
Fexprs as the basis of

Lisp function application

or

$vau : the ultimate abstraction

by

John N. Shutt

A Dissertation

Submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

in partial fulfillment of the requirements for the

Degree of Doctor of Philosophy

in

Computer Science

August 23, 2010

Approved:

Prof. Michael A. Gennert, Advisor
Head of Department

Prof. Daniel J. Dougherty

Prof. Carolina Ruiz

Prof. Shriram Krishnamurthi
Computer Science Department, Brown University

Abstract

Abstraction creates custom programming languages that facilitate programming for
specific problem domains. It is traditionally partitioned according to a two-phase
model of program evaluation, into syntactic abstraction enacted at translation time,
and semantic abstraction enacted at run time. Abstractions pigeon-holed into one
phase cannot interact freely with those in the other, since they are required to occur
at logically distinct times.

Fexprs are a Lisp device that subsumes the capabilities of syntactic abstraction,
but is enacted at run-time, thus eliminating the phase barrier between abstractions.
Lisps of recent decades have avoided fexprs because of semantic ill-behavedness that
accompanied fexprs in the dynamically scoped Lisps of the 1960s and 70s.

This dissertation contends that the severe difficulties attendant on fexprs in the
past are not essential, and can be overcome by judicious coordination with other
elements of language design. In particular, fexprs can form the basis for a simple, well-
behaved Scheme-like language, subsuming traditional abstractions without a multi-
phase model of evaluation.

The thesis is supported by a new Scheme-like language called Kernel, created
for this work, in which each Scheme-style procedure consists of a wrapper that in-
duces evaluation of operands, around a fexpr that acts on the resulting arguments.
This arrangement enables Kernel to use a simple direct style of selectively evaluat-
ing subexpressions, in place of most Lisps’ indirect quasiquotation style of selectively
suppressing subexpression evaluation. The semantics of Kernel are treated through
a new family of formal calculi, introduced here, called vau calculi. Vau calculi use
direct subexpression-evaluation style to extend lambda calculus, eliminating a long-
standing incompatibility between lambda calculus and fexprs that would otherwise
trivialize their equational theories.

The impure vau calculi introduce non-functional binding constructs and unconven-
tional forms of substitution. This strategy avoids a difficulty of Felleisen’s lambda-v-
CS calculus, which modeled impure control and state using a partially non-compatible
reduction relation, and therefore only approximated the Church–Rosser and Plotkin’s
Correspondence Theorems. The strategy here is supported by an abstract class of
Regular Substitutive Reduction Systems, generalizing Klop’s Regular Combinatory
Reduction Systems.

Preface

The concept of first-class object is due to Christopher Strachey (1916–1975).
A first-class object in any given programming language is an object that can be

employed freely in all the ways that one would ordinarily expect of a general value in
that language. The “rights and privileges” of first-class objects —the ways one expects
they may be freely employed— depend on the language. Although one might draw
up a partial list of first-class rights and privileges for a given language, e.g. [AbSu96,
§1.3.4], a complete list is never quite possible, because (as in human societies) the
rights and privileges of first-class-ness are difficult to recognize until they are missed.

Strachey’s prime example, then, of second -class objects was procedures in Algol.
Procedures in Algol can be called, or passed as arguments to procedure calls, but
—unlike numbers— cannot be stored as the values of variables, nor returned as the
results of procedure calls. Thus Algol procedures cannot be denoted by compound
expressions, nor by aliases; as [Stra67, §3.5] put it, they “need to appear in person
under their own names.”

The Scheme programming language pioneered first-class treatment of several types
of objects, notably procedures (whose promotion to first-class status will be discussed
in this dissertation in §3.3.2). However, for those cases in which the operands in an
expression are not to be evaluated automatically, special reserved operator symbols
are used; and the evaluation rules denoted by these reserved symbols cannot be evoked
in any other way — they always have to appear in person under their own names.1

The Kernel programming language is a redesign of Scheme for the current work2

that grants first-class status to the objects named by Scheme’s special-form operators
(both built-in and user-defined). Why, how, and with what consequences it does so
are the concerns of this dissertation.

In place of Scheme’s single type of first-class procedures, Kernel has two types of
first-class combiners: applicatives, which are analogous to Scheme procedures; and
operatives (known historically in the Lisp community as fexprs), which take their
operands unevaluated and correspond to Scheme’s special-form combiners. To avoid
gratuitous confusion between the two, Kernel conventionally prefixes the names of its

1A more detailed discussion of first-class-ness, both in general and in the particular case of
Scheme, appears in [Shu09, App. B (First-class objects)].

2That is, Kernel and this dissertation are both part of the same work, by the same author. See
§3.5.

iii

operatives with “$” (a convention that enhances the lucidity of even mundane Kernel
code, independent of any exotic use of first-class operatives).

The elegance of Kernel’s support for first-class operatives arises from the synergism
of two distinct innovations.

The flashier innovation is the $vau operative, which behaves nearly identically to
$lambda except that its result is operative rather than applicative. $vau also differs
from $lambda by having an extra parameter, appearing after the usual parameter
tree, which locally binds the dynamic environment from which the constructed oper-
ative is called. One could, for example, write

($define! $if

($vau (x y z) env

($cond ((eval x env) (eval y env))

(#t (eval z env))))) ,

(0.1)

deriving a compound operative $if from pre-existing operative $cond . As an alter-
native to hygienic macro declarations, $vau gains clarity by using ordinary Scheme/
Kernel tools rather than a separate macro sublanguage, and by specifying its evalu-
ations —and its uses of the dynamic environment— explicitly; but the more elegant,
and subtler, innovation of Kernel’s operative support lies in its treatment of first-class
applicatives.

