
CS 536 Spring 2001 1

Top-Down Parsing

- recursive descent
- predictive parsing

Lecture 9

CS 536 Spring 2001 2

Lecture Outline

• Implementation of parsers
• Two approaches

– Top-down
– Bottom-up

• Today: Top-Down
– Easier to understand and program manually

• Then: Bottom-Up
– More powerful and used by most parser generators

CS 536 Spring 2001 3

Intro to Top-Down Parsing

• The parse tree is constructed
– From the top
– From left to right

• Terminals are seen in order of
appearance in the token
stream:

t2 t5 t6 t8 t9

1

t2 3

4

t5

7

t6

t9

t8

CS 536 Spring 2001 4

Recursive Descent Parsing

• Consider the grammar
E → T + E | T
T → int | int * T | (E)

• Token stream is: int5 * int2

• Start with top-level non-terminal E

• Try the rules for E in order

CS 536 Spring 2001 5

Recursive Descent Parsing. Example (Cont.)

• Try E0 → T1 + E2

• Then try a rule for T1 → (E3)
– But (does not match input token int5

• Try T1 → int . Token matches.
– But + after T1 does not match input token *

• Try T1 → int * T2
– This will match but + after T1 will be unmatched

• Has exhausted the choices for T1
– Backtrack to choice for E0

CS 536 Spring 2001 6

Recursive Descent Parsing. Example (Cont.)

• Try E0 → T1
• Follow same steps as before for T1

– And succeed with T1 → int * T2 and T2 → int
– With the following parse tree

E0

T1

int5 * T2

int2

CS 536 Spring 2001 7

A Recursive Descent Parser. Preliminaries

• Let TOKEN be the type of tokens
– Special tokens INT, OPEN, CLOSE, PLUS, TIMES

• Let the global next point to the next token

CS 536 Spring 2001 8

A Recursive Descent Parser (2)

• Define boolean functions that check the token
string for a match of
– A given token terminal

bool term(TOKEN tok) { return *next++ == tok; }
– A given production of S (the nth)

bool Sn() { … }
– Any production of S:

bool S() { … }

• These functions advance next

CS 536 Spring 2001 9

A Recursive Descent Parser (3)

• For production E → T
bool E1() { return T(); }

• For production E → T + E
bool E2() { return T() && term(PLUS) && E(); }

• For all productions of E (with backtracking)
bool E() {

TOKEN *save = next;
return (next = save, E1())

|| (next = save, E2()); }

CS 536 Spring 2001 10

A Recursive Descent Parser (4)

• Functions for non-terminal T
bool T1() { return term(OPEN) && E() && term(CLOSE); }
bool T2() { return term(INT) && term(TIMES) && T(); }
bool T3() { return term(INT); }

bool T() {
TOKEN *save = next;
return (next = save, T1())

|| (next = save, T2())
|| (next = save, T3()); }

CS 536 Spring 2001 11

Recursive Descent Parsing. Notes.

• To start the parser
– Initialize next to point to first token
– Invoke E()

• Notice how this simulates our previous
example

• Easy to implement by hand
• But does not always work …

CS 536 Spring 2001 12

When Recursive Descent Does Not Work

• Consider a production S → S a
bool S1() { return S() && term(a); }
bool S() { return S1(); }

• S() will get into an infinite loop

• A left-recursive grammar has a non-terminal S
S →+ Sα for some α

• Recursive descent does not work in such cases

CS 536 Spring 2001 13

Elimination of Left Recursion

• Consider the left-recursive grammar
S → S α | β

• S generates all strings starting with a β and
followed by a number of α

• Can rewrite using right-recursion
S → β S’
S’ → α S’ | ε

CS 536 Spring 2001 14

More Elimination of Left-Recursion

• In general
S → S α1 | … | S αn | β1 | … | βm

• All strings derived from S start with one of
β1,…,βm and continue with several instances of
α1,…,αn

• Rewrite as
S → β1 S’ | … | βm S’
S’ → α1 S’ | … | αn S’ | ε

CS 536 Spring 2001 15

General Left Recursion

• The grammar
S → A α | δ
A → S β

is also left-recursive because
S →+ S β α

• This left-recursion can also be eliminated
• See book, Section 4.3 for general algorithm

CS 536 Spring 2001 16

Summary of Recursive Descent

• Simple and general parsing strategy
– Left-recursion must be eliminated first
– … but that can be done automatically

• Unpopular because of backtracking
– Thought to be too inefficient

• In practice, backtracking is eliminated by
restricting the grammar

CS 536 Spring 2001 17

Predictive Parsers

• Like recursive-descent but parser can
“predict” which production to use
– By looking at the next few tokens
– No backtracking

• Predictive parsers accept LL(k) grammars
– L means “left-to-right” scan of input
– L means “leftmost derivation”
– k means “predict based on k tokens of lookahead”

• In practice, LL(1) is used

CS 536 Spring 2001 18

LL(1) Languages

• In recursive-descent, for each non-terminal
and input token there may be a choice of
production

• LL(1) means that for each non-terminal and
token there is only one production

• Can be specified via 2D tables
– One dimension for current non-terminal to expand
– One dimension for next token
– A table entry contains one production

CS 536 Spring 2001 19

Predictive Parsing and Left Factoring

• Recall the grammar
E → T + E | T
T → int | int * T | (E)

• Hard to predict because
– For T two productions start with int
– For E it is not clear how to predict

• A grammar must be left-factored before use
for predictive parsing

CS 536 Spring 2001 20

Left-Factoring Example

• Recall the grammar
E → T + E | T
T → int | int * T | (E)

• Factor out common prefixes of productions
E → T X
X → + E | ε
T → (E) | int Y
Y → * T | ε

CS 536 Spring 2001 21

LL(1) Parsing Table Example

• Left-factored grammar
E → T X X → + E | ε
T → (E) | int Y Y → * T | ε

• The LL(1) parsing table:

εεε* T Y
(E)int YT

εε+ EX
T XT XE

$)(+*int

CS 536 Spring 2001 22

LL(1) Parsing Table Example (Cont.)

