Top-Down Parsing

- recursive descent
- predictive parsing

Lecture 9

Lecture Outline

- Implementation of parsers
- Two approaches
 - Top-down
 - Bottom-up
- Today: Top-Down
 - Easier to understand and program manually
- Then: Bottom-Up
 - More powerful and used by most parser generators

Intro to Top-Down Parsing

- The parse tree is constructed
 - From the top
 - From left to right
- Terminals are seen in order of appearance in the token stream:

3

Recursive Descent Parsing

Consider the grammar

```
E \rightarrow T + E \mid T

T \rightarrow int \mid int * T \mid (E)
```

- Token stream is: int₅ * int₂
- Start with top-level non-terminal E

Try the rules for E in order

Recursive Descent Parsing. Example (Cont.)

- Try $E_0 \rightarrow T_1 + E_2$
- Then try a rule for $T_1 \rightarrow (E_3)$
 - But (does not match input token int₅
- Try $T_1 \rightarrow int$. Token matches.
 - But + after T₁ does not match input token *
- Try $T_1 \rightarrow \text{int * } T_2$
 - This will match but + after T₁ will be unmatched
- Has exhausted the choices for T₁
 - Backtrack to choice for E₀

Recursive Descent Parsing. Example (Cont.)

- Try $E_0 \rightarrow T_1$
- Follow same steps as before for T₁
 - And succeed with $T_1 \rightarrow \text{int } * T_2 \text{ and } T_2 \rightarrow \text{int}$
 - With the following parse tree

A Recursive Descent Parser. Preliminaries

- Let TOKEN be the type of tokens
 - Special tokens INT, OPEN, CLOSE, PLUS, TIMES

Let the global next point to the next token

A Recursive Descent Parser (2)

 Define boolean functions that check the token string for a match of

```
    A given token terminal
        bool term(TOKEN tok) { return *next++ == tok; }
    A given production of S (the n<sup>th</sup>)
        bool S<sub>n</sub>() { ... }
    Any production of S:
        bool S() { ... }
```

These functions advance next

A Recursive Descent Parser (3)

- For production E → T
 bool E₁() { return T(); }
- For production E → T + E
 bool E₂() { return T() && term(PLUS) && E(); }
- For all productions of E (with backtracking)

A Recursive Descent Parser (4)

Functions for non-terminal T

```
bool T_1() { return term(OPEN) && E() && term(CLOSE); } bool T_2() { return term(INT) && term(TIMES) && T(); } bool T_3() { return term(INT); } 

bool T() {

TOKEN *save = next; return (next = save, T_1())

|| (next = save, T_2())
|| (next = save, T_3()); }
```

Recursive Descent Parsing. Notes.

- To start the parser
 - Initialize next to point to first token
 - Invoke E()
- Notice how this simulates our previous example
- Easy to implement by hand
- But does not always work ...

When Recursive Descent Does Not Work

Consider a production S → S a
 bool S₁() { return S() && term(a); }
 bool S() { return S₁(); }

- S() will get into an infinite loop
- A <u>left-recursive grammar</u> has a non-terminal S $S \rightarrow^+ S \alpha$ for some α
- Recursive descent does not work in such cases

Elimination of Left Recursion

Consider the left-recursive grammar

$$S \rightarrow S \alpha \mid \beta$$

• S generates all strings starting with a β and followed by a number of α

Can rewrite using right-recursion

$$S \to \beta \ S'$$

$$S' \to \alpha \ S' \mid \epsilon$$

More Elimination of Left-Recursion

In general

$$S \rightarrow S \alpha_1 \mid ... \mid S \alpha_n \mid \beta_1 \mid ... \mid \beta_m$$

- All strings derived from S start with one of $\beta_1,...,\beta_m$ and continue with several instances of $\alpha_1,...,\alpha_n$
- Rewrite as

$$\begin{split} S &\rightarrow \beta_1 \; S' \; | \; ... \; | \; \beta_m \; S' \\ S' &\rightarrow \alpha_1 \; S' \; | \; ... \; | \; \alpha_n \; S' \; | \; \epsilon \end{split}$$

