
Supporting Annotations on Relations ∗

Mohamed Y. Eltabakh, Walid G. Aref, Ahmed K. Elmagarmid, Mourad Ouzzani, Yasin N. Silva
Computer Science Department, Purdue University

{meltabak, aref, ake, mourad, ysilva}@cs.purdue.edu

ABSTRACT
Annotations play a key role in understanding and curating
databases. Annotations may represent comments, descrip-
tions, lineage information, among several others. Annota-
tion management is a vital mechanism for sharing knowl-
edge and building an interactive and collaborative environ-
ment among database users and scientists. What makes it
challenging is that annotations can be attached to database
entities at various granularities, e.g., at the table, tuple, col-
umn, cell levels, or more generally, to any subset of cells that
results from a select statement. Therefore, simple comment
fields in tuples would not work because of the combinato-
rial nature of the annotations. In this paper, we present
extensions to current database management systems to sup-
port annotations. We propose storage schemes to efficiently
store annotations at multiple granularities, i.e., at the ta-
ble, tuple, column, and cell levels. Compared to storing the
annotations with the individual cells, the proposed schemes
achieve more than an order-of-magnitude reduction in stor-
age and up to 70% saving in the query execution time. We
define types of annotations that inherit different behaviors.
Through these types, users can specify, for example, whether
or not an annotation is continuously applied over newly in-
serted data and whether or not an annotation is archived
when the base data is modified. These annotation types
raise several storage and processing challenges that are ad-
dressed in the paper. We propose declarative ways to add,
archive, query, and propagate annotations. The proposed
mechanisms are realized through extensions to the stan-
dard SQL. We implemented the proposed functionalities in-
side PostgreSQL with an easy to use Excel-based front-end
graphical interface.

1. INTRODUCTION
The growth in scientific information has made databases

∗This research was partially supported by NSF Grant Num-
ber IIS-0811954 and by NIH Grant Number NIGMS U24
GM077905 for the EcoliHub project.

Permission to copy without fee all or part of this material isgranted pro-
vided that the copies are not made or distributed for direct commercial ad-
vantage, the ACM copyright notice and the title of the publication and its
date appear, and notice is given that copying is by permission of the ACM.
To copy otherwise, or to republish, to post on servers or to redistribute to
lists, requires a fee and/or special permissions from the publisher, ACM.
EDBT 2009, March 24–26, 2009, Saint Petersburg, Russia.
Copyright 2009 ACM 978-1-60558-422-5/09/0003 ...$5.00

integral to many scientific disciplines including physics,
earth and atmospheric sciences, chemistry, and biology.
These disciplines pose new data management challenges to
current DBMSs. One of the key challenges is to overcome
the limited ability of database systems in manipulating an-
notations and provenance data. Annotations play a key
role in understanding and curating scientific databases as
well as databases in other domains. Annotations may rep-
resent comments, descriptions, warning or error messages,
questions about any subset of the data, lineage informa-
tion, among several others. Therefore, annotation man-
agement becomes a vital mechanism for sharing knowledge
and building an interactive and collaborative environment
among database users and scientists.

Annotation management involves several challenges in-
cluding: (1) Handling multi-granular annotations. An-
notations can be large in size and attached to the data at var-
ious granularities, e.g., cell, tuple, column, or table. There-
fore, efficient storage schemes are needed to avoid replicating
the annotations. The storage overhead becomes more crit-
ical in the context of coarse-granular annotations such as
provenance where one provenance record can be attached to
many tuples or even entire columns or tables. (2) Propagat-

ing annotations seamlessly. Users want to propagate the
annotations without complicating their queries. If annota-
tion propagation is delegated to users (or applications) with-
out any database system support, then users’ queries may
become complex and user-unfriendly. (3) Adding annota-

tions and defining behaviors. Key requirements in anno-
tation management are to provide declarative mechanisms
to annotate the data and to specify how annotations behave
under different database operations. For example, users may
want the newly inserted data to be annotated automatically
if it satisfies certain criteria, or may want annotations to
be deleted automatically when the base data gets modified.
Annotation management systems need to efficiently support
these various behaviors. Providing interfaces to help users
manage the annotations is important. However, without
adequate support from the underlying database system, it
becomes very complex and inefficient to design these inter-
faces. Annotation management in relational databases has
been addressed in previous systems, e.g., [4, 2, 10, 15]. How-
ever, we believe that several of the highlighted challenges are
still open and require further investigation.

In [7, 8], we introduce bdbms as an extended database
system for scientific data management. bdbms extends the
functionalities of current database management systems to
include: (1) annotation management, (2) tracking depen-

dencies that involve external modules among data items, (3)
authorizing database operations based on the content of the
data in addition to the identity of the user, and (4) support-
ing novel and non-traditional access methods. [7] presents
the overall system and the challenges involved in each of
the proposed components. In this paper, we focus on the
annotation management component. We provide compact
representations of annotations that significantly reduce the
storage overhead and I/O cost of queries. We define three
types of annotations: snapshot, view, and join annotations
that inherit different behaviors. In contrast to snapshot an-
notations that apply to a data instance, view annotations
automatically annotate newly inserted data if they satisfy
certain conditions, whereas join annotations are attached to
data across relations. These annotation types raise several
storage and query processing challenges that are addressed
in the paper. Since most scientists prefer to use graphical
interfaces over using direct SQL commands, we provide an
easy to use and intuitive GUI using Excel sheets that facili-
tate performing the proposed functionalities [8].

The contributions of this paper are summarized as follows:

1. We propose declarative mechanisms to support adding,
storing, archiving, and querying snapshot, view, and
join annotations. We propose query processing tech-
niques and optimizations to efficiently support these
annotation types.

2. We propose the Mapped-Space storage scheme that
allows efficient and compact representation of multi-
granular annotations. The Mapped-Space scheme
achieves more than an order of magnitude saving in
storage over the straightforward scheme where anno-
tations are replicated and stored with each individual
cell. The Mapped-Space scheme reduces query execu-
tion times by up to 70%.

3. We define new constructs such as ON UPDATE
PROPAGATE and ON AGGREGATION PROPA-
GATE that allow users to control how annotations be-
have under different database operations. All the pro-
posed constructs and functionalities are realized inside
PostgreSQL. The experimental results are drawn from
this realization. Although not part of this paper, the
system has an Excel-based front-end graphical user in-
terface [8].

The rest of the paper proceeds as follows. Section 2
overviews the related work. Section 3 introduces the
Mapped-Space storage scheme. Sections 4, 5, and 6 present
mechanisms for adding, archiving, querying and propagat-
ing annotations, respectively. The performance analysis is
presented in Section 7. Section 8 contains concluding re-
marks.

2. RELATED WORK
Annotation management has been the focus of recent

research as a key requirement in supporting scientific
databases as well as many other database applications [4, 11,
13, 14]. Commercial databases such as Oracle and DB2 have
added new features and functionalities inside the database
engine to support life science applications [1, 12] such as
accessing data stored in heterogeneous data sources, inte-
grating varieties of data types, and embedding/integrating

GENE table

ID Name Seq Function Left_pos Right_pos

JW0335 lacZ ATGACC... regulator 25012 25453

JW4778 cyaA TTGTAC... regulator 76501 76601

JW4374 phoA GTGAAA... regulator 124572 124705

JW4266 cyaA ATGGGT... regulator 587900 588214

1 2 3 4 5 6

1

2

3

4

A1

A2
A3

Storage order column mapping

Storage order
row mapping

A4

Figure 1: Example of annotations

Gene_public

Gene Gene_lab

Gene_provenance UserTableName AnnotationTableName

Gene Gene_provenance

Gene Gene_lab

Gene Gene_public

…

(a) Relation with annotation tables (b) Catalog tabl e ‘AnnotationTablesCatalog’

Figure 2: Annotation tables

data mining techniques inside the database engine. How-
ever, managing annotations has not been addressed yet by
these systems.

