Parsing — Part I
(Ambiguity, Top-down parsing, Left-recursion Removal)

Ambiguous Grammars

Definitions

e If a grammar has more than one leftmost derivation for a single sentential
form, the grammar is ambiguous

e |f a grammar has more than one rightmost derivation for a single sentential
form, the grammar is ambiguous

® The leftmost and rightmost derivations for a sentential form may differ, even
In an unambiguous grammar

Classic example — the if-then-else problem

Stmt ® if Expr then Stmt
| if Expr then Stmt else Stmt

| ... otherstmts ...

This ambiguity is entirely grammatical in nature

from Cooper & Torczon

Ambiguity

This sentential form has two derivations (If a derivation has more than 1 parse
tree, the grammar is ambiguous

if Expr, then if Expr, then Stmt, else Stmt,

E2

Sl S2
production 2, then production 1, then
production 1 production 2

from Cooper & Torczon

Ambiguity

Removing the ambiguity

® Must rewrite the grammar to avoid generating the problem

e Match each else to innermost unmatched if (common sense rule)
1 Sstmt ® W thElse
2 | NoElse
3| WithElse ® |f Expr then WithElse
e se With Else
4 | ... other stmts...

NoElse ® |f Expr then Stmt
| If Exor then With Else
e se NoElse

W ith this grammar, the example has only one derivation

from Cooper & Torczon 4

Ambiguity

if Expr, then if Expr, then Stmt; else Stmt,

Rule |Sentential Form

— S mt

2 NoE Ise

5 if Expr then S mt

? ifE, then S mt

1 if E, then With Else

3 ifE, then if Expr then With Else else With Else
? ifE, thenif E, then With Else else With Else

4 ifE, thenif E, then S, else With Else

4 ifE, thenif E, then S, else S,

This binds the else controlling S, to the inner if

from Cooper & Torczon 5

Deeper Ambiguity

Ambiguity usually refers to confusion in the CFG
Overloading can create deeper ambiguity
a=1(17)

In some languages, f could be either a function or a subscripted variable

Disambiguating this one requires context

® Need values of declarations

®* Really an issue of type, not context-free syntax

® Requires an extra-grammatical solution (not in CFG)

e Must to handle these with a different mechanism

> Step outside grammar rather than use a more complex grammar

from Cooper & Torczon

Ambiguity - the Final Word

Ambiguity arises from two distinct sources

® (Confusion in the context-free syntax (if-then-else)
e Confusion that requires context to resolve (overloading)

Resolving ambiguity
® To remove context-free ambiguity, rewrite the grammar

® To handle context-sensitive ambiguity takes cooperation
> Knowledge of declarations, types, ...
> Accept a superset of L(G) & check it with other means?

> This is a language design problem

Sometimes, the compiler writer accepts an ambiguous grammar

> Parsing techniques that “do the right thing”

'See Chapter 4

from Cooper & Torczon

Parsing Techniques

Top-down parsers (LL(1), recursive descent)

Start at the root of the parse tree and grow toward leaves
Pick a production & try to match the input
Bad “pick” P may need to backtrack

Some grammars are backtrack-free (predictive parsing)

Bottom-up parsers (LR(1), operator precedence)

Start at the leaves and grow toward root
As input is consumed, encode possibilities in an internal state
Start in a state valid for legal first tokens

Bottom-up parsers handle a large class of grammars

from Cooper & Torczon

Top-down Parsing

A top-down parser starts with the root of the parse tree

The root node is labeled with the goal symbol of the grammar

Top-down parsing algorithm:
Construct the root node of the parse tree
Repeat until the fringe of the parse tree matches the input string

1 At anode labeled A, select a production with A on its lhs and, for each
symbol on its rhs, construct the appropriate child

2 When a terminal symbol is added to the fringe and it doesn’t match the
fringe, backtrack

3 Find the next node to be expanded (label T NT)

The key is picking the right production in step 1
> That choice should be guided by the input string

from Cooper & Torczon

Remember the expression grammar?

Version with precedence derived last lecture

1 |Goal ®
2 | Expr ®
3 |
4 |
5 |Ter m ®
6 |
7 |
8 |Fact or ®
9 |

E xpr
Expr + Ter m
Expr —Ter m
Ter m

Ter m * Fact or
Ter m / Fact or
Fact or

num ber

id

from Cooper & Torczon

And the input x-2*y

10

Example

Let’'stry x -2 *y:

Rule |Sentential Form |Input

— Goal -X-2*y
1 E xpr -X-2*y
2 Expr + Ter m -X-2*y
4 Ter m+ Ter m -X-2*y
7 Fact or + Ter m -X-2*y
9 <id, x>+ Ter m -X-2*y
9 <id, x>+ T m X--2*y

from Cooper & Torczon

<id,x>

11

Example

Let’s try X @* y: @

Rule |Sententh Form |Input

— Goal
E xpr
Expr + Ter m
Ter m+ Ter m

1

2

4

7 Fact or + Ter m
9 <id, x>+ Ter m
9

<id, x>+ T m

<id,x>

This worked well, except that “-” doesn’t match “+”

The parser must backtrack to here —

from Cooper & Torczon 12

Example

Continuing with x -2 * vy :

Rule |Sentential Form |Input

— Goall -X-2*%y
1 E xpr -X-2*y
3 Expr - Ter'm -X-2*y
4 Ter m - Ter m -X-2*y
7 Fact or - Ter m -X-2*Yy
9 <id, x> - Ter m -X-2*y
9 <id, x>- Ter m X--2*y
— | <id, x>- Ter m X--2*y

from Cooper & Torczon

<id,x>

13

Example

Continuing with x -2 * vy :

