
from Cooper & Torczon 1

Implications

• Must recognize legal (and illegal) programs

• Must generate correct code

• Must manage storage of all variables (and code)

• Must agree with OS & linker on format for object code

High-level View of a Compiler

Source
code

Machine
code

Compiler

Errors

from Cooper & Torczon 2

Traditional Two-pass Compiler

Implications

• Use an intermediate representation (IR)

• Front end maps legal source code into IR

• Back end maps IR into target machine code

• Admits multiple front ends & multiple passes (better code)

Typically, front end is O(n) or O(n log n), while back end is NPC

Source
code

Front
End

Errors

Machine
code

Back
End

IR

from Cooper & Torczon 3

Can we build n x m compilers with n+m components?

• Must encode all language specific knowledge in each front end

• Must encode all features in a single IR

• Must encode all target specific knowledge in each back end

Limited success in systems with very low-level IRs

A Common Fallacy

Fortran

Scheme

Java

Smalltalk

Front
end

Front
end

Front
end

Front
end

Back
end

Back
end

Target 2

Target 1

Target 3Back
end

from Cooper & Torczon 4

Responsibilities

• Recognize legal (& illegal) programs

• Report errors in a useful way

• Produce IR & preliminary storage map

• Shape the code for the back end

• Much of front end construction can be automated

The Front End

Source
code

Scanner
IR

Parser

Errors

tokens

from Cooper & Torczon 5

The Front End

Scanner

• Maps character stream into words—the basic unit of syntax

• Produces words & their parts of speech

x = x + y ; becomes <id,x> <op,= > <id,x> <op,+ <id,y> ;

> word ≅ lexeme, part of speech ≅ token

> In casual speech, we call the pair a token

• Typical tokens include number, identifier, +, -, while, if

• Scanner eliminates white space

• Speed is important ⇒use a specialized recognizer

Source
code

Scanner
IR

Parser

Errors

tokens

from Cooper & Torczon 6

The Front End

Parser

• Recognizes context-free syntax & reports errors

• Guides context-sensitive analysis (type checking)

• Bui lds IR for source program

Hand-coded parsers are fairly easy to build

Most books advocate using automatic parser generators

Source
code

Scanner
IR

Parser

Errors

tokens

from Cooper & Torczon 7

The Front End

Compilers often use an abstract syntax tree

This is much more concise
A S Ts are one form of intermediate representation (IR)

+

-

<id,x> <number,2>

<id,y>
The AST summarizes
grammatical structure,
without including detail
about the derivation

from Cooper & Torczon 8

The Back End

Responsibilities

• Translate IR into target machine code

• Choose instructions to implement each IR operation

• Decide which value to keep in registers

• Ensure conformance with system interfaces

Automation has been much less successful in the back end

Errors

IR Instruction
Scheduling

Instruction
Selection

Machine
code

Register
A l l o cation

IR IR

from Cooper & Torczon 9

The Back End

Instruction Selection

• Produce fast, compact code

• Take advantage of target features such as addressing modes

• Usually viewed as a pattern matching problem

> ad hoc methods, pattern matching, dynamic programming

This was the problem of the future in 1978

> Spurred by transition from PDP-11 to V A X -11

> Orthogonality of RISC simplified this problem

Errors

IR Instruction
Scheduling

Instruction
Selection

Machine
code

Register
A l l o cation

IR IR

from Cooper & Torczon 10

The Back End

Instruction Scheduling

• Avo id hardware stalls and interlocks

• Use all functional units productively

• Can increase lifetime of variables (changing the allocation)

• Optimal scheduling is NP-Complete in nearly all cases

Good heuristic techniques are well understood

Errors

IR Instruction
Scheduling

Instruction
Selection

Machine
code

Register
A l l o cation

IR IR

from Cooper & Torczon 11

The Back End

Register allocation

• Have each value in a register when it is used

• Manage a limited set of resources

• Can change instruction choices & insert L O A Ds & STOREs

• Optimal allocation is NP-Complete (1 or k registers)

Compilers approximate solutions to NP-Complete problems

Errors

IR Instruction
Scheduling

Instruction
Selection

Machine
code

Register
A l l o cation

IR IR

from Cooper & Torczon 12

Traditional Three-pass Compiler

Code Improvement (or Optimization)

• Analyzes IR and rewrites (or transforms) IR

• Primary goal is to reduce running time of the compiled code

> May also improve space, power consumption, …

• Must preserve “meaning” of the code

> Measured by values of named variables

Errors

Source
Code

Midd le
End

Front
End

Machine
code

Back
End

IR IR

from Cooper & Torczon 13

The Optimizer (or Middle End)

Typical Transformations

• D iscover & propagate some constant value

• M o ve a computation to a less frequently executed place

• D iscover a redundant computation & remove it

• Remove useless or unreachable code

Errors

Opt
1

Opt
3

Opt
2

Opt
n

...IR IR IR IR IR

Modern optimizers are structured as a series of passes

