.

Another key difference is that in RDBMSs, the SQL
query language is declarative and has the underlying rela-
tional algebra foundation. Therefore, the semantics of each
operator in the query pipeline is known to the query en-
gine. This has enabled complex transformations and pro-
cessing on top of the annotations to be systematically ap-
plied at query time, e.g., transforming the annotations as
they go though the projection, join, and grouping opera-
tors [10,26], tracking forward and backward the annotations
on views [14], and studying relationships such as query con-
tainment [41] and provenance semirings [30]. Similar oper-
ations have been studied in the context of the Lipstick sys-
tem over Pig/Hadoop [9] since Lipstick assumes known data
schema and query constructs.

Unlike these techniques, CloudNotes is designed on top
of a blackbox execution paradigm, where the logic inside
the mappers and reducers is unknown. Therefore, Cloud-
Notes’s objective is to build an efficient infrastructure sup-
port, e.g., storage, propagation mechanisms, and optimiza-
tions, that brings the annotation and curation capabilities
handy to the Hadoop-based application developers to uti-
lize them in diverse applications (In the experiment sec-
tion, we demonstrate five different application scenarios).
An interesting future work is to extend CloudNotes to less-
generic and more-expressive systems, e.g., Hive/Hadoop or
Pig/Hadoop, where both the structure of the data and the
query logic and constructs are known, and thus several of
the aforementioned techniques can be investigated.

Other Emerging BigData Infrastructures. Several other
computing paradigms over Big Data have been proposed
including SQL-Based engines, e.g., Cloudera Impala [40],
and Facebook Presto [46], in-memory processing engines,
e.g., Apache Spark [2,51], and column-family systems, e.g.,
HBase [43]. Designing and building annotation manage-
ment engines on top of these systems is an interesting and
challenging open research question. For these systems, we
envision fundamentally different annotation management
engines from CloudNotes.

For SQL-Based engines, e.g., [40,46], the semantics of
the annotation propagation will be based on the well-defined
semantics of the SQL operators, e.g., select, project, join,
grouping and aggregation. Therefore, similar to the state-
of-art techniques in RDBMSs [10,26,27,41], each SQL op-
erator need to be extended—at the semantic and algebraic
level—to understand, manipulate, and propagate the annota-
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tions according to the operator’s semantics. Since the data is
assumed to have a known structure, then the issues of multi-
granular annotations (on table cells, rows, columns, and ar-
bitrary combinations of them) will need to be addressed as
well. Moreover, the pipelined nature of processing in these
SQL-Based engines and their ability to retrieve specific data
tuple(s) without the need for complete scans will certainly
require new distributed mechanisms for annotation addition
and propagation.

On the other hand, Spark infrastructure [2,51] is an in-
memory highly-distributed engine on top of which differ-
ent types of processing can be supported, e.g., Spark-SQL,
Spark-Streaming, and GraphX. Therefore, the design of an
annotation management engine in Spark mandates a totally
different design from CloudNotes, e.g., it would require
an in-memory annotation management engine—otherwise
it will become a bottleneck, and probably a multi-layered
design that consists of a core generic component on top
of which each type-specific engine, e.g., Spark-SQL and
Spark-Streaming, can build customized components for an-
notation management.

HBase is another popular Hadoop-based storage engine.
It is better suited for column-oriented structured data with
frequent record-level lookup and retrieval. HBase has fun-
damental differences compared to HDFS that raises different
challenges from those addressed by CloudNotes, and would
require re-thinking the design methodology of an efficient
annotation management support on top of HBase. The fol-
lowing table highlights these key differences.

Metric HBase HDFS

Storage model Column Family & No model &
relatively structured data | unknown structure

Access mechanism | Indexed record-level Full scan

Write mode Incremental record-level | Batch upload &
inserts & multi-version Read Only
record-level updates

Query mechanism | Set of APIs, e.g., Blackbox map &
get(), and put() reduce functions

Suitable Workload | Record-level lookups Full scans, joins, &

aggregations

Based on these differences, an annotation management
engine for HBase would address different challenges includ-
ing: (1) Multi-granular annotations, where annotations can
be linked to subsets of table cells, columns, column families,
or even an entire table, (2) Multi-version annotations, where
different annotations may be attached to different versions of
the same tuple, (3) ColumnFamily-driven storage schemes,
where annotations may be best stored and colocated within
the column families, (4) Annotation-aware HBase APIs,
where the standard HBase APIs need to be extended to au-
tomatically manipulate and propagate the annotations (along
with their related data), e.g., when the get() function selects
specific column family(s), only the related annotations to

those families should propagate, and (5) multi-version anno-
tation propagation, where semantics and mechanisms need
to be investigated on how annotations should (or should not)
propagate across versions of the same tuple.

