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Abstract 
 
Anonymization techniques are used to ensure the privacy preservation of the data owners, especially 
for personal and sensitive data.  While in most cases, data reside inside the database management 
system; most of the proposed anonymization techniques operate on and anonymize isolated datasets 
stored outside the DBMS. Hence, most of the desired functionalities of the DBMS are lost, e.g., 
consistency, recoverability, and efficient querying. In this paper, we address the challenges involved in 
enforcing the data privacy inside the DBMS. We implement the k-anonymity algorithm as a relational 
operator that interacts with other query operators to apply the privacy requirements while querying the 
data. We study anonymizing a single table, multiple tables, and complex queries that involve multiple 
predicates. We propose several algorithms to implement the anonymization operator that allow efficient 
non-blocking and pipelined execution of the query plan.  We introduce the concept of k-anonymity view 
as an abstraction to treat k-anonymity (possibly, with multiple k preferences) as a relational view over 
the base table(s). For non-static datasets, we introduce the materialized k-anonymity views to ensure 
preserving the privacy under incremental updates. A prototype system is realized based on PostgreSQL 
with extended SQL and new relational operators to support anonymity views. The prototype system 
demonstrates how anonymity views integrate with other privacy-preserving components, e.g., limited 
retention, limited disclosure, and privacy policy management. Our experiments, on both synthetic and 
real datasets, illustrate the performance gain from the anonymity views as well as the proposed query 
optimization techniques under various scenarios. 
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1. INTRODUCTION 
Privacy preservation is a key requirement for organizations holding personal or sensitive data. 
Organizations need to comply with the privacy preferences of data owners and privacy laws that 
regulate the use and sharing of such data [2]. Examples of privacy laws include the United States 
Privacy Act of 1974, the Australian Privacy Amendment Act of 2000, and The Health Insurance 
Portability and Accountability Act of 1996. These requirements have motivated a significant amount of 
work to answer the challenging question: How to make use of the data, e.g., querying and analysing, 
while ensuring the required level of privacy of data owners? Data anonymization techniques, e.g., [11, 
12, 16, 17], have proposed to achieve the privacy preservation by ensuring that the identity of each 
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individual cannot be distinguished from a group of other individuals whose records exist in the same 
dataset. K-anonymity [16, 17] is one of the foremost anonymization techniques proposed in literature. It 
ensures that the identity of each individual is hidden within a group of at least k-1 individuals. Clustering 
and generalization, e.g., [5, 15], are common approaches to implement k-anonymity as we will discuss 
in more detail in Section II. Several algorithms have been proposed to provide stronger privacy 
preservation over k-anonymity, e.g., l-diversity [12], and t-closeness [11]. However, most of these 
techniques are standalone anonymization techniques implemented at the application level. That is, they 
assume the data is exported outside the database system and stored externally as standalone datasets. 
Moreover, the anonymized version of the data is also stored outside the database system and released 
to various Applications. This approach has major drawbacks including: (1) Sensitive data is transferred 
from the database system to external applications, which may compromise the privacy of the data 
owners, (2) Most desirable functionalities of the DBMS are lost, e.g., consistency, recoverability, 
efficient querying, and authorization mechanisms, (3) The entire dataset needs to be anonymized even 
if users are interested in a single (or few) records, and (4) Anonymizing complex queries with multiple 
predicates and joined tables is not feasible in the standalone version.   
In this paper, we propose extending the database system to support the privacy-preservation 
requirements from within the database engine to overcome the shortcomings discussed above. We 
implement the k-anonymity algorithm as a relational operator that can compose, along with the standard 
query operators, a privacy-aware query plans. We propose several query optimizations, e.g., pushing 
the selection operator below the anonymization operator, to build efficient query plans. We propose 
several algorithms, block-level and tuple-level, to implement the anonymization operator and allow 
efficient non-blocking and pipelined execution of the query plan. We introduce the notion of 
anonymization views (A-views, for short) to abstract the problem of anonymization as a relational view 
on the base tables containing sensitive data. We extend the k-anonymity to multi-k-anonymity to 
support personalized anonymization, i.e., different individuals may choose different k values. We study 
anonymizing a single table, multiple joined tables, and complex queries that involve multiple predicates. 
We also address several challenges that emerge when anonymizing complex queries and/or joined 
tables (which they can be anonymization views themselves). In the paper, we focus on implementing 
the k-anonymity algorithm, however, the proposed anonymization view is independent of the underlying 
anonymization technique. We realized the proposed system through extensions to PostgreSQL where 
we extended SQL to create and manipulate the anonymization views and introduced a new 
anonymization operator to the query engine.  
The rest of the paper is organized as follows. In Section II, we discuss related work. In Section III, we 
present the architecture of the proposed open-source privacy-aware database system. In Sections IV, 
we introduce the needed definiens and concepts. In Sections V, VI, and VII, we present the logical and 
materialized A-views over single and multiple tables. Sections VIII presents the performance evaluation 
and experimental results. Finally, Section IX contains concluding remarks. 
 

