
CS229 Lecture notes

Andrew Ng

Supervised learning

Let’s start by talking about a few examples of supervised learning problems.
Suppose we have a dataset giving the living areas and prices of 47 houses
from Portland, Oregon:

Living area (feet2) Price (1000$s)
2104 400
1600 330
2400 369
1416 232
3000 540
...

...

We can plot this data:

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

0

100

200

300

400

500

600

700

800

900

1000

housing prices

square feet

pr
ic

e
(in

 $
10

00
)

Given data like this, how can we learn to predict the prices of other houses
in Portland, as a function of the size of their living areas?

1

CS229 Fall 2018 2

To establish notation for future use, we’ll use x(i) to denote the “input”
variables (living area in this example), also called input features, and y(i)

to denote the “output” or target variable that we are trying to predict
(price). A pair (x(i), y(i)) is called a training example, and the dataset
that we’ll be using to learn—a list of m training examples {(x(i), y(i)); i =
1, . . . ,m}—is called a training set. Note that the superscript “(i)” in the
notation is simply an index into the training set, and has nothing to do with
exponentiation. We will also use X denote the space of input values, and Y
the space of output values. In this example, X = Y = R.

To describe the supervised learning problem slightly more formally, our
goal is, given a training set, to learn a function h : X 7→ Y so that h(x) is a
“good” predictor for the corresponding value of y. For historical reasons, this
function h is called a hypothesis. Seen pictorially, the process is therefore
like this:

Training
 set

 house.)
(living area of

Learning
algorithm

h predicted yx
(predicted price)
of house)

When the target variable that we’re trying to predict is continuous, such
as in our housing example, we call the learning problem a regression prob-
lem. When y can take on only a small number of discrete values (such as
if, given the living area, we wanted to predict if a dwelling is a house or an
apartment, say), we call it a classification problem.

3

Part I

Linear Regression

To make our housing example more interesting, let’s consider a slightly richer
dataset in which we also know the number of bedrooms in each house:

Living area (feet2) #bedrooms Price (1000$s)
2104 3 400
1600 3 330
2400 3 369
1416 2 232
3000 4 540
...

...
...

Here, the x’s are two-dimensional vectors in R
2. For instance, x

(i)
1 is the

living area of the i-th house in the training set, and x
(i)
2 is its number of

bedrooms. (In general, when designing a learning problem, it will be up to
you to decide what features to choose, so if you are out in Portland gathering
housing data, you might also decide to include other features such as whether
each house has a fireplace, the number of bathrooms, and so on. We’ll say
more about feature selection later, but for now let’s take the features as
given.)

To perform supervised learning, we must decide how we’re going to rep-
resent functions/hypotheses h in a computer. As an initial choice, let’s say
we decide to approximate y as a linear function of x:

hθ(x) = θ0 + θ1x1 + θ2x2

Here, the θi’s are the parameters (also called weights) parameterizing the
space of linear functions mapping from X to Y . When there is no risk of
confusion, we will drop the θ subscript in hθ(x), and write it more simply as
h(x). To simplify our notation, we also introduce the convention of letting
x0 = 1 (this is the intercept term), so that

h(x) =
n
∑

i=0

θixi = θTx,

where on the right-hand side above we are viewing θ and x both as vectors,
and here n is the number of input variables (not counting x0).

4

Now, given a training set, how do we pick, or learn, the parameters θ?
One reasonable method seems to be to make h(x) close to y, at least for
the training examples we have. To formalize this, we will define a function
that measures, for each value of the θ’s, how close the h(x(i))’s are to the
corresponding y(i)’s. We define the cost function:

J(θ) =
1

2

m
∑

i=1

(hθ(x
(i))− y(i))2.

If you’ve seen linear regression before, you may recognize this as the familiar
least-squares cost function that gives rise to the ordinary least squares

regression model. Whether or not you have seen it previously, let’s keep
going, and we’ll eventually show this to be a special case of a much broader
family of algorithms.

1 LMS algorithm

We want to choose θ so as to minimize J(θ). To do so, let’s use a search
algorithm that starts with some “initial guess” for θ, and that repeatedly
changes θ to make J(θ) smaller, until hopefully we converge to a value of
θ that minimizes J(θ). Specifically, let’s consider the gradient descent

algorithm, which starts with some initial θ, and repeatedly performs the
update:

θj := θj − α
∂

∂θj
J(θ).

(This update is simultaneously performed for all values of j = 0, . . . , n.)
Here, α is called the learning rate. This is a very natural algorithm that
repeatedly takes a step in the direction of steepest decrease of J .

In order to implement this algorithm, we have to work out what is the
partial derivative term on the right hand side. Let’s first work it out for the
case of if we have only one training example (x, y), so that we can neglect
the sum in the definition of J . We have:

∂

∂θj
J(θ) =

∂

∂θj

1

2
(hθ(x)− y)2

= 2 · 1
2
(hθ(x)− y) · ∂

∂θj
(hθ(x)− y)

= (hθ(x)− y) · ∂

∂θj

(

n
∑

i=0

θixi − y

)

= (hθ(x)− y) xj

5

For a single training example, this gives the update rule:1

θj := θj + α
(

y(i) − hθ(x
(i))
)

x
(i)
j .