The proposed CloudNotes system is the first step to-
wards supporting annotation management over Big Data in-
frastructures, and it opens this interesting research direction
over other platforms, where each has its own inherent char-
acteristics and challenges.

7 Experiments

In this section, we experimentally evaluate the CloudNotes
system and compare it with plain Hadoop, Ramp, and
HadoopProv systems. We consider: (1) Evaluating the per-
formance of CloudNotes’s newly added features, (2) Com-
paring the various design alternatives, and (3) Studying the
effectiveness of the proposed optimizations.

7.1 Experimental Setup and Workloads

Cluster Setup: CloudNotes is developed on top of the
Hadoop infrastructure (version 1.1.2). All experiments are
conducted on a dedicated local shared-nothing cluster con-
sisting of 20 compute nodes. Each node consists of 32-core
AMD 3.0GHz CPUs, 128GB of memory, and 2TBs of disk
storage, and they are interconnected with 1Gbps Ethernet.
Each node runs CentOS Linux (kernel version 2.6.32), and
Java 1.6. We used one server as the Hadoop’s master node,
while the other 19 servers are slave nodes. Each slave node is
configured to run up to 20 mappers and 12 reducers concur-
rently. The following Hadoop’s configuration parameters are
used: sort buffer size was set to 512MB, JVM'’s are reused,
speculative execution is turned off, and a maximum of 4GB
JVM heap space is used per task. The HDFS block size for
either of the data or annotation files is set to 64MB with a
replication factor of 3. Each experiment is executed 3 times
and the average values are presented in the figures.

ClickStream Datasets: We use real-world datasets and
workloads collected from our collaboration with a click-
stream company. The company collects the clickstreams
from millions of users over thousands of websites, and ana-
lyze the data to understands users’ behaviors and predict the
ads to display on different sites for the different users. The
data we experiment with is approximately 1.2TBs, and each
record consists of the several information on each click-
stream activity, e.g., the visited website, timestamp, the du-
ration between clicks, the type of the OS and the Internet
explorer used, the location of the ads within the page, the
conversion ratio, etc. The record sizes range from several
hundred bytes to few KBs of log information.
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Annotation Workload: The company executes differ-
ent types of jobs and analytical tasks in which annotation
management can be of a real benefit. Among these jobs, we
identified the following ones:

(1) Data Verification and Cleansing: in which data ver-
ification jobs—usually map-only jobs—execute over the
data, verify the correctness of each record, e.g., whether or
not it is well formatted, identify missing fields, detect and
eliminate out-of-order records, etc., and produce a cleaner
dataset. Currently, they execute around 10 variations of
this job using different algorithms, tuning parameters, and
quality thresholds, and each variation produces a separate
dataset. Clearly, this involves significant storage overhead
due to the possible overlapping among these datasets.

(2) Model Building, and Sessionization Jobs: in which
they execute business-oriented jobs—usually map-reduce
jobs— that are used for understanding and predicting users’
buying behavior. For example, the sessionization job is to
aggregate users’ clickstreams based on the user’s Id (IP ad-
dress), sort the activities, apply some filtering and cleaning,
and then divide them into logical sessions. Their objective
is to carry the provenance information along with the out-
put, e.g., for an identified user’s session they want to track
which records participated in that session. Moreover, for a
constructed model, they want to assess the quality of its dif-
ferent components based on the quality of the input records
participated to this component.

(3) User-Based Profile Generation: in which several log
datasets, e.g., previous recommendations and displayed ads,
the positions in which the ads have been displayed in the
web page, the time of the day, and the user’s action, will
be joined and aggregated to build a profile for that user.
Since these expensive jobs will execute frequently and will
touch large subsets of data, it is of the company’s interest to
even piggyback annotation-generation tasks within the pro-
file generation jobs—to avoid having dedicated scans for an-
notating the data.

