
Eltabakh, Padma, Silva, He, Aref & Bertino

International Journal of Data Engineering (IJDE), Volume (3): Issue (2), 2012 1

Query Processing with K-Anonymity

Mohamed Y. Eltabakh
Department of Computer Science meltabakh@cs.wpi.edu
Worcester Polytechnic Institute
Worcester, MA, USA, 01604

Jalaja Padma

Cisco Systems jpadma@cisco.com
San Jose, California, USA, 95134

Yasin N. Silva

Division of Mathematical & Natural Sciences ysilva@asu.edu
Arizona State University
Tempe, Arizona, USA, 85281

Pei He, Walid G. Aref, Elisa Bertino
Department of Computer Science {phe, aref, bertino}@cs.purdue.edu
Purdue University
West Lafayette, Indiana, USA, 47907

Abstract

Anonymization techniques are used to ensure the privacy preservation of the data owners, especially
for personal and sensitive data. While in most cases, data reside inside the database management
system; most of the proposed anonymization techniques operate on and anonymize isolated datasets
stored outside the DBMS. Hence, most of the desired functionalities of the DBMS are lost, e.g.,
consistency, recoverability, and efficient querying. In this paper, we address the challenges involved in
enforcing the data privacy inside the DBMS. We implement the k-anonymity algorithm as a relational
operator that interacts with other query operators to apply the privacy requirements while querying the
data. We study anonymizing a single table, multiple tables, and complex queries that involve multiple
predicates. We propose several algorithms to implement the anonymization operator that allow efficient
non-blocking and pipelined execution of the query plan. We introduce the concept of k-anonymity view
as an abstraction to treat k-anonymity (possibly, with multiple k preferences) as a relational view over
the base table(s). For non-static datasets, we introduce the materialized k-anonymity views to ensure
preserving the privacy under incremental updates. A prototype system is realized based on PostgreSQL
with extended SQL and new relational operators to support anonymity views. The prototype system
demonstrates how anonymity views integrate with other privacy-preserving components, e.g., limited
retention, limited disclosure, and privacy policy management. Our experiments, on both synthetic and
real datasets, illustrate the performance gain from the anonymity views as well as the proposed query
optimization techniques under various scenarios.

Keywords: Data Privacy, K-Anonymity, Query Processing, Database Management Systems

1. INTRODUCTION
Privacy preservation is a key requirement for organizations holding personal or sensitive data.
Organizations need to comply with the privacy preferences of data owners and privacy laws that
regulate the use and sharing of such data [2]. Examples of privacy laws include the United States
Privacy Act of 1974, the Australian Privacy Amendment Act of 2000, and The Health Insurance
Portability and Accountability Act of 1996. These requirements have motivated a significant amount of
work to answer the challenging question: How to make use of the data, e.g., querying and analysing,
while ensuring the required level of privacy of data owners? Data anonymization techniques, e.g., [11,
12, 16, 17], have proposed to achieve the privacy preservation by ensuring that the identity of each

Eltabakh, Padma, Silva, He, Aref & Bertino

International Journal of Data Engineering (IJDE), Volume (3): Issue (2), 2012 2

individual cannot be distinguished from a group of other individuals whose records exist in the same
dataset. K-anonymity [16, 17] is one of the foremost anonymization techniques proposed in literature. It
ensures that the identity of each individual is hidden within a group of at least k-1 individuals. Clustering
and generalization, e.g., [5, 15], are common approaches to implement k-anonymity as we will discuss
in more detail in Section II. Several algorithms have been proposed to provide stronger privacy
preservation over k-anonymity, e.g., l-diversity [12], and t-closeness [11]. However, most of these
techniques are standalone anonymization techniques implemented at the application level. That is, they
assume the data is exported outside the database system and stored externally as standalone datasets.
Moreover, the anonymized version of the data is also stored outside the database system and released
to various Applications. This approach has major drawbacks including: (1) Sensitive data is transferred
from the database system to external applications, which may compromise the privacy of the data
owners, (2) Most desirable functionalities of the DBMS are lost, e.g., consistency, recoverability,
efficient querying, and authorization mechanisms, (3) The entire dataset needs to be anonymized even
if users are interested in a single (or few) records, and (4) Anonymizing complex queries with multiple
predicates and joined tables is not feasible in the standalone version.
In this paper, we propose extending the database system to support the privacy-preservation
requirements from within the database engine to overcome the shortcomings discussed above. We
implement the k-anonymity algorithm as a relational operator that can compose, along with the standard
query operators, a privacy-aware query plans. We propose several query optimizations, e.g., pushing
the selection operator below the anonymization operator, to build efficient query plans. We propose
several algorithms, block-level and tuple-level, to implement the anonymization operator and allow
efficient non-blocking and pipelined execution of the query plan. We introduce the notion of
anonymization views (A-views, for short) to abstract the problem of anonymization as a relational view
on the base tables containing sensitive data. We extend the k-anonymity to multi-k-anonymity to
support personalized anonymization, i.e., different individuals may choose different k values. We study
anonymizing a single table, multiple joined tables, and complex queries that involve multiple predicates.
We also address several challenges that emerge when anonymizing complex queries and/or joined
tables (which they can be anonymization views themselves). In the paper, we focus on implementing
the k-anonymity algorithm, however, the proposed anonymization view is independent of the underlying
anonymization technique. We realized the proposed system through extensions to PostgreSQL where
we extended SQL to create and manipulate the anonymization views and introduced a new
anonymization operator to the query engine.
The rest of the paper is organized as follows. In Section II, we discuss related work. In Section III, we
present the architecture of the proposed open-source privacy-aware database system. In Sections IV,
we introduce the needed definiens and concepts. In Sections V, VI, and VII, we present the logical and
materialized A-views over single and multiple tables. Sections VIII presents the performance evaluation
and experimental results. Finally, Section IX contains concluding remarks.

2. RELATED WORK
Data anonymization techniques, e.g., [11, 12, 16, 17], have been proposed to enforce privacy
preservation requirements. K-anonymity [16, 17] is one of the most common anonymization techniques
in literature. It ensures that the identity of each individual cannot be distinguished from at least a group
of other k-1 individuals in the same dataset. In this technique, the attribute-combinations that may
reveal the identity of an individual are called Quasi-Identifiers (QI, for short) while the attributes
pertaining to sensitive values, e.g., the disease name, are called Sensitive-Attributes (SA, for short). K-
anonymity algorithms can be implemented using clustering or generalization techniques, e.g., [5, 15]. In
the clustering approach, clustering algorithms are employed to identify groups of similar records that are
represented by a single record. In the generalization technique, each quasi-identifier attribute is
associated with a domain generalization hierarchy (DGH) from which the QI values can be generalized
to form groups of at least k tuples with identical QI values. Examples of DGHs and k-anonymized tables
are given in Figs. 1 and 2, respectively. Fig. 1 shows three attributes, Disease, YearOfBirth, and
ZipCode, associated with their DGHs. Fig.2 shows a list of patient records where the combinations of QI