A Kernel applicative is simply a shell, or wrapper, to induce argument evaluation,
around some other underlying combiner (which may even be another applicative).
The constructor of applicatives is an applicative wrap. The introduction of wrap as
a primitive, evidently orthogonal to $vau , obviates the need for a primitive $lambda ,
since $lambda can then be constructed as a compound operative:

($define! $lambda

($vau (ptree . body) static-env

(wrap (eval (list* $vau ptree #ignore body)

static-env)))) .

(0.2)

The introduction of an inverse operation unwrap completes the orthogonalization
of Kernel combiner semantics, by allowing apply to be constructed as well:

($define! apply

($lambda (applicative argument-tree)

(eval (cons (unwrap applicative) argument-tree)

(make-environment)))) .

(0.3)

Content of the dissertation

The main content of the dissertation is divided into two parts: Part I addresses Kernel
(the practical instrument of the thesis, designed by the author for the extended work),
while Part II addresses vau calculi (its theoretical instrument, designed as part of the

iv

dissertation). Each part begins with a chapter of background materials preliminary
to that part. Chapter 1 contains background materials that motivate and clarify
the thesis, and therefore logically precede both parts. Chapter 2 contains background
materials on the use of language in the dissertation that cross-cut the division between
theory and practice.

Much of the background material is historical. Historical background serves three
functions: it clarifies where we are, by explaining how we got here; it explains why we
got here, laying motivational foundation for where to go next; and it reviews related
work.

The background chapters also concern themselves not only with how programming
languages specify computations (semantics), but with how programming languages
influence the way programmers think (psychological bias). This introduces a sub-
jective element, occasionally passing within hailing distance of philosophy; and the
thesis, since it is meant to be defended, mostly avoids this element by concerning
itself with semantics. However, the background chapters are also meant to discuss
language design motivations, and psychology is integral to that discussion because it
often dominates programmer productivity. Semantics may make some intended com-
putations difficult to specify, but rarely makes them impossible — especially in Lisp,
which doesn’t practice strong typing; whereas psychological bias may prevent en-
tire classes of computations outright, just by preventing programmers from intending
them.

Chapter 16 contains concluding remarks on the dissertation as a whole.
Several appendices contain material either tediously uninsightful (and therefore

deferred from the dissertation proper) but technically necessary to the thesis defense;
or not directly addressing the thesis, but of immediate interest in relation to it. Ap-
pendix A gives complete Kernel code for the meta-circular evaluators of Chapter 6.
Appendix B discusses efficient compilation of Kernel programs. Appendix C dis-
courses briefly on the history of the letter vau, and how its typeset form for this
document was chosen.

Acknowledgements

My work on this dissertation owes a subtle intellectual debt to Prof. Lee Becker
(1946–2004), who served on my dissertation committee from 2001 until his passing in
July 2004; and who introduced me to many of the programming-language concepts
that shaped my thinking over the years, starting at the outset of my college career
(in the mid-1980s) with my first exposure to Lisp.

I owe a more overt debt to the members of my dissertation committee, past and
present —Lee Becker, Dan Dougherty, Mike Gennert, Shriram Krishnamurthi, and
Carolina Ruiz— for their support and guidance throughout the formal dissertation
process.

Between these extremes (subtle and overt), thanks go to my current graduate ad-

v

visor, Mike Gennert, and to my past graduate advisor, Roy Rubinstein, for nurturing
my graduate career so that it could reach its dissertation phase.

Particular thanks to Mike Gennert, also, for drawing me back into the Scheme
fold, after several years of apostasy in the non-Lisp wilderness where I would never
have met $vau .

For discussions, feedback, and suggestions, thanks to the members of NEPLS
(New England Programming Languages and Systems Symposium Series).

Thanks also to my family, especially my parents, for putting up with me through-
out the dissertation ordeal; and to my family, friends, and colleagues, for letting me
try out my ideas on them (repeatedly).

f

vi

Contents

Abstract . ii
Preface . iii
Contents . vii
List of Tables and Figures . xiii
List of Definitions . xiv
List of Theorems . xviii