CloudNotes can be leveraged to realize and optimize this
workload as summarized in Figure 12. For the data verifica-
tion jobs, CloudNotes can fully eliminate the need for creat-
ing different variations of the data by directly annotating the
input records with the output of each verification task (Re-
ferred to as Joby: In-Situ Verification in Figure 12). Each
annotation will include the details of the underlying verifi-
cation tool, e.g., the used algorithm, the configuration pa-
rameters, and any input functional dependencies expected
to hold, as well as the tool’s result such as “Passed” or
“Failed”, the set of violated functional dependencies, or an
assigned quality score between [0, 1]. In some cases, if a
significant percentage of the input records is expected to fail
the verification tasks, then the company prefers to create a
single output dataset containing the union of records passing
any of the verifications, and annotating them with the verifi-

Annotation-
Job ID Type Description Only Job
Job, Map-only Annotating map-input data | Yes

(In-Situ Verification)

Ji ob2 Map-only
(Ex-Situ Verification)

Annotating map-output data | No

Job, Map-Reduce | Reduce-side propagation+ | No

(Sessionization) (Aggregation) | Annotating reduce-output
Job, Map-Reduce | Map-side propagation + No
(Model Building) (Join & Reduce-side propagation +

Aggregation) | Annotating reduce-output

Joby Map-Reduce | Annotating map-input No
(User-Based Profiles) | (Join & and/or reduce output
Aggregation)

Fig. 12 Summary of the Annotation Workload.

| Job, | Job, | Job, | Job, | Job;

1 3

# Annotation-
Related Lines

1 (in map) +
5 (in reduce)

4 (in map) +
5 (in reduce)

Fig. 13 Num of Additional Code Lines for Annotation Management.

cation information and scores (Jobs: Ex-Situ Verification in
Figure 12).

For the sessionization aggregation job, CloudNotes will
enable propagating the provenance information to the re-
duce side, and annotating the final output with such infor-
mation (Jobs: Sessionization in Figure 12). In contrast, for
the model building task, the system needs to retrieve the ex-
isting annotations, e.g., the quality scores, propagate them
from the map side to the reduce side, and then the scores
will be aggregated (e.g., average-based), and get attached to
the final output (Joby: Model Building in Figure 12). Finally,
general-purpose jobs can be leveraged to annotate the inputs
or outputs without the need for dedicated annotation-based
jobs (Jobs: Profile Generation in Figure 12).

As mentioned before, in the workload we assume the
annotations are attached at the object-level, i.e., the ob-
jects formed from the underlying input or output formats,
as it is the unit of processing known to the system. In the
case where an application needs to annotate specific fields,
e.g., associating different quality measures to specific fields,
then the application developer would need to encode the
field’s reference, e.g., position or name, within the annota-
tion value.

In Figure 13, we show the usability of CloudNotes from
the developer’s point of view. The presented values indicate
the number of code lines that need to be added for annotation
management, i.e., adding or retrieving annotations (other
than any application-related code). For example, in Joby, af-
ter assessing the quality of each input record (according the
verification tool semantics), only one additional code line is
augmented to add the annotation (Similar to Line 5 in Fig-
ure 3). For Jobs, the number of additional code lines to be
added depend on which annotation job among the other ones
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is piggybacked within Jobs. The presented numbers demon-
strate how easy developers can perform the basic operations
on the annotations without the need to worry about the un-
derlying infrastructure-related details, e.g., how the annota-
tions are stored, how they propagate, when the annotation
jobs are actually executed and optimized, the concurrency
among the jobs, etc.

Default Parameter Settings: In the experiments, we
will vary and study the effect of several parameters. How-
ever, unless otherwise is stated in a specific experiment, we
assume the following default settings: (1) The Key-Based
storage scheme is the default scheme, (2) The Enhanced and
Key-Based schemes when used are full-fledged, i.e., they
include bitmap compression, locality-based placement, and
prefetching with aggressiveness factor set to 1, (3) The av-
erage annotation size is approximately 200 bytes, and the
number of distinct annotations is 20, (4) The map and re-
duce tasks use a task-level buffer of size 20 to accumulate
the newly added annotations before sending them to the An-
notation Manager (Refer to Section 3.2), and (5) Map tasks
do not require disk-swapping while propagating the annota-
tions (Refer to Section 4.1).

7.2 Performance Evaluation: Annotation Addition

In Figure 14(a), we evaluate the performance of Joby, i.e.,
annotating the input data without producing any outputs.
We execute each of the verification tasks to generate its
annotations, and we report the averaged results over the
10 verification tasks. The annotation sizes range between
100 to 200 bytes. The number of distinct annotations gen-
erated by a tool is around 20 values, e.g., the algorithm
name and parameters are fixed for a given execution, but
the quality scores and the names of missing fields may
differ. The tools typically annotate the entire dataset, i.e.,
100% on the x-axis. However, to study the scalability pat-
tern of CloudNotes, we vary the percentage of annotated
records between 0.1% to 100% as indicated in the figure.

