The Front End

Source Front IR Back Machine
code End End code

P Errors

The purpose of the front end is to deal with the input language
® Perform a membership test: code I source language?
® Is the program well-formed (syntactically) ?

e Build an IR version of the code for the rest of the compiler

from Cooper & Torczon 1

The Front End

Source tokens IR
> Scanner > Parser >
code

P Errors
Scanner

® Maps stream of characters into words
> Basic unit of syntax
> X =X + vy ; becomes <id,x> <assignop,=> <id,x> <arithop,+> <id,y> ;

e Characters that form a word are its lexeme

e |ts part of speech (or syntactic category) is called its token :faes:”';a” Issue in

e Scanner discards white space & (often) comments b use a specialized

recognizer

from Cooper & Torczon 2

The Front End

Source tokens IR
g Scanner > Parser >
code

P Errors
Parser

® Checks stream of classified words (parts of speech) for grammatical
correctness

® Determines if code is syntactically well-formed
® (Guides checking at deeper levels than syntax

e Builds an IR representation of the code

We’'ll come back to parsing in a couple of lectures

from Cooper & Torczon 3

The Big Picture

In natural languages, word ® part of speech is idiosyncratic

>

>

Based on connotation & context

Typically done with a table lookup

In formal languages, word ® part of speech is syntactic

>

>

>

>

Based on denotation
Makes this a matter of syntax, or micro-syntax
We can recognize this micro-syntax efficiently

Reserved keywords are critical (no context!)

P Fast recognizers can map words into their parts of speech

P Study formalisms to automate construction of recognizers

from Cooper & Torczon

The Big Picture

Why study lexical analysis?

* We want to avoid writing scanners by hand

source code parts of speech
» Scanner >

%é%’/,,,—/f”’ tables or

code

specifications Scanner
Generator

Goals:

> To simplify specification & implementation of scanners

> To understand the underlying techniques and technologies

from Cooper & Torczon 5

Specifying Lexical Patterns (micro-syntax)

A scanner recognizes the language’s parts of speech

Some parts are easy

® White space
> WhiteSpace ® blank | tab | WhiteSpace blank | WhiteSpace tab

e Keywords and operators

> Specified as literal patterns: if, then, else, while, =, +, ...

e Comments
> Opening and (perhaps) closing delimiters
> /* followedby */ in C
> /[in C++

> % in LaTeX

from Cooper & Torczon 6

Specifying Lexical Patterns (micro-syntax)

A scanner recognizes the language’s parts of speech

Some parts are more complex
® |dentifiers
> Alphabetic followed by alphanumerics + , &, $, ...
> May have limited length
® Numbers
> Integers: 0 or a digit from 1-9 followed by digits from 0-9
> Decimals: integer . digits from 0-9, or . digits from 0-9
> Reals: (integer or decimal) E (+ or -) digits from 0-9

> Complex: (real, real)

We need a notation for specifying these patterns

We would like the notation to lead to an implementation

from Cooper & Torczon 7

Regular Expressions

Patterns form a regular language
Ever type

*** any finite language is regular *** “rm *.0 a.out” ?

Regular expressions (REs) describe regular languages

Regular Expression (over alphabet S)
® Eis a RE denoting the set {€}

e Ifaisin S, thenais a RE denoting {a}
e |f xandy are REs denoting L(x) and L(y) then

> X is a RE denoting L(X)

> Xy is a RE denoting L(X) E L(y) Precedence is

> Xy is a RE denoting L(x)L(y) closure, then
> X"is a RE denoting L(X)* concatenation, then
alternation

from Cooper & Torczon 8

Set Operations (refresher)

Operation Definition
Union of L and M X - -
Written L E M LEM={s|sl Lorsl M}
Concatenation of L and M — 7 7
Written LM LM ={st|sl Landtl M}
Kleene closure of L . B i
Written L’ L' =Eggiex L
Positive Closure of L . B i
Written L* L'=BEqgex L