Eltabakh, Padma, Silva, He, Aref & Bertino

International Journal of Data Engineering (IJDE), Volume (3): Issue (2), 2012 3

attributes (Birthdate and Area) are 2-level anonymous, i.e., there are at least 2 identical records (w.r.t
QI values) for every QI attribute combinations.
Several algorithms have been proposed to provide stronger privacy-preservation over the k-anonymity
technique, e.g., l-diversity [12], and t-closeness [11]. The t-closeness technique ensures that the
distribution of sensitive values in a single anonymized group is as close as possible to the distribution in
the base table. More sophisticated anonymization algorithms can also be embedded. These data
anonymization techniques, as discussed in Section I, are standalone techniques that operate on the
data at the application layer outside the database management systems. In contrast, the proposed
materialization views ensure the data privacy inside the DBMS, and hence fully utilize the functionalities
and query processing power of the DBMSs. Moreover, the abstraction of anonymization views is
independent of the underlying anonymization algorithm being used. For example, and as a proof of
concept, we implement the t-closeness algorithm in Datafly system [16] on top of the k-anonymity
technique.
The concept of personalized privacy in [19] allows data owners to choose the level of generalization of
sensitive attribute and to integrate it with k-anonymity to produce a stronger anonymized version of the
data. We support sensitive attribute generalization. However, we keep generalization independent of
anonymization, and provide it as an additional technique for protecting the privacy of sensitive data.
While the integration of SA generalization with anonymization provides better utility, it may suffer from
information leak through the locality of sensitive data. For example, as presented in [19], a tuple whose
sensitive attribute is generalized to its parent value in the DGH containing 3 children is considered 3-
anonymous, whereas in regular anonymization, the tuple can be part of a QI group having sensitive
attributes that could be distributed across all the leaves in the DGH.

!"#$%#$&

'()*%+,-."#$%#$& /"0%1-."#$%#$&

21+$0& 34."5$#6)4& 74$8*)4"%& 9$:$0&

;;;;;&

<=>?-<=>=& <=@?-<==?&

<=>?& <=>@& <=@?& <==?&AB& AB&

!"#$%#$& '$%(&)*&+"(,-&

;;;;;&

@@;;;& @=;;;&

@@CC?& @=D??& @=E??&AB& AB&

."/0)1$&

@@C<F&

 FIGURE 1: Domain Generalization Hierarchies. FIGURE 2: An example of a 2-anonymous table.

Supporting data privacy at the database-system level is not a new approach. For example, Hippocratic
Database [2] is an extension to the standard DBMS to manage the privacy of the data inside the
database systems. Hippocratic databases include several privacy components to support policy
management, limited disclosure, limited collection, limited retention, and compliance, among others.
When a query is issued, the Hippocratic database system ensures that the recipient of the query
answer receives only the data (s)he is allowed to see as per the policies. A data model to enforce the
limiting disclosure principle enunciated in Hippocratic databases is proposed in [10]. In [3, 6], a
Hippocratic fine-grained access control is proposed to limit the data disclosure. In [9], a middleware
system is designed to implement and integrate several Hippocratic components. Other extensions to
Hippocratic databases have been proposed in [1, 4, 10]. However, Hippocratic databases do not
address data anonymization as a mechanism for privacy preservation, and they do not study the
privacy as an operator inside the database engine that interacts with the other query operators. Most
extensions to Hippocratic databases have been at the application-level or middleware-level between the
application and the database. Anonymization views differ from the above proposals in that they are fully
integrated inside the database.

Eltabakh, Padma, Silva, He, Aref & Bertino

International Journal of Data Engineering (IJDE), Volume (3): Issue (2), 2012 4

Multi-relational k-anonymity [13] highlights several privacy attacks possible in multi-relational scenario
and proves that the algorithms for a single relation do not achieve anonymity in the case of multiple
relations. In this paper, we address the issue of anonymizing joined tables and propose different
semantics for query results to ensure data privacy. For example, while [13] proposes hiding every tuple
in some scenarios, we propose reporting false-positive tuples in addition to the correct (true-positive)
tuples to ensure the privacy while maintaining high utility of the query result. Metrics to measure the
privacy and utility of anonymized data are discussed in [20]. We adopt the Normalized Certainty Penalty
proposed in [20] as a measure of utility.

3. SYSTEM ARCHITECTURE
The architecture of the proposed privacy-preserving database system is given in Figure 3. The system
is an extension to our Hippocratic PostgreSQL system published in [21] which only supports a simple
case of single-table anonymization. The goal is to develop a complete privacy-aware open-source
DBMS by integrating the hippocratic database components, e.g., Policy Manager, Limited Disclosure,
and Limited Retention, with the proposed anonymization techniques. The Policy Translator component
is used to translate a P3P policy [7] into metadata. The Parser integrated with limited disclosure and
retention support uses this translated metadata to produce query plans. We needed to change the
Parser, Planner, and Executor of the database engine to integrate anonymization-related changes. We
integrate and extend the ideas in [2, 9, 10] to implement our limited disclosure module. We use keywords
PURPOSE and RECIPIENT to associate a purpose and a recipient to a given query, for example:
 SELECT p.name, p.birth, p.sex, p.disease
 FROM patient p PURPOSE research RECIPIENT lab;

Even though the definition of limited retention in Hippocratic databases [2] is to retain the information
only as long as required, deletion of information after this period is not always trivial. Our approach to
limited retention is through privacy policy specification of the retention periods for various attributes by
each data owner. Every query complies with the policy for retention and does not display data that has
exceeded its retention period. The limited retention and limited disclosure components are described in
detail in [21]. The anonymization support and its interactions with the above privacy preserving modules
are explained in the next sections.

!

Policy
Translator

Privacy
Policy

Metadata

DML Operation +
Purpose + Recipient

Data-
owner

Choices

Privacy Aware
Query Processor

Storage System

Privacy Policy
Translation Catalog

Signature
Date
Table

Base Data
Tables

Parser

Privacy Aware
Planner

Executor

Audit
Request

DBMS

Privacy
Policy

Limited Disclosure and Retention
Query Generator

FIGURE 3: Hippocratic PostgreSQL architecture

Eltabakh, Padma, Silva, He, Aref & Bertino

International Journal of Data Engineering (IJDE), Volume (3): Issue (2), 2012 5

4. DEFINITIONS AND CONCEPTS
Anonymization views (A-views) can be defined on a single table, multiple tables, or arbitrary SQL

queries. They can be logical or materialized. A-views are similar to the standard database views except
that they employs anonymization operators during query processing to ensure that the anonymization
requirements are met. Before we describe how A-views work, we present the needed definitions and
concepts.

Multi-k-Anonymity: The concept of k-anonymity is introduced to protect the privacy of individuals [16,
17]. It associates one global privacy measure k to all individuals. However, in order to be applicable to a
wide range of applications and to support personalized privacy, we need to extend k-anonymity to
support multi-k-anonymity. That is, every individual may specify his/her preference for k. Furthermore,
we allow the data owners to specify a k value for each purpose/recipient combination. These
preferences are part of the privacy policy signed by the data owners and are kept inside the database.
The flexible multi-k-anonymity model is highly motivated by the diverse privacy requirements of the data
owners. For example, a hospital database may contain information about ordinary and well-known
individuals who, most probably, have different privacy constraints.