7
a Enhanced

10%
Map Output w.r.t Input

- Avg. T~ 457 sec (5% output), 521 sec (40% output)
- Indicated storage overhead w.r.t. output size. The
overhead % is the same for the different output sizes.

(b) Job,: Ex-Situ Verification: Time Overhead

. Key-Based

70 — pe Naive
60 = =X= = Key-Based

50 + Enhanced

Annotation Storage (GBs)
B
(=]

¥ ” 0 ‘__--*-———')("‘--'_‘9(
20% 40% 5% 10% 20% 40%

Map Output w.r.t Input

- Original dataset size is 1.2 TBs
- This storage overhead is from the least-selective
verification task.

(c) Job,: Ex-Situ Verification: Storage Overhead

The execution time overhead (y-axis) illustrate the over-
head percentages on the job’s completion time calculated
as: 100 * (Tannotation - Tplain)/Tplain, where Tunnotation:
and T}, are the job’s completion time with annotation ad-
dition, and in plain Hadoop, respectively. For references, we
include the absolute T};q;y, time in most figures.

The results show that when the underlying storage
scheme is either the Enhanced or Key-Based, then the time
overhead is relatively very small (at most 10% slowdown).
In contrast, the Naive scheme encounters around 33% over-
head. This is mostly due to the space overhead occupied
by the annotations. In the former two storage schemes, the
overhead w.r.t the input data size is tiny (around 0.34%) be-
cause of the re-organization and compression before storing
the annotations, while the Naive method encounters around
11.2% storage overhead as indicated in Figure 14(a).

In Figure 14(b), we evaluate the performance of Jobs,
i.e., producing map output for records under a certain qual-
ity level and annotating it on the fly. In this experiment, it
is not straightforward to generate a union (without dupli-
cates) from the datasets produced from all verification tasks.
Therefore, the experts identify the least-selective tool along
with its tuning parameters, and this will be the tool to run
first to create and annotate a superset of tuples. Then, sub-
sequent verification tasks can add more annotations as the
execute over this superset data. The results in Figure 14(b)
illustrate the performance of this least-selective tool. The x-
axis shows the different sizes of the produced dataset relative
to the original input, while the y-axis indicates the slowdown
percent in execution time. The same trend as in Figure 14(a)
is observed, where the Enhanced and Key-Based schemes
achieve around 6x speedup compared to the Naive storage
scheme. This is due to the effective compression achieved
by the first two schemes. This is evident from Figure 14(c)
that illustrates the additional storage (for the annotations)
created by the verification tool.

In Figure 15, we wanted to have a better understanding
of how the size and the number of distinct values of anno-
tations can affect the performance. This is clearly related
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to the storage schemes and how effective the compression
can be. In the experiment, we consider Job; (In-Situ Verifi-
cation) for annotating the entire input dataset, i.e., approxi-
mately 1.2TBs. We consider three different values of anno-
tation sizes in bytes {200, 400, 800}, and vary the number
of distinct values over {20, 200, Each}, where Each means
each record will get a different annotation. As the figures
show, as long as the annotation values are not entirely dis-
tinct, the Enhanced and Key-Based schemes can perform
orders-of-magnitudes better than the Naive scheme. The ex-
ecution time overhead (Figure 15(a)) is a direct reflection to
the storage overhead (Figure 15(b)).

From Figures 14 and 15, we observe that the Key-Based
scheme encounters a slightly higher overhead (usually neg-
ligible w.r.t. the entire job’s time) compared to the En-
hanced scheme. We contribute this difference to the fol-
lowing: (1) HBase is maintaining and storing additional
columns, e.g, version numbers and timestamps, for each an-
notation record. These fields add between 2% to 5% of stor-
age overhead on top of the annotation sizes. And (2) The
network communication overhead between the HDFS nodes
and the HBase storage nodes. This overhead in not present
in the Enhanced scheme since the annotations and the data
are mostly colocated, i.e., the annotations are read from the
local file system. In subsequent experiments, we will further
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Fig. 17 Effect of Enabling/Disabling Flush() Function Features (Job1).

study the storage scheme with and without colocation and
pre-fetching (Figure 20).