Annotation management in the context of relational
databases has been addressed in previous works, e.g., [2,
5, 6, 10, 15]. The two main systems are DBNotes [2, 6, 3],
and MONDRIAN [9, 10]. DBNotes proposes an extension to
SQL, termed pSQL, that extends the querying capabilities
by adding a PROPAGATE clause to the SELECT state-
ment that allows users to specify how to propagate the an-
notations along with the query answers. DBNotes proposes
several propagation schemes that allow propagating the an-
notations on equivalent values resulted from operations such
as union and equi-joins. MONDRIAN [9, 10] proposes an al-
gebra, termed color algebra, that extends annotating single
values to annotating multiple related values with the same
annotation. Both systems allow users to add conditions to
restrict the propagated annotations and to query the data
based on the annotation values. The storage mechanisms in
DBNotes and MONDRIAN are straightforward where an-
notations on Table R are stored in a separate table RA that
references tuples’ unique identifiers and column names in R.

DBNotes and MONDRIAN systems put notable effort on
querying and propagating the annotations. The key distinc-
tions between the proposed system and the previous sys-
tems are, as highlighted in Section 1, addressing storage
optimization techniques, processing and managing different
types of annotations, and proposing mechanisms for adding
and archiving annotations.

3. STORAGE OF ANNOTATIONS
The size of annotations can be very large and may even

exceed the size of the base data in the database. As a result,
the retrieval and propagation of annotations at query time
may involve overhead higher than that for retrieving the
base data itself. Optimizing the storage of annotations is
not straightforward since annotations are attached to the
data at various granularities such as one cell, entire row or
column, entire table, or an arbitrary set of cells.

In this section, we propose a storage scheme, called

CREATE ANNOTATION TABLE <ann_table_name>
ON <user_table_name>

Figure 3: Extended SQL command CREATE

FFFF((5,1), (6,4))A4User40

FFFF((5,3), (5,3))A3User30

FFFF((2,3), (3,3))A3User30

FFFF((1,2), (2,4))A2Admin20

((1,1),(1,6))

Annotation

CoveredCells

F

Archived

Flag

FFFA1Admin10

ViewAnnotation

Flag

OnAggregation

PropagateFlag

OnUpdate

PropagateFlag

Annotation

Value

TimestampCuratorAnnotation

Id

FFFF((5,1), (6,4))A4User40

FFFF((5,3), (5,3))A3User30

FFFF((2,3), (3,3))A3User30

FFFF((1,2), (2,4))A2Admin20

((1,1),(1,6))

Annotation

CoveredCells

F

Archived

Flag

FFFA1Admin10

ViewAnnotation

Flag

OnAggregation

PropagateFlag

OnUpdate

PropagateFlag

Annotation

Value

TimestampCuratorAnnotation

Id

Example of Gene_public annotation table

Figure 4: Structure of annotation tables

Mapped-Space scheme, that is based on mapping the columns
and rows in a given table into an ordered domain, e.g.,
integer values. A table in the Mapped-Space scheme is
viewed as a two-dimensional space where columns represent
the X-axis and rows represent the Y-axis as illustrated in
Figure 1. A cell in column C and row R is mapped to
point (ColumnMapping(C), RowMapping(R)) in the two-
dimensional space, where ColumnMapping() and RowMap-
ping() are the column and row mapping functions, respec-
tively. For example, the cell with value ’lacZ’ is mapped to
point (2,1) according to the mapping illustrated in Figure 1.

The Mapped-Space scheme gives us the opportunity to
store multi-granular annotations efficiently where annota-
tions on a set of cells are represented as rectangles covering
the two-dimensional points corresponding to the annotated
cells. The advantage of this scheme is that one rectangle
may cover a single cell, entire row or column, or any set
of consecutive cells without the need to replicate the an-
notation with every annotated cell. A single annotation is
represented by one or more maximum-bounding rectangle(s)
covering the target cells to be annotated. For example, an-
notations A1 and A2 in Figure 1 are each represented by a
single rectangle while annotation A3 is represented by two
rectangles.

The Mapped-Space scheme avoids replicating the annota-
tions whenever possible. However, the gain in storage com-
pression and query performance depends on the quality of
the mapping from the logical rows and columns to an ordered
domain in the two-dimensional space. At the creation time
of each table, there is no prior knowledge on which mapping
is more efficient and hence we start with an initial map-
ping termed the storage order mapping. The Storage Order
mapping is then improved by collecting statistics on how
annotations are attached to rows and columns.

3.1 Annotation Tables
At the conceptual level, annotations are separate tables

called annotation tables that have a pre-defined structure
(See Figure 4). Each user relation may have one or more
annotation tables attached to it. For example, in Fig-
ure 2, Relation Gene has three annotation tables Gene lab,
Gene public, and Gene provenance attached to it.

Annotation tables act as place holders that database de-
velopers create to organize and categorize the annotations
over the database. For example, Gene lab may store the

annotations from lab members, Gene public may store an-
notations from the public, while Gene provenance may store
the provenance of Gene’s data. Annotation tables also hide
the complexity of the underlying storage scheme because in
most cases end-users will only need to reference the names
of the annotation tables for adding and querying the anno-
tations as will be explained.

To create an annotation table for a given user relation, the
CREATE ANNOTATION TABLE command (Figure 3) is
used. The structure of an annotation table is illustrated in
Figure 4. Each annotation has a unique identifier Annota-
tionId that is attached to all rectangles representing this an-
notation, the curator who added the annotation, the times-
tamp, and the rectangle that represents the covering area
of the annotation. The flags ArchivedFlag, OnUpdateProp-
agateFlag, OnAggregationPropagateFlag, and ViewAnnota-
tionFlag, specify the behavior of the annotation under dif-
ferent operations as will be described in Sections 4 and 5.
The catalog table AnnotationTablesCatalog (Figure 2(b)) is
used to track the annotation tables defined in the system
and on which user relations.

3.2 Storage_Order Mapping
The Storage Order mapping is used as the default map-

ping when a table is created. In Storage Order mapping,
columns are mapped to sequential numbers based on the
physical order of columns inside the table, i.e., the order
of columns in the CREATE TABLE statement. Rows are
mapped to sequential numbers based on their insertion or-
der, i.e., a unique tuple identifier that is incremented with
each insertion. The rows’ mapping is stored in an additional
column, called Tuple OID, which is automatically added to
each table at the creation time. An example of the Stor-
age Order mapping is illustrated in Figure 1 and the corre-
sponding annotation table is presented in Figure 4.

Storage Order mapping is simple and easy to implement.
However, other mappings may be more efficient. For exam-
ple, if the Name and Function columns in table Gene always
get annotated together, then mapping these two columns
into adjacent values in the mapping domain will result in
a more compact representation of annotations, and hence
less storage overhead and less I/O cost at query time. This
is because every annotation on these two columns can be
represented by one rectangle instead of two. The following
section discusses an improvement over the Storage Order
mapping.

3.3 Correlated_Columns Mapping
In order to improve the columns’ mapping, we maintain

statistics on how frequently columns are annotated together.
Columns that are frequently annotated together should be
mapped into adjacent ids in the mapping domain, if possible,
independent of their physical order in the table.

A straightforward approach to track the distribution of
annotations over columns is to store all possible combi-
nations among columns, i.e., individual columns, pairs of
columns, triplets of columns, etc. When a new annotation
is added on a set of columns, we increment the counter of
this columns’ combination by one. These statistics are then
used to determine which columns are highly correlated and
hence it would be better to make them adjacent to each
other in the mapping domain. The drawback of this ap-
proach is that it does not scale well because the storage is

Columns_Mapping Algorithm
Inputs:

- Matrix T_AnnColCorrelation

Outputs:
- Suggested mapping for columns in T

Steps:
1 - For each column in T
2 - Create a node that has left and right neighbor pointers set to NULL
3 - crnt_max_correlation = Max_INT
4 - Loop
5 - Get columns (Cm and Cn) corresponding to the highest correlation less than crnt_max_correlation

6 - IF (each of Cm and Cn has at least one empty neighbor pointer) THEN
7 - Link Cm and Cn

8 - Else
9 - Cm and Cn cannot be mapped to adjacent numbers
10 - End IF
11 - crnt_max_correlation = T_AnnColCorrelation[Cm][Cn]
12 - Until all nodes are linked

