Welcome to

CS 3516: Computer Networks

Prof. Yanhua Li

Time: 9:00am –9:50am M, T, R, and F
Location: AK219
Fall 2019 A-term
Updates

- Quiz 3
 - On Friday
 - 1 bonus question
 - Topics: HTTP basics, cookies, RTT

- Project 1
 - Due Next Tuesday

- Extra office hours
 - Prof Li: Friday 9/6 11AM-12PM
 - Lei: Monday 9/9 10:30-11:30AM
Chapter 2: outline

2.1 principles of network applications
 - app architectures
 - app requirements

2.2 Web and HTTP

2.5 DNS
 Service Overview, Structure
 Resolution process
 Data Format
DNS: domain name system

people: many identifiers:
- SSN, name, passport #

Internet hosts, routers:
- IP address (32 bit) - used for addressing datagrams
- “name”, e.g., www.yahoo.com - used by humans

Q: how to map between IP address and name, and vice versa?

Domain Name System:
- *distributed database* implemented in hierarchy of many *name servers*
- *application-layer protocol:* hosts, name servers communicate to *resolve* names (address/name translation)
 - note: core Internet function, implemented as application-layer protocol
 - complexity at network’s “edge”
Resolving Name, Locating Service/Object

URL
http://users.wpi.edu/~yli15/courses/CS3516Fall19A/Schedule.html

WPI DNS Server

tcp port 80 121.121.121.121

web server

Network File System Server

Service → 121.121.121.121, tcp port 80
Object → ~yli15/courses/CS4516Fall15B/Schedule.html
DNS: services, structure

DNS services
- hostname to IP address translation
- host aliasing
 - canonical, alias names
- mail server aliasing
- load distribution
 - replicated Web servers: many IP addresses correspond to one name

why not centralize DNS?
- single point of failure
- traffic volume
- distant centralized database
- maintenance

A: doesn’t scale!
DNS: a distributed, hierarchical database

client wants IP for www.amazon.com; 1st approx:
- client queries root server to find com DNS server
- client queries .com DNS server to get amazon.com DNS server
- client queries amazon.com DNS server to get IP address for www.amazon.com

Analogy: Marshalls -> Physical Address
DNS: root name servers

- contacted by local name server that cannot resolve name
- root name server:
 - contacts authoritative DNS server if name mapping not known
 - gets mapping
 - returns mapping to local name server

13 root name “servers” worldwide:
TLD, authoritative servers

top-level domain (TLD) servers:
- responsible for com, org, net, edu, aero, jobs, museums, and all top-level country domains, e.g.: uk, fr, ca, jp
- **Network Solutions** maintains servers for .com TLD
- **Educause** for .edu TLD

authoritative DNS servers:
- organization’s own DNS server(s), providing authoritative hostname to IP mappings for organization’s named hosts
- can be maintained by organization or service provider
DNS: a distributed, hierarchical database

client wants IP for www.amazon.com; 1st approx:
- client queries root server to find com DNS server
- client queries .com DNS server to get amazon.com DNS server
- client queries amazon.com DNS server to get IP address for www.amazon.com

Analogy: Marshalls -> Physical Address
Local DNS name server

- does not strictly belong to hierarchy
- each ISP (residential ISP, company, university) has one
 - also called “default name server”
- when host makes DNS query, query is sent to its local DNS server
 - has local cache of recent name-to-address translation pairs (but may be out of date!)
 - acts as proxy, forwards query into hierarchy
- Difference btw Local DNS and Authoritative DNS server?
 - Given an organization, e.g., WPI, one for its internal users, one for external users
Chapter 2: outline

2.1 principles of network applications
 ▪ app architectures
 ▪ app requirements
2.2 Web and HTTP
2.5 DNS
 Service Overview, Structure
 Resolution process
 Data Format
DNS name resolution example

- host at \textit{cs.wpi.edu} wants IP address for \textit{cs.umass.edu}

iterated query:
- contacted server replies with name of server to contact
- “I don’t know this name, but ask this server”
DNS name resolution example

Recursive query:
- Puts burden of name resolution on contacted name server
- **Cons:** Heavy load at upper levels of hierarchy
DNS queries

recursive query:
- puts burden of name resolution on contacted name server
- heavy load?