1 The thesis 1
1.1 Abstraction . 1

1.1.1 Some history . 2
1.1.2 Abstractive power . 5
1.1.3 Scheme . 8

1.2 Semantics . 9
1.2.1 Well-behavedness . 10
1.2.2 Order of operations . 11
1.2.3 Meta-programming . 13

1.2.3.1 Trivialization of theory 13
1.2.3.2 Quotation . 14
1.2.3.3 Fexprs . 15

1.2.4 Reflection . 16
1.3 Thesis . 18

2 Language preliminaries 19
2.1 About variables . 19
2.2 Lisps . 22

2.2.1 Values . 22
2.2.2 Programs . 23
2.2.3 Core vocabulary . 25

2.2.3.1 Naming conventions 26
2.2.3.2 Particular combiners 27

2.3 Meta-languages for formal systems 30
2.3.1 Meta-circular evaluators . 31
2.3.2 Reduction systems . 32

vii

2.3.3 Tradeoffs . 34

I The Kernel programming language 39

3 Preliminaries for Part I 40

3.0 Agenda for Part I . 40

3.1 Classes of constructed combiners . 40

3.1.1 Applicatives . 40

3.1.2 Macros . 41

3.1.3 Fexprs . 41

3.2 The case against fexprs . 42

3.3 Past evolution of combiner constructors 43

3.3.1 Hygienic applicatives . 43

3.3.2 First-class applicatives . 47

3.3.3 Hygienic macros . 55

3.3.4 First-class macros . 62

3.4 The case for first-class operatives . 64

3.4.1 Single-phase macros . 64

3.4.2 The case for fexprs . 66

3.5 Kernel . 67

4 The factorization of applicatives 69

4.0 Introduction . 69

4.1 Applicatives . 70

4.2 Operatives . 71

4.3 $lambda . 73

4.3.1 An extended example . 74

4.4 apply . 79

5 Hygiene 81

5.0 Introduction . 81

5.1 Variable capturing . 82

5.2 Context capturing . 85

5.2.1 Operand capturing . 86

5.2.2 Environment capturing . 87

5.2.3 Continuation capturing . 88

5.3 Stabilizing environments . 89

5.3.1 Isolating environments . 90

5.3.2 Restricting environment mutation 92

viii

6 The evaluator 97

6.0 Introduction . 97

6.1 Vanilla Scheme . 99

6.2 Naive template macros . 102

6.3 Naive procedural macros . 105

6.4 Hygienic macros . 107

6.5 Single-phase macros . 112

6.6 Kernel . 115

6.7 Line-count summary . 117

7 Programming in Kernel 118

7.0 Introduction . 118

7.1 Binding . 118

7.1.1 Declarative binding . 118

7.1.2 Imperative binding . 124

7.2 Encapsulation . 126

7.3 Avoiding macros and quotation . 127

7.3.1 Macros . 127

7.3.2 Quasiquotation . 129

7.3.3 Quoted symbols . 131

II The vau calculus 133

8 Preliminaries for Part II 134

8.0 Agenda for Part II . 134

8.1 Some history . 134

8.1.1 Logic and mathematics . 134

8.1.2 Logic and lambda calculus . 140

8.2 Term-reduction systems . 142

8.3 Computation and lambda calculi . 148

8.3.1 General considerations . 148

8.3.2 Semantics . 150

8.3.3 Imperative semantics . 154

8.3.3.1 Imperative control 154

8.3.3.2 Imperative state . 159

8.4 Meta-programming . 166

8.4.1 Trivialization of theory . 166

8.4.2 Computation and logic . 170

ix

9 Pure vau calculi 173

9.0 Introduction . 173

9.0.1 Currying . 174

9.1 fe-calculus . 174

9.2 Equational weakness of fe-calculus 182

9.3 fx-calculus . 182

9.4 fp-calculus . 186

10 Impure vau calculi — general considerations 191

10.0 Introduction . 191

10.1 Multiple-expression operative bodies 193

10.2 Order of argument evaluation . 193

10.3 fi-semantics . 194

10.4 Alpha-renaming . 196

10.5 Non-value subterms . 198

10.6 fi-calculus . 199

10.7 fr-calculi . 200

11 Imperative control 202

11.0 Introduction . 202

11.1 Common structures . 202

11.2 fC-semantics . 204

11.3 fC-calculus . 205

12 Imperative state 208

12.0 Introduction . 208

12.1 Common structures . 208

12.1.1 State variables . 208

12.1.2 Environments and bindings 211

12.2 fS-semantics . 217

12.3 fS-calculus . 220

12.3.1 Syntax of lookup . 220

12.3.2 Syntax of environments . 222

12.3.3 Auxiliary functions . 223

12.3.4 Assignment . 227

12.3.5 Lookup . 228

12.3.6 Environments . 230

12.3.7 Mutable-to-immutable coercion 232

12.3.8 frS-calculus . 232

x

13 Substitutive reduction systems 234
13.0 Introduction . 234
13.1 Substitution . 236

13.1.1 Poly-contexts . 236
13.1.2 α-equivalence . 242
13.1.3 Substitutive functions . 257

13.2 Reduction . 263
13.3 Substitutive reduction systems . 276
13.4 Regularity . 280

14 Well-behavedness of vau calculi 296
14.0 Introduction . 296
14.1 Conformance of f-calculi . 296

14.1.1 Terms and renaming functions 296
14.1.2 Substitutive functions . 298
14.1.3 Calculus schemata . 300
14.1.4 Regularity . 304

14.2 Well-behavedness of f-calculi . 305
14.2.1 S-regular evaluation order . 307
14.2.2 R, E-evaluation contexts . 308
14.2.3 Pure f-calculi . 310
14.2.4 Control f-calculi . 311
14.2.5 State f-calculi . 320

15 The theory of fexprs is (and isn’t) trivial 334
15.0 Introduction . 334
15.1 Encapsulation and computation . 334
15.2 Nontrivial models of full reflection . 336

15.2.1 W-semantics . 337
15.2.2 W-calculus . 338
15.2.3 W-calculus . 340
15.2.4 Lazy subterm reduction . 342

15.3 Abstraction contexts . 343
15.4 λ-calculus as a theory of fexprs . 345

16 Conclusion 347
16.0 Introduction . 347
16.1 Well-behavedness . 347
16.2 Simplicity . 348
16.3 Subsuming traditional abstractions 349
16.4 A closing thought . 349

xi

Appendices 352

A Complete source code for the meta-circular evaluators 352
A.1 Top-level code . 353
A.2 mceval . 353
A.3 Combination evaluation (high-level) 354
A.4 Preprocessing (high-level) . 359
A.5 Evaluation (low-level) . 363
A.6 Preprocessing (low-level) . 368

B Compilation of Kernel programs 371

C The letter vau 375

Bibliography 380

xii

List of Tables and Figures

4.1 Objects of the extended example . 76
5.1 Objects in the Kernel $let-safe /$let version of count 94
5.2 Objects in the Kernel $letrec version of count 95
6.1 Line-count increase for each algorithm, vs. vanilla Scheme 117
14.1 Elements of Lemma 14.12(b) . 314

xiii

List of Definitions

(8.12) λ-calculus . 147
(8.13) λδ-calculus — amendments to λ-calculus 148
(8.14) λv-semantics — postulates . 152
(8.15) λv-calculus — amendment to λ-calculus 153

(8.17) λvC-semantics — syntax . 155
(8.18) λvC-semantics — schema for λ . 155
(8.19) λvC-semantics — schemata for A, C 155
(8.22) λvC

