Automating Scanner Construction

 $RE \rightarrow NFA$ (Thompson's construction)

- Build an NFA for each term
- Combine them with **ɛ**-moves

NFA \rightarrow DFA (subset construction)

Build the simulation

 $DFA \rightarrow Minimal DFA (today)$

Hopcroft's algorithm

$DFA \rightarrow RE$

- All pairs, all paths problem
- Union together paths from s_o to a final state

from Cooper & Torczon

The Big Picture

- Discover sets of equivalent states
- Represent each such set with just one state

Two states are equivalent if and only if:

- The set of paths leading to them are equivalent
- $\forall \alpha \in \Sigma$, transitions on α lead to equivalent states (DFA)
- transitions to distinct sets \Rightarrow states must be in distinct sets

A partition P of S

- Each $s \hat{I} S$ is in exactly one set $p_i \hat{I} P$
- The algorithm iteratively partitions the DFA's states

Details of the algorithm

- Group states into maximal size sets, optimistically ٠
- Iteratively subdivide those sets, as needed ٠
- States that remain grouped together are equivalent ٠

Initial partition, P_0 , has two sets $\{F\}$ & $\{Q-F\}$ $(D = (Q, S, d, q_0, F))$

Splitting a set

- Assume q_a , q_b , & $q_c \in s$, and
- $\delta(q_{a'}\underline{a}) = q_{x'} \delta(q_{b'}\underline{a}) = q_{y'} \& \delta(q_{a'}\underline{a}) = q_z$
- If $q_{x'}$ $q_{y'}$ & q_z are not in the same set, then s must be split
- One state in the final DFA cannot have two transitions on a ٠

The algorithm

 $P \neg \{ F, \{Q-F\} \}$ while (P is still changing) $T \neg \{ \}$ for each set s \hat{I} P for each a \hat{I} S partition s by a into s₁, s₂, ..., s_k $T \neg T \hat{E} s_1, s_2, ..., s_k$ if $T \stackrel{1}{P}$ then $P \neg T$

This is a fixed-point algorithm!

Why does this work?

- Partition $P\,\hat{I}$ 2^Q
- Start off with 2 subsets of Q {F} and {Q-F}
- While loop takes P_i®P_{i+1} by splitting 1 or more sets
- *P*_{i+1} is at least one step closer to the partition with |*Q*| sets
- Maximum of |Q| splits

Note that

- Partitions are <u>never</u> combined
- Initial partition ensures that final states are intact

Enough theory, does this stuff work?

> Recall our example: $(\underline{a} | \underline{b})^* \underline{abb}$

	Curr en t Partition	Spliton <u>a</u>	Spliton <u>b</u>
<i>P</i> ₀	$\{s_4\} \{s_0, s_1, s_2, s_3\}$	n o ne	$\{s_0, s_1, s_2\} \{s_3\}$
P_{1}	$\{s_4\}\{s_3\}\{s_0, s_1, s_2\}$	n o ne	$\{s_0, s_2\}\{s_1\}$
P_2	s_4 {s ₃ } {s ₁ } {s ₀ , s ₂ }	n o ne	None

First, the subset construction:

		\mathcal{E} -c lo s u re (m o ve(s,*))				
	NFA states	<u>a</u>	<u>b</u>	<u>c</u>		
<i>s</i> ₀	q_{o}	$q_{1}, q_{2}, q_{3},$	n o ne	n o ne		
		q_{4}, q_{6}, q_{9}				
<i>s</i> ₁	$q_{1}, q_{2}, q_{3},$	n o ne	q 5, q 8, q 9,	q ₇ , q ₈ , q ₉ ,		
	$q_{4}, q_{6}, (q_{9})$		q_{3}, q_{4}, q_{6}	q_{3}, q_{4}, q_{6}		
<i>s</i> ₂	$q_{5}, q_{8}, q_{9},$	n o ne	<i>S</i> ₂	<i>S</i> ₃		
	q_{3}, q_{4}, q_{6}					
S 3	$q_{7}, q_{8}, q_{9}, \checkmark$	none	<i>s</i> ₂	<i>S</i> ₃		
	q_{3}, q_{4}, q_{6}					
from Cooper & Torczon						

b

С

final states

To produce the minimal DFA

In lecture 6, I said that a human would design a simpler automaton than Thompson's construction did.

The algorithms produce that same DFA!

Limits of Regular Languages

Advantages of Regular Expressions

- Simple & powerful notation for specifying patterns
- Automatic construction of fast recognizers
- Many kinds of syntax can be specified with REs

Example — an expression grammar

Term @ [a-zA-Z] ([a-zA-z] | [<u>0</u>-<u>9</u>])* Op @ <u>+</u> | <u>-</u> | <u>*</u> | <u>/</u> Expr @ (Term Op)* Term

Of course, this would generate a DFA ...

If REs are so useful ... Why not use them for everything?

from Cooper & Torczon

Limits of Regular Languages

Not all languages are regular

 $RL's \subset CFL's \subset CSL's$

You cannot construct DFA's to recognize these languages

- $L = \{ p^k q^k \}$
- $L = \{ wcw^r \mid w \in \Sigma^* \}$

Neither of these is a regular language

But, this is a little subtle. You can construct DFA's for

- Alternating 0's and 1's
 - (E | 1)(0 | 1)(0 | E)
- Sets of pairs of 0's and 1's
 (01 | 10)(01 | 10)*
- RE's can count bounded sets and bounded differences

(nor an RE)

(parenthesis languages)

9

What can be so hard?

Poor language design can complicate scanning

- Reserved words are important
 - if then then then = else; else else = then
- Significant blanks

do 10 i = 1,25

- do 10 i = 1.25
- String constants with special characters newline, tab, quote, comment delimiters, ...
- Finite closures
 - > Limited identifier length
 - > Adds states to count length

(Fortran & Algol68)

(PL/I)

(C, others)

What can be so hard?

(Fortran 66/77)

INT EGERFUNC TIONA PARA METER(A =6,B=2) IMPL ICIT CHARA CTER*(A-B) (A-B) INT EGER FORMA T(10), IF(10), DO9E1

- 100 FOR MAT (4H) = (3)
- 200 FOR MAT (4) = (3)
 - DO9 E1=1

DO9 E1=1,2

9 IF(X)=1 IF(X)H=1

IF(X)300,200

300 CONT INU E

END

- C TH IS IS A "COMMENT CARD"
 - \$ FILE (1)

END

How does a compiler do this?

- First pass finds & inserts blanks
- Can add extra words or tags to create a scanable language
- Second pass is normal scanner

Example due to Dr. F.K. Zadeck