Introduction to Parsing

The Front End

Source tokens IR
g Scanner > Parser >
code

P Errors

Parser

® Checks the stream of words and their parts of speech (produced by the scanner)
for grammatical correctness

e Determines if the input is syntactically well formed
® (Guides checking at deeper levels than syntax

® May build an IR representation of the code

Think of this as the mathematics of diagramming sentences

from Cooper & Torczon 2

The Study of Parsing

The process of discovering a derivation for some sentence
® Need a mathematical model of syntax — a grammar G
e Need an algorithm for testing membership in L(G)

® Need to keep in mind that our goal is building parsers, not studying the
mathematics of arbitrary languages

Roadmap
1 Context-free grammars and derivations
2 Top-down parsing
> Hand-coded recursive descent parsers
3 Bottom-up parsing

> Generated LR(1) parsers

from Cooper & Torczon 3

Specifying Syntax with a Grammar

Context-free syntax is specified with a context-free grammar

SheepNoise ® SheepNoise baa
| baa

This CFG defines the set of noises sheep normally make
It is written in a variant of Backus—Naur form

Formally, a grammar is a four tuple, G = (S,N,T,P)

e S is the start symbol (set of strings in L(G))
e N is a set of non-terminal symbols (syntactic variables)

e T is a set of terminal symbols (words)
e P isa set of productions or rewrite rules (P:N® (NET)*)

Example due to Dr. Scott K. Warren

from Cooper & Torczon

Deriving Syntax

We can use the SheepNoise grammar to create sentences

> use the productions as rewriting rules

Rule |Sentential Form Rule |Sentential Form
— | S eepNo ise — | SheepNoise
2 baa 1 SheepNoise baa_
1 SheepNoise baa baa
2 baa baa baa
Rule |Sentential Form
— | SheepNoise
1 SheepNoise baa_ And soon ...

2 baa baa

This example quickly runs out of intellectual steam ...

from Cooper & Torczon 5

A More Useful Grammar

To explore the uses of CFGs,we need a more complex grammar

1 |Goal ® Expr

2 |Expr ® Expr Op Expr
3 € number

4 e id

5 |Op ® +

6 é .

7 e =

8 e |

Rule

Sen tential For m

A N WD OB DN

E xpr
Expr OpE xpr

<id,
<id,
<id,
<id,
<id,
<id,

x> OpE xpr

x> - EXpr

x> - Expr Op Expr

x> -<num,2> OpE xpr

X>-<num,2>* EXpr

[X

>-<num,2> * <id, y>

We denote this: Expr P * id - num * id

e Such a sequence of rewrites is called a derivation

* Process of discovering a derivation is called parsing

from Cooper & Torczon

Derivations

® At each step, we choose a non-terminal to replace

e Different choices can lead to different derivations

Two derivations are of interest
e Leftmost derivation — replace leftmost NT at each step
e Rightmost derivation — replace rightmost NT at each step

These are the two systematic derivations
(We don’t care about randomly-ordered derivations!)

The example on the preceding slide was a leftmost derivation
e Of course, there is a rightmost derivation

® Interestingly, it turns out to be different

from Cooper & Torczon

The Two Derivations for x-2 *y

Rule |Sentential Form Rule |Sentential For m
— E xpr — E xpr
2 Expr OpE xpr 2 Expr OpE xpr
2 Exor OpE xpr OpE xpr 4 Expr Op <id, y>
4 <id, x> OpE xprOp Expr 7 Expr * <id, y>
6 <id, x> - Expr OpE xpr 2 Expr Op Expr * <id, y>
3 <id, x> - <num,2> OpE xpr 3 Expr Op <num,2>* <id, y>
7 <id, x> -<num,2> * Expr 6 Expr -<num,2>* <id, y>
4 <id, x> - <num,2> * <id, y> 4 <id, x> -<num,2> * <id, y>

Leftmost derivation Rightmost derivation

In both cases, Expr P * id - num * id

® The two derivations produce different parse trees

® The parse trees imply different evaluation orders!

