Automating Scanner Construction

RE→N F A *(Thompson's construction)*

- Build an NFA for each term
- Combine them with **ε**-moves

N F A →DFA *(subset construction*)

• Build the simulation

 $DFA \rightarrow$ Minimal DFA

• Hopcroft's algorithm

$DFA \rightarrow RE$

- All pairs, all paths problem
- Union together paths from s_0 to a final state

from Cooper & Torczon 1

RE ®NFA using Thompson's Construction

Key idea

- NFA pattern for each symbol & each operator
- Join them with **ε** moves in precedence order

NFA for a

NFA for $\underline{\mathsf{a}}^*$

NFA for \underline{a} | \underline{b}

Ken Thompson, CACM, 1968

Example of Thompson's Construction

Let's try <u>a</u> (<u>b</u> | <u>c</u>)*

1. a, b, & c
$$
(S_0) \xrightarrow{a} (S_1) \quad (S_2) \xrightarrow{b} (S_3) \quad (S_4) \xrightarrow{c} (S_5)
$$

Of course, a human would design something simpler ...

But, we can automate production of the more complex one ...

Need to build a simulation of the N F A

Two key functions

- *Move*(s_{*i*}, <u>a</u>) *is set of states reachable by <u>a</u> from* s_i
- *e-closure(sⁱ)* is set of states reachable by *e* from *^sⁱ*

The algorithm

- Start state derived from s_0 of the NFA
- Take its **£**-closure
- Work outward, trying each $\alpha \in \Sigma$ and taking its ε -closure
- Iterative algorithm that halts when the states wrap back on themselves

Sounds more complex than it is…

The algorithm:

 s_0 \rightarrow *e-closure* (q_{0n}) *while (S is still changing) for each* s_i \hat{I} *S for each* \bf{a} $\bf{\hat{I}}$ $\bf{\Sigma}$ *s?¬ e-closure(move(sⁱ ,a)) if (s? Ï S) then add s? to S as s^j* $T[s_i, a]$ – s_{*j*}

Let's think about why this works

The algorithm halts:

- *1. S* contains no duplicates (test before adding)
- **2.** 2^{Qn} is finite
- *3.* while loop adds to *S*, but does not remove from *S (monotone)*
- *P* the loop halts
- **S** contains all the reachable NFA states
- *It tries each character in each sⁱ .*
- *It builds every possible NFA configuration.*
- *Þ S and T form the DFA*

Example of a *fixed-point* computation

- Monotone construction of some finite set
- Halts when it stops adding to the set
- Proofs of halting & correctness are similar
- These computations arise in many contexts

Other fixed-point computations

- Canonical construction of sets of LR(1) items
	- > Quite similar to the subset construction
- C lassic data-flow analysis (& Gaussian Elimination)
	- > Solving sets of simultaneous set equations

We will see many more fixed-point computations

from Cooper & Torczon 7

Remember (<u>a | b</u>)* <u>abb</u> ? \underline{a} | <u>b</u> q_q \longrightarrow q_1 \longrightarrow q_2 \longrightarrow q_3 \longrightarrow q_4 ϵ \sum $\frac{a}{2}$ \sum $\frac{b}{2}$ \sum $\frac{b}{2}$

Applying the subset construction:

Iteration 3 adds nothing to *S*, so the algorithm halts

contains q⁴ (final state)

The DFA for (<u>a|b</u>)* <u>abb</u>

- Not much bigger than the original
- All transitions are deterministic
- Use same code skeleton as before

Where are we? Why are we doing this?

RE→NFA *(Thompson's construction)* **■**

- Build an NFA for each term
- Combine them with **ε**-moves

N F A →DFA *(subset construction*) 4

• Build the simulation

 $DF A \rightarrow M$ inimal DFA

• Hopcroft's algorithm

 $DFA \rightarrow RE$

- All pairs, all paths problem
- Union together paths from s_0 to a final state

Enough theory for today

Building Faster Scanners from the DFA

Table-driven recognizers waste a lot of effort

- Read (& classify) the next character
- Find the next state
- Assign to the state variable
- Trip through case logic in *action()*
- Branch back to the top

We can do better

- Encode state & actions in the code
- Do transition tests locally
- Generate ugly, spaghetti-like code
- Takes (many) fewer operations per input character

char ¬ next character; state \rightarrow s₀. *call action(state,char); while (char* ^{*1*} *eof) state ¬ d(state,char); call action(state,char); char ¬ next character;*

if T (*state*) = *final then report acceptance; else report failure;*

Building Faster Scanners from the DFA

A direct-coded recognizer for *r Digit Digit^{*}*

```
goto s0
;
s0
: word ¬ Ø;
   char ¬ next character;
   if (char = 'r')
      then goto s<sub>1</sub>;
      else goto se
;
s1
: word ¬ word + char;
   char ¬ next character;
   if ('0' char '9') 
      then goto s<sub>2</sub>;
      else goto se
;
```
s2: word ¬ word + char; char ¬ next character; if ('0' char '9') then goto s² ; else if (char = eof) then report acceptance; else goto s^e ; se : print error message;

return failure;

- Many fewer operations per character
- Almost no memory operations
- Even faster with careful use of fall-through cases

Building Faster Scanners

Hashing keywords versus encoding them directly

- Some compilers recognize keywords as identifiers and check them in a hash table *(some well-known compilers do this!)*
- Encoding it in the DFA is a better idea
	- > O(1) cost per transition
	- > Avoids hash lookup on each identifier

It is hard to beat a well-implemented DFA scanner