Domain Generalization Hierarchy (DGH): The k-anonymity algorithm uses domain generalization
hierarchies to generalize the values in certain attributes. Example of DGH is depicted in Fig. 4. In our
system, these DGHs are stored in a database table. A single DGH can be associated with one or more
columns in the database. To create and populate the DGHs, we introduce the following extended SQL
commands:
 CREATE DGH <dgh_name>;
 INSERT INTO DGH <dgh_name> <child, parent>;

The association between the DGHs and the database columns is established when creating the
anonymization views.

!"# $%#

!"# $%&'(#

!)# *+,-.'/01+#

2"# $%&'(#

2)# 3'4'(#

$%# &'()*)+,+-.#

$%&'(# 567#

*+,-.'/01+# 56)7#

3'4'(# 56)7#

8+'9:1+-;# 5#

######/01#

&'()*)+,+-.#/+2-'+)34(5###########6*),7#/*-*#

<-/';/'#

=>1:;&?@,-/';/'# A-(;%@,-/';/'#

$%&'(# *+,-.'/01+# 8+'9:1+-;# 3'4'(#

FIGURE 4: DGH, Table, and Sensitive Attributes Distribution

FIGURE 5: Create Anonymization View command

Eltabakh, Padma, Silva, He, Aref & Bertino

International Journal of Data Engineering (IJDE), Volume (3): Issue (2), 2012 6

Sensitive Attribute (SA) Generalization: Our work adopts the idea of sensitive-attribute generalization
proposed in [9, 19] to provide additional privacy to data owners. However, unlike [19], this feature is
kept independent of the anonymization process. That is, apart from specifying the k values, the data
owner may specify the level of generalization (in DGH) of the sensitive attribute(s) for every
purpose/recipient combination. For example (refer to Figure 4), if a person suffering from ʻUlcerʼ
specifies a generalization level of 1, then the Disease attribute (the SA attribute) is generalized to
ʻstomach-diseaseʼ, otherwise, it is reported as is.

Anonymization View (A-view): We introduce a new SQL construct to define an anonymization view
as presented in Fig. 5. The command declares the identifiers, quasi-identifiers, and sensitive attributes
of the data to be anonymized. Additionally, it associates DGHs to the quasi-identifiers. The profile_col
gives the provision of choosing any attribute as the foreign key to a table containing the k-values and
sensitive attribute generalization levels for various combinations of purpose and recipients.
Anonymization views can be either logical or materialized (if the keyword MATERIALIZED is used in the
command). Logical A-views suffer from temporal attacks if the datasets are not static [17]. This is
because updating the data will results in different anonymized dataset each time. Hence, in the case of
non-static datasets, we materialize the A-views to prevent these temporal attacks under incremental
updates. Details about materialized A-views are discussed in Section VII.

5. ANONYMIZATION VIEW ON SINGLE TABLE
We propose two different query plans to anonymize queries on single tables. The two plans differ in
where to plug-in the anonymization operator w.r.t the selection operator. The anonymization operator
implements an extended version of the Datafly algorithm in [16] to accommodate for multi-k-anonymity
and t-closeness. A key challenge in both plans is that anonymizing only the subset of tuples in the final
query answer may result in a privacy breach by linking of the answers from multiple queries. For
example, since queries can have different sets of tuples in the final answer, a quasi-identifier attribute of
a specific tuple may have 3-level generalization in Query Q1 while having a 2-level generalization in
Query Q2 (that is because the set of anonymized tuples are different). This clearly results in a privacy
breach since the intended level of generalization in Q1 is lost once the adversary has the results from
Q2. Therefore, the anonymization should relay on the entire collection of tuples in the base table
instead of considering only the final query answer. Conceptually, if a logical A-view is defined on a table
T, then any query on that A-view will use either of the two query plans presented in Fig. 6. The two
plans are described next.

5.1. Anonymize-then-Select Plan
The Anonymize-then-Select plan performs the anonymization as early as possible in the query pipeline,
i.e., immediately after the table-scan. Consequently, the selection predicates and/or projected attributes
are not pushed inside the table-scan operator but rather delayed until after the anonymization is
performed on the entire table. In the Anonymize-then-Select plan, a block of tuples is read from disk
and these tuples are then anonymized and pipelined to the next query operator in the plan. Thus, the
anonymization operator does not block the query pipeline until all tuples in the base table are
anonymized. Instead it operates as a block-level anonymization. The detailed steps are as follow.
Step 1: Index-Scan
Using a direct table scan to read the data blocks from disk may produce tuples with different order
depending on the table layout on disk (recall that the anonymization operator processes one block at a
time). Thus, the anonymization algorithm may generate different outputs, which may lead to a privacy
breach. To overcome this issue, Anonymize-then-Select plan uses a pre-defined index on the identifier
attribute to perform an index-scan over the data (See Fig. 6). Thus, the anonymized blocks are
guaranteed to have the same set of tuples independent of how the data is stored on disk.
Step 2: Sensitive Attribute Generalization
Each data owner can optionally specify a generalization level for SA attributes. If the generalization
level is m, then SA attributes are generalized to their mth ancestor in its DGH.

Eltabakh, Padma, Silva, He, Aref & Bertino

International Journal of Data Engineering (IJDE), Volume (3): Issue (2), 2012 7

Limited disclosure and retention

Filtering tuples
(selection predicates)

Anonymizing
(k-anonymity & t-closeness)

Sensitive Attribute
Generalization

Base table scan

Limited disclosure and retention

Anonymizing
(k-anonymity & t-closeness)

Sensitive Attribute
Generalization

Base table scan

Filtering tuples
(selection predicates)

Anonymize-then-Select Plan Select-then-Anonymize Plan
FIGURE 6: Anonymization query plans

Step 3: Block-Level Anonymization
We assume that each tuple belongs to a single data owner, e.g., patient record. If the k anonymity value
is set zero, then no anonymization is required. If k =1, then it is 1-anonymous, i.e., identifiers are hidden,
but will not be part of any QI group. The anonymization algorithm works as follow.

1) Retrieve the next block of tuples to process.
2) Identify the k value for each tuple from the A-view definition.
3) Mark the tuples having k = 0 as anonymized, and hide the identifier attribute of all the remaining

tuples. Mark the tuples having k = 1 as anonymized .
4) Compute the probability distribution of the sensitive attribute values over the tuples in the block.
5) While there exist unanonymized tuples, repeat the following:

5.1) Select the QI attribute having the maximum number of distinct values ! Say QImax.
5.2) Generalize QImax one level in its DGH. Then, merge all tuples with identical QI values in one

group.
5.3) If a group size is larger than or equals to the groupʼs maximum k (max k for the tuples in the

group), then compute the probability distribution for this QI group and calculate the t-closeness.
If the group satisfies t-closeness, all tuples in that group are marked anonymized. Otherwise,
repeat Step 5.1).