⊲-calculus — inductive schemata for continuations 157
(8.23) λvC

⊲-calculus — computation rule schemata 157
(8.24) λv#C-calculus — syntax, amending (8.17) 157
(8.25) λv#C-calculus — schemata, extending (8.22) 158
(8.26) λvC

′-calculus — schemata, extending (8.22) 159
(8.27) λvCd-calculus — schemata, extending (8.26) 159

(8.31) λvS
′-semantics . 161

(8.32) λvS-semantics — non-assignable substitution (anonymizing case) . 162
(8.33) λvS-semantics — syntax . 163
(8.34) λvS-semantics — schemata . 163
(8.35) λvS-semantics — non-assignable substitution (other capability cases) 164
(8.36) λvS

⊲-calculus — schemata (assignment) 164
(8.37) λvS

⊲-calculus — schemata (delabeling) 165
(8.38) λvSρ-calculus — syntactic sugar (ρ) 165
(8.40) λvSρ-calculus — schemata (simplification) 166
(8.41) λvSρ-calculus — schema (garbage collection) 166

(8.42) λQ-calculus — schemata, extending λ-calculus 167
(8.55) λE-calculus . 169

(9.1) fe-calculus — syntax . 175
(9.6) fe-calculus — auxiliary functions for managing enviornments 178
(9.7) fe-calculus — schemata (general) 179
9.10 fe δ-rules . 180
(9.12) fe-calculus — δ-rule schemata (combiner handling) 181
(9.13) fe-calculus — (δ-rules) . 181

xiv

(9.19) fx-calculus — auxiliary functions (substitution) 184
9.22 fx δ-rules . 185
(9.25) fx-calculus . 186

(9.27) fp-calculus — syntax . 187
(9.28) fp-calculus — auxiliary functions (retained from fe-calculus) 188
9.29 fp δ-rules . 188
(9.31) fp-calculus — definiend completion 189
(9.32) fp-calculus — schemata . 190

(10.1) fi-semantics — syntax (terms and values) 195
(10.2) fi-semantics — syntax (evaluation contexts) 195
(10.3) fi-semantics — schemata . 196
(10.4) fi-semantics — auxiliary functions (substitution) 197
(10.6) fi-calculus — schemata . 200
(10.7) fr-calculus — schemata . 200

(11.1) fC-semantics — syntax . 202
(11.3) fC-semantics — auxiliary functions (substitution) 203
11.4 fC δ-rules . 204
(11.6) fC-semantics — schemata (catch and throw) 204
(11.7) fC-semantics — schemata (lifting unframed schemata) 205
(11.8) fC-calculus — syntax (singular evaluation contexts) 205
(11.12) fC-calculus — schemata (general) 206
(11.13) fC-calculus — schema ($call/cc) 206
(11.14) frC-calculus — schemata (general) 207

(12.3) fS-semantics — auxiliary functions (path) 209
(12.8) fS-semantics — syntax . 212
(12.9) fS-semantics — auxiliary functions (ancestors,FV) 212
(12.10) fS-semantics — auxiliary functions (state definiends) 213
(12.11) fS-semantics — auxiliary functions (stateful binding sets) 213
(12.14) fS-semantics — auxiliary functions (substitution, state renaming) . 215
(12.16) fS-semantics — auxiliary functions (substitution, α) 216
(12.17) fS-semantics — auxiliary functions (substitution, state deletion) . 216
12.18 fS δ-rules . 217
(12.19) fS-semantics — schemata (bubbling up) 218
(12.20) fS-semantics — schemata (symbol evaluation) 218
(12.21) fS-semantics — auxiliary functions (definiend compilation) 219
(12.22) fS-semantics — schemata ($define! ; lifting) 219
(12.23) fS-semantics — schemata (garbage collection) 220
(12.28) fS-calculus — syntax (lookup) . 222
(12.29) fS-calculus — syntax (environments) 223
(12.30) fS-calculus — auxiliary functions (substitution) 223

xv

(12.31) fS-calculus — auxiliary functions (stateful binding request sets) . . 224
(12.32) fS-calculus — auxiliary functions (substitution) 225
(12.33) fS-calculus — auxiliary functions (substitution, successful lookup) 226
(12.34) fS-calculus — auxiliary functions (substitution, failed lookup) . . . 226
(12.35) fS-calculus — auxiliary functions (substitution, to immutable) . . 227
(12.36) fS-calculus — schemata ($define!) 228
(12.37) fS-calculus — schemata (set simplification) 228
(12.38) fS-calculus — schemata (set bubbling-up) 228
(12.39) fS-calculus — schemata (symbol evaluation) 228
(12.40) fS-calculus — schemata (get resolution) 229
(12.41) fS-calculus — schemata (get simplification) 229
(12.42) fS-calculus — schemata (get bubbling-up) 230
(12.43) fS-calculus — auxiliary functions (definiend compilation) 231
(12.44) fS-calculus — schemata (state simplification) 231
(12.45) fS-calculus — schemata (state bubbling-up) 232

13.1 Satisfying, minimal nontrivial, and singular poly-contexts 236
13.2 Monic/epic/iso poly-context . 237
13.3 Branch, prime factorization of a poly-context 237
13.6 Concrete cases of a semantic polynomial 238
13.7 (assum) Subterm independence . 239
13.12 Compatible, constructive . 243
13.13 X1 ⊥ X2 . 243
13.17 (assum) Existence of terms, construction of terms 245
13.19 (assum) Renaming functions . 245
13.20 α-image of a term . 245
13.22 Hygienic renaming . 246
13.24 (assum) Hygienic renaming of terms versus free sets 246
13.28 f(P) . 248
13.29 α-form of an iso minimal nontrivial poly-context 248
13.31 P | f , P ‖ f . 249
13.33 α-image of an iso minimal nontrivial poly-context 249
13.34 T1≡>f T2 satisfies P1 ;f P2, T1 ≡α T2 satisfies P1 ∼α P2 249
13.35 (assum) Active and skew sets, versus free and binding sets 250
13.36 (assum) α-renaming . 251
13.41 Compound α-image, compound α-image 254
13.43 General position . 254
13.49 Substitutive function . 259
13.50 P | f (substitutive) . 261
13.51 Substitutive image of a poly-context 261
13.56 Substitutive function distributing over a substitutive function . . . 263
13.59 Reduction relation . 263
13.63 Cooperation, diamond property, Church–Rosser-ness 264

xvi

13.65 Substitutive function distributing over a term relation 265
13.66 α-closed binary relation . 265
13.70 Selective poly-context . 266
13.74 Reducible term, decisive poly-context 267
13.75 −→