In Figures 16 and 17, we further analyze the effect of
several optimizations on the annotation-addition process.
More specifically, we study the effect of the task-level buffer
located between a map or reduce task and the local Anno-
tation Manager (Refer to Figure 4), and the effect of the
bitmap compaction and the locality-aware annotation place-
ment in the Flush() function (Refer to Figure 6). In these
experiments, we use the Enhanced storage scheme, and re-
execute the same experiment presented in Figure 14(a), i.e.,
Job1: In-Situ Verification.

In Figure 16, we vary the task-level buffer on the x-
axis from O (disabled) to All (holding all annotations until
task completes) under two scenarios, which are annotating
10% and 100% of the input records. As the results show,
the buffer has significant effect on the performance. If it is
disabled, then the map tasks (20 running concurrently on
a single node) are all sending each annotation to the An-
notation Manager. Since the communication is performed
thought inter-process-communication (IPC)—similar to the
communication with the Task Tracker, the Annotation Man-
ager becomes a bottleneck and it slows down the perfor-
mance. Notice that with each message, the task needs to
wait for the acknowledgment to resume its work. With a

800
Annotation size- Each Distinct
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Fig. 18 Piggybacking Annotation Addition to Other Tasks (Jobs).

relatively small-size buffer, e.g., 10 to 50 annotations, the
communication overhead becomes less severe and overhead
from the annotation addition drops significantly.

On the other hand, when the buffer is set to infinity, i.e.,
a task sends its annotations only when it completes, tasks
have failed because they ran out of memory. In this experi-
ment all tasks have failed because each task annotates all its
input records. However, in general different tasks may gen-
erate different number of annotations, and thus only subset
of tasks may fail, which ultimately leads to a job failure. In
general, we observed that there is no magical size that works
the best for different scenarios. However, setting the buffer
to a small size, e.g., 10 or 20 messages, is enough to make
this step of the process a bottleneck-free.

In Figure 17, we study the effect of the two key steps
within the Flush() function, i.e., the bitmap compression
(denoted as ‘C’) and the locality-aware placement (denoted
as ‘L’). The x-axis is divided into four segments, where the
C-L combination is set to either On or Off. And then, un-
der each segment we consider 10% or 100% annotation of
the map input, and the annotations’ domain is either 20 or
1000 distinct annotations (denoted as 20D, and 1000D, re-
spectively). The y-axis measures the absolute time added by
the various components, which include writing the annota-
tions to HDFS, execution the locality-aware placement pol-
icy, and applying the bitmap compression.

As expected, the dominant factor in all cases is the I/O
of the writing phase compared to a minor CPU overhead
for the over two components. However, by comparing the
last two segments of Figure 17 to the first two segments, we
conclude that the compaction step plays a clear role in re-
ducing the I/O overhead (and hence the overall overhead).
This is because the size of the annotations to be written be-
comes much smaller (as reported from other experiments in
Figure 14(f-g)). When the locality-aware placement feature
is enabled, i.e., the 2" and 4! segments, the added over-
head is minor and unnoticeable, but it has a positive impact
on the annotation propagation as discussed next.

In Figure 18, we study piggybacking the annotation ad-
dition tasks on other jobs, e.g., since some user tasks will

scan the data anyway, they may annotate this data for free
without the need to run annotation-specific jobs. In this ex-
periment, we use Jobs (Refer to Figure 12), the average
annotation size is set to 200 bytes, the number of distinct
annotations is 200 values, and the storage scheme is Key-
Based. The job will annotate a percentage of the map-input
records and reduce-output records (the x-axis in Figure 18).
We study the performance overheads under the cases where
the map output (going to the reduce side) is either 1%, 10%,
or 100% of the map’s input. As the results show, since .Jobs
is an expensive map-reduce job, then annotating the data can
be piggybacked almost for free. As the figure illustrates, the
overheads are mostly below 1% of the job’s total execution
time. This is a desirable feature of CloudNotes , especially in
the cloud-based pay-as-you-go model [17] in which clients
are keen to optimize their workloads and pay less.

7.3 Performance Evaluation: Annotation Propagation

We start by studying the sessionization query define in Jobs
in Figure 12, i.e., grouping users’ transactions, sorting them
by time, dividing them into logical sessions, and then report-
ing statistics about each session. The goal is to keep track of
the provenance information of the records contributing to
each session. In this job, the map-side functions are not ac-
cessing any existing annotations, instead they are generating
their own annotations, i.e., annotating their output records
with unique OIDs and passing them to the reduce side.