2. RELATED WORK 
Data anonymization techniques, e.g., [11, 12, 16, 17], have been proposed to enforce privacy 
preservation requirements. K-anonymity [16, 17] is one of the most common anonymization techniques 
in literature.  It ensures that the identity of each individual cannot be distinguished from at least a group 
of other k-1 individuals in the same dataset.  In this technique, the attribute-combinations that may 
reveal the identity of an individual are called Quasi-Identifiers (QI, for short) while the attributes 
pertaining to sensitive values, e.g., the disease name, are called Sensitive-Attributes (SA, for short). K-
anonymity algorithms can be implemented using clustering or generalization techniques, e.g., [5, 15]. In 
the clustering approach, clustering algorithms are employed to identify groups of similar records that are 
represented by a single record. In the generalization technique, each quasi-identifier attribute is 
associated with a domain generalization hierarchy (DGH) from which the QI values can be generalized 
to form groups of at least k tuples with identical QI values. Examples of DGHs and k-anonymized tables 
are given in Figs. 1 and 2, respectively. Fig. 1 shows three attributes, Disease, YearOfBirth, and 
ZipCode, associated with their DGHs. Fig.2 shows a list of patient records where the combinations of QI 
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attributes (Birthdate and Area) are 2-level anonymous, i.e., there are at least 2 identical records (w.r.t 
QI values) for every QI attribute combinations.  
Several algorithms have been proposed to provide stronger privacy-preservation over the k-anonymity 
technique, e.g., l-diversity [12], and t-closeness [11]. The t-closeness technique ensures that the 
distribution of sensitive values in a single anonymized group is as close as possible to the distribution in 
the base table. More sophisticated anonymization algorithms can also be embedded. These data 
anonymization techniques, as discussed in Section I, are standalone techniques that operate on the 
data at the application layer outside the database management systems. In contrast, the proposed 
materialization views ensure the data privacy inside the DBMS, and hence fully utilize the functionalities 
and query processing power of the DBMSs. Moreover, the abstraction of anonymization views is 
independent of the underlying anonymization algorithm being used.  For example, and as a proof of 
concept, we implement the t-closeness algorithm in Datafly system [16] on top of the k-anonymity 
technique. 
The concept of personalized privacy in [19] allows data owners to choose the level of generalization of 
sensitive attribute and to integrate it with k-anonymity to produce a stronger anonymized version of the 
data. We support sensitive attribute generalization. However, we keep generalization independent of 
anonymization, and provide it as an additional technique for protecting the privacy of sensitive data. 
While the integration of SA generalization with anonymization provides better utility, it may suffer from 
information leak through the locality of sensitive data. For example, as presented in [19], a tuple whose 
sensitive attribute is generalized to its parent value in the DGH containing 3 children is considered 3-
anonymous, whereas in regular anonymization, the tuple can be part of a QI group having sensitive 
attributes that could be distributed across all the leaves in the DGH.  
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    FIGURE 1: Domain Generalization Hierarchies.                     FIGURE 2: An example of a 2-anonymous table.  

 

Supporting data privacy at the database-system level is not a new approach. For example, Hippocratic 
Database [2] is an extension to the standard DBMS to manage the privacy of the data inside the 
database systems. Hippocratic databases include several privacy components to support policy 
management, limited disclosure, limited collection, limited retention, and compliance, among others. 
When a query is issued, the Hippocratic database system ensures that the recipient of the query 
answer receives only the data (s)he is allowed to see as per the policies. A data model to enforce the 
limiting disclosure principle enunciated in Hippocratic databases is proposed in [10]. In [3, 6], a 
Hippocratic fine-grained access control is proposed to limit the data disclosure. In [9], a middleware 
system is designed to implement and integrate several Hippocratic components. Other extensions to 
Hippocratic databases have been proposed in [1, 4, 10]. However, Hippocratic databases do not 
address data anonymization as a mechanism for privacy preservation, and they do not study the 
privacy as an operator inside the database engine that interacts with the other query operators. Most 
extensions to Hippocratic databases have been at the application-level or middleware-level between the 
application and the database. Anonymization views differ from the above proposals in that they are fully 
integrated inside the database.  
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Multi-relational k-anonymity [13] highlights several privacy attacks possible in multi-relational scenario 
and proves that the algorithms for a single relation do not achieve anonymity in the case of multiple 
relations. In this paper, we address the issue of anonymizing joined tables and propose different 
semantics for query results to ensure data privacy. For example, while [13] proposes hiding every tuple 
in some scenarios, we propose reporting false-positive tuples in addition to the correct (true-positive) 
tuples to ensure the privacy while maintaining high utility of the query result. Metrics to measure the 
privacy and utility of anonymized data are discussed in [20]. We adopt the Normalized Certainty Penalty 
proposed in [20] as a measure of utility.  
 