General Left Recursion

The grammar

$$\begin{array}{c|c} S \to A \ \alpha \ | \ \delta \\ A \to S \ \beta \\ \text{is also left-recursive because} \\ S \to^+ S \ \beta \ \alpha \end{array}$$

- This left-recursion can also be eliminated
- See book, Section 4.3 for general algorithm

Summary of Recursive Descent

- Simple and general parsing strategy
 - Left-recursion must be eliminated first
 - ... but that can be done automatically
- Unpopular because of backtracking
 - Thought to be too inefficient

 In practice, backtracking is eliminated by restricting the grammar

Predictive Parsers

- Like recursive-descent but parser can "predict" which production to use
 - By looking at the next few tokens
 - No backtracking
- Predictive parsers accept LL(k) grammars
 - L means "left-to-right" scan of input
 - L means "leftmost derivation"
 - k means "predict based on k tokens of lookahead"
- In practice, LL(1) is used

LL(1) Languages

- In recursive-descent, for each non-terminal and input token there may be a choice of production
- LL(1) means that for each non-terminal and token there is only one production
- Can be specified via 2D tables
 - One dimension for current non-terminal to expand
 - One dimension for next token
 - A table entry contains one production

Predictive Parsing and Left Factoring

Recall the grammar

```
E \rightarrow T + E \mid T

T \rightarrow int \mid int * T \mid (E)
```

- Hard to predict because
 - For T two productions start with int
 - For E it is not clear how to predict
- A grammar must be <u>left-factored</u> before use for predictive parsing

Left-Factoring Example

Recall the grammar

$$E \rightarrow T + E \mid T$$

 $T \rightarrow int \mid int * T \mid (E)$

Factor out common prefixes of productions

$$E \rightarrow T X$$

$$X \rightarrow + E \mid \epsilon$$

$$T \rightarrow (E) \mid int Y$$

$$Y \rightarrow * T \mid \epsilon$$

LL(1) Parsing Table Example

Left-factored grammar

$$E \rightarrow T X$$
 $X \rightarrow + E \mid \epsilon$
 $T \rightarrow (E) \mid int Y$ $Y \rightarrow * T \mid \epsilon$

The LL(1) parsing table:

	int	*	+	()	\$
Е	ΤX			ΤX		
X			+ E		3	3
Т	int Y			(E)		
Υ		* T	3		3	3

LL(1) Parsing Table Example (Cont.)

- Consider the [E, int] entry
 - "When current non-terminal is E and next input is int, use production E → T X
 - This production can generate an int in the first place
- Consider the [Y,+] entry
 - "When current non-terminal is Y and current token is +, get rid of Y"
 - Y can be followed by + only in a derivation in which Y \rightarrow ϵ

LL(1) Parsing Tables. Errors

- Blank entries indicate error situations
 - Consider the [E,*] entry
 - "There is no way to derive a string starting with * from non-terminal E"

Using Parsing Tables

- Method similar to recursive descent, except
 - For each non-terminal S
 - We look at the next token a
 - And chose the production shown at [S,a]
- We use a stack to keep track of pending nonterminals
- We reject when we encounter an error state
- We accept when we encounter end-of-input

LL(1) Parsing Algorithm

```
initialize stack = <S $> and next repeat case stack of <X, rest> : if T[X,*next] = Y<sub>1</sub>...Y<sub>n</sub> then stack \leftarrow <Y<sub>1</sub>... Y<sub>n</sub> rest>; else error (); <t, rest> : if t == *next ++ then stack \leftarrow <rest>; else error (); until stack == < >
```

LL(1) Parsing Example

Stack	Input	Action
E \$	int * int \$	ΤX
T X \$	int * int \$	int Y
int Y X \$	int * int \$	terminal
Y X \$	* int \$	* T
* T X \$	* int \$	terminal
T X \$	int \$	int Y
int Y X \$	int \$	terminal
Y X \$	\$	3
X \$	\$	8
\$	\$	ACCEPT

Constructing Parsing Tables

- LL(1) languages are those defined by a parsing table for the LL(1) algorithm
- No table entry can be multiply defined

We want to generate parsing tables from CFG

Constructing Parsing Tables (Cont.)