5.4) If there are not enough tuples to be anonymized, then hide all identifiers, quasi identifiers, and
sensitive attributes of the remaining tuples in the block. Then mark these tuples as anonymized.

6) If there are more blocks, then go to 1), otherwise exit.

Note that the anonymization operator does not wait until the anonymization of the entire block is
performed to pass on the anonymized tuples to the next node in the query tree. Instead, anonymized
tuples are pipelined after each iteration (Step 5 in the algorithm).
Step 4: Selection
Selection predicates on identifier attributes will not return any anonymized tuples since the identifier
values are hidden in Step 3.3 above. For quasi-identifiers, it is proposed in [13, 14] that if tuple t is the
only true query result, then t will not be reported in the answer to preserve the k-anonymity requirement
of tʼs owner. In contrast, in our model, we report t along with at least k-1 other tuples that will have the
same QI generalized values. Some of these reported tuples in tʼs QI group could be false-positive tuples,
i.e., without generalization, they do not satisfy the query. This approach of including false-positive tuples
preserves the anonymity requirements as well as improves the utility of the query, i.e., the number of
true-positive reported tuples.
We currently support only equality predicates on QI and SA attributes. After generalizing the values in
the QI and SA attributes, the equality operator needs to be extended such that an ancestor value in a

Eltabakh, Padma, Silva, He, Aref & Bertino

International Journal of Data Engineering (IJDE), Volume (3): Issue (2), 2012 8

DGH should match any descendant value under that ancestor. For this purpose, we introduce the
operator AVLIKE (A-view LIKE) that is used as illustrated in the following example.

Select * from PATIENT_AVIEW where zipcode = ʻ88512ʼ;
Assuming that zipcode is a QI attribute, then the query is re-written as:

Select * from PATIENT_AVIEW where zipcode AVLIKE ʻ88512ʼ;

Assume that two tuples t1 and t2 with zipcodes ʻ88512ʼ, and ʻ88513ʼ, respectively, are both generalized
to ʻ88***ʼ, then both tuples will now satisfy the query (t1 is true-positive while t2 is false-positive). This
algorithm is guaranteed to return all true-positive tuples along with their QI generalized groups.

Step 5: Limited Disclosure & Retention
The projection clause is manipulated to comply with the opt-in/opt-out choices of the tupleʼs owners.
Otherwise, the attribute value is replaced with a null value. The conditions for limited retention are also
embedded within this clause. Hence, the algorithm combines the anonymization with the limited
disclosure and retention to provide maximum privacy.

5.2. Select-then-Anonymize Plan
The Select-then-Anonymize plan is motivated by the fact that the former plan needs to anonymize the
entire base table even if there is only one true-positive tuple. Therefore, for high-selectivity queries, it is
more efficient to first find the true-positive tuples, and then construct their QI groups. In this case, the
anonymization is a tuple-level anonymization that provides even better pipelining in the query plan and
better response time compared to the block-level anonymization. The trick is how to form QI groups for
the true-positive tuples that are still base-table dependent and not query-answer dependent. The
detailed steps are as follow.
Steps 1, 2 & 3: Scan, SA Generalization, and Selection
In this step, tuples are scanned from the base table. The limitation of using pre-defined index scan (as
in Anonymize-then-Select) does not apply here since the Select-then-Anonymize plan processes one
tuple at a time. The SA attributes are generalized and predicates on these attributes are re-written to
use AVLIKE operator instead of equality operators. If there are predicates on identifier attributes, the
tuples will pass from the selection operator. But, they will be filtered in the anonymization operator (Step
4-3 below) except for tuples having k = 0.

Step 4: Anonymization
Select-then-Anonymize is based on the fact that every tuple t belongs to a particular QI group, say g(t),
in the anonymized version. Thus, the true-positive tuples are first selected, and then the QI groups for
each of these tuples are then retrieved from the base table. The criterion for forming the QI groups is
the same as in Anonymize-then-Select plan . One trick that Select-then-Anonymize uses is that the
sequence in which the QI attributes are selected for generalization (Step 3-5.1, Section V.1) can be pre-
computed for a given table, e.g., an example sequence can be: zipcode, disease, disease, zipcode, ….
This order can be pre-computed by estimating the number of distinct values in each of the QI attributes
after each generalization step. Given that QI generalization sequence is computed, the algorithm
executes as follow.

1) Scan tuples from the table being queried. Filter the tuples based on selection predicates. If the

selection predicate is based on SA, use the AVLIKE operator. Indicate if the selection predicate is
based on identifier or QI attributes.

2) Identify the k-requirement for each true-positive tuple.
3) If the selection predicate is based on identifiers, then report only the tuples having k = 0.
4) Hide the identifier attribute of all tuples with k ≥ 1. Mark the tuples having k = 1 as anonymized.
5) Compute the probability distribution of the sensitive attribute values in the table.
6) For every tuple t remaining after step 5, go to Step 7.

Eltabakh, Padma, Silva, He, Aref & Bertino

International Journal of Data Engineering (IJDE), Volume (3): Issue (2), 2012 9

7) Initialize set g(t) to t.
8) While the size of g(t) is less than the maximum k- requirement of any tuple in g(t) or g(t) does not

satisfy t-closeness repeat Steps 9-10.
9) Select the next QI attribute to be generalized from the pre-computed order ! Say QImax.
10) Generalize the values in QImax. Retrieve form the base table all tuples with values either matching or

descendant to the value in QImax and add them to g(t). Go to Step 8.
11) If the selection is based on QI attributes, return the tuples in g(t) (they are the QI group of t).

Otherwise, return t only.
Step 5: Limited Disclosure and Retention
This step is performed as in the Anonymize-then-Select plan.

!

!

!

!"# $!%# $!&# '(#)(#

%# (%# *+# ',%#),%#

&# (&# *+# ',%#),&#

(# *-# ',&#),&#

.# (.# *%# ',*#),*#

+# /%# *&# ',.#),&#

-# /&# *&# ',+#),.#

0# /&# *-# ',*#),+#

#

#

#

#

$!%# $!&# '(#)(#

(1# *23.2# ',%#),%#

(1# *23.2# ',%#),&#

(1# *23.2# ',&#),&#

(1# *23.2# ',*#),*#

/1# *23.2# ',.#),&#

/1# *23.2# ',+#),.#

/1# *23.2# ',*#),+#

"#$#%#&'()*+!,$-.*! /#%#&'()*+!,$-.*!

FIGURE 7: Example demonstrating privacy breach by querying QI and SA attributes

Special case: Predicates on both quasi-identifiers and sensitive attributes-
Queries that involve selection predicates on quasi-identifiers in combination with either sensitive
attributes or other attributes or both need special handling. We explain this case with the help of an
example given in Fig. 7. The attribute 'OA' is neither QI nor SA attributes. However, revealing the
mapping between such attributes and QI attributes helps in mapping an individual to his/her SA attribute.
For example, if the adversary is able to extract the information that individual with ID=1 (QI1= A1 and
QI2= 35) has OA=Oa1, (s)he can easily deduce by looking at the corresponding QI group that the
individual's SA value is Sa1. For this reason, consider the case of predicates on QI/SA combination
separately. From Fig. 7, we observe that performing the selection before anonymization may cause
privacy breach. For example, an adversary interested in finding the sensitive attribute of individual with
ID=4 can issue the following queries.