3. SYSTEM ARCHITECTURE 
The architecture of the proposed privacy-preserving database system is given in Figure 3. The system 
is an extension to our Hippocratic PostgreSQL system published in [21] which only supports a simple 
case of single-table anonymization. The goal is to develop a complete privacy-aware open-source 
DBMS by integrating the hippocratic database components, e.g., Policy Manager, Limited Disclosure, 
and Limited Retention, with the proposed anonymization techniques. The Policy Translator component 
is used to translate a P3P policy [7] into metadata. The Parser integrated with limited disclosure and 
retention support uses this translated metadata to produce query plans. We needed to change the 
Parser, Planner, and Executor of the database engine to integrate anonymization-related changes. We 
integrate and extend the ideas in [2, 9, 10] to implement our limited disclosure module. We use keywords 
PURPOSE and RECIPIENT to associate a purpose and a recipient to a given query, for example: 
                                              SELECT p.name, p.birth, p.sex, p.disease 
                                              FROM patient p PURPOSE research RECIPIENT lab; 

 
Even though the definition of limited retention in Hippocratic databases [2] is to retain the information 
only as long as required, deletion of information after this period is not always trivial. Our approach to 
limited retention is through privacy policy specification of the retention periods for various attributes by 
each data owner. Every query complies with the policy for retention and does not display data that has 
exceeded its retention period. The limited retention and limited disclosure components are described in 
detail in [21]. The anonymization support and its interactions with the above privacy preserving modules 
are explained in the next sections. 
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FIGURE 3: Hippocratic PostgreSQL architecture 
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4. DEFINITIONS AND CONCEPTS 
Anonymization views (A-views) can be defined on a single table, multiple tables, or arbitrary SQL 

queries. They can be logical or materialized. A-views are similar to the standard database views except 
that they employs anonymization operators during query processing to ensure that the anonymization 
requirements are met. Before we describe how A-views work, we present the needed definitions and 
concepts. 

Multi-k-Anonymity: The concept of k-anonymity is introduced to protect the privacy of individuals [16, 
17]. It associates one global privacy measure k to all individuals. However, in order to be applicable to a 
wide range of applications and to support personalized privacy, we need to extend k-anonymity to 
support multi-k-anonymity. That is, every individual may specify his/her preference for k. Furthermore, 
we allow the data owners to specify a k value for each purpose/recipient combination. These 
preferences are part of the privacy policy signed by the data owners and are kept inside the database. 
The flexible multi-k-anonymity model is highly motivated by the diverse privacy requirements of the data 
owners. For example, a hospital database may contain information about ordinary and well-known 
individuals who, most probably, have different privacy constraints.  

Domain Generalization Hierarchy (DGH): The k-anonymity algorithm uses domain generalization 
hierarchies to generalize the values in certain attributes. Example of DGH is depicted in Fig. 4. In our 
system, these DGHs are stored in a database table. A single DGH can be associated with one or more 
columns in the database. To create and populate the DGHs, we introduce the following extended SQL 
commands:  
                                            CREATE DGH <dgh_name>; 
                                            INSERT INTO DGH <dgh_name> <child, parent>; 
 
The association between the DGHs and the database columns is established when creating the 
anonymization views. 
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FIGURE 4: DGH, Table, and Sensitive Attributes Distribution 

 

 
FIGURE 5: Create Anonymization View command 
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Sensitive Attribute (SA) Generalization: Our work adopts the idea of sensitive-attribute generalization 
proposed in [9, 19] to provide additional privacy to data owners. However, unlike [19], this feature is 
kept independent of the anonymization process. That is, apart from specifying the k values, the data 
owner may specify the level of generalization (in DGH) of the sensitive attribute(s) for every 
purpose/recipient combination. For example (refer to Figure 4), if a person suffering from ʻUlcerʼ 
specifies a generalization level of 1, then the Disease attribute (the SA attribute) is generalized to 
ʻstomach-diseaseʼ, otherwise, it is reported as is.  

 
Anonymization View (A-view):  We introduce a new SQL construct to define an anonymization view 
as presented in Fig. 5. The command declares the identifiers, quasi-identifiers, and sensitive attributes 
of the data to be anonymized. Additionally, it associates DGHs to the quasi-identifiers. The profile_col 
gives the provision of choosing any attribute as the foreign key to a table containing the k-values and 
sensitive attribute generalization levels for various combinations of purpose and recipients. 
Anonymization views can be either logical or materialized (if the keyword MATERIALIZED is used in the 
command). Logical A-views suffer from temporal attacks if the datasets are not static [17]. This is 
because updating the data will results in different anonymized dataset each time. Hence, in the case of 
non-static datasets, we materialize the A-views to prevent these temporal attacks under incremental 
updates. Details about materialized A-views are discussed in Section VII.  
 

5. ANONYMIZATION VIEW ON SINGLE TABLE 
We propose two different query plans to anonymize queries on single tables. The two plans differ in 
where to plug-in the anonymization operator w.r.t the selection operator. The anonymization operator 
implements an extended version of the Datafly algorithm in [16] to accommodate for multi-k-anonymity 
and t-closeness. A key challenge in both plans is that anonymizing only the subset of tuples in the final 
query answer may result in a privacy breach by linking of the answers from multiple queries. For 
example, since queries can have different sets of tuples in the final answer, a quasi-identifier attribute of 
a specific tuple may have 3-level generalization in Query Q1 while having a 2-level generalization in 
Query Q2 (that is because the set of anonymized tuples are different). This clearly results in a privacy 
breach since the intended level of generalization in Q1 is lost once the adversary has the results from 
Q2. Therefore, the anonymization should relay on the entire collection of tuples in the base table 
instead of considering only the final query answer. Conceptually, if a logical A-view is defined on a table 
T, then any query on that A-view will use either of the two query plans presented in Fig. 6. The two 
plans are described next. 
 