‖?
R . 267

13.78 Evaluation order . 269
13.80 Suspending poly-context . 270
13.81 R-evaluation normal form . 270
13.83 R, E-evaluation context . 271
13.86 R, E-evaluation relation . 273
13.88 R, E-standard reduction sequence 273
13.90 Operational equivalence . 275
13.91 SRS concrete schema . 276
13.95 Induced hygienic relation . 278
13.96 SRS . 278
13.101 Regular SRS . 280
13.106 Copy count in poly-contexts . 285
13.107 Copy count in SRS schemata . 285
13.108 −→

‖?
S with reduction size n . 286

13.114 S-regular evaluation order . 291

14.9 (crit) Extension of Definition 13.88 306
14.14 Side-effect-ful value (fC-calculus) 318
14.19 Side-effect-ful value (fS-calculus) 323

(15.2) W-semantics — syntax (S-expressions) 337
(15.3) W-semantics . 338
15.4 W-semantics contextual equivalence 338
(15.6) W-calculus . 339
15.9 W-calculus contextual equivalence 339
(15.11)W-calculus . 340
15.17 W-contextual equivalence . 341
15.23 Abstraction context . 344

xvii

List of Theorems

13.8 (lma) Meta-variable placement when satisfying polynomials 240
13.9 (lma) Existence of minimally satisfying poly-contexts 241
13.10 (lma) Lower bound of poly-contexts satisfying a polynomial 241
13.11 Uniqueness of poly-contexts minimally satisfying a polynomial . . . 242
13.16 (lma) no free descendants of bound variables 244
13.18 (lma) Finiteness of Above(X) . 245
13.21 (lma) Properties of ≡> . 246
13.23 (lma) Variables inherit 6⊥, 6 ‖ . 246
13.25 (lma) Free(T) 6 ‖ f implies T 6 ‖ f . 247
13.26 T1 ≡α T2 iff T1≡>fid T2 . 247
13.27 (cor) ≡α is constructive . 247
13.30 (lma) disjoint ∼α binding sets are orthogonal 248

13.32 (lma) P ‖ f factors P [
→

T]≡>f T . 249
13.37 Factoring ≡>f by ;f . 251
13.38 ∼α is an equivalence . 251
13.39 P1 ∼α P2 iff P1 ;fid P2 . 252
13.40 (lma) α-images through known renamings 252
13.42 α-images built on subterms . 254
13.44 All terms can be put into general position 255
13.45 General-position α-images built on subterms 255
13.46 P in general position is in P -general position 255
13.47 (lma) Choice of ; mediating functions 255
13.48 Iso α-images in general position . 256
13.52 (lma) Availability of suitable terms 261
13.53 (lma) Naive homomorphisms map ∼α to ∼α 262
13.60 (lma) Each ≡>f is a reduction relation 263
13.61 −→R is compatible . 264
13.62 Combining reduction relations . 264
13.64 (lma) Kleene star preserves the diamond property 264
13.67 α-closures cooperate with ≡>f . 265
13.68 Compatible closure preserves α-closure 266
13.69 Combining α-closed relations . 266
13.76 (lma) For constructive reduction R, −→R⊆−→

‖?
R ⊆−→

∗
R 268

xviii

13.77 (lma) Use of −→
‖?
R to show Church–Rosser-ness 268

13.79 (lma) An evaluation order unambiguously order subterms 269
13.82 (lma) −→R preserves R-evaluation normal forms 270
13.84 (lma) Preservation of reducibility properties 271
13.85 (lma) Preservation of evaluation properties 271
13.87 Evaluation preserves α-closure . 273
13.89 (lma) Standard reduction sequences and evaluation 275
13.97 (lma) SRS α-normalizability implies distinct left-hand polynomials 278
13.98 (lma) SRS α-closures have upward-funarg hygiene 279
13.99 SRS α-closures are constructive . 280
13.100 SRSs are α-closed . 280
13.102 (lma) Decisive reducibility of regular concrete left-hand sides 281

13.103 (lma) Distributivity over regular −→
‖?
S 282

13.104 Church–Rosser-ness of regular SRSs 282
13.105 Regular SRS evaluation reduction is deterministic 284
13.109 (lma) −→

‖?
S always has a reduction size 286

13.110 (lma) Distribution over −→
‖?
S doesn’t increase reduction size 286

13.111 (lma) Factoring −→
‖?
S to −→S−→

‖?
S decrements reduction size . . . 288

13.112 (lma) Reduction size bounds standard reduction sequence length . . 289

13.113 (lma) Factoring −→
‖?
S with right-hand normal form to 7−→E∗

S −→
‖?
S . 290

13.116 (lma) −→
‖?
S moves right through 7−→E

S 292

13.117 (lma) Regular −→
‖?
S right-distributes into a std. reduction sequence 293

13.118 Standardization for regular SRSs 294
13.119 (lma) Non-evaluation of a non-normal form 294

13.120 Operational soundness for regular SRSs 294

14.10 (lma) Eval and combine preserve fp-calculus nontermination 310
14.11 Operational soundness of fp-calculus 311