/* Assign the mapping Ids */
13 - Assign the last linked node a mapping id = 1
14 - Loop
15 - Follow the backward link to the previous node N
16 - Assign the next mapping id to node N
17 - Until the end of the list is reached

Figure 5: Algorithm of Correlated Columns map-

ping

Id Name Seq Function Left_pos Right_pos

Id 80 50 20 10 0

Name 65 250 0 0

Seq 100 30 10

Function 5 230

Left_pos 380

Right_pos

id name function Left_pos Right_posseq 1

2

3

4

5

The order of linking the nodes based on the correla tion values

Correlation matrix for Gene table (Gene_AnnColCorre lation)

1 4 532 6

Figure 6: Example of Correlated Columns mapping

exponential in the number of columns in each table.
In order to collect the annotation correlation statistics

more efficiently, we maintain for each table T a matrix
named T AnnColCorrelation (See Figure 6), where each di-
mension of the matrix represents the columns of T. An-
nColCorrelation matrices are symmetric and hence only the
upper triangle is maintained. With the insertion of each
new annotation over certain columns, say T.x, T.y, and
T.z, we increment the correlation of each pair of the anno-
tated columns, e.g., increment T AnnColCorrelation[x][y],
T AnnColCorrelation[x][z], and T AnnColCorrelation[y][z].
As more annotations get inserted, columns that are fre-
quently annotated together will have higher correlation than
those of the other columns.

Given an instance of T AnnColCorrelation, the best map-
ping for T’s columns is derived using the algorithm presented
in Figure 5. The algorithm iterates over the matrix values
(Lines 4-12) and in each iteration it finds the pair of columns
with the next highest correlation, e.g., (Cm , Cn). It cre-

ates a link between Cm and Cn, if possible, which means
that Cm and Cn will be adjacent in the mapping domain
(Lines 6-7). The algorithm terminates when all columns are
linked together.

In Figure 6, we illustrate an example on how the Corre-
lated Columns mapping algorithm works. The labels on the
edges specify the order of connecting the nodes together.
Initially, each column has no neighbors. The highest corre-
lated pair of columns is (Left pos, Right pos) and hence a
link is added between the corresponding nodes. The next
highest correlated pairs are (Name, Function) followed by
(Function, Right pos) and hence the links labeled by 2 and 3
are added between these pairs, respectively. The next high-
est correlated pair is (Seq, Function), however no link can
be established between these two nodes because the Func-
tion node already has two neighbors. Therefore, this pair is
skipped. The algorithm continues processing the pairs with
the next highest correlation until all the nodes are linked.
The final suggested mapping order is labeled with dotted
circles in Figure 6.

Given the columns’ mapping currently in place, say CM1,
and a new mapping suggested by the Correlated Columns
mapping algorithm, say CM2, the system needs to decide
whether or not to replace CM1 by CM2. The decision is a
tradeoff between the cost of re-constructing all the annota-
tions according to the new mapping, and the gain of reduc-
ing the storage overhead and I/O cost of queries. For this
purpose, we define the Columns Mapping Quality (CMQ)
metric to measure the relative quality between two map-
pings CM1 and CM2 and change the mapping only if the
relative quality of CM1 is below a certain threshold.

CMQ(CM1/CM2) = 100 *
P

T AnnColCorrelation[Ck][Cl], ∀adjacent pairs (Ck,Cl) in CM1
P

T AnnColCorrelation[Cm][Cn], ∀adjacent pairs (Cm,Cn) in CM2

CMQ measures the relative quality of mapping CM1 to
CM2 as the sum of the correlation of the adjacent columns in
CM1 over the sum of the correlation of the adjacent columns
in CM2. The less the CMQ(CM1/CM2) percent, the less
the quality of CM1 compared to CM2.

As an example, assume CM1 is the Storage Order map-
ping of columns in table Gene (Figure 1) and CM2 is the
mapping in Figure 6, then:

CMQ(CM1/CM2) = 100 * 80+65+100+5+380
50+80+250+230+380

= 64%

If CMQ(CM1/CM2) is less than a pre-defined threshold
CMQ MIN, then CM1 is considered poor and replaced by
CM2.

It is important to point out that when the mapping
changes, the physical structure of the table does not change.
Only the mapping ids assigned to the columns get mod-
ified. Those mapping ids are stored in a catalog ta-
ble named ColumnsMappings(TableName, ColumnName,
ColumnMappingId).

3.4 New Mapping: Re-construct Annotation
Tables

We maintain counters in the database to track the num-
ber of added annotations to each table. With the addition
of every m annotations to table T , the Correlated-Columns
algorithm is triggered to check whether or not the current
columns mappings of T need to be replaced. If the system

ADD ANNOTATION
[AS VIEW]
TO <annotation_table_names>

VALUE <annotation_body>

[ON AGGREGATION PROPAGATE]
[ON UPDATE PROPAGATE]
ON <select_statement> ;

Figure 7: ADD ANNOTATION command

Identify_and_Map_Target_Cells Procedure
Inputs:

- select_statement

Outputs:
- set of rectangles representing the target cells

Steps:
1- Extract the user relation from the select_statement � R

2- Extract the columns of R from the projection list � Set P = {c1, c2, c3, ...}

3- Query the catalog table ColumnsMappings to map P and return a sorted set of
mapping Ids � Set A

4- ColumLevelAnnotationFlag set to true if select_statement has no WHERE clause
5- Set B = {}

6- IF (ColumLevelAnnotationFlag = False) THEN
/* specific rows are selected */

7- Execute the select_statement and identify the returned set of tuples
ordered by the Tuple_OID � Set B

8- END IF
9- Call Construct_Maximum_Bounding_Rectangles (A, B, ColumLevelAnnotationFlag)

that returns the set of rectangles covering the target cells

Figure 8: Identifying the target cells

decides to replace the current mapping CM1 by a new map-
ping CM2 for table T , then the annotation tables attached
to T need to be scanned to re-construct the annotations. As
a first step, we read once the catalog table ColumnsMapping
to get the CM1 mapping values. Then, for each annotation
table AT attached to T , we retrieve the annotations ordered
by the AnnotationId column such that multiple entries of the
same annotation are grouped together. For each group (mul-
tiple rectangles of a single annotation), we map the current
columns’ mapping to the new mapping and form a new set
of rectangles. Notice that the rows’ mapping remains the
same.

During the construction, the annotation table AT is
READ locked, therefore it will be available for queries but
not for insertion of new annotations. The newly formed
rectangles are inserted into a temporary table AT temp.
After all annotation tables are processed, the catalog table
ColumnsMapping is updated to reflect the CM2 mapping
and the annotation tables, e.g., AT , are dropped and the
temporary ones, e.g., AT temp, are renamed to become the
current annotation tables.

4. ADDING ANNOTATIONS AT MULTIPLE
GRANULARITIES

Adding annotations involves two main aspects, (1) spec-
ifying the target cells to be annotated, and (2) specifying
the behavior of the annotation under various operations.
We propose the ADD ANNOTATION command (Figure 7)

Construct_Maximum_Bounding_Rectangles Procedure
Inputs:

- Sorted set of columns’ mapping � Set A (a1, a2, a3, ...)

- Sorted set of tuples’ mapping � Set B (b1, b2, b3, ...)

- ColumnLevelAnnotationFlag

Outputs:
Set of MBRs covering only the points corresponding to A and B

Steps:

1- Scan set A sequentially and identify the maximal intervals of consecutive values.

- Two values a1 and a2 are considered consecutive if a2 = a1 + 1
- Each interval X has start value amin and end value amax

- Since A is sorted, then finding all [amin ,amax] intervals is done in one scan

IF (ColumnLevelAnnotationFlag = True) THEN
2- For each interval X, construct a covering rectangle L, where

L = ((amin, Row_Min_Mapping) , (amax, Row_Max_Mapping))
ELSE

3- Scan set B sequentially and identify the maximal intervals of consecutive values.
- Two values b1 and b2 are considered consecutive if b2 = b1 + 1
- Each interval Y has start point bmin and bmax
- Since B is sorted, then finding all [bmin ,bmax] intervals is done in one scan

4- For each pair of intervals X and Y, construct a covering rectangle L, where
L = ((amin,bmin) , (amax, bmax))

END IF

Figure 9: Constructing the rectangular representa-

tion

to annotate the data inside the database. The annota-
tion table names parameter in the TO clause specifies the
annotation tables(s) in which the annotation will be stored.
The annotation body parameter in the VALUE clause spec-
ifies the annotation value. The select statement parameter
is a simple SELECT-FROM-WHERE SQL query that does
not contain aggregations or nested sub-queries in the FROM
clause. The select statement query specifies the target cells
to be annotated. The annotation will be attached to the
cells corresponding to the query answer.