5.1. Anonymize-then-Select Plan 
The Anonymize-then-Select plan performs the anonymization as early as possible in the query pipeline, 
i.e., immediately after the table-scan. Consequently, the selection predicates and/or projected attributes 
are not pushed inside the table-scan operator but rather delayed until after the anonymization is 
performed on the entire table. In the Anonymize-then-Select plan, a block of tuples is read from disk 
and these tuples are then anonymized and pipelined to the next query operator in the plan. Thus, the 
anonymization operator does not block the query pipeline until all tuples in the base table are 
anonymized. Instead it operates as a block-level anonymization. The detailed steps are as follow. 
Step 1: Index-Scan 
Using a direct table scan to read the data blocks from disk may produce tuples with different order 
depending on the table layout on disk (recall that the anonymization operator processes one block at a 
time). Thus, the anonymization algorithm may generate different outputs, which may lead to a privacy 
breach. To overcome this issue, Anonymize-then-Select plan uses a pre-defined index on the identifier 
attribute to perform an index-scan over the data (See Fig. 6). Thus, the anonymized blocks are 
guaranteed to have the same set of tuples independent of how the data is stored on disk. 
Step 2: Sensitive Attribute Generalization 
Each data owner can optionally specify a generalization level for SA attributes. If the generalization 
level is m, then SA attributes are generalized to their mth ancestor in its DGH. 
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Step 3: Block-Level Anonymization 
We assume that each tuple belongs to a single data owner, e.g., patient record. If the k anonymity value 
is set zero, then no anonymization is required. If k =1, then it is 1-anonymous, i.e., identifiers are hidden, 
but will not be part of any QI group. The anonymization algorithm works as follow.  
 
1) Retrieve the next block of tuples to process. 
2) Identify the k value for each tuple from the A-view definition. 
3) Mark the tuples having k = 0 as anonymized, and hide the identifier attribute of all the remaining 

tuples. Mark the tuples having k = 1 as anonymized . 
4) Compute the probability distribution of the sensitive attribute values over the tuples in the block. 
5) While there exist unanonymized tuples, repeat the following: 

5.1) Select the QI attribute having the maximum number of distinct values ! Say QImax. 
5.2) Generalize QImax one level in its DGH. Then, merge all tuples with identical QI values in one 

group.  
5.3) If a group size is larger than or equals to the groupʼs maximum k (max k for the tuples in the 

group), then compute the probability distribution for this QI group and calculate the t-closeness. 
If the group satisfies t-closeness, all tuples in that group are marked anonymized. Otherwise, 
repeat Step 5.1). 

5.4) If there are not enough tuples to be anonymized, then hide all identifiers, quasi identifiers, and 
sensitive attributes of the remaining tuples in the block. Then mark these tuples as anonymized.  

6) If there are more blocks, then go to 1), otherwise exit. 
 
Note that the anonymization operator does not wait until the anonymization of the entire block is 
performed to pass on the anonymized tuples to the next node in the query tree. Instead, anonymized 
tuples are pipelined after each iteration (Step 5 in the algorithm).  
Step 4: Selection 
Selection predicates on identifier attributes will not return any anonymized tuples since the identifier 
values are hidden in Step 3.3 above. For quasi-identifiers, it is proposed in [13, 14] that if tuple t is the 
only true query result, then t will not be reported in the answer to preserve the k-anonymity requirement 
of tʼs owner. In contrast, in our model, we report t along with at least k-1 other tuples that will have the 
same QI generalized values. Some of these reported tuples in tʼs QI group could be false-positive tuples, 
i.e., without generalization, they do not satisfy the query. This approach of including false-positive tuples 
preserves the anonymity requirements as well as improves the utility of the query, i.e., the number of 
true-positive reported tuples. 
We currently support only equality predicates on QI and SA attributes. After generalizing the values in 
the QI and SA attributes, the equality operator needs to be extended such that an ancestor value in a 
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DGH should match any descendant value under that ancestor. For this purpose, we introduce the 
operator AVLIKE (A-view LIKE) that is used as illustrated in the following example. 

Select * from PATIENT_AVIEW where zipcode = ʻ88512ʼ; 
Assuming that zipcode is a QI attribute, then the query is re-written as:  

Select * from PATIENT_AVIEW where zipcode AVLIKE ʻ88512ʼ; 
 
Assume that two tuples t1 and t2 with zipcodes ʻ88512ʼ, and ʻ88513ʼ, respectively, are both generalized 
to ʻ88***ʼ, then both tuples will now satisfy the query (t1 is true-positive while t2 is false-positive). This 
algorithm is guaranteed to return all true-positive tuples along with their QI generalized groups. 
 
Step 5: Limited Disclosure & Retention 
The projection clause is manipulated to comply with the opt-in/opt-out choices of the tupleʼs owners. 
Otherwise, the attribute value is replaced with a null value. The conditions for limited retention are also 
embedded within this clause. Hence, the algorithm combines the anonymization with the limited 
disclosure and retention to provide maximum privacy.  
 
