Automating Scanner Construction

RE® NFA (Thompson’s construction)

e Build an NFA for each term

e Combine them with €&moves

NFA ® DFA (subset construction) : The Cycle of Constructions

e Build the simulation

DFA ® Minimal DFA RE — P NEA DEA minimal
' DFA

® Hopcroft's algorithm S ?

DFA ® RE
e All pairs, all paths problem

® Union together paths from s, to a final state

from Cooper & Torczon 1

RE ® NFA using Thompson’s Construction

Key idea
e NFA pattern for each symbol & each operator

e Join them with € moves in precedence order

NFA for a NFA for ab

NFA for a*

NFA foral|b

Ken Thompson, CACM, 1968

from Cooper & Torczon 2

Example of Thompson’s Construction

Let'strya(b|c)”

1 ab & OO,

N
=
Ie)

from Cooper & Torczon 3

Example of Thompson’s Construction (continued)

Of course, a human would design something simpler ...

blc

()

from Cooper & Torczon

But, we can automate production of the
more complex one ...

NFA ® DFA with Subset Construction

Need to build a simulation of the NFA

Two key functions

* Move(s,;a) is set of states reachable by a from s,

® Eclosure(s;) is set of states reachable by € from s,

The algorithm

e Start state derived from So of the NFA
e Take its €-closure

e Work outward, trying each al Sand taking its €-closure

® |terative algorithm that halts when the states wrap back on themselves

Sounds more complex than it is...

from Cooper & Torczon

NFA ® DFA with Subset Construction

The algorithm:

S, 7 €e-closure(q,,)
while ('S is still changing)
foreachs 1 S
foreachal S
s, e-closure(move(s,,a))
if (s, S)then
adds,toSass,
T[s,a] = 5,

Let’s think about why this works

from Cooper & Torczon

The algorithm halts:

1.

b

S contains no duplicates
(test before adding)

29" is finite
while loop adds to S, but does
not remove from S (monotone)

the loop halts

S contains all the reachable NFA
states

It tries each character in each s;.

It builds every possible NFA

b

configuration.

S and T form the DFA

NFA ® DFA with Subset Construction

Example of a fixed-point computation

® Monotone construction of some finite set
e Halts when it stops adding to the set

® Proofs of halting & correctness are similar

® These computations arise in many contexts

Other fixed-point computations
e Canonical construction of sets of LR(1) items
> Quite similar to the subset construction
® C(Classic data-flow analysis (& Gaussian Elimination)

> Solving sets of simultaneous set equations

We will see many more fixed-point computations

from Cooper & Torczon 7

NFA ® DFA with Subset Construction

Remember (a| b)" abb ?

Applying the subset construction:

_ €closu re(€closu re(
Iter. | State | Con tains mov e(s,.a)) mov e(s,.b))
O SO qO’ ql ql’ q2 ql
l Sl ql’qZ ql’qZ q11q3
SZ ql ql’ q2 ql
2 S3 ql’qS ql’qZ q11q4
S, qla@‘\ 91, 4> q,
contains g,
Iteration 3 adds nothing to S, so the algorithm halts (final state)

from Cooper & Torczon 8

NFA ® DFA with Subset Construction

The DFA for (a|b)" abb

d a b
S, S, S,
S, S, S,
S, S, S,
S, S, s,
s, S, S,

® Not much bigger than the original
e All transitions are deterministic

e Use same code skeleton as before

from Cooper & Torczon 9

Where are we? Why are we doing this?

RE® NFA (Thompson’s construction)

e Build an NFA for each term

e Combine them with €&moves

NFA ® DFA (subset construction) |
; The Cycle of Constructions

e Build the simulation

DFA ® Minimal DFA

5 minimal
® Hopcroft's algorithm ; RE —»NFA —»DFA

DFA

DFA ® RE
e All pairs, all paths problem

® Union together paths from s, to a final state

Enough theory for today

from Cooper & Torczon 10

Building Faster Scanners from the DFA

Table-driven recognizers waste a lot of effort
® Read (& classify) the next character

® Find the next state

® Assign to the state variable

e Trip through case logic in action()

Branch back to the top

We can do better
e Encode state & actions in the code
®* Do transition tests locally

® (Generate ugly, spaghetti-like code

char = next character;
state 7 s, .
call action(state,char);
while (char * eof)
state = d(state,char);
call action(state,char);
char = next character;

if T(state) = final then
report acceptance;
else
report failure;

e Takes (many) fewer operations per input character

from Cooper & Torczon

11

Building Faster Scanners from the DFA

A direct-coded recognizer for r Digit Digit”

goto s,;
0 s2: word = word + char;

char = next character;
if ('O’ OcharO ‘9’)

S, word - &;
char = next character;

if (char = ‘r") then goto s,;
then goto s;; else if (char = eof)
else goto s;

then report acceptance;
s,: word = word + char; else goto s;
char = next character;
if ('O’ Ocharo ‘9’)
then goto s,;
else goto s;

S.. print error message;
return failure;

® Many fewer operations per character
e Almost no memory operations

e Even faster with careful use of fall-through cases

from Cooper & Torczon 12

Building Faster Scanners

Hashing keywords versus encoding them directly

Some compilers recognize keywords as identifiers and check them in a hash
table (some well-known compilers do this!)

Encoding it in the DFA is a better idea
> 0O(1) cost per transition

> Avoids hash lookup on each identifier

It is hard to beat a well-implemented DFA scanner

from Cooper & Torczon

13

