
from Cooper & Torczon 1

Automating Scanner Construction

RE→N F A (Thompson’s construction)

• Bui ld an NFA for each term

• Combine them with ε-moves

N F A →DFA (subset construction)

• Bui ld the simulation

D F A → Minimal DFA

• Hopcroft’s algorithm

D F A →RE

• A l l pairs, all paths problem

• Union together paths from s0 to a final state

minimal

D F A
RE N F A D F A

The Cycle of Constructions

from Cooper & Torczon 2

RE →NFA using Thompson’s Construction

Key idea

• N F A pattern for each symbol & each operator

• Join them with ε moves in precedence order

S0 S1

a

N F A for a

S0 S1

a
S3 S4

b

N F A for ab

ε

N F A for a | b

S0

S1 S2

a

S3 S4

b

S5

ε

ε ε

ε
S0 S1

ε S3 S4
ε

N F A for a*

a

ε

ε

Ken Thompson, CACM, 1968

from Cooper & Torczon 3

Example of Thompson’s Construction

Let ’s try a (b | c)*

1. a, b, & c

2. b | c

3. (b | c)*

S0 S1

a
S2 S3

b
S4 S5

c

S2 S3

b

S4 S5

c

S6 S7

S2 S3

b

S4 S5

c

S6 S7 S8 S9

ε

ε

ε ε

ε ε

εε

from Cooper & Torczon 4

Example of Thompson’s Construction (continued)

4. a (b | c)*

Of course, a human would design something simpler ...

S0 S1

a

b | c

But, we can automate production of the
more complex one ...

S0 S1

a ε
S2 S3

b

S4 S5

c

S6 S7 S8 S9

ε

ε

ε ε

ε ε

ε ε

from Cooper & Torczon 5

NFA →DFA with Subset Construction

Need to build a simulation of the N F A

Two key functions

• Move(si,a) is set of states reachable by a from si

• ε-closure(si) is set of states reachable by ε from si

The algorithm

• Start state derived from s0 of the N F A

• Take its ε-closure

• Work outward, trying each α ∈ Σ and taking its ε-closure

• Iterative algorithm that halts when the states wrap back on themselves

Sounds more complex than it is…

from Cooper & Torczon 6

NFA →DFA with Subset Construction

The algorithm:

s0 ← ε-closure(q0n)

while (S is still changing)

for each si ∈ S

for each α ∈ Σ
s?← ε-closure(move(si,α))

if (s? ∉ S) then

add s? to S as sj

T[s i,α] ← sj

Let’s think about why this works

The algorithm halts:

1. S contains no duplicates

(test before adding)

2. 2Qn is finite

3. while loop adds to S, but does
not remove from S (monotone)

⇒ the loop halts

S contains all the reachable N F A

states

It tries each character in each si.

It builds every possible NFA

configuration.

⇒ S and T form the DFA

from Cooper & Torczon 7

NFA →DFA with Subset Construction

Example of a fixed-point computation

• Monotone construction of some finite set

• Halts when it stops adding to the set

• Proofs of halting & correctness are similar

• These computations arise in many contexts

Other fixed-point computations

• Canonical construction of sets of LR(1) items

> Quite similar to the subset construction

• C lassic data-flow analysis (& Gaussian El imination)

> Solving sets of simultaneous set equations

We will see many more fixed-point computations

from Cooper & Torczon 8

NFA →DFA with Subset Construction

Remember (a | b)* abb ?

Apply ing the subset construction:

Iteration 3 adds nothing to S, so the algorithm halts

a | b

q0 q1 q4 q2 q3

ε a bb

Ite r . S t a t e C on t a in s
ε-c losu r e (

m ov e (s i, a))

ε-c losu r e (

m ov e (s i, b))

0 s 0 q 0 , q 1 q 1 , q 2 q 1

1 s 1 q 1 , q 2 q 1 , q 2 q 1 , q 3

s 2 q 1 q 1 , q 2 q 1

2 s 3 q 1 , q 3 q 1 , q 2 q 1 , q 4

3 s 4 q 1 , q 4 q 1 , q 2 q 1

contains q4

(final state)

from Cooper & Torczon 9

NFA →DFA with Subset Construction

The DFA for (a | b)* abb

• Not much bigger than the original

• A l l transitions are deterministic

• Use same code skeleton as before

s0

a
s1

b

s3

b
s4

s2

a

b

b

a

a

a

b

δ a b

s 0 s 1 s 2

s 1 s 1 s 3

s 2 s 1 s 2

s 3 s 1 s 4

s 4 s 1 s 2

from Cooper & Torczon 10

Where are we? Why are we doing this?

RE→N F A (Thompson’s construction) 4

• Bui ld an NFA for each term

• Combine them with ε-moves

N F A →DFA (subset construction) 4

• Bui ld the simulation

D F A → Minimal DFA

• Hopcroft’s algorithm

D F A →RE

• A l l pairs, all paths problem

• Union together paths from s0 to a final state

Enough theory for today

minimal

D F A
RE N F A D F A

The Cycle of Constructions

from Cooper & Torczon 11

Building Faster Scanners from the DFA

Table-driven recognizers waste a lot of effort

• Read (& classify) the next character

• Find the next state

• Assign to the state variable

• Trip through case logic in action()

• Branch back to the top

We can do better

• Encode state & actions in the code

• Do transition tests locally

• Generate ugly, spaghetti- like code

• Takes (many) fewer operations per input character

char ← next character;
state ← s0 ;

call action(state,char);
while (char ≠ eof)

state ← δ(state,char);
call action(state,char);
char ← next character;

if Τ(state) = final then
report acceptance;

else
report failure;

from Cooper & Torczon 12

Building Faster Scanners from the DFA

A direct-coded recognizer for r Digit Digit*

• Many fewer operations per character

• A l most no memory operations

• Even faster with careful use of fall-through cases

goto s0;

s0: word ← Ø;

char ← next character;

if (char = ‘ r ’)

then goto s1;

else goto se;

s1: word ← word + char;

char ← next character;

if (‘0 ’ � char � ‘9 ’)

then goto s2;

else goto se;

s2: word ← word + char;

char ← next character;

if (‘0 ’ � char � ‘9 ’)

then goto s2;

else if (char = eof)

then report acceptance;

else goto se;

se: print error message;

return failure;

from Cooper & Torczon 13

Building Faster Scanners

Hashing keywords versus encoding them directly

• Some compilers recognize keywords as identifiers and check them in a hash
table (some well-known compilers do this!)

• Encoding it in the DFA is a better idea

> O(1) cost per transition

> Avo ids hash lookup on each identifier

It is hard to beat a well- implemented DFA scanner

