Automating Scanner Construction

RE® NFA (Thompson’s construction)

e Build an NFA for each term

e Combine them with €&moves

NFA ® DFA (subset construction) The Cycle of Constructions

e Build the simulation

DFA ® Minimal DFA (today) RE —PNEA —»DEA —pminimal
| DFA

e Hopcroft’s algorithm RN ?

DFA ® RE
e All pairs, all paths problem

® Union together paths from s, to a final state

from Cooper & Torczon 1

DFA Minimization

The Big Picture
® Discover sets of equivalent states

® Represent each such set with just one state

Two states are equivalent if and only if:

® The set of paths leading to them are equivalent

al S, transitions on a lead to equivalent states (DFA)

e transitions to distinct sets P states must be in distinct sets

A partition P of S
e Eachsl Sisin exactly one setp, 1 P

® The algorithm iteratively partitions the DFA’s states

from Cooper & Torczon

DFA Minimization

Details of the algorithm
e Group states into maximal size sets, optimistically
® |teratively subdivide those sets, as needed

e States that remain grouped together are equivalent
Initial partition, P, has two sets {F} & {Q-F} (D =(Q,S,d,q,,F))

Splitting a set

e Assumeq_,q,, &q.1 s, and

¢ d(qaig) = qx’ d(qbig) = qy’ & d(qa’g) = qz

* Ifq, q, &q,are notin the same set, then s must be split

® One state in the final DFA cannot have two transitions on a

from Cooper & Torczon

DFA Minimization

The algorithm Why does this work?
e Partition P1 2Q

P- {F, {Q-F}} e Start off with 2 subsets of Q
while (P is still changing) {F} and {Q-F}
T={} e While loop takes P® P, by
foreach setsi P splitting 1 or more sets

foreachal S
partition s by a
into s,, s,, ..., S,

e P,,, is at least one step closer to the
partition with |Q | sets

T4 TESl,SZ,...,Sk e Maximum of |Q | splits
if T P then Note that
P= T

e Partitions are never combined

® [|nitial partition ensures that final

. o . |
This is a fixed-point algorithm! states are intact

from Cooper & Torczon 4

DFA Minimization

Enough theory, does this stuff work?

> Recall our example: (a]b)” abb

Current Partition | Spliton a Spliton b

PO {84} {30’31’32’33} none {SO’SI’SZ} {SS}

P1 {84}{33}{80’ S1’ SZ} none {SO’ SZ}{Sl}

P, {33}{31}{30’ S,} none None

final state

from Cooper & Torczon 5

DFA Minimization

What about a(b]c)"?

First, the subset construction:

eclosure (move(s,*))
NFA states a b [
S, do d:» 95, 93, none none
J4:96: 959
S1 | 01,9205, none Os:0s:99, | 97, Qs Jos
04, 96,99 02, 94,956 03, 94,956
S, q5,q8, none S, S,
02,94, 956
s qwqg,\nﬁ\ﬂe\ s, s
02,94, 96
’ Final states
from Cooper & Torczon

DFA Minimization

Then, apply the minimization algorithm

Spliton
b

|
|©

Current Partition
P, {w none | none | none

final states

To produce the minimal DFA

In lecture 6, | said that a human would design a
simpler automaton than Thompson’s

a construction did.
The algorithms produce that same DFA!

blc

from Cooper & Torczon

Limits of Regular Languages

Advantages of Regular Expressions
e Simple & powerful notation for specifying patterns
e Automatic construction of fast recognizers

® Many kinds of syntax can be specified with REs

Example — an expression grammar

Term ® [a-zA-Z] ([a-zA-z] | [0-9])°
Op ® |||/
Expr ® (Term Op)* Term

Of course, this would generate a DFA ...

If REs are so useful ...
Why not use them for everything?

from Cooper & Torczon 8

Limits of Regular Languages

Not all languages are regular
RL's| CFL's I cSL's

You cannot construct DFA’s to recognize these languages
e L= {pkg} (parenthesis languages)
e L= {wew'|wl S

Neither of these is a regular language (nor an RE)

But, this is a little subtle. You can construct DFA’s for
e Alternating O's and 1’s

(e|rn(of1(o|e
e Sets of pairsof O'sand 1's

(01]10)(01]10)"

RE’'s can count bounded sets and bounded differences

from Cooper & Torczon

What can be so hard?

Poor language design can complicate scanning

® Reserved words are important

If then then then = else; else else = then (PL/1)

e Significant blanks (Fortran & Algol68)
do 10i=1,25
do 10i=1.25

e String constants with special characters (C, others)

newline, tab, quote, comment delimiters, ...

® Finite closures
> Limited identifier length

> Adds states to count length

from Cooper & Torczon 10

What can be so hard?

100
200

300

INT EGERFUNC TIONA
PARA ME TER(A =6,B=2)

IMPL ICIT CHARA CTER* (A-B) (A-B)

(Fortran 66/77)

INTEGER FORMA T(10),1F(10), DO9EL

FOR MAT (4H) =(3)
FOR MAT (4)=(3)
DO9 E1=1

DO9 E1=1,2
IF(X)=1

IF(X)H=1
IF(X)300,200
CONTINUE

END

THIS IS A “COMMENT CARD ”
FILE (1)

END

from Cooper & Torczon

How does a compiler do this?
® First pass finds & inserts blanks

e Can add extra words or tags to
create a scanable language

e Second pass is normal scanner

Example due to Dr. F.K. Zadeck

11