(e

Rule |Sentential Form |Input

— Goall -X-2*%y @
1 E xpr -X-2*y *

3 Expr - Ter'm -X-2*y @ _ @
4 Ter m - T m -X-2*y @

7 Fact or - Ter m -X-2*y

9 <id, x> - Tee m -X-2*y @

9 <id, x e m y

— | <id, x>- m y <id,x>
This time, “-” and “- We can advance past “-”

” matched to look at “2”

P Now, we need to expand Term - the last NT on the fringe

from Cooper & Torczon 14

Example

Trying to match the “2” in x-2*y:

Rule |Sentential Form |Input

— <id, x>- Ter m X--2*y
7 <id, x>- Fact or X--2*y
9 <id, Xx>- <num ,2> |x--2*y
— <id, Xx>- <num ,2> |x-2-*y

from Cooper & Torczon

15

Example

Trying to match the “2” in x-2*y:

Rule |Sentential Form |Input

— | <id, x>- Ter m X--2*y
7 <id, x>- Fact or X--2%y
9 <id, Xx>- <num X - @ y

_ <id, x>- <pdm ,2> L//%'*)L

Where areg we?

e “2” matches “2”
® We have more input, but no NTs left to expand
® The expansion terminated too soon

P Need to backtrack

from Cooper & Torczon 16

Example

Trying again with “2” in x -2 * y :

Rule |Sentential Form Inpu t

— <id, x>- Ter m X--2*y
5 <id, x>- Ter m * Fact or X--2*y
7 <id, x>- Fact or * Fact or X--2*y
8 <id, X>- <num ,2>* Fact or |x--2*y
— <id, x>- <num 2>* Fact or |Xx-2-*y

— |<id, x>- <num ,2>* Fact or [x-2*-y

9 <id, Xx>- <num 2>* < id, y> X-2*-y

<id,x> <num,2>

— <id, X>- <num ,2>* < id, y> X-2*y-

This time, we matched & consumed all the input

P Success!

from Cooper & Torczon 17

Another possible parse

Other choices for expansion are possible

Rule |Sentential Form Inpu t

— Goa l

consuming no input !

E xpr

Expr + Ter m

Expr + Ter m + Ter m +Ter m

1
2
2 Expr +Ter m +Ter m
2
2

Expr +Ter m + Ter m +... +Ter m

This doesn’t terminate (obviously)
® Wrong choice of expansion leads to non-termination
® Non-termination is a bad property for a parser to have

e Parser must make the right choice

from Cooper & Torczon 18

Left Recursion

Top-down parsers cannot handle left-recursive grammars

Formally,

A grammar is left recursive if $ AT NT such that

$ a derivation A P * Aa, for some stringal (NTE T)*

Our expression grammar is left recursive
® This can lead to non-termination in a top-down parser
® For a top-down parser, any recursion must be right recursion

* We would like to convert the left recursion to right recursion

Non-termination is a bad property in any part of a compiler

from Cooper & Torczon 19

Eliminating Left Recursion

To remove left recursion, we can transform the grammar

Consider a grammar fragment of the form

Fee® Fee a
| b

where neither a nor b start with Fee

We can rewrite this as

Fee ® b Fie
Fie® A Fie

| €

where Fie is a new non-terminal

This accepts the same language, but uses only right recursion

from Cooper & Torczon

20

Eliminating Left Recursion

The expression grammar contains two cases of left recursion

Expr ® Expr +Term
| Expr —Term
| Term

Applying the transformation yields

Expr ® Term Expr ¢

Expr¢ | +Ter mExpr¢
| -Term Expr ¢
| e

These fragments use only right recursion

They retains the original left associativity

from Cooper & Torczon

Term

Term

Term ¢

® Term * Factor
Term [/ Factor
Factor

FactorTerm ¢
* Factor Term ¢
/| FactorTerm ¢
e

21

Eliminating Left Recursion

Substituting back into the grammar yields

1 Goal ® Expr
2 Ex pr ® Term Expr¢ e This grammar is correct,
3 | +TermExpr¢ if somewhat non-intuitive.
4 -Term BExp r¢ . L

| P ® |t is left associative, as was
5 | e .

the original

6 Term ® Factor Term¢
2 | *Factor Term¢ ® A top-down parser will
3 | /Factor Term¢ terminate using it.
9 | € ® A top-down parser may
10 |Factor ® pumbe need to backtrack with it.
11 | id

from Cooper & Torczon 22

Eliminating Left Recursion

The transformation eliminates immediate left recursion

What about more general, indirect left recursion

The general algorithm:

arrange the NTs into some order A, A,, ..., A,

fori—~ 1ton
replace each production A, ® A_ gwith
A ® d, g%, d24Y4d g where A, ® d, Yd,Y3/4Y4
are all the current productions for A
eliminate any immediate left recursion on A,

using the direct transformation

This assumes that the initial grammar has no cycles (A, P * A),

and no epsilon productions

from Cooper & Torczon

23

Eliminating Left Recursion

How does this algorithm work?

1.

2.

Impose arbitrary order on the non-terminals

Outer loop cycles through NT in order

Inner loop ensures that a production expanding A; has no non-terminal A_ in its
rhs, fors <|

Last step in outer loop converts any direct recursion on A, to right recursion
using the transformation showed earlier

New non-terminals are added at the end of the order & have no left recursion

At the start of the it" outer loop iteration

For all k < I, no production that expands A, contains a non-terminal
A initsrhs, for s< k

from Cooper & Torczon 24

