
from Cooper & Torczon 1

The Front End

The purpose of the front end is to deal with the input language

• Perform a membership test: code ∈ source language?

• Is the program well-formed (syntactically) ?

• Bui ld an IR version of the code for the rest of the compiler

Source
code

Front
End

Errors

Machine
code

Back
End

IR

from Cooper & Torczon 2

The Front End

Scanner

• Maps stream of characters into words

> Basic unit of syntax

> x = x + y ; becomes <id,x> <assignop,=> <id,x> <arithop,+> <id,y> ;

• Characters that form a word are its lexeme

• Its part of speech (or syntactic category) is called its token

• Scanner discards white space & (often) comments

Source
code

Scanner
IR

Parser

Errors

tokens

Speed is an issue in
scanning

⇒ use a specialized
recognizer

from Cooper & Torczon 3

The Front End

Parser

• Checks stream of classified words (parts of speech) for grammatical
correctness

• Determines if code is syntactically well-formed

• Guides checking at deeper levels than syntax

• Bui lds an IR representation of the code

We’ll come back to parsing in a couple of lectures

Source
code

Scanner
IR

Parser

Errors

tokens

from Cooper & Torczon 4

The Big Picture

In natural languages, word → part of speech is idiosyncratic

> Based on connotation & context

> Typically done with a table lookup

In formal languages, word → part of speech is syntactic

> Based on denotation

> Makes this a matter of syntax, or micro-syntax

> We can recognize this micro-syntax efficiently

> Reserved keywords are critical (no context!)

⇒ Fast recognizers can map words into their parts of speech

⇒ Study formalisms to automate construction of recognizers

from Cooper & Torczon 5

The Big Picture

Why study lexical analysis?

• We want to avoid writing scanners by hand

Goals:

> To simplify specification & implementation of scanners

> To understand the underlying techniques and technologies

Scanner

Scanner
Generator

specifications

source code parts of speech

tables or
code

from Cooper & Torczon 6

Specifying Lexical Patterns (micro-syntax)

A scanner recognizes the language’s parts of speech

Some parts are easy

• White space

> WhiteSpace → blank | tab | WhiteSpace blank | WhiteSpace tab

• Keywords and operators

> Specified as literal patterns: if, then, else, while, =, +, …

• Comments

> Opening and (perhaps) closing delimiters

> /* followed by */ in C

> // in C++

> % in LaTeX

from Cooper & Torczon 7

A scanner recognizes the language’s parts of speech

Some parts are more complex

• Identifiers

> A l phabetic followed by alphanumerics + _, &, $, …

> May have limited length

• Numbers

> Integers: 0 or a digit from 1-9 followed by digits from 0-9

> Decimals: integer . digits from 0-9, or . digits from 0-9

> Reals: (integer or decimal) E (+ or -) digits from 0-9

> Complex: (real , real)

We need a notation for specifying these patterns

We would like the notation to lead to an implementation

Specifying Lexical Patterns (micro-syntax)

from Cooper & Torczon 8

Regular Expressions

Patterns form a regular language

* * * any finite language is regular * * *

Regular expressions (REs) describe regular languages

Regular Expression (over alphabet Σ)

• ε is a RE denoting the set {ε}

• If a is in Σ, then a is a RE denoting {a}

• If x and y are REs denoting L(x) and L(y) then

> x is a RE denoting L(x)

> x |y is a RE denoting L(x) ∪ L(y)

> xy is a RE denoting L(x)L(y)

> x* is a RE denoting L(x)*

Precedence is
closure, then
concatenation, then
alternation

Ever type

“rm *.o a.out” ?

from Cooper & Torczon 9

You need to know these definitions

Set Operations (refresher)

Operation Definition

Union of L and M
Written L ∪ M L ∪ M = {s | s ∈ L or s ∈ M }

Concatenation of L and M
Written LM

LM = {st | s ∈ L and t ∈ M }

Kleene closure of L
Written L* L* = ∪0≤i≤∞ L

i

Positive Closure of L
Written L+ L* = ∪1≤i≤∞ L

i

from Cooper & Torczon 10

Examples of Regular Expressions

Identifiers:

Letter → (a|b|c| … |z|A|B|C| … |Z)

Digit → (0|1|2| … |9)

