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Automating Scanner Construction

RE→N F A  (Thompson’s construction) 4

• Bui ld an NFA for each term

• Combine them with ε-moves

N F A →DFA (subset construction) 4

• Bui ld the simulation

D F A → Minimal DFA  (today)

• Hopcroft’s algorithm                         

D F A →RE

• A l l pairs, all paths problem

• Union together paths from s0 to a final state

minimal 

D F A
RE N F A D F A

The Cycle of Constructions
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DFA Minimization

The Big Picture

• D iscover sets of equivalent states

• Represent each such set with just one state

Two states are equivalent if and only if:

• The set of paths leading to them are equivalent

• ∀ α ∈ Σ, transitions on  α lead to equivalent states                    (DFA)

• transitions to distinct sets ⇒ states must be in distinct sets

A partition P of S

• Each s ∈ S is in exactly one set pi ∈ P

• The algorithm iteratively partitions the D F A ’s states 
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DFA Minimization

Details of the algorithm

• Group states into maximal size sets, optimistically

• Iteratively subdivide those sets, as needed 

• States that remain grouped together are equivalent

Initial partition, P0 , has two sets {F} & {Q-F}            (D =(Q,Σ,δ,q0,F))

Splitting a set

• Assume qa, qb, & qc ∈ s, and 

• δ(qa,a) = qx, δ(qb,a) = qy, & δ(qa,a) = qz

• If qx, qy, & qz are not in the same set, then s must be split

• One state in the final DFA cannot have two transitions on a
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DFA Minimization

The algorithm

P ← { F, {Q-F}}

while ( P is still changing)

T ← { }

for each set s ∈ P

for each α ∈ Σ
partition s by α

into s1, s2, …, sk

T ← T ∪ s1, s2, …, sk

if T ≠ P then

P ← T

Why does this work?

• Partition P ∈ 2Q

• Start off with 2 subsets of Q

{F} and {Q-F}

• While loop takes Pi→Pi+1 by 

splitting 1 or more sets

• Pi+1 is at least one step closer to the 

partition with |Q | sets

• Maximum of |Q | splits

Note that

• Partitions are never combined

• Initial partition ensures that final 

states are intactThis is a fixed-point algorithm!
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DFA Minimization

Enough theory, does this stuff work?

> Recall our example:  ( a | b)* abb

C u rr en t Pa rt it ion S p lit on a S p lit on b

P 0 {s 4 } {s 0 ,  s 1 ,  s 2 ,  s 3 } n o ne {s 0 ,  s 1 ,  s 2 } {s 3 }

P 1 {s 4 }{s 3 }{s 0 ,  s 1 ,  s 2 } n o ne {s 0 ,  s 2 }{s 1 }

P 2 {s 4 }{s 3}{s 1 }{s 0 ,  s 2 } n o ne N o n e

s0 

a
s1 

b

s3 

b
s4 

s2

a

b

b

a

a

a

b

s0 , s2

a
s1 

b

s3 

b
s4 

b

a

a

a

b

final state
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DFA Minimization

What about  a ( b | c )* ?

Fi rst, the subset construction:

q0 q1 
a ε

q4 q5 
b

q6 q7 
c

q3 q8 q2 q9 

ε

ε

ε ε

ε ε

ε ε

ε-c lo s u re (m o ve( s ,*))

N F A  s ta t e s a b c

s 0 q 0 q 1 ,  q 2 ,  q 3 ,
 q 4 ,  q 6 ,  q 9

n o ne n o ne

s 1 q 1 ,  q 2 ,  q 3 ,
q 4 ,  q 6 ,  q 9

n o ne q 5 ,  q 8 ,  q 9 ,
q 3 ,  q 4 ,  q 6

q 7 ,  q 8 ,  q 9 ,
q 3 ,  q 4 ,  q 6

s 2 q 5 ,  q 8 ,  q 9 ,
q 3 ,  q 4 ,  q 6

n o ne s 2 s 3

s 3 q 7 ,  q 8 ,  q 9 ,
q 3 ,  q 4 ,  q 6

n o ne s 2 s 3

s3 

s2 

s0 s1 

c

b

a

b

b

c

c

Final states
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DFA Minimization

Then, apply the minimization algorithm

To produce the minimal D F A

s3 

s2 

s0 s1 

c

b

a

b

b

c

c

S p lit on

C u rr en t Pa rt it ion a b c

P 0 { s 1 ,  s 2 ,  s 3 } {s 0} n o ne n o ne n o ne

s0 s1 

a

b | c In lecture 6, I said that a human would design a 
simpler automaton than Thompson’s 
construction did.

The algorithms produce that same D F A !

final states
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Limits of Regular Languages

Advantages of Regular Expressions

• Simple & powerful notation for specifying patterns

• Automatic construction of fast recognizers

• Many kinds of syntax can be specified with REs

Example — an expression grammar

Term → [a-zA- Z] ([a-zA-z] | [0-9])*

Op → + | - | ∗ | /

Expr  → ( Term Op )* Term

Of course, this would generate a D F A …

If REs are so useful …

Why not use them for everything?
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Limits of Regular Languages

Not all languages are regular

R L ’s ⊂ C F L ’s  ⊂ CSL ’s

You cannot construct D F A ’s to recognize these languages

• L =  { pkqk } (parenthesis languages)

• L =  { wcw r | w ∈ Σ*}

Neither of these is a regular language (nor an RE)

But, this is a little subtle.  You can construct D F A ’s for

• A lternating 0 ’s and 1 ’s                      

( ε | 1)( 0 | 1) ( 0 | ε)

• Sets of pairs of 0 ’s and 1 ’s               

( 01 | 10 ) ( 01 | 10 )*

R E ’s can count bounded sets and bounded differences
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What can be so hard?

Poor language design can complicate scanning

• Reserved words are important

if then then then = else; else else = then                      (PL/I)

• Significant blanks                                              (Fortran & Algol68)

do 10 i = 1,25

do 10 i = 1.25

• String constants with special characters                       (C, others)

newline, tab, quote, comment delimiters, …

• Finite closures

> L im ited identifier length

> Adds states to count length
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What can be so hard?                            (Fortran 66/77)

INT E G E R F UNC TIO NA

P ARA ME TE R(A =6 ,B=2 )

IMPL IC IT  CHARA C TE R* (A-B) (A-B)

INT E G E R  F O RMA T(1 0 ), I F (1 0 ), D O 9 E1

 1 0 0 F OR MAT (4H) =(3 )

 2 0 0 F OR MAT (4   )= (3 )

D O9 E 1 =1

D O9 E 1 =1 , 2

     9 IF (X)=1

IF (X)H= 1

IF (X)3 0 0 ,2 0 0

 3 0 0 C O NT INU E

E ND

C TH IS  IS  A “C O MME NT C ARD ”

       $ F ILE (1 )

E ND

How does a compiler do this?

• First pass finds & inserts blanks

• Can add extra words or tags to 
create a scanable language

• Second pass is normal scanner

Example due to Dr. F.K. Zadeck