SELECT * FROM T WHERE QI1=`A4' AND QI2=`31' AND SA=`Sa1';
SELECT * FROM T WHERE QI1=`A4' AND QI2=`31' AND SA=`Sa2';

Both queries will return empty results as there are no matching tuples and so the adversary
successfully maps the individual to sensitive attribute value `Sa3'. It can be noted that the Anonymize-
then-Select algorithm performs the selection after anonymization and so gives out some false positives
even in this scenario. Therefore, Anonymize-then-Select does not suffer from this privacy breach. The
issue with Select-then-Anonymize can be resolved by postponing the predicate evaluation of SA/OA
attributes until after the anonymization takes place. This ensures that the results are consistent from
both plans and that the adversary does not gain any further knowledge beyond what can be obtained
from querying the anonymized version of the entire table.

5.3 Anonymize-then-Select vs. Select-then-Anonymize Plans
Although it is guaranteed that both plans will give query results that comply with the privacy policy, there
are a few trade-offs in choosing one plan over the other.

Eltabakh, Padma, Silva, He, Aref & Bertino

International Journal of Data Engineering (IJDE), Volume (3): Issue (2), 2012 10

Execution Time: Anonymize-then-Select plan has the drawback of anonymizing the entire base table
even if the query is highly selective, e.g., only one true-positive tuple exists. In Contrast, Select-then-
Anonymize plan anonymizes very few tuples (only the true-positives and their QI groups). However,
during the anonymization of a tuple, Select-then-Anonymize plan issues several queries that may lead
to a large number of random disk accesses. The number of database queries per tuple depends on the
number of iterations required to form the tupleʼs QI group, which in turn depends on the distribution of k-
values i.e., the smaller the average k-value, the lesser the number of iterations required to form the QI
group for a given tuple. Therefore, the higher the selectivity of the query and the smaller the k-values,
the greater the advantage of using Select-then-Anonymize plan and vice versa.
Utility: The utility is measured in terms of the lesser number of false-positive tuples included in the
answer. The utility is better for Select-then-Anonymize plan, where the maximum number of false
positives for a given tuple t is |g(t)| - 1. In contrast, for Anonymize-then-Select plan, the maximum
number of false positives per tuples is |Table| - 1.
In Fig. 8, we demonstrate the difference in query answers from the two plans with a simple example.
The base table PATIENT consists of four attributes and five tuples. The attribute Name is an identifier,
Birth and Zipcode are quasi-identifiers, and Disease is a sensitive attribute. These attributes use the
domain generalization hierarchies given in Fig. 1. The issued query has a single selection predicate on
Zipcode QI attribute. The table contains only one true-positive tuple as illustrated in the figure. The
answers from both plans meets the privacy requirements, yet the utility of Select-then-Anonymize plan
higher than that of Anonymize-then-Select since the former produces less false-positives.

6. ANONYMIZATION VIEW ON JOINED TABLES
In this section, we study anonymization over multiple tables and/or A-views. We analyse the 2-way joins
(extension to more than two entities is straightforward). In Fig. 9, we classify the 2-way join cases
based on the join predicates as well as whether the joins between base tables and/or A-views. Joins on
QI or SA attributes are allowed using the AVLIKE operator. For example, consider joining an A-view A
and a base table B. Anonymize-then-Select plan follows the regular process of constructing the A-view
A, and then joins this result with the raw table B. The intuition behind not joining earlier is that the
outside entity B should not be able to see the sensitive raw data associated with the A-view A. Consider
the case where table B (outside entity) has only one tuple and it is joined with the A-view A on the A.ID
attribute. If B were joined with the base table of the A-view A, the result could be a single tuple.
Anonymizing this single tuple would not protect privacy as the mapping between the identifiers and
sensitive attribute for the tuple is implicitly exposed.

Select-then-Anonymize plan also ensures that the raw table joins with the A-view only. However, as an
intermediate step, Select-then-Anonymize plan calculates the semijoin of A with B. This produces the
tuples in A that would be participating in the join and thus need to be anonymized. The anonymized
result is then joined with the raw table. The advantage of this approach over Anonymize-then-Select
plan is the higher utility in cases where join predicates are based on QI. The reasons are the same as
the ones explained in Section V.
In the case of joining two A-views, Anonymize-then-Select plan follows a similar approach to the one in
the previous case. Each A-view is constructed independently and the results are joined using the
AVLIKE operator, if needed. Select-then-Anonymize plan calculates the semi-join of A with B and B with
A, thus identifying the tuples of A and B that will participate in the join. These tuples are independently
anonymized (Section V.2) and then joined.

Eltabakh, Padma, Silva, He, Aref & Bertino

International Journal of Data Engineering (IJDE), Volume (3): Issue (2), 2012 11

FIGURE 8: Example demonstrating Anonymize-then-Select versus Select-then-Anonymize plans

7. MAINTENANCE OF A-VIEWS
A logical A-view work fine if the data do not change over time. If the data gets updated, and the DBMS is
re-computing the A-view with each query, then the comparison of various answers may lead to a privacy
breach. The incremental maintenance of K-anonymization has been studies in [8, 18]. In our model, we
proposed Materialized A-views to handle insertions to existing data. For simplicity, we consider the
single-k anonymity requirement. The A-view is materialized in the format shown in Fig 10, where QI
groups and the corresponding tuple ids are stored.

Eltabakh, Padma, Silva, He, Aref & Bertino

International Journal of Data Engineering (IJDE), Volume (3): Issue (2), 2012 12

! "#$%!&'(%)*$#&

)!+!),-$(.
/!+!*).!0)/1(

)2!/!+!*).!0)/1(&
3%#!&4('$)1!5)%61$%78

)!+!),-$(.
/!+!),-$(.