The optional clauses in the ADD ANNOTATION com-
mand specify the behavior of the annotation. The AS VIEW
clause specifies that the annotation will be evaluated con-
tinuously on the newly inserted or updated data, other-
wise the annotation command is executed once of the cur-
rent database instance. The ON AGGREGATION PROP-
AGATE clause specifies that at the time of querying the
data, if the user query contains aggregation, e.g., GROUP
BY or DISTINCT, then keep propagating the annotation
along with the aggregated tuples, otherwise the annotation
will not be propagated with the aggregated tuples. The
ON UPDATE PROPAGATE clause specifies that if the base
data to which the annotation is attached is modified, then
keep the annotation attached to the new value, otherwise
the annotation is archived. In the following subsections, we
discuss each clause in more details.

4.1 ADD ANNOTATION Query Processing
The select statement parameter is a simple SELECT-

FROM-WHERE query. The FROM clause is restricted in
this section to have a single relation and will be extended
in Section 4.4 to have multiple relations. The WHERE
clause may contain sub-queries without restrictions, e.g.,

contain joins and/or aggregations. The projection list in
select statement is limited only to column names, i.e., no
functions are allowed in the projection list. The annotation
tables in the annotation table names parameter are checked
against the catalog table to make sure they correspond to
the user relation(s) in the FROM clause of select statement.

The select statement is a powerful declarative mechanism
that enables users to specify the target cells to be annotated
at various granularities. The following ADD ANNOTA-
TION commands illustrate how to add the annotations
presented in Figure 1, where A1 is a tuple-level annotation,
A2 is a cell-level annotation, and A4 is a column-level
annotation.

ADD ANNOTATION TO gene.Gene lab VALUE A1
ON (Select * From gene Where id = ’JW0335’);

ADD ANNOTATION TO gene.Gene lab VALUE A2
ON (Select id, name From gene Where id like ’JW4%’);

ADD ANNOTATION TO gene.Gene lab VALUE A4

ON (Select left pos, right pos From gene);

It is important to point out that the annotation is always
attached to the base data inside the tables and not to the
temporary query answer. The query is only a mechanism to
select which data to annotate.

The target cells to be annotated are mapped to points
in the two-dimensional space using the procedure presented
in Figure 8. In Lines 1-2, we parse the select statement
parameter and extract the table name to which the anno-
tation will be attached and the projection attributes. In
Line 3, we query the catalog table ColumnsMapping to re-
trieve the mapping ids of the projected columns. If se-
lect statement does not contain a WHERE clause, then the
annotation is column-level (Line 4). If the annotation is
column-level, then the select statment will not be executed
since all tuples will be annotated, otherwise Lines 6-8 are
executed. In Line 7, we execute the select statement to
identify which tuples satisfy the query predicates. The Tu-
ple OIDs of those tuples are returned sorted in set B. The
columns’ mapping (list A) and rows’ mapping (list B) pro-
vide the mapping from the target cells to the correspond-
ing points in the two-dimensional space. The maximum
bounding rectangles that will represent the annotation are
constructed by calling the procedure presented in Figure 9.
In the first step of the procedure we group the consecu-
tive ids of the columns’ mapping into intervals, each in-
terval is defined by start and end points. For example,
if the ids are {1, 2, 3, 5, 7, 8, 9}, then Step 1 will generate
three intervals [1-3], [5-5], and [7-9]. If the annotation is
column-level, then Step 2 will be executed, otherwise, Steps
3-4 will be executed. In Step 2, we cross product inter-
val [Row Min Mapping, Row Max Mapping] that covers the
entire space of the rows’ mapping ids with the intervals gen-
erated from Step 1 to produce the output rectangles. If the
annotation is not column-level, then in Step 3 we group the
consecutive ids of the rows’ mapping into intervals, each in-
terval is defined by start and end points. These intervals
are cross product with the intervals generated from Step 1
to produce the output rectangles which will be stored in the
annotation tables (Step 4).

4.2 Snapshot versus View Annotations

TableName LastModificationTimestamp

Gene 2008-02-10 02:05:20

Gene_test 2008-02-15 02:50:37

Gene_Mutation 2008-03-10 03:20:20

AnnotationId AnnotationCommand TableName LastExecution
Timestamp

1 ADD ANNOTATION TO gene.Gene_lab
VALUE A3
ON (Select name, seq, left_pos

From gene Where id IN
(Select gene_id from Gene_Test,
Gene_Mutation Where test_id = mutation_id));

Gene 2008-03-15
07:15:10

…

AnnotationId TableName

1 Gene_test

1 Gene_Mutation

TablesLastModification

ViewAnnotationsDependentTables

ViewAnnotations

AnnotationId AnnotationTable

1 Gene_lab

ViewAnnotationsTables

Figure 10: Annotations catalog tables

View annotations are defined by adding the AS VIEW
optional clause to the ADD ANNOTATION command, oth-
erwise the annotations are defined as snapshot annotations.
For snapshot annotations, the ADD ANNOTATION com-
mand is executed once where the target cells are identified
and annotated, and then the command is discarded. In
this case, the annotation rectangles inserted into the an-
notation tables are marked with ViewAnnotationFlag set to
False (Refer to Figure 4). In contrast, for view annotations,
the ADD ANNOTATION command is executed and anno-
tation rectangles are marked with ViewAnnotationFlag set
to True. Moreover, we store the ADD ANNOTATION com-
mand inside the database to be continuously applied over
newly inserted or modified tuples.

When view annotations are attached to a table T, and
then T gets modified, e.g., a new tuple is inserted or an ex-
isting tuple is modified, then view annotations attached to
T are incrementally re-evaluated on the new/modified tu-
ple(s) (the new delta). Maintaining view annotations up-to-
date is similar to maintaining materialized views up-to-date.
The two main approaches are eager and lazy approaches. In
the eager approach, view annotations are applied over the
newly inserted or modified tuple at the time of the inser-
tion or modification, respectively. Whereas in the lazy ap-
proach, view annotations are applied over the newly inserted
or modified tuple(s) at the time of querying the annotations.
In our system we deploy the lazy approach for the following
reasons, (1) Lazy approach accommodates for multiple inser-
tions or modifications at once. (2) The cost of re-evaluating
the view annotations becomes a part of querying the an-
notations rather than part of the insertion or update oper-
ations. (3) Lazy approach allows for optimization such as
distributing the refreshing overhead over multiple queries as
discussed in Section 6.1.

To support view annotations, we create the catalog tables
presented in Figure 10. TablesLastModification stores the
timestamp of the last modification (insert, update, delete)
on each user table in the database. ViewAnnotations stores
a unique identifier for each view annotation, the annotation
command, the table name to which the annotation is
attached, i.e., the table name in the FROM clause, and the
timestamp of the last execution of this command. ViewAn-
notationsDependentTables stores an annotation identifier
that references a specific annotation in ViewAnnotations,

and the table name(s) on which the annotation depends,
i.e., table names in the WHERE clause sub-query (if any).
Notice that an annotation is attached to one table but
may depend on zero or more tables. ViewAnnotationsTable
stores the names of the annotation tables related to each
view annotation. For example, consider the following view
annotation command:

ADD ANNOTATION AS VIEW TO gene.Gene lab VALUE A3

ON (Select name, seq, left pos From gene Where id In

(Select gene id from Gene Test, Gene Mutation Where test id =

mutation id));

After executing the command, the records presented in
Figure 10 will be inserted into the catalog tables. Notice that
the stored command does not contain the AS VIEW clause,
and hence when it is re-executed it will not be inserted into
the catalog table again.