14.12 (lma) Tools for Church–Rosser-ness of −→ frc′ 312

14.13 Church–Rosser-ness of control calculi 317
14.15 (lma) Eval and combine preserve control nontermination 318
14.16 Standard normalization of frC

′-calculus 319
14.17 Operational soundness of fC-calculus 320
14.18 Church–Rosser-ness of fS-calculus 322
14.20 (lma) Eval and combine preserve state nontermination 323
14.21 (lma) frS

′ non-evaluation of a non-normal form 324
14.22 (lma) frS

′-standardization of −→∗
frs 324

14.24 (lma) Regular prepend to a frS
′, E-evaluation normalization 326

14.25 (lma) Non-regular prepend to a frS
′, E-standard reduction sequence 327

14.26 Standard normalization of frS
′-calculus 332

14.27 Operational soundness of fS-calculus 332

xix

15.1 (prop) The theory of deconstructible objects is trivial 334
15.5 Triviality of ≃W . 338
15.7 Correspondence between W-semantics and W-calculus 339
15.8 −→W is Church–Rosser . 339
15.10 Nontriviality of ≃W . 339
15.13 (lma) d collapses −→Wd . 340
15.14 (lma) Correspondence between −→∗

W and −→∗
W ′ 341

15.15 Correspondence between W-semantics and W-calculus 341
15.16 −→W is Church–Rosser . 341
15.18 Nontriviality of ≃W . 341

xx

Chapter 1

The thesis

1.1 Abstraction

The acts of the mind, wherein it exerts its power over its
simple ideas, are chiefly these three: (1) Combining several
simple ideas into one compound one; and thus all complex
ideas are made. (2) The second is bringing two ideas, whether
simple or complex, together, so as to take a view of them at
once, without uniting them into one; by which way it gets all
its ideas of relations. (3) The third is separating them from
all other ideas that accompany them in their real existence:
this is called abstraction: and thus all its general ideas are
made.

— John Locke, An Essay Concerning

Human Understanding ([Lo1690]),
Bk. II Ch. xii §1.1

Ideally, one would like to express each program in terms of an abstract view
of computation —i.e., in a programming language— that is natural to its intended
problem domain. The ideal is pursued by a process of abstraction, in which new
abstract views of computation are derived from pre-existing views.

In other words, abstraction uses the facilities of an existing programming language
to define a new programming language (presumably, a new language closer to what
we want for some intended problem domain).2

1Traditionally, epigraph attributions gave only the name of the author and perhaps the title
of the work; but that approach is only manageable if the body of literature is small and tightly
controlled. Epigraphs tend to be worth repeating, being often selected for just that property; and
in the modern electronic culture, any underattributed quotation that is worth repeating will tend
over time to become a misattributed misquotation: if not enough information is provided to readily
double-check the source, replication errors are unlikely to be corrected when they occur.

2For the philosophically inclined reader:
What we first called an abstract view of computation, and then (and hereafter) a programming

1

This section traces the history of abstraction in programming, and explains why
the development of well-behaved fexprs is central to advancing the state of the ab-
stractive art. Fexprs are contrasted with macros; and most of the major elements of
the thesis are derived.

1.1.1 Some history

In the early years of computing, people called programmers designed programs and
wrote them down in mnemonic shorthand, which was then given to people called
coders who translated the shorthand into binary machine code. Later, programmers
wrote input for assembler programs, and later still, programmers in most problem
domains wrote input for compiler programs (over some objections that this reduces
programmer control of the machine3).

Throughout this historical progression, the source, or programming, language
(which the programmer writes) exists ultimately to be translated into a target lan-
guage of a different order (which the machine reads). Translation of assembly source
to machine target is nearly one-to-one (except for expansion of calls to macros, which
were in use by the late 1950s and will be discussed momentarily).

The idea of an abstract target language for a programming language was promoted
by the uncol movement, which peaked around 1960 and faded in the following
few years.4 An uncol (UNiversal Computer Oriented Language) was supposed to
be an intermediate-level language into which all programming languages could be
translated, and from which all machine languages could be generated ([Sa69, §x.2]).

In the uncol model, programming languages are treated as monolithic entities,
each specified by its translator into uncol. The idea that each program could define
its own specialized programming language was advanced by the extensible-languages

language, corresponds to what John Locke in the above epigraph called an idea — though Locke
notably didn’t delineate just what an “idea” is. Our requirement that the new programming lan-
guage be defined using facilities of the pre-existing language corresponds to Locke’s constraint that
abstraction only ‘separates’ a general idea from a complex of ideas in which it was already latently
present.

When relating the principle of abstraction in programming to the same-named principle in meta-
physics, we prefer Locke’s account of abstraction over that of other classical philosophers because
he casts abstraction in the role of a constructive process, not because we have any essential com-
mitment to Locke’s conceptualism. As computer scientists, we don’t care whether our programming
languages exist in reality (Plato), in concept (Locke), or only in name (Ockham), as long as we can
design and use them.

3The objectors were quite right, of course.
4We’re simplifying our selective tour of programming-language design history by identifying major

ideas with major trends in which they occurred. Each idea has earlier roots — as does each trend.
In the case of uncol, [Share58, p. 14] remarks,

It might not be difficult to prove that “this was well-known to Babbage,” so no effort
has been made to give credit to the originator, if indeed there was a unique originator.

2

movement of the 1960s.5 Classically, an extensible language consists of a source-
level base language together with meta-level definitional facilities to extend the base
language ([Chr69]). A program then consists of two parts, a meta-level part that
specifies an extension of the base language followed by a source-level part written in
the extended language.