You need to know these definitions

from Cooper & Torczon 9

Examples of Regular Expressions

Identifiers:
Letter ® (alble| ... [zIAIBIC] ... 12)
Digit ® (Q112] ... 19)

Identifier ® Letter (Letter | Digit)"

Numbers:
Integer ® (+|-1€) (O] (2]213] ... [9)(Digit *))
Decimal ® Integer . Digit~

Real ® (Integer | Decimal) E (+|-|€) Digit ~

Complex ® (Real, Real)

Numbers can get much more complicated!

from Cooper & Torczon

10

Regular Expressions (the point)

To make scanning tractable, programming languages
differentiate between parts of speech by
controlling their spelling (as opposed to dictionary lookup)

Difference between Identifier and Keyword is entirely lexical
> While is a Keyword

> Whilst is an ldentifier
The lexical patterns used in programming languages are regular

Using results from automata theory, we can automatically build recognizers from
regular expressions

P We study REs to automate scanner construction !

from Cooper & Torczon 11

Example

Consider the problem of recognizing register names
Register ® r (0]1]2] ... | 9) (QI1I2] ... |)"

® Allows registers of arbitrary number

® Requires at least one digit

RE corresponds to a recognizer (or DFA)

@I12] ... 9

Q112] ... 9

accepting state

Recognizer for Register

With implicit transitions on other inputs to an error state, s,

from Cooper & Torczon 12

Example

DFA operation

(continued)

e Start in state S, & take transitions on each input character

= DFA accepts a word x iff x leaves it in a final state (S,)

©@112] .

Recognizer for Register
So,
e rl7 takes it through s, s , s, and accepts

® rtakes it through s, s, and fails

® atakes it straight to s,

from Cooper & Torczon

. 9)

accepting state

13

Example

char = next character;
state 7 s, .
call action(state,char);
while (char ! eof)
state = d(state,char);
call action(state,char);
char = next character;

if T(state) = final then
report acceptance;
else
report failure;

(continued)

action(state,char)
switch(T(state))
case start:
word = char;
break;
case normal:
word = word + char;
break;
case final:
word = char;
break;
case error:
report error;
break;
end;

*The recognizer translates directly into code
*To change DFASs, just change the tables

S, fina |

S. error

0,1, 2,3
d | r 456 other

7,8 9

S, | S S, S,
s, | s. s, S,
s, | s. s, S,
S. | Ss. S, S,

from Cooper & Torczon

14

What if we need a tighter specification?

r Digit Digit® allows arbitrary numbers

e Accepts r00000

e Accepts r99999

e What if we want to limit it to rQ through r31 ?

Write a tighter regular expression

> Register ® r ((0]1]2) (Digit | €) | (415l61718]9) | (3]30]31)

> Register ® r0|ri[r2| ... |r31|r00|r01|r02] ... [r09

Produces a more complex DFA
® Has more states
e Same cost per transition

e Same basic implementation

from Cooper & Torczon

15

Tighter register specification

The DFA for

(continued)

@112 ... 9

1<
|=

® Accepts a more constrained set of registers

e Same set of actions, more states

from Cooper & Torczon

16

Tighter register specification

To implement the recognizer

Use the same code skeleton

Use transition and action tables for the new RE

d r 10,1 2 3 | 4.96 | gther
7,89
SO S1 Se Se Se Se Se
S1[Se| Sz [S2|Ss| S, Se
SZ Se SS SS SS SS Se
SS Se Se Se Se Se Se
S4 Se Se Se Se Se Se
SS Se SG Se Se Se Se
Se [Se| Se |Se|Se| Se Se
SelSe| Se [SeSe| S Se

(continued)

T ac tion
S, start
S, nor mal
S,345.6 fina |
S error

Bigger tables, more space, same asymptotic costs

Better (micro-)syntax checking at the same cost

from Cooper & Torczon

17