If the table to which the annotation is attached or the ta-
ble(s) on which the annotation depends get modified, then
the view annotation needs to be refreshed. The refresh-
ing event takes place when the annotations are queried. In
Section 6, we present mechanisms for refreshing view anno-
tations as part of the annotation propagation and querying.

4.3 ADD ANNOTATION Update Behavior
When users’ data get modified, what will happen to the

annotations attached to the modified data? The system pro-
vides two options, either archive the annotations or keep the
annotations attached to the data. The default behavior is
to archive the annotations when the base data is modified.
In this case when the annotation is inserted into the annota-
tion tables, it will have the flag OnUpdatePropagateFlag set
to False (Refer Figure 4). If the user wants to keep the anno-
tation attached to the base data even if the data is modified,
then the ON UPDATE PROPAGATE clause is included in
the ADD command. In this case the flag OnUpdatePropa-
gateFlag is set to True.

The ON UPDATE PROPAGATE clause is allowed only
with snapshot annotations, that is, ON UPDATE PROPA-
GATE clause cannot be used in conjunction with AS VIEW
clause. The reason is that view annotations already have a
defined behavior under the update operations which is re-
executing the view annotation on the modified tuple to check
whether or not it is still satisfying the annotation query.

The actions taken when a cell in Table T, specified by Col-
umn c and Row r, is modified, are: (1) Find the annotation
tables attached to T. This is performed by querying the cat-
alog table AnnotationTablesCatalog (Figure 2(b)), and (2)
For each annotation table AT , archive the snapshot annota-
tions attached to the modified cell by issuing the following
ARCHIVE command (See Section 5):
ARCHIVE ANNOTATION FROM AT

WHERE ViewAnnotationFlag = false And OnUpdatePropa-

gateFlag = false And ArchiveFlag = false

ON (Select T.c From T Where T.Tuple OID = r.Tuple OID)

In some cases users may want to either archive or keep
the annotations based on the new value of the updated cell.
For instance, if the new value is greater than zero, then keep
the annotation, otherwise archive the annotation. In such
cases where the archiving decision is based on a condition,
users can simply define the annotation to be propagated on

ARCHIVE ANNOTATION
FROM <annotation_table_names>
[WHERE <annotation_conditions>]
ON <select_statement> ;

Figure 11: ARCHIVE ANNOTATION command

update, i.e., include the ON UPDATE PROPAGATE clause
in the ADD command. Then, using database triggers, users
can check if the desired condition is true, then an explicit
ARCHIVE ANNOTATION command is issued to archive
the annotation.

4.4 Annotations across Relations
In the previous sections, we restricted the ADD ANNO-

TATION command to annotate one relation at a time, i.e.,
only one relation is allowed in the FROM clause of the se-
lect statement. In this section, we extend our annotation
mechanism to support annotations across relations, that is,
annotations over joined tuples.

Annotations across relations (also referred to as join anno-
tations) are handled in a way different from handling annota-
tions on single relations because they have different seman-
tics, storage requirements, and propagation mechanism. We
implemented a straightforward approach to support snap-
shot join annotations. Supporting view join annotations and
optimizing the storage and query processing for join anno-
tations in general are left for future work.

Semantics:

• A Join annotation A on relations T1, T2, ..., Tn means
that A is attached to the joined tuples r1, r2, ..., rn

from those relations. Annotation A propagates along
with the query answer only if T1, T2, ..., Tn are in-
cluded in the query and tuples r1, r2, ..., rn are joined
together.

• Join annotations are tuple-level annotations and hence
they propagate with the joined tuples r1, r2, ..., rn

regardless of which attributes are selected in the pro-
jection list.

Join Annotations are meant to be annotations that make
sense only if several pieces of data came together from sev-
eral tables. Therefore, they propagate only if these pieces of
data appear in the query answer.

Storage:

Join annotations need to be attached to the Tuple OIDs
of the joined tuples. Given an ADD ANNOTATION com-
mand with relations T1, T2, ..., Tn in the FROM clause,
we assign a unique id to the annotation and insert it into a
table named JoinAnnotations along with the curator name,
timestamp, and the flags that specify the annotation behav-
ior under the update and aggregation operations. Then, the
ADD procedure executes the select statement to identify the
Tuple OIDs of the joined tuples. The annotation id and the
resulted Tuple OIDs are inserted into a table named JoinAn-
notationsTuples which has one column for each table in the
database. For a given annotation, we fill the Tuple OIDs
only in the columns corresponding to the annotated tables.

Join annotations over certain tables, e.g., T and R, can be
expressed as selecting the tuples from JoinAnnotationsTu-
ples where the columns corresponding to T and R are not
null and their remaining columns are nulls.

t1

t2

t3

t4

c1 c2 c3 c4 c5

1

2 3

4

5 6Q

Q

t1

t2

t3

t4

c1 c2 c3 c4 c5

1

2

3
4

Q

Q

(a) (b)

AA

Figure 12: Re-constructing rectangles of archived

annotations

5. ARCHIVING ANNOTATIONS
The archival mechanism is used to isolate outdated, in-

valid, or worthless annotations from recent and valuable
ones. When annotations are first added to the database,
the flag ArchivedFlag is set to False (Refer to Figure 4).
When an annotation is archived, the flag ArchivedFlag is set
to True. Archived annotations will not propagate to users
along with query results.

The ARCHIVE ANNOTATION command presented in
Figure 11 is used to archive annotations. The annota-
tion table names parameter specifies the annotation tables
from which annotations will be archived. The optional
WHERE clause specifies conditions that archived annota-
tions have to satisfy. These conditions reference the columns
in annotation tables, e.g., AnnotationId, Curator, Times-
tamp, etc., (Refer to the structure of annotation tables in
Figure 4). The cells over which annotations will be archived
are specified using the select statement parameter.

The first step in executing the ARCHIVE ANNOTATION
command is to identify the target cells on which annota-
tions will be archived. This is done by passing the se-
lect statement to the Identify and Map Target Cells() pro-
cedure (Figure 8). The procedure returns a set of rectan-
gles, referred to as query rectangles, representing the tar-
get cells. Then, for each annotation table AT in annota-
tion table names, we update AT and set AT.ArchivedFlag
to True where AT.AnnotationCeoveredCells overlaps with
any of the query rectangles and the conditions in annota-
tion conditions are satisfied.

The archival procedure becomes a bit more complex when
an annotation is partially archived, i.e., an annotation rect-
angle overlaps but not contained in a query rectangle. In
this case the annotation needs to be broken down into mul-
tiple pieces. For example, consider annotation A2 that is
represented by one tuple in the Gene public annotation ta-
ble in Figure 4. If the select statement selects a subset of
the cells to which A2 is attached, e.g., the cell correspond-
ing to JW4778, then, in addition to archiving the record
corresponding to A2 in Gene public, we need to construct
two new rectangles for A2 to cover the cells on which A2

is not archived and insert them into Gene public. For in-
stance, create two new records with rectangles ((1,3),(2,4))
and ((2,2),(2,2)) and insert them into Gene public.

Different objective functions may lead to different con-
struction approaches of the new rectangles. Due to space
limitation, we highlight that issue through an example with-
out going into the details. Consider the example in Fig-
ure 12, the annotation rectangle is denoted by A and the
query rectangles resulted from the ARCHIVE command are
denoted by Q. A is initially covering tuples t1 through t4

SELECT [DISTINCT] Ci , Cj , …, [PROMOTE (Ck, Cm, …)]
FROM Relation_name [ANNOTATION(S1, S2, …)], …,

[JoinANNOTATION((Ri,Rj,…, Rk), …)]
[WHERE <data_annotation_conditions>]
[GROUP BY <data_columns>

[HAVING <data_annotation_condition>]
[ORDER BY <data_columns>]

Figure 13: The Extended SELECT

and columns c1 through c5. Since A is not contained in Q,
then A will be broken down into multiple maximum bound-
ing rectangles. If the objective function is to minimize the
storage overhead, then the division in Figure 12(b) is pre-
ferred because it generates less number of rectangles. In
contrast, If the objective function is to minimize the query
processing overhead, then the division in Figure 12(a) is pre-
ferred because each tuple will require less number of joins to
propagate annotation A. For instance, tuples t1 and t3 will
each require only one join with rectangles labeled 1 and 4,
respectively, to propagate A with the tuples. Whereas, the
division in Figure 12(b) will require three joins with each tu-
ple to propagate A. In our system, we studied two objective
functions, (1) minimizing the total storage overhead, and
(2) minimizing the query processing overhead. The former
objective function minimizes the total number of generated
maximum bounding rectangles, while the latter one mini-
mizes the average number of generated rectangles per tuple.
The experimental analysis shows that the difference in the
storage overhead between the two objective functions is rel-
atively small compared to the total size of the annotations,
and hence, they have comparable effect on the queries per-
formance.