In Figure 19(a), we vary the session limit (max allowed
time for a session) over the x-axis, and as this limit gets
larger, then number of sessions gets smaller. This corre-
sponds to a smaller reduce-output size. The job without any
annotation propagation takes around 7T},;4:n, = 2498 sec (for
Limit=5) as indicated in the figure. The results in this ex-
periment show a different trend compared to the previous
experiments, which is that the three storage schemes have
relatively the same performance. This is expected because
the tasks of generating the annotations (OIDs) from the map-
side (the OIDs), and going through the shuffling and sorting
phase until reaches the reduce side are identical in the three
schemes. Moreover, since the annotations (provenance) pro-
duced for each reduce-output record are distinct, then the
compression effectiveness is almost zero. And thus, the three
schemes become relatively similar in performance. In Fig-
ure 19(b), we report a more detailed analysis of the ses-
sionization job under the Key-Based storage scheme, and a
max session time of 10 mins. The presented table illustrates
the overheads introduced at each processing stage due to the
provenance propagation. Clearly, the major overheads lie in
the shuffling/sorting phase, and the output generation phase.
In both phases, the increase in time is due to the increase of
shuffled/sorted data, and the produced output.
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Although Jobs focuses on provenance propagation,
we could not directly compare CloudNotes with the
other provenance systems, e.g., Ramp [38], and Hadoop-
Prov [7]—which are designed specifically for MapReduce-
based provenance tracking. The reason is that user sessions
are logical units that reducers compute internally, and thus
Ramp and HadoopProv cannot capture the provenance at
such logical level because they treat the reduce function as
a blackbox. For example, if one user has 100 click events
(which is an input to one reduce execution), and the reducer
divides them into 5 sessions (according to their time con-
straints), e.g., Session 1 has 30 events, Section 2 has 15
events, etc., then to Ramp and HadoopProv, each output
of these five sessions is linked to all the 100 input events,
which is clearly not the correct application semantics. This
is an example of many-to-one inputs-to-outputs that black-
box provenance tracking systems cannot handle.

To have a fair comparison with these systems, we modi-
fied Jobs such that instead of reporting each session, the job
will compute statistics over all of the user’s sessions, e.g.,
the average session time across all of the users’ sessions.
Hence, the each reducer input produces one output record to
which all of the inputs have contributed. In this case Cloud-
Notes , Ramp, and HadoopProv are semantically equivalent.

The results from this experiment are presented in Fig-
ure 19(c). We experiment with two dataset sizes (the x-
axis), and measured the absolute execution time to follow
the same representation in [38]. The CloudNotes and Ramp
systems are almost identical on how mappers generate the
provenance information, and how this information is car-
ried within the shuffling and sorting phases until reaches
the reducers. However, the key difference is that Ramp is
less effective in storing the provenance information, i.e., it
introduces a mapping layer where the provenance informa-
tion is linked to the data though a primary-key foreign-key
relationship, and the foreign key gets replicated with each
record Id contributing to the output. This adds significant
storage overhead, which translates to the illustrated execu-

tion time overheads. The results illustrate that Ramp’s over-
head is double the overhead encountered by CloudNotes.

On the other hand, HadoopProv does not fully compute
the output-to-input provenance during the user’s job—with
the objective of minimizing the provenance tracking over-
head that user’s jobs experience. Instead HadoopProv gen-
erates partial isolated information from the map and reduce
phases. That is why the the execution overheads encoun-
tered during the user’s job is relatively smaller as depicted
in Figure 19(c), i.e., 15% and 17% for the 600GBs and
1.2TBs datasets, respectively. To compute the final prove-
nance graph, HadoopProv needs a separate job to join the
isolated information and generate the final output, which
is equivalent to CloudNotes and Ramp outputs (See Fig-
ure 19(c)).

This experiment shows that CloudNotes not only can
serve a broader range of applications compared to the
provenance-tracking systems, but also has comparable per-
formance to HadoopProv. This is due to CloudNotes’s effec-
tive design and storage including compression, colocation,
pre-fetching, and annotation-aware task scheduling, which
collectively save significant I/O overhead as well as shuf-
fling/sorting overheads.