Traditional macros use simple polynomial substitution to perform localized source-
code transformations from the extended language to the base language, which can
then correspond substantially one-to-one with a simple abstract target language. Be-
cause polynomial substitution is entirely independent of the semantics of the base
(and of the target) language, it was well suited for language extension in an era when
unstructured programming languages were commonplace; and, because its simplicity
incurred no start-up development time, it was available for immediate deployment.
Accordingly, traditional macros were the principal means of extension used in the
extensible-languages movement, to the point of near-synonymity with the movement
as a whole. (A second technology of adaptive grammars was also begun by the
extensible-languages movement, but required significant development time, and con-
sequently would not mature until long after the extensible-languages movement had
died.6)

The extensible-languages movement peaked around 1970, and faded rapidly over
the next few years. Its fatal flaw was complexity: one layer of extension to the base
language might be effected by an ordinary user, but additional layers were difficult
to manage, as each additional layer would have to attend to the details of all the
layers that preceded it ([Sta75]). In retrospect, this was a limitation especially of
the extension technology used, traditional macros. Because a traditional macro call
expands source-to-source, the call is only permissible if the code it expands to would
also be permitted, so that every facility used by the macro must be visible where
the macro is called. Hence, if multiple layers of macros are built up, the macro
programmer has to contend simultaneously with the cumulative detail of all the layers.

The idea of selectively hiding information, thus mitigating the information over-
load from successive language extensions, was advanced by a new abstraction move-
ment in language design, which emerged as the extensible-languages movement ebbed
(and which would later come to be dominated by the object-oriented paradigm, much
as extensibility had been by macros). The new movement did view abstraction as a
process of language construction (e.g., [Dij72]); but as just noted, traditional macros

5M.D. McIlroy’s 1960 paper on macros, [McI60], is usually cited in association with the beginning
of the extensible-languages movement.

6The idea of adding new grammar rules to a base language occurs in one of the earliest artic-
ulations of the extensibility principle, [BrMo62] (note that the paper was received in 1960). The
idea of an internally adaptive grammar came somewhat later ([Car63]), and adaptive grammar for-
malisms only began to emerge in the 1970s (e.g., [Wegb80]), as the extensible-languages movement
was winding down. Adaptive grammars then developed largely as a fringe technology until around
1990; see [Shu03b, Ch. 3], and for some more recent developments, http://www.pcs.usp.br/~lta/
(the Laboratório de Linguagens e Técnicas Adaptivas at the Universidade de São Paulo).

3

can’t work properly in the presence of information-hiding, so language-construction
by traditional macros wasn’t viewed as abstraction. For roughly the next two decades,
macros had no part in the abstraction movement. Macros did continue in two main-
stream non-assembly-language settings: the C language (where macros provide basic
support for several key features7); and the Lisp language family (where the base-
language syntax is extremely sparse, and there is a proportionately vigorous tradition
of language extension).

Around 1990, there was a climate shift in the programming-language design com-
munity. Existing abstraction techniques were showing signs of reaching their limits
(see for example [GaSt90]); also, efforts by the Lisp community during the 1980s had
produced hygienic variants of macros that were less aggressively anti-encapsulatory
than the traditional form. In this changed atmosphere, macros were tentatively ad-
mitted under the abstraction umbrella, by granting them the pseudonym syntactic

abstractions ([Ga89]).
The term syntactic abstraction ties in neatly with the two-phase model of lan-

guage extension. Most modern forms of abstraction (notably, OOP class hierarchies)
are integrated into the semantics of the base language, so that they appear to the pro-
grammer as run-time phenomena, i.e., as part of computation by the target abstract
machine; while traditional macros, being by definition source-to-source translations,
are eliminated before the target program is generated. Following this distinction,
we will call abstractions semantic when they are integrated into the programmer’s
abstract model of run-time behavior, syntactic when they are, observably to the pro-
grammer, eliminated before run-time.

Syntactic abstractions do not have to be macros. A class of non-macro syntactic
abstractions is proposed, under the name micros, in [Kr01]; a micro specifies a trans-
formation directly source-to-target (rather than source-to-source, as macros), which
is clearly syntactic since its processing must be completed before the target abstract
machine begins computation.8 Micros are a universal syntactic abstraction, in that
they can be used to assign any possible (computable) semantics to source programs.
(However, they won’t play a significant role in this dissertation, because they aren’t
a traditional abstraction, so aren’t within the scope of the thesis.9)

7In traditional C ([KeRi78]), the macro preprocessor supports symbolic constants, for loops,
and simple inlining (for efficiency by avoiding function calls), simplifying the implementation of a
minimal C compiler. On the wider significance of simple implementation, see [Ga91].

8[Kr01] reserves the term syntactic abstraction for source-to-source transformations, i.e., macros,
and uses linguistic abstraction for the class including both macros and micros.

9One might ask whether the claims of the thesis could be extended to include micros — that is,
whether the fexpr-based approach described in the dissertation can subsume abstractions achieved
via micros. The present work provides no basis to conjecture either yes or no on this question.
Micro-based abstraction connects closely with issues of separately compiled modules; and since fexprs
intrinsically defy the compilation/execution phase distinction, how to handle separately compiled
modules in the presence of fexprs is itself a major question beyond the scope of the dissertation.

4

1.1.2 Abstractive power

Each extensible language is surrounded by an envelope of pos-
sible extensions reachable by modest amounts of labor by un-
sophisticated users.

— [Sta75, p. 20].

We now turn to the question of how to design a programming language so as to
maximize its abstractive power.

First of all, we need to be clear on what we mean by abstractive power. The
extensible-languages movement had always viewed the process of language extension
(mostly, syntactic abstraction10) as literally specifying a programming language; and
the abstraction movement has traditionally viewed the process of abstraction the
same way, though usually not in quite such a technically literal sense.11 We there-
fore take the view here (similarly to the above epigraph) that the measure of the
abstractive power of a programming language is the class of programming languages
that it can readily specify — or, more to the point (but also more subjectively), the
class of problem domains that the language, including its readily achieved abstractive
extensions, can readily address.

