
from Cooper & Torczon 1

Automating Scanner Construction

RE→N F A (Thompson’s construction) 4

• Bui ld an NFA for each term

• Combine them with ε-moves

N F A →DFA (subset construction) 4

• Bui ld the simulation

D F A → Minimal DFA (today)

• Hopcroft’s algorithm

D F A →RE

• A l l pairs, all paths problem

• Union together paths from s0 to a final state

minimal

D F A
RE N F A D F A

The Cycle of Constructions

from Cooper & Torczon 2

DFA Minimization

The Big Picture

• D iscover sets of equivalent states

• Represent each such set with just one state

Two states are equivalent if and only if:

• The set of paths leading to them are equivalent

• ∀ α ∈ Σ, transitions on α lead to equivalent states (DFA)

• transitions to distinct sets ⇒ states must be in distinct sets

A partition P of S

• Each s ∈ S is in exactly one set pi ∈ P

• The algorithm iteratively partitions the D F A ’s states

from Cooper & Torczon 3

DFA Minimization

Details of the algorithm

• Group states into maximal size sets, optimistically

• Iteratively subdivide those sets, as needed

• States that remain grouped together are equivalent

Initial partition, P0 , has two sets {F} & {Q-F} (D =(Q,Σ,δ,q0,F))

Splitting a set

• Assume qa, qb, & qc ∈ s, and

• δ(qa,a) = qx, δ(qb,a) = qy, & δ(qa,a) = qz

• If qx, qy, & qz are not in the same set, then s must be split

• One state in the final DFA cannot have two transitions on a

from Cooper & Torczon 4

DFA Minimization

The algorithm

P ← { F, {Q-F}}

while (P is still changing)

T ← { }

for each set s ∈ P

for each α ∈ Σ
partition s by α

into s1, s2, …, sk

T ← T ∪ s1, s2, …, sk

if T ≠ P then

P ← T

Why does this work?

• Partition P ∈ 2Q

• Start off with 2 subsets of Q

{F} and {Q-F}

• While loop takes Pi→Pi+1 by

splitting 1 or more sets

• Pi+1 is at least one step closer to the

partition with |Q | sets

• Maximum of |Q | splits

Note that

• Partitions are never combined

• Initial partition ensures that final

states are intactThis is a fixed-point algorithm!

from Cooper & Torczon 5

DFA Minimization

Enough theory, does this stuff work?

> Recall our example: (a | b)* abb

C u rr en t Pa rt it ion S p lit on a S p lit on b

P 0 {s 4 } {s 0 , s 1 , s 2 , s 3 } n o ne {s 0 , s 1 , s 2 } {s 3 }

P 1 {s 4 }{s 3 }{s 0 , s 1 , s 2 } n o ne {s 0 , s 2 }{s 1 }

P 2 {s 4 }{s 3}{s 1 }{s 0 , s 2 } n o ne N o n e

s0

a
s1

b

s3

b
s4

s2

a

b

b

a

a

a

b

s0 , s2

a
s1

b

s3

b
s4

b

a

a

a

b

final state

from Cooper & Torczon 6

DFA Minimization

What about a (b | c)* ?

Fi rst, the subset construction:

q0 q1
a ε

q4 q5
b

q6 q7
c

q3 q8 q2 q9

ε

ε

ε ε

ε ε

ε ε

ε-c lo s u re (m o ve(s ,*))

N F A s ta t e s a b c

s 0 q 0 q 1 , q 2 , q 3 ,
 q 4 , q 6 , q 9

n o ne n o ne

s 1 q 1 , q 2 , q 3 ,
q 4 , q 6 , q 9

n o ne q 5 , q 8 , q 9 ,
q 3 , q 4 , q 6

q 7 , q 8 , q 9 ,
q 3 , q 4 , q 6

s 2 q 5 , q 8 , q 9 ,
q 3 , q 4 , q 6

n o ne s 2 s 3

s 3 q 7 , q 8 , q 9 ,
q 3 , q 4 , q 6

n o ne s 2 s 3

s3

s2

s0 s1

c

b

a

b

b

c

c

Final states

from Cooper & Torczon 7

DFA Minimization

Then, apply the minimization algorithm

To produce the minimal D F A

s3

s2

s0 s1

c

b

a

b

b

c

c

S p lit on

C u rr en t Pa rt it ion a b c

P 0 { s 1 , s 2 , s 3 } {s 0} n o ne n o ne n o ne

s0 s1

a

b | c In lecture 6, I said that a human would design a
simpler automaton than Thompson’s
construction did.

The algorithms produce that same D F A !

final states

from Cooper & Torczon 8

Limits of Regular Languages

Advantages of Regular Expressions

• Simple & powerful notation for specifying patterns

• Automatic construction of fast recognizers

• Many kinds of syntax can be specified with REs

Example — an expression grammar

Term → [a-zA- Z] ([a-zA-z] | [0-9])*

Op → + | - | ∗ | /

Expr → (Term Op)* Term

Of course, this would generate a D F A …

If REs are so useful …

Why not use them for everything?

from Cooper & Torczon 9

Limits of Regular Languages

Not all languages are regular

R L ’s ⊂ C F L ’s ⊂ CSL ’s

You cannot construct D F A ’s to recognize these languages

• L = { pkqk } (parenthesis languages)

• L = { wcw r | w ∈ Σ*}

Neither of these is a regular language (nor an RE)

But, this is a little subtle. You can construct D F A ’s for

• A lternating 0 ’s and 1 ’s

(ε | 1)(0 | 1) (0 | ε)

• Sets of pairs of 0 ’s and 1 ’s

(01 | 10) (01 | 10)*

R E ’s can count bounded sets and bounded differences

from Cooper & Torczon 10

What can be so hard?

Poor language design can complicate scanning

• Reserved words are important

if then then then = else; else else = then (PL/I)

• Significant blanks (Fortran & Algol68)

do 10 i = 1,25

do 10 i = 1.25

• String constants with special characters (C, others)

newline, tab, quote, comment delimiters, …

• Finite closures

> L im ited identifier length

> Adds states to count length

from Cooper & Torczon 11

What can be so hard? (Fortran 66/77)

INT E G E R F UNC TIO NA

P ARA ME TE R(A =6 ,B=2)

IMPL IC IT CHARA C TE R* (A-B) (A-B)

INT E G E R F O RMA T(1 0), I F (1 0), D O 9 E1

 1 0 0 F OR MAT (4H) =(3)

 2 0 0 F OR MAT (4)= (3)

D O9 E 1 =1

D O9 E 1 =1 , 2

 9 IF (X)=1

IF (X)H= 1

IF (X)3 0 0 ,2 0 0

 3 0 0 C O NT INU E

E ND

C TH IS IS A “C O MME NT C ARD ”

 $ F ILE (1)

E ND

How does a compiler do this?

• First pass finds & inserts blanks

• Can add extra words or tags to
create a scanable language

• Second pass is normal scanner

Example due to Dr. F.K. Zadeck