6. ANNOTATION PROPAGATION AND QUERY-
ING

Annotation tables have pre-defined structure that en-
ables compressed and compact representation of anno-
tations. Because of that the join operation between
a user table and an annotation table to propagate
the annotations is not straightforward. The tuples
in Table T are viewed as line segments in the form
((T.Tuple OID, 0), (T.Tuple OID, MaxCol)), where
MaxCol is the number of columns in T . Annotations over a
given tuple are the rectangles that intersect the tuple’s line
segment.

To enable efficient propagation and querying of annota-
tions along with query answers we introduce the extended
SELECT statement presented in Figure 13. The semantics
of the new qualifiers are as follows. ANNOTATION, which
may follow a relation’s name in the FROM clause, specifies
which annotation table(s) to consider in the query. For ex-
ample, R[ANNOTATION(A1, A2)] indicates propagating
the annotations from annotation tables A1 and A2 that are
attached to the user relation R. JoinANNOTATION, which
may be added to the end of the FROM clause, specifies
which join annotations to consider in the query. For exam-
ple, JoinANNOTATION((R,S), (T,W,Z)) indicates propa-
gating annotations that are on joined tuples from R and S
as well as annotations on joined tuples from the triplet T ,

Actions_on_Table_Modification Procedure

Triggering Event: Modification in table T

Actions common to all operations (insert, update, d elete):
1- Update TablesLastModification set LastModificationTimestamp = now() Where TableName = ‘T’

2- Query table ViewAnnotationsDependentTables to get the set of annotation ids that
depend on T � Set AnnIDs

3- For each id in AnnIDs Loop
4- For each annotation table AT Loop
5- Update AT set ArchivedFlag= True where AnnotationId = id

6- End Loop
7- End Loop

Actions on inserting new tuple t:
8- t.CreationTimestamp = now()
9- t.LastModifiedTimestamp = now()

Actions on updating existing tuple t:
10- t.LastModifiedTimestamp = now()
11- For each annotation table AT on T Loop
12- Execute an Archive Annotation command to archive view annotations attached to t

“Archive Annotation From AT Where ViewAnnotaionFlag = True

ON (Select * from T where Tuple_OID = t.Tuple_OID)”
13- End Loop

Actions on deleting existing tuple t:
14- For each annotation table AT on T Loop
15- Execute an Archive Annotation command to archive annotations attached to t

“Archive Annotation From AT
ON (Select * from T where Tuple_OID = t.Tuple_OID)”

16- End Loop

Figure 14: Tables modifications Procedure

W , and Z. Those relations has to appear in the FROM
clause. PROMOTE, which may be added to the projection
list, propagates annotations from columns that are not in the
projection list. As a result, annotations over non-projected
attributes can be kept and propagated in the query pipeline.
The WHERE and HAVING clauses are also extended to al-
low for annotation predicates as well as data predicates. If
the extended qualifiers are not added, then the statement is
considered as a standard SELECT statement that returns
the query’s answer without annotations.

Before executing an extended SELECT statement, a pro-
cedure for refreshing view annotations is called to make sure
view annotations are up-to-date (Section 6.1). The state-
ment is then passed to a re-writing phase that translates the
new qualifiers into standard SQL operations (Section 6.2).

6.1 Refreshing View Annotations
View annotations will require refreshing or re-evaluation

if any of the following two events occur. (1) The table to
which the annotation is attached gets modified, or (2) The
table(s) on which the annotation depends get(s) modified.
In the former case view annotations will be evaluated incre-
mentally, whereas in the latter case view annotations will be
evaluated from scratch. For instance, referring to the view
annotation example in Figure 10, if table Gene gets modi-
fied, then the view annotation can be re-evaluated only on
the new or modified tuples. Whereas if tables Gene Test or
Gene Mutation get modified, then the view annotation will

Refresh_View_Annotations Procedure

Triggering Event: Querying annotation table AT

Actions:
1- Query table ViewAnnoationTables to get the set of view annotations on AT � Set VA
2- For each view annotation r in VA Loop
3- Query table ViewAnnoationsDependentTables to get the set of tables on which r

depends � Set r_depenet_tables
4- Query table TablesLastModifications to get the count of tables in r_depenet_tables

whose LastModificationTimestamp > r.LastExecutionTimestamp � depend_count
5- IF (depend_count = 0) THEN

/* r is re-evaluated incrementally */
6- Query table TablesLastModifications to get the last modification time of T

� Last_Modification_of_T
7- IF (Last_Modification_of_T > r.LastExecutionTimestamp) THEN
8- Modify r.AnnotationCommand by adding condition:

(T.LastModificationTimestamp > r.LastExecutionTimestamp)
to the WHERE clause

9- Executed the modified command
10- END IF
11- ELSE

/* r has to be re-evaluated from scratch */
12- Execute r.AnnotationCommand
13- END IF
14- Update r.LastExecutionTimestamp = now()
15- End Loop

Figure 15: Refreshing view annotations procedure

be re-evaluated on all tuples in the Gene table even if the
Gene table itself is not modified.

In Figure 14, we present the actions performed when
Table T gets modified. In Line 1, we update LastMod-
ificationTimestamp of T in the catalog table TablesLast-
Modifications. In Line 2, we get the view annotations
that depend on T. These annotations will be archived
since they will be re-evaluated from scratch when later
referenced in a query (Lines 3-7). If the modification
is an insert of Tuple t, then t.CreationT imestamp and
t.LastModifiedT imestamp are both set to the insertion
timestamp (Lines 8-9). If the modification is an update
of Tuple t, then t.LastModifiedT imestamp is set to the
update timestamp (Line 10). We also archive any view an-
notation attached to t (Lines 11-13). Notice that in Lines
4-6 we directly modify the ArchivedFlag column, whereas in
Lines 11-13 we use ARCHIVE command. The reason is that
in the latter case we do not have the ids of the annotations
to be archived, we only have the tuple t. Therefore, we use
the ARCHIVE ANNOTATION command which takes care
of finding the annotations attached to t and archive them.
If the modification is a deletion of tuple t, then we archive
both snapshot and views annotations on t.

When an annotation table AT is referenced in a query,
we check whether or not the view annotations on AT need
refreshing. The procedure for refreshing the view annota-
tions on AT is presented in Figure 15. In Line 1, we get
the view annotations attached to AT . For each view anno-
tation r, we find the count of tables on which r depends and
got modified after the r’s last execution (Lines 3-4). If the
count is zero, then we check whether or not r needs incre-
mental evaluation (Lines 6-9). If the count is greater than
zero, then r will be re-evaluated from scratch (Line 12). In

the incremental evaluation, we retrieve the last modification
timestamp of relation T to which the annotation is attached
(Line 6). If this timestamp is more recent than r’s last ex-
ecution timestamp, then we execute r only on the newly
inserted or updated tuples in T . This is performed by mod-
ifying the stored ADD ANNOTATION command on the fly
and then executing the modified command (Lines 8-9). Af-
ter refreshing the annotation, we update r’s last execution
timestamp (Line 14).

In the procedure above, we make sure that all view an-
notations on AT are up-to-date before executing the new
query Q. In this case, Q pays the whole refreshing cost even
if it will not touch any of the newly inserted or modified
tuples. We propose the following optimization to distribute
the refreshing cost over multiple queries whenever possible.

Distributing the Refreshing Overhead over Queries:

The insight is that the number of delta tuples on which view
annotations need to be refreshed can be large, and at the
same time, the new query Q may touch few or even none
of the delta tuples. Therefore, it is not fair that Q pays
the whole refreshing cost. The idea is to estimate the most
recently inserted or modified tuple that will be touched by
Q and then refresh the view annotations up to this tuple
only.

