Automating Scanner Construction

RE→NFA *(Thompson's construction)* **</u>**

- Build an NFA for each term
- Combine them with **ε**-moves

NFA →DFA *(subset construction)* [■]

• Build the simulation

DFA →Minimal DFA *(today)*

• Hopcroft's algorithm

$DFA \rightarrow RE$

- All pairs, all paths problem
- Union together paths from s_0 to a final state

from Cooper & Torczon 1

The Big Picture

- Discover sets of equivalent states
- Represent each such set with just one state

Two states are equivalent if and only if:

- The set of paths leading to them are equivalent
- $\forall \alpha \in \Sigma$, transitions on α lead to equivalent states (DFA)
- transitions to distinct sets ⇒ states must be in distinct sets

A partition *P* of *S*

- Each $s \hat{\textbf{I}}$ *S* is in exactly one set $p_i \hat{\textbf{I}} P$
- The algorithm iteratively partitions the DFA 's states

Details of the algorithm

- Group states into maximal size sets, *optimistically*
- Iteratively subdivide those sets, as needed
- States that remain grouped together are equivalent

Initial partition, P_o , has two sets $\{F\}$ & $\{Q-F\}$ $(D = (Q, S, d, q_o, F))$

Splitting a set

- Assume q_a , q_b , & $q_c \in s$, and
- $\delta(q_{a'}\underline{a}) = q_{x'} \ \delta(q_{b'}\underline{a}) = q_{y'} \ \& \ \delta(q_{a'}\underline{a}) = q_{z'}$
- If $q_{x'} q_{y'}$ & q_z are not in the same set, then *s* must be split
- One state in the final DFA cannot have two transitions on a

The algorithm

P ¬ { F, {Q-F}} while (P is still changing) T ¬ { } for each set s Î P for each a Î S partition s by a into s_1 , s_2 , ..., s_k $T \rightarrow T \tilde{E}$ $s_1, s_2, ..., s_k$ *if* $T¹$ *P* then $P - T$

This is a fixed-point algorithm! This is a fixed-point algorithm!

Why does this work?

- Partition *P Î* 2 *Q*
- Start off with 2 subsets of *Q {F} and {Q-F}*
- *While* loop takes P_i \mathcal{P}_{i+1} by splitting 1 or more sets
- *P*_{*i+1*} is at least one step closer to the partition with |*Q* | sets
- Maximum of |*Q* | splits

Note that

- Partitions are never combined
- Initial partition ensures that final

Enough theory, does this stuff work?

> Recall our example: (alb)*abb

First, the subset construction:

b

Then, apply the minimization algorithm

In lecture 6, I said that a human would design a simpler automaton than Thompson's construction did.

The algorithms produce that same DFA!

Limits of Regular Languages

Advantages of Regular Expressions

- Simple & powerful notation for specifying patterns
- Automatic construction of fast recognizers
- Many kinds of syntax can be specified with REs

Example — an expression grammar

Term \circledR [a-zA-Z] ([a-zA-z] $|$ $[0-9]$)^{*} *Op* \bigcirc \bigcirc $+$ $\big| - \big| * \big| /$

Expr ® (*Term Op*) * *Term*

Of course, this would generate a DFA ...

If REs are so useful …

Why not use them for everything?

Limits of Regular Languages

Not all languages are regular

 $RL's \subset CFL's \subset CSL's$

You cannot construct DFA's to recognize these languages

- $L = \{p^k q^k\}$
- $L = \{ w c w^r | w \in \Sigma^* \}$

Neither of these is a regular language *(nor an RE)*

But, this is a little subtle. You can construct DFA's for

- Alternating 0's and 1's
	- $(E | 1)(0 | 1) (0 | E)$
- Sets of pairs of 0's and 1's $(01 \mid 10) (01 \mid 10)^*$
- R E 's can count bounded sets and bounded differences

} (parenthesis languages)

What can be so hard?

Poor language design can complicate scanning

- Reserved words are important
	- if then then then = else; else else = then (PL/I)
- Significant blanks (Fortran & Algol68)

do $10 i = 1,25$

- do $10 i = 1.25$
- String constants with special characters (C, others) newline, tab, quote, comment delimiters, …
- Finite closures
	- > Lim ited identifier length
	- > Adds states to count length

What can be so hard? (Fortran 66/77)

INT EGERFUNC TIONA P ARA ME TER($A = 6$, $B = 2$) IMPL IC IT CHARA C TER* (A-B) (A-B) INT EGER FORMA $T(1 0)$, IF $(1 0)$, DO9E1

- 100 FOR MAT (4H) =(3)
- 200 FOR MAT $(4) = (3)$
	- $DO9 E 1 = 1$

 $DO9 E 1 = 1,2$

9 IF $(X)=1$ $IF(X)H=1$

 $IF(X)300, 200$

300 CONTINUE

E ND

- C TH IS IS A "C O MME NT C ARD "
	- $$$ FILE (1)

E ND

How does a compiler do this?

- First pass finds & inserts blanks
- Can add extra words or tags to create a scanable language
- Second pass is normal scanner

Example due to Dr. F.K. Zadeck