!"#$%&'()*&*+*!,-,./012*!*3*4-0,*5067*8
4-0,*-,*!9&:*+*"9:;!<=:>?@!6A?:BAC@
4-0,*-,*!9;&*+**ADEB;?!=D!>A=?D!F!?:G:>=B!B9H?@
4-0,*-,*!9<!+*4B:I=JK!LE=B=;DAAC@
4-0,*-,*!9$!+*%9!LE=B=;DAA!;AACAC@

!"#$%&'()*&*&+*!,-,./012**=!**>2/0?-0, 8@3*
4-0,*5067*8
4-0,*-,*!9&:*+*"9:;!<=:>?@!6A?:BAC@
4-0,*-,*!9;&*+**ADEB;?!=D!>A=?D!DMA!N$!LB9EO@
4-0,*-,*!9<!+*4B:I=JK!LE=B=;DAAC@
4-0,*-,*!9$!+*%9!LE=B=;DAA!;AACAC@

!"#$%&'()*&*+*!,-,./012*!*3*!,-,./012*8*
3*672,*?-0,
4-0,*-,*!9&:*+*"9:;!<=:>?@!6A?:BAC@
4-0,*-,*!9;&*+**ADEB;?!=D!>A=?D!F!?:G:>=B!B9H?@
4-0,*-,*!9<!+*4B:I=JK!LE=B=;DAAC@
4-0,*-,*!9$!+*%9!LE=B=;DAA!;AACAC@

!"#$%&'()*&*&+*!,-,./012**=!**>2/0?-0, 8@3*
!,-,./012**=8*>2/0?-0, !@3**672,*?-0,
4-0,*-,*!9&:*+*"9:;!<=:>?@!6A?:BAC@
4-0,*-,*!9;&*+**ADEB;?!=D!>A=?D!DMA!N$!LB9EO@
4-0,*-,*!9<!+*4B:I=JK!LE=B=;DAAC@
4-0,*-,*!9$!+*%9!LE=B=;DAA!;AACAC@

FIGURE 9: Join Scenarios

FIGURE 10: Materialized A-view

Selection: Any query over a materialized A-view triggers a Pl/Sql procedure that uses the AVLIKE
operator on QI attributes. In this case, the entire QI group is returned as output. For example, in
Figure10, if the selection predicate is ʻQI1 = 35ʼ, then 3 tuples formed out of the first cluster and returned
as output. Selection predicates on SA or other attributes scan each of the tuples in the A-view (QI
groups/ clusters) and processes the list of values to match the value in the predicate. Queries with
selection predicates on identifiers return empty answer. The utility of materialized A-views is similar to
that of Select-then-Anonymize plan except that in the case where the regular query result is empty.
Select-then-Anonymize plan would return empty result whereas the materialized A-view may return a
cluster that closely matches the predicate.

Insertion: Inserting to a base table of the materialized A-view triggers a Pl/Sql procedure that calculates
the distance of the tuple being inserted from each of the tuples in the materialized A-view. Here, the
distance refers to the sum of distances between corresponding quasi-identifiers. Each quasi-identifier
value is a node in its DGH. The normalized distance between any two nodes in a DGH is given by the
number of edges between the two nodes divided by the maximum distance between any two nodes in
the DGH. This ensures that the distance measure for any QI is in the range [0 1]. The new tuple is
inserted into the closest group (This may require modifying the QIs of the group). The closest group is
the one where the total changes, measured in terms of normalized distance, of the inserted tuples and
all existing tuples in the group, is the least. The ID, SA, and other attributes of the group are modified by
adding the values of the new tuple to the corresponding lists. Upon insertions, the QI group attributes of
other tuples can be only generalized to a higher node in DGH. In this case, temporal attacks from the
insertion are avoided because the groupsʼ attributes will become more generalized after the insertion.
This is the trade-offs between the privacy and the utility.

Deletion: The select predicate in a delete command is processed on the base table and the IDs of the
tuples to be deleted are noted. Each tuple is queried in the materialized A-view and is deleted from the
group. If the group size decreases to a value less than ʻkʼ, the group is removed from the materialized A-
view, and each of the remaining tuples in that group and individually inserted again into the materialized
view following the insert procedure above.

Update: Update is handled as a delete of the old tuple followed by an insertion of new tuple with updated
values.

Eltabakh, Padma, Silva, He, Aref & Bertino

International Journal of Data Engineering (IJDE), Volume (3): Issue (2), 2012 13

8. PERFORMANCE ANALYSIS
8.1. Quality Measures
There is always a trade-off between privacy and utility in anonymization; the higher the privacy, the lower
the utility of the data. The target is to maximize the utility of the anonymized data, while achieving the
required levels of privacy. There are two types of utility in our system -1) utility of the query result
(considers the number of false positives and false negatives) and 2) utility of the anonymized data
(considers the effect of generalizing the data).

Precision and Recall: Precision is the ratio of true positives to the sum of true positives and false
positives. Precision is always between 0 and 1, where 1 is the ideal value (no false positives). Since both
plans return false positives when the selection predicates are on QI or SA attributes, the precision is
below 1. In all other cases, the precision is 1. Recall is the ratio of the number of true positives to the
sum of true positives and false negatives. Both plans are guarantee not to have false negatives (except
for predicates on ID), and hence the recall is 1 in most cases.

Normalized Certainty Penalty (NCP): The NCP metric [20] measures the information loss for various
choices of block sizes during the anonymization of large data. This metric can be used for the
Anonymize-then-Select algorithm to identify the best block sizes to use since this algorithm is a block-
level anonymization.

K-Deviation: To provide a measure of the unnecessary anonymization performed, we propose k-
Deviation, which is the sum of differences between required k and achieved k for each tuple in the table.
This value would be close to 0 for optimal algorithms. k-Deviation demonstrates the efficiency of the
multi-k approach over the straightforward approach of anonymizing using single k, where k is set to the
maximum required k over all tuples.

8.2. Experimental Results
We used a synthetically generated and real-world datasets in the experiments. The synthetic data
include table 'PATIENT' with a maximum of 100K tuples, with 4 attributes {Name, Birthdate, Area and
Disease}. 'Name' is the identifier, 'Birthdate' and 'Area' form the QI set, while 'Disease' is the sensitive
attribute for the patient entity. Similar experiments are repeated over million tuples from the US Census
Data (1990). Two identifiers 'ID' and 'NAME' are synthetically generated. The attributes 'AGE', 'SEX' and
'CITIZENSHIP' are used as QIs. 'SCHOOL (Education Level)' is considered the sensitive attribute. DGHs
for QI and SA attributes are generated synthetically with a maximum depth of 4. The k-values and SA-
Generalization levels for each of the million tuples are randomly generated. The k values range between
0 and 9 for all the experiments unless otherwise is specified. For all the experiments, it is assumed that
the DGHs for all the attributes are in-memory data structures. The experiments are performed on Intel(R)
CoreTM2 Quad CPU @ 2.83GHz machine with 3.5GB RAM.

Fig. 11 shows the runtime overhead of the anonymization operator (using Anonymize-then-Select plan)
during query processing, with the block size set to 1024. Though the runtime with anonymization is
asymptotically much higher than the runtime without anonymization, it is notable that the anonymization
of 100k tuples is performed in less than 75 seconds for Synthetic dataset. In case of the US Census data
set, the anonymization of 100k tuples is performed within 30 seconds and that of 1 million tuples is
performed within 300 seconds. The time taken may vary with the algorithm used (algorithms that are
more efficient in terms of utility may be slower); however, the fact that anonymization at the database
engine level takes reasonable time is very promising. We observed in Fig. 12 that the run time varies
with different block sizes (the table size in this experiment is set to 10K tuples). The trends show that
higher block sizes marginally reduce the run time. This can be attributed to the fact that the larger
numbers of tuples help in faster formation of QI groups and thus need a lesser number of iterations.
Though this measurement helps in choosing the optimal block size for the dataset in hand, it is important
to note that the available memory in the system (to store and anonymize the tuples) is a constraint on
the maximum value of block size.

