Automating Scanner Construction

 $RE \rightarrow NFA$ (Thompson's construction)

- Build an NFA for each term
- Combine them with **E**-moves

NFA \rightarrow DFA (subset construction)

Build the simulation

 $DFA \rightarrow Minimal DFA$

Hopcroft's algorithm

$DFA \rightarrow RE$

- All pairs, all paths problem
- Union together paths from **s**_o to a final state

from Cooper & Torczon

RE ® NFA using Thompson's Construction

Key idea

- NFA pattern for each symbol & each operator •
- Join them with $\boldsymbol{\epsilon}$ moves in precedence order ٠

NFA for <u>a</u>

NFA for \underline{a}^*

NFA for <u>a</u> | <u>b</u>

Ken Thompson, CACM, 1968

Example of Thompson's Construction

Let's try <u>a</u> $(\underline{b} | \underline{c})^*$

ε

Of course, a human would design something simpler ...

But, we can automate production of the more complex one ...

Need to build a simulation of the NFA

Two key functions

- Move(s_i,<u>a</u>) is set of states reachable by <u>a</u> from s_i
- e-closure(s_i) is set of states reachable by e from s_i

The algorithm

- Start state derived from s₀ of the NFA
- Take its **E**-closure
- Work outward, trying each $\alpha \in \Sigma$ and taking its ϵ -closure
- Iterative algorithm that halts when the states wrap back on themselves

Sounds more complex than it is...

The algorithm:

 $s_0 \neg e$ -closure (q_{on}) while (S is still changing) for each $s_i \hat{I}$ S for each $a \hat{I} \Sigma$ $s_2 \neg e$ -closure(move(s_i, a)) if ($s_2 \ddot{I}$ S) then add s_2 to S as s_j $T[s_i, a] \neg s_j$

Let's think about why this works

The algorithm halts:

- 1. S contains no duplicates (test before adding)
- **2.** 2^{Qn} is finite
- 3. while loop adds to S, but does not remove from S (monotone)
- **P** the loop halts
- **S** contains all the reachable NFA states
- It tries each character in each s_i.
- It builds every possible NFA configuration.
- **P** S and T form the DFA

Example of a *fixed-point* computation

- Monotone construction of some finite set
- Halts when it stops adding to the set
- Proofs of halting & correctness are similar
- These computations arise in many contexts

Other fixed-point computations

- Canonical construction of sets of LR(1) items
 - > Quite similar to the subset construction
- Classic data-flow analysis (& Gaussian Elimination)
 - > Solving sets of simultaneous set equations

We will see many more fixed-point computations

from Cooper & Torczon

Remember $(\underline{a} | \underline{b})^* \underline{abb}$? $q_0 \xrightarrow{\epsilon} q_1 \xrightarrow{\underline{a} | \underline{b}} q_2 \xrightarrow{\underline{b}} q_3 \xrightarrow{\underline{b}} q_4$

Applying the subset construction:

Ite r	State	Con tains	E-c losu re (E-c losu re (
	, s cu co		$m \text{ ov } e(s_i, \underline{a}))$	$m \text{ ov } e(s_i, \underline{b}))$
0	<i>s</i> ₀	q $_{\scriptscriptstyle 0}$, q $_{\scriptscriptstyle 1}$	q_1, q_2	q_{1}
1	<i>S</i> ₁	q_1, q_2	q_1, q_2	q_1, q_3
	<i>S</i> ₂	q_{1}	q_1, q_2	q_{1}
2	S ₃	q_1, q_3	<i>q</i> ₁ , <i>q</i> ₂	q_1, q_4
3	<i>S</i> ₄	q_1, q_4	<i>q</i> ₁ , <i>q</i> ₂	q_{1}

Iteration 3 adds nothing to S_{i} , so the algorithm halts

contains q₄ (final state)

The DFA for $(\underline{a} | \underline{b})^* \underline{abb}$

δ	<u>a</u>	<u>b</u>
<i>S</i> ₀	<i>S</i> ₁	<i>S</i> ₂
<i>S</i> ₁	<i>S</i> ₁	S ₃
<i>S</i> ₂	<i>S</i> ₁	<i>S</i> ₂
S ₃	<i>S</i> ₁	<i>S</i> ₄
<i>S</i> ₄	<i>S</i> ₁	<i>S</i> ₂

- Not much bigger than the original
- All transitions are deterministic
- Use same code skeleton as before

Where are we? Why are we doing this?

 $RE \rightarrow NFA$ (Thompson's construction)

- Build an NFA for each term
- Combine them with **ɛ**-moves
- NFA \rightarrow DFA (subset construction) []
- Build the simulation
- $DFA \rightarrow Minimal DFA$
- Hopcroft's algorithm

 $\mathsf{DFA} \longrightarrow \mathsf{RE}$

- All pairs, all paths problem
- Union together paths from s_o to a final state

Enough theory for today

Building Faster Scanners from the DFA

Table-driven recognizers waste a lot of effort

- Read (& classify) the next character
- Find the next state
- Assign to the state variable
- Trip through case logic in *action()*
- Branch back to the top

We can do better

- Encode state & actions in the code
- Do transition tests locally
- Generate ugly, spaghetti-like code
- Takes (many) fewer operations per input character

char ¬ next character; state ¬ s_{0;} call action(state,char); while (char ¹ <u>eof</u>) state ¬ **d**(state,char); call action(state,char); char ¬ next character;

if **T**(state) = <u>final</u> then report acceptance; else report failure; Building Faster Scanners from the DFA

A direct-coded recognizer for <u>r</u> Digit Digit^{*}

goto s_0 ; s_0 : word $\neg \emptyset$; char \neg next character; if (char = 'r') then goto s_1 ; else goto s_e ; s_1 : word \neg word + char; char \neg next character; if ('0' char '9') then goto s_2 ; else goto s_e ;

s2: word \neg word + char; char \neg next character; if ('0' char '9') then goto s₂; else if (char = eof) then report acceptance; else goto s_e; s_e: print error message;

return failure;

- Many fewer operations per character
- Almost no memory operations
- Even faster with careful use of fall-through cases

Building Faster Scanners

Hashing keywords versus encoding them directly

- Some compilers recognize keywords as identifiers and check them in a hash table
 (some well-known compilers do this!)
- Encoding it in the DFA is a better idea
 - > O(1) cost per transition
 - > Avoids hash lookup on each identifier

It is hard to beat a well-implemented DFA scanner