The performance of Job,, which is a map-reduce job of
model building, is presented in Figure 20. Typically, not a
single model is generated from the data. Instead, different
models are generated for different types of users, different
product types, or different regions in the world. The goal is
to estimate the quality of a given model based on the qual-
ities of its contributing records. Job, is distinct from the
other jobs in that it involves map-side propagation, i.e., the
map functions read the annotations attached to the input data
(which are the quality scores) and pass them to the reduce
functions. On the x-axis we vary the number of annotations
attached to each input record, e.g., 1 means one available
annotation from one verification tool, while 10 means 10
available annotations from the 10 verification tools. Since
pre-fetching and annotation-to-data locality are important in
map-side propagation, we study the performance under five
storage schemes, i.e., Naive, Enhanced—with colocation

(7% +12%)
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Fig. 20 Annotation Propagation (Map & Reduce Sides) of Jobg.

enabled, Enhanced (NC)—meaning No Colocation, Key-
Based—with pre-fetching enabled, and Key-Based (NP)—
meaning No Pre-fetching.

In Figure 20(a), we present the average delay time (in
sec) encountered by the Map() functions before they start ex-
ecuting. This delay is due to the retrieval of the annotations
and organizing them in memory by the Annotation Manager.
The figure illustrates that the execution delay depends on the
underlying storage scheme. The Naive scheme is the worst
as it requires reading many small files from HDFS, while the
Enhanced scheme is much faster because of its compression
on disk, and consolidation of the small files into a single
large file. When the colocation property and the pre-fetching
mechanism are disabled, the two schemes encounter addi-
tional overhead (approximately 20% in the worst case).

The overall overhead percentage for the entire Joby
is presented in Figure 20(b). Since Job, is a map-reduce
job, then the big gap between the various storage schemes
(from the map-side) narrows down when we consider the
entire job. Nevertheless, still the Enhanced (with coloca-
tion) and the Key-Based (with pre-fetching) are the domi-
nant schemes.

Based on our analysis w.r.t the different storage
schemes, we conclude that: (1) Both Key-Based and En-
hanced schemes outperform the Naive scheme (the baseline)
almost in all scenarios, (2) Key-Based encounters a slight
overhead compared to the Enhanced scheme due to the net-
work communication and the additional storage for main-
taining auxiliary columns in HBase, and (3) In the case
where HBase is already deployed on the cluster, then it is
better to use the Key-Based scheme since it neither requires
a daemon process nor has a freezing state (Refer to Fig-
ure 5). Otherwise, CloudNotes can efficiently leverage the
HDEFS using the Enhanced scheme without mandating the
deployment of HBase.

In Figure 21, we study the case where the main-memory
data structures built by the Annotation Manager for organiz-
ing the annotations (Refer to Figure 7) do not fit in the allo-
cated memory space. In this case, part of the annotations will

(b) Overhead on Entire Job

% of mappers having Disk-Swapping Propagation

Fig. 21 Memory-Constraint Annotation Propagation.

be stored to and read from the local disk. In the experiment,
we study the slowdown in performance on Job,, which is
a map-reduce job, as well as a synthetic map-only. In the
synthetic job, the map side will perform the same function-
ality as in Joby, i.e., reading the log data and the attached
quality-related annotations, except that there is no reduce-
side. Since the map-only job is cheaper than the map-reduce
job, we expect the disk-based propagation to be more influ-
ential in the former case. In this experiment, we assume a
Key-Based storage scheme, and that each data tuple has a
single quality-related annotation attached to it.

Referring to Figure 21, we vary, over the x-axis, the
percentage of data blocks (map tasks) for which a read
from disk is needed. We evaluate two cases: (1) The need
to write and read from the disk only once (labeled 1
Disk—-Round), and (2) The need to write and read from
the disk twice (labeled 2 Disk-Round). The experiment
confirms that CloudNotes is resilient to failures even under
memory constraints since both jobs completed successfully.
However, as expected, the more map tasks requiring disk-
swapping during the propagation, the higher the overhead
on the job’s execution. Although the disk accesses are all
local 1I/Os, i.e., no HDFS access, there is a clear slowdown,
especially for the map-only job. This is because it is a less-
expensive job (compared to .Joby), and hence it is more sen-
sitive to this overhead.