Assume that Q arrives at time tQ and references user Ta-
ble T and corresponding annotation tables AT1, AT2, ...,
ATm that are attached to T . >From the catalog tables, we
find the list V1, V2,..., Vn of view annotations that need to
be refreshed with last execution timestamps tv1, tv2, ..., tvn,
respectively, where tv1 < tv2 < ... < tvn < tQ. To estimate
the most recently inserted or modified tuple in T that will
be touched by Q we apply query Q′ on T that contains all
single predicates in Q over T and select the maximum Last-
ModifiedTime of the qualified tuples, say ttouched. Since Q′

is intended to be a fast estimation, it will not contain any
complex predicates such as joins, grouping, or ordering, and
hence Q′ results in a conservative estimation.

View annotations on T are then refreshed up to Times-
tamp ttouched. For example, if ttouched < tv1, then none of
the view annotations need to be refreshed although they are
not up-to-date. Similarly, if tvk < ttouched < tvk+1, then
only view annotations V1, V2,..., Vk need to be refreshed up
to ttouched. After (partially) refreshing those annotations,
we update their LastExecutionTimestamp to ttouched.

6.2 Query Re-writing and Translation
An annotation qualifier T1[ANNOTATION(A1, A2)] in-

dicates propagating the annotations from annotation tables
A1 and A2 along with T1. The system first checks that the
annotation tables A1 and A2 are previously defined on T1.
Then, the ANNOTATION qualifier is re-written as a left
join operation between the user table and the annotation
table(s). The join predicate has the form:
((T1.Tuple OID, 0), (T1.Tuple OID, MaxCol)) ?#
A1.CoveredCells, where ?# is the intersection operator be-
tween a line segment and a rectangle, and MaxCol is the
number of columns in T1. For each annotation table Ai in
the FROM clause, a column with name Ai is automatically
added to the projection list to hold the annotations from Ai.

A join annotation qualifier in the form
JoinAnnotation[(R, S), (T, W, Z)] indicates propagat-
ing the join annotations over the specified groups. For each
group, a select statement is formed that retrieves the join

annotations on that group. The tables in the group are
then left joined with the formed select statement based on
the equalities of the Tuple OIDs. For each group, a column
is added to the projection list to hold the join annotations
on that group. For example, the qualifier above will add
two columns R S Annotation and T W Z Annotation to
the projection list.

Annotations are typically propagated only on the pro-
jected attributes as well as the attributes specified by PRO-
MOTE. In order to filter out annotations on the other at-
tributes as early as possible, we translate the attributes in
the projection list and PROMOTE to conditions that are
added to the WHERE clause. Recall that a column in a
table maps to a vertical line segment in the two-dimensional
space. Moreover, columns with adjacent mapping ids are
grouped together to form rectangles instead of line segments.

In the case where the query contains aggregation or group-
ing, i.e., group by, distinct, or set operators, more conditions
are automatically added to the WHERE clause that restrict
the propagated annotations to the ones having the OnAg-
gregationPropagateFlag set to True. Users can also add con-
ditions on the propagated annotations in the WHERE and
HAVING clauses in the form Ai.attr name, where Ai is the
annotation table name and attr name is an attribute in the
annotation table, e.g., curator, timestamp, etc.

After the translation phase, the query becomes a standard
SELECT query that is subject to the standard query opti-
mization techniques such as pushing any annotation selec-
tion predicates to the annotation tables before joining them
with the user tables.

7. EXPERIMENTS
Implementation : The annotation management func-

tionalities are implemented inside PostgreSQL version 8.3.
We extended the parser of PostgreSQL to process and trans-
late the proposed commands. We implemented a graphical
interface on top of our system using Excel sheets to visu-
alize the annotations and allow users to add and query the
annotations through GUI [8].

Datasets: We used real biological datasets from SWIS-
SPROT database.We used two tables, Gene and Protein.
Each table consists of around 200,000 tuples and occupies
around 500MB on disk. Table Gene has six attributes while
table Protein has eight attributes.

Annotation Generation : We designed a module that
annotates the Gene and Protein tables. The three main fac-
tors of this module are (1) the number of annotations to
generate, (2) the granularity of each annotation, i.e., how
many rows and columns the annotation is attached to, and
(3) the correlation among the annotated columns, i.e., which
columns get annotated together more frequently. We var-
ied the number of generated annotations over the values
212, 213, ..., 218. The annotations are distributed equally over
the Gene and Protein tables. For each annotation, the num-
ber of annotated rows, called R-Values, varies over the val-
ues 20, 22, 24, ..., 212 and the number of annotated columns,
called C-Values, varies from 1 to 6 in the case of table Gene
and from 1 to 8 in the case of table Protein. The R-Values set
is divided into two halves, the first half is called R-Values-
Small and the second half is called R-Values-Large and the
same is done for C-Values. These halves will be used to
generate either fine-granular or coarse-granular annotations.
The correlations among annotated columns are defined by

0.01

0.1

1

10

100

2^12 2^13 2^14 2^15 2^16 2^17 2^18
Number of Annotations

S
to

ra
g

e
 (

G
B

):
 L

o
g

 S
c
a

le

Straightforward

Storage-Order

Correlated_Columns (Random)

Correlated_Columns (dependency)

 (a) Fine-granular 50%, Coarse-

granular 50%

0.01

0.1

1

10

2^12 2^13 2^14 2^15 2^16 2^17 2^18
Number of Annotations

S
to

ra
g

e
 (

G
B

):
 L

o
g

 S
c
a

le

Straightforward

Storage-Order

Correlated_Columns (dependency)

 (b) Fine-granular 75%, Coarse-

granular 25%

0.01

0.1

1

10

100

2^12 2^13 2^14 2^15 2^16 2^17 2^18
Number of Annotations

S
to

ra
g

e
 (

G
B

):
 L

o
g

 S
c
a

le

Straightforward

Storage-Order

Correlated_Columns (dependency)

 (c) Fine-granular 25%, Coarse-

granular 75%

Figure 16: Storage overhead of the various storage schemes

a set of rules, called Correlated-Rules. The rules have the
form: [If annotation X annotates column c1 Then X anno-
tates column c2 with probability P and other columns with
probability (1-P)].

Experimental Setup and Results: In the first set of ex-
periments (Figure 16) we compare the storage overhead of
three schemes (1) Straightforward scheme where annotations
are stored on each cell independently (a cell is referenced by
a Tuple OID and column name), (2) Storage-Order scheme
where annotations are stored in the proposed annotation
tables without applying the correlated-columns algorithm,
and (3) Correlated-Columns scheme where annotations are
stored in the proposed annotation tables when applying the
correlated-columns algorithm. Each of the Gene and Pro-
tein tables has one annotation table attached to it, namely
GeneAnnotation and ProteinAnnotation, respectively.

In Figure 16(a), the granularity of each annotation is uni-
formly distributed over R-Values and C-Values, that is, fine-
and coarse-granular annotations have the same probability.
We consider the case where Correlated-Rules set is empty,
i.e., annotations over columns are totally random, labeled
with (Random), and the case where there are correlation
rules, labeled with (Dependency). The figure illustrates that
the Storage-Order scheme achieves around 70% storage re-
duction compared to the Straightforward scheme because of
the compact representation of the annotations. The figure
shows that Correlated-Columns achieves more than an order-
of-magnitude reduction in storage especially when there are
correlations among the annotated columns.

In Figures 16(b) and 16(c), we study the cases where most
annotations are fine-granular and coarse-granular, respec-
tively. The results in Figure 16(b) are obtained by hav-
ing the granularity of 75% of the annotations uniformly dis-
tributed over R-Values-Small and C-Values-Small while the
granularity of the remaining 25% is uniformly distributed
over R-Values-Large and C-Values-Large. The results in Fig-
ure 16(c) are obtained by switching the 75 and 25 percent-
ages. The figures illustrate that Correlated-Columns scheme
performs the best in both cases. It achieves around 60% stor-
age saving in the case of fine-granular annotations and more
than an order-of-magnitude storage saving in the case of
coarse-granular annotations. The reason is that Correlated-
Columns can reduce the storage even if annotations are at-
tached to single tuples.