 
5.2. Select-then-Anonymize Plan 
The Select-then-Anonymize plan is motivated by the fact that the former plan needs to anonymize the 
entire base table even if there is only one true-positive tuple. Therefore, for high-selectivity queries, it is 
more efficient to first find the true-positive tuples, and then construct their QI groups. In this case, the 
anonymization is a tuple-level anonymization that provides even better pipelining in the query plan and 
better response time compared to the block-level anonymization. The trick is how to form QI groups for 
the true-positive tuples that are still base-table dependent and not query-answer dependent.  The 
detailed steps are as follow. 
Steps 1, 2 & 3:  Scan, SA Generalization, and Selection 
In this step, tuples are scanned from the base table. The limitation of using pre-defined index scan (as 
in Anonymize-then-Select) does not apply here since the Select-then-Anonymize plan processes one 
tuple at a time. The SA attributes are generalized and predicates on these attributes are re-written to 
use AVLIKE operator instead of equality operators. If there are predicates on identifier attributes, the 
tuples will pass from the selection operator. But, they will be filtered in the anonymization operator (Step 
4-3 below) except for tuples having k = 0.  
 
Step 4: Anonymization 
Select-then-Anonymize is based on the fact that every tuple t belongs to a particular QI group, say g(t), 
in the anonymized version. Thus, the true-positive tuples are first selected, and then the QI groups for 
each of these tuples are then retrieved from the base table. The criterion for forming the QI groups is 
the same as in Anonymize-then-Select plan . One trick that Select-then-Anonymize uses is that the 
sequence in which the QI attributes are selected for generalization (Step 3-5.1, Section V.1) can be pre-
computed for a given table, e.g., an example sequence can be: zipcode, disease, disease, zipcode, …. 
This order can be pre-computed by estimating the number of distinct values in each of the QI attributes 
after each generalization step. Given that QI generalization sequence is computed,  the algorithm 
executes as follow.  
 
1) Scan tuples from the table being queried. Filter the tuples based on selection predicates. If the 

selection predicate is based on SA, use the AVLIKE operator. Indicate if the selection predicate is 
based on identifier or QI attributes. 

2) Identify the k-requirement for each true-positive tuple. 
3) If the selection predicate is based on identifiers, then report only the tuples having k = 0. 
4) Hide the identifier attribute of all tuples with k ≥ 1. Mark the tuples having k = 1 as anonymized. 
5) Compute the probability distribution of the sensitive attribute values in the table. 
6) For every tuple t remaining after step 5, go to Step 7. 
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7) Initialize set g(t) to t.  
8) While the size of g(t) is less than the maximum k- requirement of any tuple in g(t) or g(t) does not 

satisfy t-closeness repeat Steps 9-10. 
9) Select the next QI attribute to be generalized from the pre-computed order ! Say QImax.  
10) Generalize the values in QImax. Retrieve form the base table all tuples with values either matching or 

descendant to the value in QImax and add them to g(t). Go to Step 8. 
11) If the selection is based on QI attributes, return the  tuples in g(t) (they are the QI group of t). 

Otherwise, return t only.  
Step 5: Limited Disclosure and Retention 
This step is performed as in the Anonymize-then-Select plan.  
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FIGURE 7: Example demonstrating privacy breach by querying QI and SA attributes 

 
Special case: Predicates on both quasi-identifiers and sensitive attributes- 
Queries that involve selection predicates on quasi-identifiers in combination with either sensitive 
attributes or other attributes or both need special handling. We explain this case with the help of an 
example given in Fig. 7. The attribute 'OA' is neither QI nor SA attributes. However, revealing the 
mapping between such attributes and QI attributes helps in mapping an individual to his/her SA attribute. 
For example, if the adversary is able to extract the information that individual with ID=1 (QI1= A1 and 
QI2= 35) has OA=Oa1, (s)he can easily deduce by looking at the corresponding QI group that the 
individual's SA value is Sa1. For this reason, consider the case of predicates on QI/SA combination 
separately. From Fig. 7, we observe that performing the selection before anonymization may cause 
privacy breach. For example, an adversary interested in finding the sensitive attribute of individual with 
ID=4 can issue the following queries. 
 

SELECT * FROM T WHERE QI1=`A4' AND QI2=`31' AND SA=`Sa1'; 
SELECT * FROM T WHERE QI1=`A4' AND QI2=`31' AND SA=`Sa2'; 

 
Both queries will return empty results as there are no matching tuples and so the adversary 
successfully maps the individual to sensitive attribute value `Sa3'. It can be noted that the Anonymize-
then-Select algorithm performs the selection after anonymization and so gives out some false positives 
even in this scenario. Therefore, Anonymize-then-Select does not suffer from this privacy breach. The 
issue with Select-then-Anonymize can be resolved by postponing the predicate evaluation of SA/OA 
attributes until after the anonymization takes place. This ensures that the results are consistent from 
both plans and that the adversary does not gain any further knowledge beyond what can be obtained 
from querying the anonymized version of the entire table. 
 