• Consider the [E, int] entry
– “When current non-terminal is E and next input is

int, use production E → T X
– This production can generate an int in the first

place
• Consider the [Y,+] entry

– “When current non-terminal is Y and current token
is +, get rid of Y”

– Y can be followed by + only in a derivation in which
Y → ε

CS 536 Spring 2001 23

LL(1) Parsing Tables. Errors

• Blank entries indicate error situations
– Consider the [E,*] entry
– “There is no way to derive a string starting with *

from non-terminal E”

CS 536 Spring 2001 24

Using Parsing Tables

• Method similar to recursive descent, except
– For each non-terminal S
– We look at the next token a
– And chose the production shown at [S,a]

• We use a stack to keep track of pending non-
terminals

• We reject when we encounter an error state
• We accept when we encounter end-of-input

CS 536 Spring 2001 25

LL(1) Parsing Algorithm

initialize stack = <S $> and next
repeat

case stack of
<X, rest> : if T[X,*next] = Y1…Yn

then stack ← <Y1… Yn rest>;
else error ();

<t, rest> : if t == *next ++
then stack ← <rest>;
else error ();

until stack == < >

CS 536 Spring 2001 26

LL(1) Parsing Example

Stack Input Action
E $ int * int $ T X
T X $ int * int $ int Y
int Y X $ int * int $ terminal
Y X $ * int $ * T
* T X $ * int $ terminal
T X $ int $ int Y
int Y X $ int $ terminal
Y X $ $ ε
X $ $ ε
$ $ ACCEPT

CS 536 Spring 2001 27

Constructing Parsing Tables

• LL(1) languages are those defined by a parsing
table for the LL(1) algorithm

• No table entry can be multiply defined

• We want to generate parsing tables from CFG

CS 536 Spring 2001 28

Constructing Parsing Tables (Cont.)

• If A → α, where in the line of A we place α ?
• In the column of t where t can start a string

derived from α
– α →* t β
– We say that t ∈ First(α)

• In the column of t if α is ε and t can follow an
A
– S →* β A t δ
– We say t ∈ Follow(A)

CS 536 Spring 2001 29

Computing First Sets

Definition: First(X) = { t | X →* tα} ∪ {ε | X →* ε}

Algorithm sketch (see book for details):
1. for all terminals t do First(t) ß { t }
2. for each production X → ε do First(X) ß { ε }
3. if X → A1 … An α and ε ∈ First(Ai), 1 ≤ i ≤ n do

• add First(α) to First(X)
4. for each X → A1 … An s.t. ε ∈ First(Ai), 1 ≤ i ≤ n do

• add ε to First(X)
5. repeat steps 4 & 5 until no First set can be grown

CS 536 Spring 2001 30

First Sets. Example

• Recall the grammar
E → T X X → + E | ε
T → (E) | int Y Y → * T | ε

• First sets
First(() = { (} First(T) = {int, (}
First()) = {) } First(E) = {int, (}
First(int) = { int } First(X) = {+, ε }
First(+) = { + } First(Y) = {*, ε }
First(*) = { * }

CS 536 Spring 2001 31

Computing Follow Sets

• Definition:
Follow(X) = { t | S →* β X t δ }

• Intuition
– If S is the start symbol then $ ∈ Follow(S)

– If X → A B then First(B) ⊆ Follow(A) and
Follow(X) ⊆ Follow(B)

– Also if B →* ε then Follow(X) ⊆ Follow(A)

CS 536 Spring 2001 32

Computing Follow Sets (Cont.)

Algorithm sketch:

1. Follow(S) ß { $ }
2. For each production A → α X β

• add First(β) - {ε} to Follow(X)
3. For each A → α X β where ε ∈ First(β)

• add Follow(A) to Follow(X)
• repeat step(s) ___ until no Follow set grows

CS 536 Spring 2001 33

Follow Sets. Example

• Recall the grammar
E → T X X → + E | ε
T → (E) | int Y Y → * T | ε

• Follow sets
Follow(+) = { int, (} Follow(*) = { int, (}
Follow(() = { int, (} Follow(E) = {), $}
Follow(X) = {$,) } Follow(T) = {+,) , $}
Follow()) = {+,) , $} Follow(Y) = {+,) , $}
Follow(int) = {*, +,) , $}

CS 536 Spring 2001 34

Constructing LL(1) Parsing Tables

• Construct a parsing table T for CFG G

• For each production A → α in G do:
– For each terminal t ∈ First(α) do

• T[A, t] = α
– If ε ∈ First(α), for each t ∈ Follow(A) do

• T[A, t] = α
– If ε ∈ First(α) and $ ∈ Follow(A) do

• T[A, $] = α

CS 536 Spring 2001 35

Notes on LL(1) Parsing Tables

• If any entry is multiply defined then G is not
LL(1)
– If G is ambiguous
– If G is left recursive
– If G is not left-factored
– And in other cases as well

• Most programming language grammars are not
LL(1)

• There are tools that build LL(1) tables

CS 536 Spring 2001 36

Review

• For some grammars there is a simple parsing
strategy
– Predictive parsing

• Next time: a more powerful parsing strategy