In the next set of experiments (Figures 17 and 18), we
compare the I/O performance of the three schemes. The
number of annotations is set to 218 with a uniform distribu-

0

1

2

3

4

5

6

7

0.01% 0.05% 0.10% 0.20% 1%

|Gene returned tuples|/|Gene|

Ti
m

e
(S

ec
o

n
d

s)

Straightforward

Storage-Order

Correlated_Columns (dependency)

0

5

10

15

20

25

30

35

40

45

0.01% 0.05% 0.10% 0.20% 1%

|Gene returned tuples|/|Gene|

Ti
m

e
(S

ec
o

n
d

s)

Straightforward

Storage-Order

Correlated_Columns (dependency)

(a) Annotating a selection query on the Gene table

(b) Annotating a join query between the Gene and Protein tables

Figure 17: Execution time: Querying data and prop-

agating annotations

tion over R-Values and C-Values. In Figures 17, we query
the data and propagate the annotations while in Figure 18,
we query the data based on the annotation values. In Fig-
ure 17(a), we executed a set queries over the Gene table
where the percentage of the returned tuples to the total tu-
ples varies over 0.01%, 0.05%, 0.1%, 0.2%, and 1%. We
run each query with varied number of projected attributes
from 2 to 6. Our results show that the number of projected
attributes does not have significant effect on the query per-
formance, and hence we present the average execution time
over the different sets of the projected attributes. The query
plan involves a table scan on the Gene table followed by a
left join with the GeneAnnotation table to annotate the re-
turned tuples. The Straightforward scheme uses a B+-tree
index on the Tuple OID column in the annotation tables
while the Storage-Order and Correlated-Columns use an R-
tree index on the AnnotationCoveredCells column in the an-
notation tables. The figure illustrates that the I/O saving
of the Storage-Order and Correlated-Columns schemes is not
directly proportional to the storage saving. The reason is
that the index performance is relative to the LOG of the
data size which reduces the gap between the three schemes.
In spite of that, the Correlated-Columns scheme achieves
around 20% to 25% saving in the execution time compared

0

2

4

6

8

10

12

14

0.01% 0.05% 0.10% 0.20% 1%

|GeneAnnotation returned tuples|/|GeneAnnotation|

Ti
m

e
(S

ec
o

n
d

s)

Straightforward

Storage-Order

Correlated_Columns (dependency)

0

20

40

60

80

100

120

140

0.01% 0.05% 0.10% 0.20% 1%

|GeneAnnotation returned tuples|/|GeneAnnotation|

Ti
m

e
(S

ec
o

n
d

s)

Straightforward

Storage-Order

Correlated_Columns (dependency)

(a) Querying the Gene table based on the annotations value

(b) Joining Gene and Protein tables based on the annotation vales

Figure 18: Execution time: Querying data based on

annotation values

to the Straightforward scheme.
In Figure 17(b), we study the performance of joining the

Gene and Protein tables and propagating the annotations
on the returned tuples. We use the same set of queries as
in Figure 17(a) with additional join condition between the
two tables. The query plan involves a table scan on the
Gene table followed by an inner join with the Protein table
and then left joins with the GeneAnnotation and ProteinAn-
notation tables to annotate the returned tuples. The figure
illustrates that the Correlated-Columns scheme performs the
best among the three schemes. The Storage-Order scheme
has a better performance than the Straightforward scheme in
the case of a relatively small query answer (0.05% is around
100 tuples). However, with a relatively larger query an-
swer (0.1% is around 2000 tuples), the Storage-Order scheme
shows a slower response time.

In Figure 18, we study the performance of queries that
involve conditions of the annotation tables instead of the
data tables. Figure 18(a) presents the execution time of
queries that select genes from the Gene table that have cer-
tain annotations. The predicates on the GeneAnnotation
table select the annotations whose values equal to a certain
regular expression. The query plan involves a table scan on
the GeneAnnotation table followed by a join with the Gene
table to return the genes that satisfy the annotation condi-
tions. The figure shows that Correlated-Columns achieves
around 60% to 70% saving in the execution time. This is
because the size of the annotation table in these experiments
influence directly the number of I/O operations and hence
the execution time.

Figure 18(b) presents the execution time of joining the
Gene and Protein tables where the joined genes and pro-
teins satisfy certain conditions on the annotation values.
The query contains predicates on the GeneAnnotation and
ProteinAnnotation tables. For consistency, we fix the num-
ber of proteins that satisfy the annotation conditions to 10
while varying the number of genes as indicated in the figure.
The query plan involves table scans on the annotation tables
followed by joins with the data tables to get the genes and
proteins that have certain annotations, then a final join is
performed the genes with the proteins. The figure illustrates

the superiority of the Correlated-Columns scheme which is
a direct result of the storage reduction.

8. CONCLUSION
In this paper, we presented mechanisms for supporting an-

notations on relational database management systems. We
addressed storage optimization techniques, adding annota-
tions and defining their behaviors, archiving, andă propa-
gating annotations. We proposed several annotation types,
e.g., snapshot, view, and join annotations, that give users
the ability to specify the behavior of the annotations under
different database operations. We addressed several stor-
age and query processing challenges raised from supporting
these types. We proposed a storage scheme, named Mapped-
Space, for efficient storage of multi-granular annotations.
The Mapped-Space scheme achieves more than an order-of-
magnitude reduction in storage and up to 70% reduction in
the queries execution time. We realized the proposed mech-
anisms through declarative extensions to the standard SQL
inside PostgreSQL with an easy to use graphical interface.

9. REFERENCES
[1] Oracle life sciences platform, www.oracle.com/.

technology/industries/life sciences/index.html.
[2] D. Bhagwat, L. Chiticariu, W. Tan, and G. Vijayvargiya.

An annotation management system for relational
databases. In VLDB, pages 900–911, 2004.

[3] D. Bhagwat, L. Chiticariu, W. Tan, and G. Vijayvargiya.
An annotation management system for relational
databases. VLDB Journal, 14(5), 2005.

[4] P. Buneman, J. Cheney, and W.-C. Tan. Curated
databases. In PODS, pages 1–12, 2008.

[5] P. Buneman, S. Khanna, and W.-C. Tan. On propagation
of deletions and annotations through views. In PODS,
pages 150–158, 2002.

[6] L. Chiticariu, W.-C. Tan, and G. Vijayvargiya. Dbnotes: a
post-it system for relational databases based on
provenance. In SIGMOD, pages 942–944, 2005.

[7] M. Eltabakh, M. Ouzzani, and W. Aref. bdbms: A
database management system for biological data. In CIDR,
pages 196–206, 2007.

[8] M. Eltabakh, M. Ouzzani, W. Aref, A. Elmagarmid,
Y. Laura-Silva, M. Arshad, D. Salt, and I. Baxter.
Managing biological data using bdbms. In ICDE, pages
1600–1603, 2008.

[9] F. GEERTS and J. V. D. BUSSCHE. Relational
completeness of query languages for annotated databases.
DBPL, 4797:127–137, 2007.

[10] F. Geerts, A. Kementsietsidis, and D. Milano. Mondrian:
Annotating and querying databases through colors and
blocks. In ICDE, page 82, 2006.

[11] J. Gray, D. T. Liu, M. Nieto-Santisteban, A. Szalay, D. J.
DeWitt, and G. Heber. Scientific data management in the
coming decade. SIGMOD Record, 34(4):34–41, 2005.

[12] L. Haas, P. Schwarz, P. Kodali, E. Kotlar, J. Rice, and
W. Swope. Discoverylink: A system for integrated access to
life sciences data sources. IBM System Journal,
40(2):489–511, 2001.

[13] H. V. Jagadish and F. Olken. Database management for life
sciences research. SIGMOD Record, 33(2):15–20, 2004.

[14] Y. L. Simmhan, B. Plale, and D. Gannon. A survey of data
provenance in e-science. SIGMOD Record, 34(3):31–36,
2005.

[15] W. C. Tan. Containment of relational queries with
annotation propagation. In DBPL, 2003.