5.3 Anonymize-then-Select vs. Select-then-Anonymize Plans 
Although it is guaranteed that both plans will give query results that comply with the privacy policy, there 
are a few trade-offs in choosing one plan over the other. 
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Execution Time: Anonymize-then-Select plan has the drawback of anonymizing the entire base table 
even if the query is highly selective, e.g., only one true-positive tuple exists. In Contrast, Select-then-
Anonymize plan anonymizes very few tuples (only the true-positives and their QI groups). However, 
during the anonymization of a tuple, Select-then-Anonymize plan issues several queries that may lead 
to a large number of random disk accesses. The number of database queries per tuple depends on the 
number of iterations required to form the tupleʼs QI group, which in turn depends on the distribution of k-
values i.e., the smaller the average k-value, the lesser the number of iterations required to form the QI 
group for a given tuple. Therefore, the higher the selectivity of the query and the smaller the k-values, 
the greater the advantage of using Select-then-Anonymize plan and vice versa.  
Utility: The utility is measured in terms of the lesser number of false-positive tuples included in the 
answer. The utility is better for Select-then-Anonymize plan, where the maximum number of false 
positives for a given tuple t is |g(t)| - 1. In contrast, for Anonymize-then-Select plan, the maximum 
number of false positives per tuples is |Table| - 1.  
In Fig. 8, we demonstrate the difference in query answers from the two plans with a simple example. 
The base table PATIENT consists of four attributes and five tuples. The attribute Name is an identifier, 
Birth and Zipcode are quasi-identifiers, and Disease is a sensitive attribute. These attributes use the 
domain generalization hierarchies given in Fig. 1. The issued query has a single selection predicate on 
Zipcode QI attribute. The table contains only one true-positive tuple as illustrated in the figure. The 
answers from both plans meets the privacy requirements, yet the utility of Select-then-Anonymize plan 
higher than that of Anonymize-then-Select since the former produces less false-positives.  
 

6. ANONYMIZATION VIEW ON JOINED TABLES 
In this section, we study anonymization over multiple tables and/or A-views. We analyse the 2-way joins 
(extension to more than two entities is straightforward). In Fig. 9, we classify the 2-way join cases 
based on the join predicates as well as whether the joins between base tables and/or A-views. Joins on 
QI or SA attributes are allowed using the AVLIKE operator. For example, consider joining an A-view A 
and a base table B. Anonymize-then-Select plan follows the regular process of constructing the A-view 
A, and then joins this result with the raw table B. The intuition behind not joining earlier is that the 
outside entity B should not be able to see the sensitive raw data associated with the A-view A. Consider 
the case where table B (outside entity) has only one tuple and it is joined with the A-view A on the A.ID 
attribute. If B were joined with the base table of the A-view A, the result could be a single tuple. 
Anonymizing this single tuple would not protect privacy as the mapping between the identifiers and 
sensitive attribute for the tuple is implicitly exposed. 
 
Select-then-Anonymize plan also ensures that the raw table joins with the A-view only. However, as an 
intermediate step, Select-then-Anonymize plan calculates the semijoin of A with B. This produces the 
tuples in A that would be participating in the join and thus need to be anonymized. The anonymized 
result is then joined with the raw table. The advantage of this approach over Anonymize-then-Select 
plan is the higher utility in cases where join predicates are based on QI. The reasons are the same as 
the ones explained in Section V. 
In the case of joining two A-views, Anonymize-then-Select plan follows a similar approach to the one in 
the previous case. Each A-view is constructed independently and the results are joined using the 
AVLIKE operator, if needed. Select-then-Anonymize plan calculates the semi-join of A with B and B with 
A, thus identifying the tuples of A and B that will participate in the join. These tuples are independently 
anonymized (Section V.2) and then joined. 
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FIGURE 8: Example demonstrating Anonymize-then-Select versus Select-then-Anonymize plans 

 

7. MAINTENANCE OF A-VIEWS 
A logical A-view work fine if the data do not change over time. If the data gets updated, and the DBMS is 
re-computing the A-view with each query, then the comparison of various answers may lead to a privacy 
breach. The incremental maintenance of K-anonymization has been studies in [8, 18]. In our model, we 
proposed Materialized A-views to handle insertions to existing data. For simplicity, we consider the 
single-k anonymity requirement. The A-view is materialized in the format shown in Fig 10, where QI 
groups and the corresponding tuple ids are stored.  
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FIGURE 9: Join Scenarios 

 

  
FIGURE 10: Materialized A-view 

 
Selection: Any query over a materialized A-view triggers a Pl/Sql procedure that uses the AVLIKE 
operator on QI attributes. In this case, the entire QI group is returned as output. For example, in 
Figure10, if the selection predicate is ʻQI1 = 35ʼ, then 3 tuples formed out of the first cluster and returned 
as output. Selection predicates on SA or other attributes scan each of the tuples in the A-view (QI 
groups/ clusters) and processes the list of values to match the value in the predicate. Queries with 
selection predicates on identifiers return empty answer.  The utility of materialized A-views is similar to 
that of Select-then-Anonymize plan except that in the case where the regular query result is empty. 
Select-then-Anonymize plan would return empty result whereas the materialized A-view may return a 
cluster that closely matches the predicate.  
 