- If $A \rightarrow \alpha$, where in the line of A we place α ?
- In the column of t where t can start a string derived from α
 - $-\alpha \rightarrow^* t\beta$
 - We say that $t \in First(\alpha)$
- In the column of t if α is ε and t can follow an
 - $S \rightarrow^* \beta A t \delta$
 - We say $t \in Follow(A)$

Computing First Sets

Definition: First(X) = { t | $X \rightarrow^* t\alpha$ } \cup { ε | $X \rightarrow^* \varepsilon$ }

Algorithm sketch (see book for details):

- for all terminals t do First(t) ← { t }
- 2. for each production $X \to \varepsilon$ do First(X) $\leftarrow \{ \varepsilon \}$
- 3. if $X \to A_1 \dots A_n \alpha$ and $\epsilon \in First(A_i)$, $1 \le i \le n$ do
 - add First(α) to First(X)
- 4. for each $X \to A_1 \dots A_n$ s.t. $\varepsilon \in First(A_i)$, $1 \le i \le n$ do
 - add ε to First(X)
- 5. repeat steps 4 & 5 until no First set can be grown

First Sets. Example

Recall the grammar

$$E \rightarrow T X$$

 $T \rightarrow (E) \mid int Y$

 $X \rightarrow + E \mid \epsilon$ $Y \rightarrow * T \mid \epsilon$

First sets

Computing Follow Sets

Definition:

Follow(X) = { t | S
$$\rightarrow^* \beta$$
 X t δ }

- Intuition
 - If S is the start symbol then \$ ∈ Follow(S)
 - If $X \to A$ B then First(B) \subseteq Follow(A) and Follow(X) \subseteq Follow(B)
 - Also if $B \to^* \epsilon$ then Follow(X) \subseteq Follow(A)

Computing Follow Sets (Cont.)

Algorithm sketch:

- 1. Follow(S) \leftarrow { \$ }
- 2. For each production $A \rightarrow \alpha X \beta$
 - add First(β) { ϵ } to Follow(X)
- 3. For each $A \rightarrow \alpha X \beta$ where $\epsilon \in First(\beta)$
 - add Follow(A) to Follow(X)
- repeat step(s) ____ until no Follow set grows

Follow Sets. Example

Recall the grammar

```
E \rightarrow T X X \rightarrow + E \mid \epsilon

T \rightarrow (E) \mid int Y Y \rightarrow * T \mid \epsilon
```

Follow sets

```
Follow(+) = { int, ( } Follow(*) = { int, ( } Follow(()) = { int, ( } Follow((
```

Constructing LL(1) Parsing Tables

- Construct a parsing table T for CFG G
- For each production $A \rightarrow \alpha$ in G do:
 - For each terminal $t \in First(\alpha)$ do
 - $T[A, t] = \alpha$
 - If $\varepsilon \in \text{First}(\alpha)$, for each $t \in \text{Follow}(A)$ do
 - $T[A, t] = \alpha$
 - If $\varepsilon \in First(\alpha)$ and $\varphi \in Follow(A)$ do
 - $T[A, \$] = \alpha$

Notes on LL(1) Parsing Tables

- If any entry is multiply defined then G is not LL(1)
 - If G is ambiguous
 - If G is left recursive
 - If G is not left-factored
 - And in other cases as well
- Most programming language grammars are not LL(1)
- There are tools that build LL(1) tables

Review

- For some grammars there is a simple parsing strategy
 - Predictive parsing
- Next time: a more powerful parsing strategy