from Cooper & Torczon 8

Derivations and Parse Trees

Leftmost derivation

Rule |Sentential Form
— E xpr
2 Expr OpE xpr
4 <id, x> OpE xpr
6 <id, x> - Expr
2 <id, x> - Expr Op Expr
3 <id, x> -<num,2> OpE xpr
7 <id, x> -<num,2> * Expr
4 <id, x> -<num,2> * <id, y>

This evaluatesas x-(2*y)

from Cooper & Torczon

Derivations and Parse Trees

Rightmost derivation

Rule

Sen tential For m

A O W DN N BADN

E xpr

Expr OpE xpr

Expr Op <id, y>

Expr * <id, y>

Expr Op Expr * <id, y>
Expr Op <num,2>* <id, y>
Expr-<num,2>* <id, y>

<id, x> - <num,2> * <id, y>

This evaluatesas (x-2)*y

from Cooper & Torczon

10

Derivations and Precedence

These two derivations point out a problem with the grammar

It has no notion of precedence, or implied order of evaluation

To add precedence
e Create a non-terminal for each level of precedence
® |solate the corresponding part of the grammar

® Force parser to recognize high precedence subexpressions first

For algebraic expressions
e Multiplication and division, first

e Subtraction and addition, next

from Cooper & Torczon 11

Derivations and Precedence

Adding the standard algebraic precedence produces:

1 |Goal ®
2 | Expr ®
3 |
4 |
5 |Ter m ®
6 |
7 |
8 |Fact or ®
9 |

E xpr
Expr + Ter m
Expr —Ter m
Ter m

Ter m * Fact or
Ter m / Fact or
Fact or

num ber

id

This grammar is slightly larger

® Takes more rewriting to reach
some of the terminal symbols

® Encodes expected precedence

® Produces same parse tree
under leftmost & rightmost
derivations

Let’s see how it parses our example

from Cooper & Torczon

12

Derivations and Precedence

Rule | S nten tial For m

©
EX pr
(©)

3 Expr -Term
5 Expr -Term * Factor G) ‘/@\
9 Expr -Term * <id,y>
7 |Expr -Factor * <id,y> o .
8 Expr -<num,2>*<id,y>
4 Term -<num,2>*<id,y> G <id,y>
7 Factor - <num,2>* <id,y>
9 <id,x>-<num,2> * <id,y> <id, x> <num, 2>
The rightmost derivation Its parse tree

This produces x - (2 *y), along with an appropriate parse tree.

Both the leftmost and rightmost derivations give the same expression, because the
grammar directly encodes the desired precedence.

from Cooper & Torczon

13

Ambiguous Grammars

Our original expression grammar had other problems

1 |Goal ® Expr

2 |Expr ® Expr Op Expr
3 € number

4 e id

5 |Op ® +

6 é .

7 e =

8 e |

Rule

Sen tential For m

2

AN W OO b

E xpr

Expr OpE xpr

Expr OpE xpr OpE xpr
<id, x> OpE xprOp Expr
<id, x> - Expr OpE xpr
<id, x> -<num,2> OpE xpr

Ad, x> -<num,2> * Expr

<idy x> -<num,2> * <id, y>

This grammar allows multiple leftmost derivationsor x - 2 * y

Hard to automate derivation if > 1 choice

The grammar is ambiguous

from Cooper & Torczon

different choice than
the first time

14

Ambiguous Grammars

Definitions

e If a grammar has more than one leftmost derivation for a single sentential
form, the grammar is ambiguous

e |f a grammar has more than one rightmost derivation for a single sentential
form, the grammar is ambiguous

® The leftmost and rightmost derivations for a sentential form may differ, even
In an unambiguous grammar

Classic example — the if-then-else problem

Stmt ® if Expr then Stmt
| if Expr then Stmt else Stmt

| ... otherstmts ...

This ambiguity is entirely grammatical in nature

from Cooper & Torczon 15

Ambiguity

This sentential form has two derivations

if Expr, then if Expr, then Stmt, else Stmt,

E2

Sl S2
production 2, then production 1, then
production 1 production 2

from Cooper & Torczon 16