Insertion: Inserting to a base table of the materialized A-view triggers a Pl/Sql procedure that calculates 
the distance of the tuple being inserted from each of the tuples in the materialized A-view. Here, the 
distance refers to the sum of distances between corresponding quasi-identifiers. Each quasi-identifier 
value is a node in its DGH. The normalized distance between any two nodes in a DGH is given by the 
number of edges between the two nodes divided by the maximum distance between any two nodes in 
the DGH. This ensures that the distance measure for any QI is in the range [0 1]. The new tuple is 
inserted into the closest group (This may require modifying the QIs of the group). The closest group is 
the one where the total changes, measured in terms of normalized distance, of the inserted tuples and 
all existing tuples in the group, is the least. The ID, SA, and other attributes of the group are modified by 
adding the values of the new tuple to the corresponding lists. Upon insertions, the QI group attributes of 
other tuples can be only generalized to a higher node in DGH. In this case, temporal attacks from the 
insertion are avoided because the groupsʼ attributes will become more generalized after the insertion. 
This is the trade-offs between the privacy and the utility. 
 
Deletion: The select predicate in a delete command is processed on the base table and the IDs of the 
tuples to be deleted are noted. Each tuple is queried in the materialized A-view and is deleted from the 
group. If the group size decreases to a value less than ʻkʼ, the group is removed from the materialized A-
view, and each of the remaining tuples in that group and individually inserted again into the materialized 
view following the insert procedure above. 
 
Update: Update is handled as a delete of the old tuple followed by an insertion of new tuple with updated 
values. 
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8. PERFORMANCE ANALYSIS 
8.1. Quality Measures 
There is always a trade-off between privacy and utility in anonymization; the higher the privacy, the lower 
the utility of the data. The target is to maximize the utility of the anonymized data, while achieving the 
required levels of privacy. There are two types of utility in our system -1) utility of the query result 
(considers the number of false positives and false negatives) and 2) utility of the anonymized data 
(considers the effect of generalizing the data). 
 
Precision and Recall: Precision is the ratio of true positives to the sum of true positives and false 
positives. Precision is always between 0 and 1, where 1 is the ideal value (no false positives). Since both 
plans return false positives when the selection predicates are on QI or SA attributes, the precision is 
below 1. In all other cases, the precision is 1. Recall is the ratio of the number of true positives to the 
sum of true positives and false negatives. Both plans are guarantee not to have false negatives (except 
for predicates on ID), and hence the recall is 1 in most cases.  
 
Normalized Certainty Penalty (NCP): The NCP metric [20] measures the information loss for various 
choices of block sizes during the anonymization of large data. This metric can be used for the 
Anonymize-then-Select algorithm to identify the best block sizes to use since this algorithm is a block-
level anonymization. 
 
K-Deviation: To provide a measure of the unnecessary anonymization performed, we propose k-
Deviation, which is the sum of differences between required k and achieved k for each tuple in the table. 
This value would be close to 0 for optimal algorithms. k-Deviation demonstrates the efficiency of the 
multi-k approach over the straightforward approach of anonymizing using single k, where k is set to the 
maximum required k over all tuples. 
 
 
8.2. Experimental Results 
We used a synthetically generated and real-world datasets in the experiments. The synthetic data 
include table 'PATIENT' with a maximum of 100K tuples, with 4 attributes {Name, Birthdate, Area and 
Disease}. 'Name' is the identifier, 'Birthdate' and 'Area' form the QI set, while 'Disease' is the sensitive 
attribute for the patient entity. Similar experiments are repeated over million tuples from the US Census 
Data (1990). Two identifiers 'ID' and 'NAME' are synthetically generated. The attributes 'AGE', 'SEX' and 
'CITIZENSHIP' are used as QIs. 'SCHOOL (Education Level)' is considered the sensitive attribute. DGHs 
for QI and SA attributes are generated synthetically with a maximum depth of 4. The k-values and SA-
Generalization levels for each of the million tuples are randomly generated. The k values range between 
0 and 9 for all the experiments unless otherwise is specified. For all the experiments, it is assumed that 
the DGHs for all the attributes are in-memory data structures. The experiments are performed on Intel(R) 
CoreTM2 Quad CPU @ 2.83GHz machine with 3.5GB RAM.  
 