Eltabakh, Padma, Silva, He, Aref & Bertino

International Journal of Data Engineering (IJDE), Volume (3): Issue (2), 2012 14

In Fig. 13, we measured the k-Deviation and NCP metric for multi-k and single-k variations. We distribute
k-values in such a way that 10 percent of the tuples have high k (k=50) and the remaining values have
low k (less than 5). We also show the trend for 1 percent high k values (k=50). It is observed that the k-
Deviation of multi-k technique is marginally smaller than the one of the single-k technique. The reason
for this is that single-k anonymization forms larger groups unnecessarily. The multi-k technique has a
marginal gain over the single-k in this case of varying block sizes as well. We measured the utility loss of
anonymized data for the single-k and multi-k cases and observed that NCP is close to 0 for large
datasets and block sizes. This is intuitive since having large number of tuples for anonymization helps in
easier formation of groups without the need for much generalization. Again, it is noted that the multi-k
technique has lower NCP than the single-k case. The reason is that the multi-k technique strives for
smaller group sizes (avoids unnecessary generalization) when compared to single-k, and hence results
in lower k-Deviation and NCP.
In Fig. 14, we study the performance of the Select-then-Anonymize algorithm (labelled as Algorithm II in
the figure). The Anonymize-then-Select algorithm is labelled as Algorithm I in the figure. We set the table
size to 100K tuples and vary the selectivity of the issued queries. For queries with non-QI predicates, the
response time initially increases linearly with the increase in the number of selected tuples. This is
intuitive since the tuples selected based on non-QI attributes do not often tend to form QI/equivalence
groups; this results in many database queries being issued for every selected tuple to find its QI group.
However, the rate of increase in the running time decreases after a certain point as the algorithm comes
across tuples that are already reported and thus no database queries are issued for a fraction of the
selected tuples. On the other hand, the time taken by queries on QI attributes increases very slowly
initially and speeds up after a certain point. The query predicates use equality or `like' operators. The
reason for the this behaviour is that with a small number of selected tuples, it is highly probable that they
form a part of the same QI group and thus the number of database queries to be issued is small.

!

!"

!""

!"""

!""""

!"""""

"

#"

$"

%"

&"

!""

!#"

!$"

!%"

!&"

!" !"" !""" !"""" !"""""

'(
))

*)
+,
-*.

/,
0
*-1

,2
)3

)4
.
*52

-*3
)6
.
78

'(
))

*)
+,
-*.

/,
0
*-1

3(
-,
2)
3)

4.
*52

-*3
)6
.
78

9(.:/;,3<,-(=>/7,6>3+,7?2>/8

@4)-1/-*?,A2-27/-
93,B)3)4.*52-*3)

C*-1,B)3)4.*52-*3)

!

!"

!""

!"""

!""""

!"""""

!""""""

"

D""

!"""

!D""

#"""

#D""

!" !"" !""" !"""" !""""" !""""""

'(
))

*)
+,
-*.

/,
0
*-1

,2
)3

)4
.
*52

-*3
)6
.
78

'(
))

*)
+,
-*.

/,
0
*-1

3(
-,
2)
3)

4.
*52

-*3
)6
.
78

9(.:/;,3<,-(=>/7,6>3+,7?2>/8

E/)7(7,A2-27/-
93,B)3)4.*52-*3)

C*-1,B)3)4.*52-*3)

FIGURE 11: The runtime for Anonymize-then-Select algorithm under different datasets

!

"#

"!

$#

$!

%#

#&$ #&' #&(#&) "

!"
##

$#
%&
'$(

)&
$#
&*
)+
,#

-*

./,+0&*$1)&23*&3&453+'$,#& ,4&'36/)&*$1)7

*+,-./-01234-45/-

6/,575234-45/-

FIGURE 12: The runtime for Anonymize-then-Select under different block sizes

Eltabakh, Padma, Silva, He, Aref & Bertino

International Journal of Data Engineering (IJDE), Volume (3): Issue (2), 2012 15

!"#

#

#!

#!!

#!!!

#!!!!

#!! #!!! #!!!! #!!!!!

!"
#$

%&
'(
&)
*+
&*
+,
-)

./
'*
0/
+1
2)
3+
/4
'2
$5

6.78$9+):+(.;2$/+&*+0'('/$(+12)3+/4'2$5

$%&'()*+,#!-.

/(01&2)*+,#!-.

$%&'()*+,#-.

/(01&2)*+,#-.

!"!!#

!"!#

!"#

#

#!! #!!! #!!!! #!!!!!

6
<=

+12
)3
+/
4'
2$
5

6.78$9+):+(.;2$/+&*+0'('/$(+12)3+/4'2$5

/(01&2)*+,#!-3+#-.

$%&'()*+,#!-.

$%&'()*+,#-.

FIGURE 13: k-Deviation and NCP using Anonymize-then-Select plan (Census Dataset, sparse high-k values)

As the query result size increases, it implies that the quasi-identifiers of the selected tuples are not very
similar and thus need more database queries to find their QI groups. It can be noted from Fig. 14 that
Select-then-Anonymize (Algorithm II) performs better than Anonymize-then-Select (Algorithm I) if the
query is highly selective, otherwise Algorithm I performs better since its anonymization cost is constant.
The query selectivity and the distribution of the k values can be passed to the query optimizer to select
the cheapest plan among the two. This optimization is left for future work.
In Fig. 15, we analyse the sensitivity of Select-then-Anonymize (Algorithm II) to the k value. We tested
three values of k, 10, 50, and 200. The number of iterations, which maps to the number of issued
database queries, increases with the increase in k. Thus, we see an increase in the runtime of Select-
then-Anonymize plan, whereas Anonymize-then-Select plan takes similar runtime for all k-values.
Figs. 16 and 17 depict the performance of joins involving anonymization views. In Fig. 16, the join of an
Anonymization View (100K tuples) is performed with a base table (10k tuples). As in the case of a single
table, the trends are observed for QI-based and non-QI-based predicates. Fig. 17 demonstrates the
runtime for the join of two anonymization views using synthetic datasets (100K and 10K tuples). we
observe that the runtime almost doubled compared to joining an anonymization view with a base table.
This is expected since the time taken to anonymize both relations is accounted. In both cases, the trend
is similar to that in the single-table case. Similar trends are observed for Census dataset in the case
Select-then-Anonymize plan, but the Synthetic data has much larger domain of distinct values for QI and
non-QI attributes, and hence it displays much sharper trends.

!

"!

#!!

#"!

$!!

$"!

%!!

%"!

&!!

&"!

!'!!# !'!# !'# # #!

()
**

+*
,-.
+/
0-
+*
-10

23
*4

1

50602.+7+.8-9:-3;-.<=60-1+>0?

