
ECE1724F
Compiler Primer

http://www.eecg.toronto.edu/~voss/ece1724f

Sept. 18, 2002

What’s in an optimizing compiler?

Front End Optimizer

High-level
language

(C, C++, Java)

Low-level
language

(mc68000,
ia32,
etc…)

HLL IR
(Usually

very naive)

IR
(Better,

we hope)

Code
Generator

LLL

What are compiler optimizations?

Optimization: the transformation of a program P into a
program P’, that has the same input/output
behavior, but is somehow “better”.

n “better” means:
¨ faster
¨ or smaller

¨ or uses less power

¨ or whatever you care about

n P’ is not optimal, may even be worse than P

An optimizations must:
n Preserve correctness
¨ the speed of an incorrect program is irrelevant

n On average improve performance
¨ P’ is not optimal, but it should usually be better

n Be “worth the effort”
¨ 1 person-year of work, 2x increase in compilation time,

a 0.1% improvement in speed?
¨ Find the bottlenecks
¨ 90/10 rule: 90% of the gain for 10% of the work

Compiler
High-level
language

C, C++, Java

Low-level
language
mc68000

Lexical
Analyzer

Parser
IR Code

Generator
Optimizer

m/c Code
Generator

tokens AST IRIR

IR: Intermediate Representation

Compiler Phases (Passes)

We’ll talk about:

n Lexing & Parsing
n Control Flow Analysis
n Data Flow Analysis

Lexing, Parsing and
Intermediate Representations

Lexers & Parsers

n The lexer identifies tokens in a program
n The parser identifies grammatical

phrases, or constructs in the program
n There are freely available lexer and parser

generators…
n The parser usually constructs some

intermediate form of the program as output

Intermediate Representation

n The representation or language on which
the compiler performs it’s optimizations

n As many IRs as compiler suites
¨2x as many IRs as compiler suites (Muchnick)

n Some IRs are better for some optimizations
¨different information is maintained
¨easier to find certain types of information

Why Use an IR?

IRJava

Fortran

C

C++

Voss++

MIPS

Sun SPARC

IA32 / Pentium

IA64 / Itanium

PowerPC

n Good Software Engineering
¨ Portability
¨ Reuse

Example: float a[20][10];
… = a[i][j+2] …

t1 � a[i,j + 2] t1 � j+2
t2 � i*10
t3 � t1 + t2
t4 � 4 * t3
t5 � addr a
t6 � t5 + t4
t7 � *t6

r1 � [fp-4]
r2 � r1 + 2
r3 � [fp -8]
r4 � r3*10
r5 � r4 + r2
r6 � 4 * r5
r7 � fp - 216
f1 � [r7 + r6]

(a) High-Level (b) Medium-Level (c) Low-Level

High-Level: Abstract Syntax Tree (AST)

int f(a,b)
int a,b;
{ int c;

c = a +2;
print(b,c);

}

function

ident paramlist body
f

ident paramlist decllist stmtlist
a

ident end ident end = stmlist
b c

ident + call end
c

ident const ident arglist
c printf

ident arglist
b

ident end
c

Linear List (Very Similar to Source)

S12 FLOWENTRY {succ = S1, line = 1, }
S1 ENTRY simple() {succ = S2, pred = S12, line = 1, }
S2 DO i = 1, 100, 1 { follow = S7, succ = S3, S8, pred = S1, S7, out_refs

* = i, line = 3, assertions = { AS_PARALLEL (i) } {AS_PRIVATE j,i }
* { AS_LOOPLABEL SIMPLE_do100 } { AS_SHARED a }

S3 DO j = 1, 100, 1 { follow = S6, succ = S4, S7, pred = S6, S2, out_refs
* = j, outer = S2, line = 4, assertions =
* { AS_LOOPLABEL SIMPLE_do100/2 } }

S4 100 LABEL 100 {succ = S5, pred = S3, outer = S3, line = 5, }
S5 a(j, i) = i*j {succ = S6, pred = S4, in_refs = i, j, j, i, out_refs =

* a(j, i), outer = S3, line = 5, }
S6 ENDDO { follow = S3, succ = S3, pred = S5, outer = S3, line = 5, }
S7 ENDDO { follow = S2, succ = S2, pred = S3, outer = S2, line = 5 }
S8 WRITE ([UNIT, 6], [FMT, *]) a {succ = S9, pred = S2, in_refs = a,

* line = 6, }
S9 STOP {succ = S10, pred = S8, line = 7, }
S10 FLOWEXIT {pred = S9, line = 7, }

PROGRAM SIMPLE
REAL A(100,100)
DO 100 I = 1,100
DO 100 J = 1,100

100 A(J,I) = J*I
WRITE (6,*) A
END

