
CS 536 Spring 2001 1

Ambiguity
Lecture 8

CS 536 Spring 2001 2

Announcement

• Reading Assignment
– “Context-Free Grammars” (Sections 4.1, 4.2)

• Programming Assignment 2
– due Friday!

• Homework 1
– due in a week (Wed Feb 21)
– not Feb 25!

CS 536 Spring 2001 3

Ambiguity = program structure not defined

String id * id + id has two parse trees:

E

E

E E

E*

id +

idid

E

E

E E

E+

id*

idid

E E+E | E E | (E) | id→ ∗

CS 536 Spring 2001 4

Ambiguity

• A grammar is ambiguous if, for any string
– it has more than one parse tree, or
– there is more than one right-most derivation, or
– there is more than one left-most derivation.
(the three conditions are equivalent)

• Ambiguity is BAD
– Leaves meaning of some programs ill-defined

CS 536 Spring 2001 5

Dealing with Ambiguity

• There are several ways to handle ambiguity
• We’ll discuss two of them:

– rewriting the grammar
– parser-generator declarations

CS 536 Spring 2001 6

Outline

• Rewriting:
– Expression Grammars

• precedence
• associativity

– IF-THEN-ELSE
• the Dangling-ELSE problem

• Declarations
– Expression Grammars

• precedence
• associativity

CS 536 Spring 2001 7

Expression Grammars (precedence)

• Rewrite the grammar
– use a different nonterminal for each precedence level
– start with the lowest precedence (MINUS)

E àà E - E | E / E | (E) | id

rewrite to

E àà E - E | T
T àà T / T | F
F àà id | (E)

CS 536 Spring 2001 8

Example

parse tree for id – id / id

E àà E - E | T
T àà T / T | F
F àà id | (E)

E

E

F F

T

-

id

/

idid

T

F
T T

E

CS 536 Spring 2001 9

TEST YOURSELF #1

• Attempt to construct a parse tree for id-id/id
that shows the wrong precedence.

• Question:
– Why do you fail to construct this parse tree?

CS 536 Spring 2001 10

Associativity

• The grammar captures operator precedence,
but it is still ambiguous!
– fails to express that both subtraction and division

are left associative;
• e.g., 5-3-2 is equivalent to: ((5-3)-2) and not to: (5-(3-2)).

• TEST YOURSELF #3
– Draw two parse trees for the expression 5-3-2

using the grammar given above; one that correctly
groups 5-3, and one that incorrectly groups 3-2.

CS 536 Spring 2001 11

Recursion

• A grammar is recursive in nonterminal X if:
– X à+ … X …

• recall that à+ means “in one or more steps, X derives a sequence
of symbols that includes an X”

• A grammar is left recursive in X if:
– X à+ X …

• in one or more steps, X derives a sequence of symbols that
starts with an X

• A grammar is right recursive in X if:
– X à+ … X

• in one or more steps, X derives a sequence of symbols that ends
with an X

CS 536 Spring 2001 12

How to fix associativity

• The grammar given above is both left and right
recursive in nonterminals exp and term
– try at home: write the derivation steps that show this.

• To correctly expresses operator associativity:
– For left associativity, use left recursion.
– For right associativity, use right recursion.

• Here's the correct grammar:
E àà E – T | T
T àà T / F | F
F àà id | (E)

CS 536 Spring 2001 13

Ambiguity: The Dangling Else

• Consider the grammar
E → if E then E

| if E then E else E
| print

• This grammar is also ambiguous

CS 536 Spring 2001 14

The Dangling Else: Example

• The expression
if E1 then if E2 then E3 else E4

has two parse trees
if

E1 if

E2 E3 E4

if

E1 if

E2 E3

E4

• Typically we want the second form

CS 536 Spring 2001 15

The Dangling Else: A Fix

• else matches the closest unmatched then
• We can describe this in the grammar

E → MIF /* all then are matched */
| UIF /* some then are unmatched */

MIF → if E then MIF else MIF
| print

UIF → if E then E
| if E then MIF else UIF

• Describes the same set of strings

CS 536 Spring 2001 16

The Dangling Else: Example Revisited

• The expression if E1 then if E2 then E3 else E4

if

E1 if

E2 E3 E4

if

E1 if

E2 E3

E4

• Not valid because the
then expression is not
a MIF

• A valid parse tree
(for a UIF)

CS 536 Spring 2001 17

Precedence and Associativity Declarations

• Instead of rewriting the grammar
– Use the more natural (ambiguous) grammar
– Along with disambiguating declarations

• Most parser generators allow precedence and
associativity declarations to disambiguate
grammars

• Examples …

CS 536 Spring 2001 18

Associativity Declarations

• Consider the grammar E → E - E | int
• Ambiguous: two parse trees of int - int - int

E

E

E E

E-

int -

intint

E

E

E E

E-

int-

intint

• Left associativity declaration: %left +

CS 536 Spring 2001 19

Precedence Declarations

• Consider the grammar E → E + E | E * E | int
– And the string int + int * int

E

E

E E

E+

int *

intint

E

E

E E

E*

int+

intint
• Precedence declarations: %left +

%left *