@6,3A+.B/-C

@6,3A+.B/-CC- D EC-FA04+2<.01

@6,3A+.B/-CC- D *3*-EC-FA04+2<.01

!"#

$"$

$"#

%"$

%"#

&"$

&"#

'

!'

%'

('

#'

)''

)!'

)%'

)('

') ! $ % &

!"
##

$#
%&
'$(

)&$
#&
*)
+,
#-

*&.
/0
%,
1$'
2(

&34

!"
##

$#
%&
'$(

)&$
#&
*)
+,
#-

*&.
/0
%,
1$'
2(

&33
4

5)0)+'6'7&.8&,9&':;0)&*$<)4

*+,-./.012)'3

*+,-./.012&'3

*+,-./.012!''3

FIGURE 14: The runtime for Select-then-Anonymize
plan (Synthetic Dataset) FIGURE 15: The runtime for Anonymize-then-Select

plan and Select-then-Anonymize with varying `k'
(Census Dataset)

Eltabakh, Padma, Silva, He, Aref & Bertino

International Journal of Data Engineering (IJDE), Volume (3): Issue (2), 2012 16

!

"!

#!!

#"!

$!!

$"!

%!!

%"!

&!!

&"!

"!!

! # $ % & " ' (

)*
++

,+
-.
/,0

1.
,+
.2
13
4+

52

61713/,8,/9..:.#!.;&.<1:=>12215.?2.@.4A..B?;8,1CB.:.B>?C./?D71B.E

F7-4>,/G0.H

F7-4>,/G0.HH.; IH.J>15,3?/12

F7-4>,/G0.HH.; +4+.IH.J>15,3?/12

!

"!!

#!!

$!!

%!!

&!!

'!!

(!!

)!!

! " # $ % & ' (

*+
,,

-,
./
0-1

2/
-,
/3
24
5,

63

728240-9-0://;/"!/<%/=>/5?//@A<9-2B@/;/@A<9-2B@/C

D8.5E-0F1/G

D8.5E-0F1/GG/ < HG/IE26-4A023

D8.5E-0F1/GG/ < ,5,/HG/IE26-4A023

FIGURE 16: Joining an A-view and a base table FIGURE 17: Joining two A-views

9. CONCLUSION
Protecting the privacy of the data inside the dataʼs natural habitat, the DBMS, is an ever more
demanding. It is (1) more secure, since the data is not transferred to an application layer or to a third-
party, (2) more efficient, since the various query optimizations can be applied inside the database engine,
(3) more flexible, since anonymization can be performed on arbitrary queries with multiple predicates,
and (4) more reliable, since recovery mechanisms are already taken care of by the DBMS. In this paper,
we proposed the concept of anonymization views (A-views) to enforce data privacy inside the DBMS.
We presented two query plans Anonymize-then-Select and Select-then-Anonymize, which perform
block-level and tuple-level anonymization, respectively, and studied the trade-offs between the two plans.
For static datasets, we proposed the logical A-views to anonymize the data without the need to store the
anonymized version. In contrast, for dynamically changing data, we proposed materialized A-views. Our
experimental analysis and performance evaluation showed the feasibility of the proposed approach and
highlighted the trade-offs among the proposed algorithms under different scenarios and settings.

Eltabakh, Padma, Silva, He, Aref & Bertino

International Journal of Data Engineering (IJDE), Volume (3): Issue (2), 2012 17

REFERENCES
[1] Agarwal, R., Ameet Kini, Kristen LeFevre, Amy Wang, Yirong Xu, and Diana Zhou. Managing Healthcare Data

Hippocratically. SIGMOD, 2004.
[2] Agarwal, R., Kiernan, J., Ramakrishnan Srikant, and Yirong Xu. Hippocratic Databases. VLDB. 2002.
[3] Agarwal, R., Paul, B., Grandison, T., Kiernan, J., Logan, S. and Rjaibi, W. Extending Relational Database

Systems to Automatically Enforce Privacy Policies. ICDE. 2005.
[4] Agrawal, R., Bayardo, R., Faloutsos, C., Kiernan, J., Rantzau, R., and Srikant, R. Auditing Compliance with a

Hippocratic Database. VLDB. 2004.
[5] Byun, J., Karma, A., Bertino, E., and Li, N. Efficient k-Anonymization using Clustering Techniques. DASFAA.

2007.
[6] Chaudhuri, S., Dutta, T. and Sudarshan, S. Fine Grained Authorization Through Predicated Grants. ICDE, 2007.
[7] Cranor, L., Langheinrich, M., Marchiori, M., Pressler-Marshall, M., and Reagle, J. The platform for privacy

preferences 1.0 (P3P1.0) specification. W3C Recommendation, 2002.
[8] Jian Pei., Xu, J., Wang, Z., Wang, W., Wang, K., Maintaining K-Anonymity against Incremental

Updates. 19th International Conference on Scientific and Statistical Database Management, 2007.
[9] Laura-Silva, Y N., and Aref, W. Realizing Privacy-Preserving Features in Hippocratic Databases. ICDE. 2007.
[10] LeFevre, K, Agarwal, R., Ercegovac, V., Ramakrishnan, R., Xu, Y. Limiting Disclosure in Hippocratic

Databases. VLDB. 2004.
[11] Li, N., Li, T., and Venkatasubramanian, S. t-closeness: Privacy Beyond k-Anonymity and l-Diversity. ICDE.

2007.
[12] Machanavajjhala, A., Gherke, J., Kifer, D., and Venkitasubramaniam, M. l-Diversity: Privacy beyond k-

Anonymity. ICDE. 2006.
[13] Nergiz, Ercan M, Clifton, C., and Nergiz, A E . Multi-relational k-Anonymity. ICDE. 2007.
[14] Qihua Wang et al. On the Correctness Criteria of Fine-Grained Access Control in Relational

Databases.VLDB.ʼ07.
[15] Sweeney, L. Achieving k-anonymity privacy protection using generalization and suppression. International

Journal on Uncertainty, Fuzziness and Knowledge-based Systems, ʻ02.
[16] Sweeney, L. Guaranteeing anonymity when sharing medical data, the datafly system. Journal of the American

Medical Informatics Association, 1997.
[17] Sweeney, L. k-Anonymity:A model for protecting privacy. International Journal on Uncertainty, Fuzziness and

Knowledge-based Systems, 2002.
[18] Truta, Traian Marius, and Alina Campan. K-Anonymization Incremenatal Maintenance and Optimization

Techniques. Symposium on Applied Computing. 2007.
[19] Xiao, Xiaokui, and Yufei Tao. Personalized Privacy Preservation. SIGMOD, 2006.
[20] Xu, Jian, Wei Wang, Jian Pei, Xiaoyuan Wang, Baile Shi, and Ada Wai-Chee Fu. Utility-based Anonymization

using Local Recoding. KDD. 2006.
[21] Padma, J., Silva, Y., Arshad, U., Aref, W. G. Hippocratic PostgreSQL. ICDE. 2009.
[22] Frank D. McSherry. Privacy integrated queries: an extensible platform for privacy-preserving data analysis.

SIGMOD, 2009