7.4 Performance Evaluation: Advanced Features

In Figure 22(a), we evaluate the shared and lazy execution
strategy among a set of annotation-only jobs, e.g., the differ-
ent variations of the in-situ verification tool of .Job;. On the
x-axis, we vary the number of annotation-only jobs that can
be shared from 1 to 16 (all in one level in the dependency
graph), and measure the required total execution time under
the sharing case and the case where the sharing is disabled.
Clearly, the sharing strategy of CloudNotes can be very ef-
fective in saving system’s resources. The ultimate savings
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Fig. 22 Evaluation of CloudNotes’s Advanced Features.

will depend on the ratio of the annotation-only jobs to the
other types of jobs as well as the their execution order. But,
in general, even a sharing of a small number of jobs, e.g., 4
or 8 which can be the max limit set for the Max-Size Refresh
Point, can save significant time and resources. As such, the
overheads encountered by the individual jobs, which may
reach 20% or 30% in some cases, would be substantially re-
duced as they share their execution, and most of the I/O and
computations will be shared.

To assess the importance of the End-Of-Level Refresh
Point, we performed an experiment to measure the wait time
of a user’s job (in the Mandatory Refresh Point) under vari-
ous heights of the annotation’s dependency graph (from 1 to
4 levels). The results are included in the following table.

Graph height & Num jobs in each level
L 4 | 2eary | 3 drdny | 4 e

Wait Time 352 Sec

630.6 Sec | 1013 Sec | 1405 Sec

As indicated in the table, the increase in the graph’s
height translates to big jumps in the job’s wait time. That is
why CloudNotes eagerly triggers the End-Of-Level Refresh
Point to avoid increasing the graph’s height, especially that
there is no sharing across levels.

The results in Figure 22(b) show the sensitivity of an-
notation propagation (under the Key-Based scheme) to the
aggressiveness factor that controls the prefetching of an-
notations. This factor is used for jobs involving map-side
propagation. Therefore, we evaluate the performance for the
two job types studied in Figure 21, i.e., Joby, and its map-
only variation. We assume the number of annotations per
tuple is one, and we vary the aggressiveness factor over the
x-axis between 0 (no prefetching) to 1 (very aggressive in
prefetching). The results show that indeed the prefetching
has a positive effect of the job’s completion time. The map-
only job is more sensitive to the prefetching because its ex-
ecution time is small compared to the other two jobs. And
hence, the overhead from communicating with HBase be-
comes more significant for the map-only job. This results
can be used to tune the Annotation Manager to be more ag-
gressive in prefetching in the cases of map-only jobs, while
being less aggressive in the map-reduce jobs.

20 D__D_D——-D/:‘ 5 7

Aggressiveness Factor

(b) Proactive Prefetching in Key-Based Scheme
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(c) Fault Tolerance Due Node Failure

In Figure 22(c), we study the performance of Cloud-
Notes under a node failure. In the experiment, we take one
slave node down at the 50% of the job’s completion time.
And hence, its data will be lost, and its previous tasks need
to be re-executed. We experiment with the two jobs, Jobs
and Joby, and in each case, we measure the slowdown per-
centage relative to the job’s completion time without a fail-
ure, i.e., the plain Hadoop job will be compared relative to
the Tpiqin time, while the other jobs will be compared to
the Tynnotation time. The underlying storage scheme in the
experiment is set to Key-Based. As studied in [4,24], it is
typical that the recovery from a failure in a map-reduce job
be more expensive than that in a map-only job. Nevertheless,
with respect to the annotation management, CloudNotes re-
tains almost the same performance as plain Hadoop when
recovering from a failure. The annotation addition job Jobs
encounters slightly higher overhead since the Annotation
Coordinator needs to delete the annotations written by the
failed tasks before starting their execution again.

8 Conclusion

We proposed the CloudNotes system, the first MapReduce-
based annotation management engine. CloudNotes
makes it feasible for cloud-based applications relying on
Hadoop/HDFS to seamlessly integrate both the data and the
annotations into the same processing cycle. Compared to
the state-of-art techniques, CloudNotes addressed several
unique characteristics to annotation management including:
(1) The management and processing of annotations, e.g.,
generation, storage, indexing, and automatic propagation,
in a large-scale and distributed environment, (2) Novel
categorization of CloudNotes’s jobs based on their behav-
iors, and proposing new sharing strategies that take their
dependencies into account, and (3) New design issues and
optimizations, e.g., lazy evaluation, prefetching mecha-
nisms, annotation-aware task scheduling, and concurrency
control mechanisms for the concurrent read/write annotation
jobs. Promising future work and extensions to CloudNotes
include investigating the annotation management problem
over other Big Data infrastructures.
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