Fig. 11 shows the runtime overhead of the anonymization operator (using Anonymize-then-Select plan) 
during query processing, with the block size set to 1024. Though the runtime with anonymization is 
asymptotically much higher than the runtime without anonymization, it is notable that the anonymization 
of 100k tuples is performed in less than 75 seconds for Synthetic dataset. In case of the US Census data 
set, the anonymization of 100k tuples is performed within 30 seconds and that of 1 million tuples is 
performed within 300 seconds. The time taken may vary with the algorithm used (algorithms that are 
more efficient in terms of utility may be slower); however, the fact that anonymization at the database 
engine level takes reasonable time is very promising. We observed in Fig. 12 that the run time varies 
with different block sizes (the table size in this experiment is set to 10K tuples). The trends show that 
higher block sizes marginally reduce the run time. This can be attributed to the fact that the larger 
numbers of tuples help in faster formation of QI groups and thus need a lesser number of iterations. 
Though this measurement helps in choosing the optimal block size for the dataset in hand, it is important 
to note that the available memory in the system (to store and anonymize the tuples) is a constraint on 
the maximum value of block size.  
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In Fig. 13, we measured the k-Deviation and NCP metric for multi-k and single-k variations. We distribute 
k-values in such a way that 10 percent of the tuples have high k (k=50) and the remaining values have 
low k (less than 5). We also show the trend for 1 percent high k values (k=50). It is observed that the k-
Deviation of multi-k technique is marginally smaller than the one of the single-k technique. The reason 
for this is that single-k anonymization forms larger groups unnecessarily. The multi-k technique has a 
marginal gain over the single-k in this case of varying block sizes as well. We measured the utility loss of 
anonymized data for the single-k and multi-k cases and observed that NCP is close to 0 for large 
datasets and block sizes. This is intuitive since having large number of tuples for anonymization helps in 
easier formation of groups without the need for much generalization. Again, it is noted that the multi-k 
technique has lower NCP than the single-k case. The reason is that the multi-k technique strives for 
smaller group sizes (avoids unnecessary generalization) when compared to single-k, and hence results 
in lower k-Deviation and NCP. 
In Fig. 14, we study the performance of the Select-then-Anonymize algorithm (labelled as Algorithm II in 
the figure). The Anonymize-then-Select algorithm is labelled as Algorithm I in the figure. We set the table 
size to 100K tuples and vary the selectivity of the issued queries. For queries with non-QI predicates, the 
response time initially increases linearly with the increase in the number of selected tuples. This is 
intuitive since the tuples selected based on non-QI attributes do not often tend to form QI/equivalence 
groups; this results in many database queries being issued for every selected tuple to find its QI group. 
However, the rate of increase in the running time decreases after a certain point as the algorithm comes 
across tuples that are already reported and thus no database queries are issued for a fraction of the 
selected tuples. On the other hand, the time taken by queries on QI attributes increases very slowly 
initially and speeds up after a certain point. The query predicates use equality or `like' operators. The 
reason for the this behaviour is that with a small number of selected tuples, it is highly probable that they 
form a part of the same QI group and thus the number of database queries to be issued is small. 
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FIGURE 11: The runtime for Anonymize-then-Select algorithm under different datasets 
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FIGURE 12: The runtime for Anonymize-then-Select under different block sizes 
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FIGURE 13: k-Deviation and NCP using Anonymize-then-Select plan (Census Dataset, sparse high-k values) 

As the query result size increases, it implies that the quasi-identifiers of the selected tuples are not very 
similar and thus need more database queries to find their QI groups. It can be noted from Fig. 14 that 
Select-then-Anonymize (Algorithm II) performs better than Anonymize-then-Select (Algorithm I) if the 
query is highly selective, otherwise Algorithm I performs better since its anonymization cost is constant. 
The query selectivity and the distribution of the k values can be passed to the query optimizer to select 
the cheapest plan among the two. This optimization is left for future work. 
In Fig. 15, we analyse the sensitivity of Select-then-Anonymize (Algorithm II) to the k value. We tested 
three values of k, 10, 50, and 200. The number of iterations, which maps to the number of issued 
database queries, increases with the increase in k. Thus, we see an increase in the runtime of Select-
then-Anonymize plan, whereas Anonymize-then-Select plan takes similar runtime for all k-values.  
Figs. 16 and 17 depict the performance of joins involving anonymization views. In Fig. 16, the join of an 
Anonymization View (100K tuples) is performed with a base table (10k tuples). As in the case of a single 
table, the trends are observed for QI-based and non-QI-based predicates. Fig. 17 demonstrates the 
runtime for the join of two anonymization views using synthetic datasets (100K and 10K tuples). we 
observe that the runtime almost doubled compared to joining an anonymization view with a base table. 
This is expected since the time taken to anonymize both relations is accounted. In both cases, the trend 
is similar to that in the single-table case. Similar trends are observed for Census dataset in the case 
Select-then-Anonymize plan, but the Synthetic data has much larger domain of distinct values for QI and 
non-QI attributes, and hence it displays much sharper trends. 
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FIGURE 14: The runtime for Select-then-Anonymize 
plan (Synthetic Dataset) FIGURE 15: The runtime for Anonymize-then-Select 

plan and Select-then-Anonymize with varying `k' 
(Census Dataset) 
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FIGURE 16: Joining an A-view and a base table                     FIGURE 17: Joining two A-views 

 

9. CONCLUSION 
Protecting the privacy of the data inside the dataʼs natural habitat, the DBMS, is an ever more 
demanding. It is (1) more secure, since the data is not transferred to an application layer or to a third-
party, (2) more efficient, since the various query optimizations can be applied inside the database engine, 
(3) more flexible, since anonymization can be performed on arbitrary queries with multiple predicates, 
and (4) more reliable, since recovery mechanisms are already taken care of by the DBMS. In this paper, 
we proposed the concept of anonymization views (A-views) to enforce data privacy inside the DBMS. 
We presented two query plans Anonymize-then-Select and Select-then-Anonymize, which perform 
block-level and tuple-level anonymization, respectively, and studied the trade-offs between the two plans. 
For static datasets, we proposed the logical A-views to anonymize the data without the need to store the 
anonymized version. In contrast, for dynamically changing data, we proposed materialized A-views. Our 
experimental analysis and performance evaluation showed the feasibility of the proposed approach and 
highlighted the trade-offs among the proposed algorithms under different scenarios and settings.  
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