Identifier → Letter (Letter | Digit)*

Numbers:

Integer → (+|-|ε) (0| (1|2|3| … |9)(Digit *))

Decimal → Integer . Digit *

Real → (Integer | Decimal) E (+|-|ε) Digit *

Complex → (Real , Real)

Numbers can get much more complicated!

from Cooper & Torczon 11

Regular Expressions (the point)

To make scanning tractable, programming languages

differentiate between parts of speech by

controlling their spelling (as opposed to dictionary lookup)

Di f ference between Identifier and Keyword is entirely lexical

> Whi le is a Keyword

> Whi lst is an Identifier

The lexical patterns used in programming languages are regular

Using results from automata theory, we can automatically build recognizers from
regular expressions

⇒ We study REs to automate scanner construction !

from Cooper & Torczon 12

Consider the problem of recognizing register names

Register → r (0|1|2| … | 9) (0|1|2| … | 9)*

• A l lows registers of arbitrary number

• Requires at least one digit

RE corresponds to a recognizer (or DFA)

With implicit transitions on other inputs to an error state, se

Example

S0 S2 S1

r

(0|1|2| … 9)

accepting state

(0|1|2| … 9)

Recognizer for Register

from Cooper & Torczon 13

D F A operation

• Start in state S0 & take transitions on each input character

• D F A accepts a word x iff x leaves it in a final state (S2)

So,

• r17 takes it through s0, s1, s2 and accepts

• r takes it through s0, s1 and fails

• a takes it straight to se

Example (continued)

S0 S2 S1

r

(0|1|2| … 9)

accepting state

(0|1|2| … 9)

Recognizer for Register

from Cooper & Torczon 14

Example (continued)

char ← next character;
state ← s0 ;

call action(state,char);
while (char ≠ eof)

state ← δ(state,char);
call action(state,char);
char ← next character;

if Τ(state) = final then
report acceptance;

else
report failure;

action(state,char)
switch(Τ(state))

case start:
word ← char;
break;

case normal:
word ← word + char;
break;

case final:
word ← char;
break;

case error:
report error;
break;

end;

Τ a c t ion

S 0 s ta r t

S 1 no rm a l

S 2 f ina l

S e e rr o r

δ r

0 ,1, 2 ,3,
4 ,5, 6 ,
7 ,8, 9

ot h e r

S 0 S 1 S e S e

S 1 S e S 2 S e

S 2 S e S 2 S e

S e S e S e S e•The recognizer translates directly into code

•To change DFAs, just change the tables

from Cooper & Torczon 15

r Digit Digit* allows arbitrary numbers

• Accepts r00000

• Accepts r99999

• What if we want to limit it to r0 through r31 ?

Wr ite a tighter regular expression

> Register → r ((0|1|2) (Digit | ε) | (4|5|6|7|8|9) | (3|30|31)

> Register → r0|r1|r2| … |r31|r00|r01|r02| … |r09

Produces a more complex DFA

• Has more states

• Same cost per transition

• Same basic implementation

What if we need a tighter specification?

from Cooper & Torczon 16

Tighter register specification (continued)

The DFA for

Register → r ((0|1|2) (Digit | ε) | (4|5|6|7|8|9) | (3|30|31)

• Accepts a more constrained set of registers

• Same set of actions, more states

S0 S5 S1

r

S4

S3

S6

S2

0,1,2

3 0,1

4,5,6,7,8,9

(0|1|2| … 9)

from Cooper & Torczon 17

Tighter register specification (continued)

To implement the recognizer

• Use the same code skeleton

• Use transition and action tables for the new RE

• B igger tables, more space, same asymptotic costs

• Better (micro-)syntax checking at the same cost

δ r 0 ,1 2 3 4 ,5,6
7 ,8,9

o th e r

S 0 S 1 S e S e S e S e S e

S 1 S e S 2 S 2 S 5 S 4 S e

S 2 S e S 3 S 3 S 3 S 3 S e

S 3 S e S e S e S e S e S e

S 4 S e S e S e S e S e S e

S 5 S e S 6 S e S e S e S e

S 6 S e S e S e S e S e S e

S e S e S e S e S e S e S e

Τ ac t io n

S 0 s t a r t

S 1 n or m al

S 2 ,3 ,4 ,5 ,6 fina l

S e e r r o r