The rule is called the LMS update rule (LMS stands for “least mean squares”),
and is also known as the Widrow-Hoff learning rule. This rule has several
properties that seem natural and intuitive. For instance, the magnitude of
the update is proportional to the error term (y(i) − hθ(x

(i))); thus, for in-
stance, if we are encountering a training example on which our prediction
nearly matches the actual value of y(i), then we find that there is little need
to change the parameters; in contrast, a larger change to the parameters will
be made if our prediction hθ(x

(i)) has a large error (i.e., if it is very far from
y(i)).

We’d derived the LMS rule for when there was only a single training
example. There are two ways to modify this method for a training set of
more than one example. The first is replace it with the following algorithm:

Repeat until convergence {

θj := θj + α
∑m

i=1

(

y(i) − hθ(x
(i))
)

x
(i)
j (for every j).

}

The reader can easily verify that the quantity in the summation in the update
rule above is just ∂J(θ)/∂θj (for the original definition of J). So, this is
simply gradient descent on the original cost function J . This method looks
at every example in the entire training set on every step, and is called batch

gradient descent. Note that, while gradient descent can be susceptible
to local minima in general, the optimization problem we have posed here
for linear regression has only one global, and no other local, optima; thus
gradient descent always converges (assuming the learning rate α is not too
large) to the global minimum. Indeed, J is a convex quadratic function.
Here is an example of gradient descent as it is run to minimize a quadratic
function.

1We use the notation “a := b” to denote an operation (in a computer program) in
which we set the value of a variable a to be equal to the value of b. In other words, this
operation overwrites a with the value of b. In contrast, we will write “a = b” when we are
asserting a statement of fact, that the value of a is equal to the value of b.

6

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

The ellipses shown above are the contours of a quadratic function. Also
shown is the trajectory taken by gradient descent, which was initialized at
(48,30). The x’s in the figure (joined by straight lines) mark the successive
values of θ that gradient descent went through.

When we run batch gradient descent to fit θ on our previous dataset,
to learn to predict housing price as a function of living area, we obtain
θ0 = 71.27, θ1 = 0.1345. If we plot hθ(x) as a function of x (area), along
with the training data, we obtain the following figure:

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

0

100

200

300

400

500

600

700

800

900

1000

housing prices

square feet

pr
ic

e
(in

 $
10

00
)

If the number of bedrooms were included as one of the input features as well,
we get θ0 = 89.60, θ1 = 0.1392, θ2 = −8.738.

The above results were obtained with batch gradient descent. There is
an alternative to batch gradient descent that also works very well. Consider
the following algorithm:

7

Loop {

for i=1 to m, {
θj := θj + α

(

y(i) − hθ(x
(i))
)

x
(i)
j (for every j).

}

}

In this algorithm, we repeatedly run through the training set, and each time
we encounter a training example, we update the parameters according to
the gradient of the error with respect to that single training example only.
This algorithm is called stochastic gradient descent (also incremental

gradient descent). Whereas batch gradient descent has to scan through
the entire training set before taking a single step—a costly operation if m is
large—stochastic gradient descent can start making progress right away, and
continues to make progress with each example it looks at. Often, stochastic
gradient descent gets θ “close” to the minimum much faster than batch gra-
dient descent. (Note however that it may never “converge” to the minimum,
and the parameters θ will keep oscillating around the minimum of J(θ); but
in practice most of the values near the minimum will be reasonably good
approximations to the true minimum.2) For these reasons, particularly when
the training set is large, stochastic gradient descent is often preferred over
batch gradient descent.

2 The normal equations

Gradient descent gives one way of minimizing J . Let’s discuss a second way
of doing so, this time performing the minimization explicitly and without
resorting to an iterative algorithm. In this method, we will minimize J by
explicitly taking its derivatives with respect to the θj’s, and setting them to
zero. To enable us to do this without having to write reams of algebra and
pages full of matrices of derivatives, let’s introduce some notation for doing
calculus with matrices.

2While it is more common to run stochastic gradient descent as we have described it
and with a fixed learning rate α, by slowly letting the learning rate α decrease to zero as
the algorithm runs, it is also possible to ensure that the parameters will converge to the
global minimum rather than merely oscillate around the minimum.

8

2.1 Matrix derivatives

For a function f : Rm×n 7→ R mapping from m-by-n matrices to the real
numbers, we define the derivative of f with respect to A to be:

∇Af(A) =

∂f

∂A11
· · · ∂f

∂A1n
...

. . .
...

∂f

∂Am1
· · · ∂f

∂Amn

Thus, the gradient ∇Af(A) is itself an m-by-n matrix, whose (i, j)-element

is ∂f/∂Aij. For example, suppose A =

[

A11 A12

A21 A22

]

is a 2-by-2 matrix, and

the function f : R2×2 7→ R is given by

f(A) =
3

2
A11 + 5A2

12 + A21A22.

Here, Aij denotes the (i, j) entry of the matrix A. We then have

∇Af(A) =

[

3
2

10A12

A22 A21

]

.