iterated query:
- contacted server replies with name of server to contact
- “I don’t know this name, but ask this server”
DNS: caching, updating records

- once (any) name server learns mapping, it **caches** mapping
 - cache entries **timeout** (disappear) after some time (TTL, Time-to-Live)
 - **TLD servers typically cached** in local name servers
 - thus root name servers not often visited

- cached entries may be **out-of-date** (best effort name-to-address translation!)
 - if name host changes IP address, it may not be known Internet-wide until all TTLs expire
Chapter 2: outline

2.1 principles of network applications
 - app architectures
 - app requirements

2.2 Web and HTTP

2.5 DNS
 - Service Overview, Structure
 - Resolution process
 - Data Format
DNS records

DNS: distributed db storing resource records (RR)

RR format: \((name, value, type, ttl)\)

type=A
- *name* is hostname
- *value* is IP address

type=NS
- *name* is domain (e.g., foo.com)
- *value* is hostname of authoritative name server for this domain

type=CNAME
- *name* is alias name for some “canonical” (the real) name
- *value* is canonical name

type=MX
- *value* is name of mailserver associated with *name*

- **www.ibm.com** is really servereast.backup2.ibm.com

- example.com is really serverwest.backup2.ibm.com
DNS protocol, messages

- **query** and **reply** messages, both with same *message format*

msg header
- **identification**: 16 bit # for query, reply to query uses same #
- **flags**:
 - query or reply
 - recursion desired (query)
 - recursion available (reply)
 - reply is authoritative (reply)
 (DNS is an authoritative DNS to a queried name)

<table>
<thead>
<tr>
<th>Identification</th>
<th>Flags</th>
</tr>
</thead>
<tbody>
<tr>
<td># questions</td>
<td># answer RRs</td>
</tr>
<tr>
<td># authority RRs</td>
<td># additional RRs</td>
</tr>
</tbody>
</table>

- **questions** (variable # of questions)
- **answers** (variable # of RRs)
- **authority** (variable # of RRs)
- **additional info** (variable # of RRs)
DNS protocol, messages

Query:
- name, type fields for a query

Reply:
- RRs in response to query
- records for authoritative servers
- additional “helpful” info that may be used

<table>
<thead>
<tr>
<th>Field</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>identification</td>
<td>2 bytes</td>
</tr>
<tr>
<td>flags</td>
<td>2 bytes</td>
</tr>
<tr>
<td># questions</td>
<td>2 bytes</td>
</tr>
<tr>
<td># answer RRs</td>
<td>2 bytes</td>
</tr>
<tr>
<td># authority RRs</td>
<td>2 bytes</td>
</tr>
<tr>
<td># additional RRs</td>
<td>2 bytes</td>
</tr>
<tr>
<td>questions (variable # of questions)</td>
<td></td>
</tr>
<tr>
<td>answers (variable # of RRs)</td>
<td></td>
</tr>
<tr>
<td>authority (variable # of RRs)</td>
<td></td>
</tr>
<tr>
<td>additional info (variable # of RRs)</td>
<td></td>
</tr>
</tbody>
</table>
Inserting records into DNS

- example: new startup “Networkabc”
- register name networkabc.com at DNS registrar (e.g., Network Solutions) (and pay a fee for it.)
 - provide names, IP addresses of authoritative name server (primary and secondary)
 - registrar inserts two RRs into .com TLD server:
 (networkabc.com, dns1.networkabc.com, NS)
 (dns1.networkabc.com, 212.212.212.1, A)

- Authoritative server
 - create type A record for www.networkabc.com;
 - create type MX record for networkabc.com
Attacking DNS

DDoS attacks

- Bombard root servers with traffic
 - Not successful to date
 - Traffic Filtering
 - Local DNS servers cache IPs of TLD servers, allowing root server bypass

- Bombard TLD servers
 - Potentially more dangerous
Questions?
Quiz 4 and Lab 2

Quiz 4, 9/12, Tuesday
 ▪ Topic: DNS

Lab 2: DNS
 Due 9/15 Friday at 23:59PM
 Link:
 https://users.wpi.edu/~yli15/courses/CS3516Fall17A/Assignments.html