We also introduce the trace operator, written “tr.” For an n-by-n
(square) matrix A, the trace of A is defined to be the sum of its diagonal
entries:

trA =
n
∑

i=1

Aii

If a is a real number (i.e., a 1-by-1 matrix), then tr a = a. (If you haven’t
seen this “operator notation” before, you should think of the trace of A as
tr(A), or as application of the “trace” function to the matrix A. It’s more
commonly written without the parentheses, however.)

The trace operator has the property that for two matrices A and B such
that AB is square, we have that trAB = trBA. (Check this yourself!) As
corollaries of this, we also have, e.g.,

trABC = trCAB = trBCA,

trABCD = trDABC = trCDAB = trBCDA.

The following properties of the trace operator are also easily verified. Here,
A and B are square matrices, and a is a real number:

trA = trAT

tr(A+ B) = trA+ trB

tr aA = atrA

9

We now state without proof some facts of matrix derivatives (we won’t
need some of these until later this quarter). Equation (4) applies only to
non-singular square matrices A, where |A| denotes the determinant of A. We
have:

∇AtrAB = BT (1)

∇AT f(A) = (∇Af(A))
T (2)

∇AtrABATC = CAB + CTABT (3)

∇A|A| = |A|(A−1)T . (4)

To make our matrix notation more concrete, let us now explain in detail the
meaning of the first of these equations. Suppose we have some fixed matrix
B ∈ R

n×m. We can then define a function f : R
m×n 7→ R according to

f(A) = trAB. Note that this definition makes sense, because if A ∈ R
m×n,

then AB is a square matrix, and we can apply the trace operator to it; thus,
f does indeed map from R

m×n to R. We can then apply our definition of
matrix derivatives to find ∇Af(A), which will itself by an m-by-n matrix.
Equation (1) above states that the (i, j) entry of this matrix will be given by
the (i, j)-entry of BT , or equivalently, by Bji.

The proofs of Equations (1-3) are reasonably simple, and are left as an
exercise to the reader. Equations (4) can be derived using the adjoint repre-
sentation of the inverse of a matrix.3

2.2 Least squares revisited

Armed with the tools of matrix derivatives, let us now proceed to find in
closed-form the value of θ that minimizes J(θ). We begin by re-writing J in
matrix-vectorial notation.

Given a training set, define the design matrix X to be the m-by-n
matrix (actually m-by-n+ 1, if we include the intercept term) that contains

3If we define A′ to be the matrix whose (i, j) element is (−1)i+j times the determinant
of the square matrix resulting from deleting row i and column j from A, then it can be
proved that A−1 = (A′)T /|A|. (You can check that this is consistent with the standard
way of finding A−1 when A is a 2-by-2 matrix. If you want to see a proof of this more
general result, see an intermediate or advanced linear algebra text, such as Charles Curtis,
1991, Linear Algebra, Springer.) This shows that A′ = |A|(A−1)T . Also, the determinant
of a matrix can be written |A| =∑j AijA

′

ij . Since (A′)ij does not depend on Aij (as can
be seen from its definition), this implies that (∂/∂Aij)|A| = A′

ij . Putting all this together
shows the result.

10

the training examples’ input values in its rows:

X =

— (x(1))T —
— (x(2))T —

...
— (x(m))T —

.

Also, let ~y be the m-dimensional vector containing all the target values from
the training set:

~y =

y(1)

y(2)

...
y(m)

.

Now, since hθ(x
(i)) = (x(i))T θ, we can easily verify that

Xθ − ~y =

(x(1))T θ
...

(x(m))T θ

−

y(1)

...
y(m)

=

hθ(x
(1))− y(1)

...
hθ(x

(m))− y(m)

.

Thus, using the fact that for a vector z, we have that zT z =
∑

i z
2
i :

1

2
(Xθ − ~y)T (Xθ − ~y) =

1

2

m
∑

i=1

(hθ(x
(i))− y(i))2

= J(θ)

Finally, to minimize J , let’s find its derivatives with respect to θ. Combining
Equations (2) and (3), we find that

∇AT trABATC = BTATCT + BATC (5)

11

Hence,

∇θJ(θ) = ∇θ

1

2
(Xθ − ~y)T (Xθ − ~y)

=
1

2
∇θ

(

θTXTXθ − θTXT~y − ~yTXθ + ~yT~y
)

=
1

2
∇θ tr

(

θTXTXθ − θTXT~y − ~yTXθ + ~yT~y
)

=
1

2
∇θ

(

tr θTXTXθ − 2tr ~yTXθ
)

=
1

2

(

XTXθ +XTXθ − 2XT~y
)

= XTXθ −XT~y

In the third step, we used the fact that the trace of a real number is just the
real number; the fourth step used the fact that trA = trAT , and the fifth
step used Equation (5) with AT = θ, B = BT = XTX, and C = I, and
Equation (1). To minimize J , we set its derivatives to zero, and obtain the
normal equations:

XTXθ = XT~y

Thus, the value of θ that minimizes J(θ) is given in closed form by the
equation

θ = (XTX)−1XT~y.