Our goal, then, is to construct arbitrarily long sequences of languages, hopscotch-
ing by abstraction from a starting language to ever more conceptually distant lan-
guages. As a convenient metaphor, we refer to the maximum feasible distance thus
reachable from a given starting language as its radius of abstraction.

So, what would a language with a very high radius of abstraction look like?

We immediately dismiss from consideration the issue of call syntax, i.e., the me-
chanics of how the parts of an expression (generically, operator and operands) are put
together — as writing (a+b) versus (+ a b), add(a,b), etc. While call syntax is a
highly visible feature of programming languages (and, accordingly, received a good
deal of attention from the extensible-languages movement; see [Wegb80]), it is also
largely superficial, in that it should affect convenience of expression more-or-less uni-
formly across the board, with no impact on what can be expressed — especially, no

10Despite the dominance of macros in the movement, there were always some extensible languages
that admitted semantic abstraction as extension (e.g., Proteus, [Be69]). However, by 1975 the
extensible-languages and abstraction movements were carefully segregating themselves from each
other; so that [Sta75], despite a very broad-minded definition of extension that technically seems
to admit semantic abstraction, was in practice a critique only of languages that still self-identified
as extensible. The schism was recent. Only a few years earlier, Simula 67 had presented itself as
an extensible language ([Ic71]); and even its defining document was titled Common Base Language

([DaMyNy70]). A few years later, [Gua78] would recount the history of programming abstraction
from the invention of assembly language up to 1978 without any hint that the extensibility tradition
had ever existed.

11Usually, abstraction research that takes the language-specification concept literally has direct
technological ties back to the extensible-languages movement — e.g., [Chr88] building on adaptive
grammars, or [Kr01] building on macros.

5

impact on the kinds of abstraction possible (beyond its uniform effect on convenience
of expression in the abstracting and abstracted languages). Intuitively, call syntax
should account for a constant factor rather than an asymptotic class distinction in
abstractive radius. (However, a constant factor can have great practical importance
within an asymptotic class, so it should be well worthwhile —though outside the
scope of the current work— to revisit the issue of call syntax once the underlying
semantics of abstraction have been settled.)

A language property of great interest here is that the abstractive facilities apply
to the base language in a free and uniform way. This is roughly what M.D. McIl-
roy, in the context of syntactic abstraction, called smoothness ([McI69]); and we will
adopt his term. In semantics —where there are no crisp bounds to what could be
considered abstraction, since semantic abstractions are, by definition, integrated into
the semantics— similar properties have long been advocated under the names orthog-

onality (due to Adriann van Wijngaarden, [vW65]), and first-class objects (due to
Christopher Strachey, [Stra67]).

Our interest in smoothness is based on the conjecture that

(Smoothness Conjecture) Every roughness (violation of smoothness) in a lan-
guage design ultimately bounds its radius of abstraction.

The intuition here is that a butterfly effect occurs, in which the consequences of
roughness are compounded by successive abstractions until, sooner or later depending
on the degree of roughness, cumulative resistance drags down further abstraction
through the fuzzy threshold from feasible to infeasible.

The intuited butterfly effect —thus, chaos— underlying the conjecture makes it
an unlikely subject for formal defense: we actually expect to be unable to anticipate,
at design time, specific advantages of a smooth facility that will later emerge from its
actual use. (See, for example, [Li93, §3.4.4].) However, the conjecture brings us a step
closer to a thesis —i.e., to what we do propose to formally defend— by allowing us to
select a thesis based on immediate, though still subjective, properties (smoothness)
rather than long-term effects (abstractive power).12

Syntactic abstractions are, by definition, restricted in their interaction with se-
mantic abstractions (since syntactic abstractions are observably processed before run-
time). Therefore, by reasoning from the conjecture, syntactic abstractions should
bound abstractive power. This bound is inherent in the syntactic approach to ab-
straction, so the only way to eliminate the bound would be to eliminate support
for syntactic abstraction; but if the semantic facilities of the language can’t achieve

12As an alternative to steering clear of the problem of abstractive power, one might choose to
confront it directly, by developing a rigorous mathematical definition of abstractive power, and
subsequent theory. The definition would seem to be justifiable only by accumulated weight of
evidence, in the subsequent theory, that the mathematical phenomena of the theory really correspond
to the subjective phenomena of abstractive power. A mathematical definition of abstractive power
is proposed in [Shu08].

6

all the abstractions of the eliminated syntactic facilities, then the elimination, while
removing the fuzzy bound caused by roughness, would also introduce a hard bound
caused by loss of capabilities. So we want to eliminate syntactic abstraction, but in
doing so we need a semantic facility that can duplicate the capabilities of syntactic
abstraction.

A semantic facility of just this kind, traditionally called fexprs, was used by Lisp
languages of the 1960s and 70s. (The term fexpr identifies the strategy, but in a
modern context is purely ad hoc; so when we don’t need to identify the strategy
and aren’t discussing history, we prefer the more systematic terminology developed
hereafter in §2.2.2.) Each fexpr specifies a computation directly from the (target-
language) operands of the fexpr call to a final result, bypassing automatic operand
evaluation and thus giving the programmer complete semantic control over compu-
tation from the target language.13 Unfortunately, as traditionally realized, fexprs
are even more badly behaved than traditional macros: by making it impossible to
determine the meanings of subexpressions at translation time, they destroy locality
of information in the source-code — thus undermining not only encapsulation (as do
traditional macros), but most everything else in the language semantics as well. So
around 1980, the Lisp community abandoned fexprs, turning its collective energies
instead to mitigating the problems of macros.

Hygienic macros, which partially solve the anti-encapsulation problem of tradi-
tional macros, were developed by around 1990. To address the problem, some as-
sumptions had to be made about the nature of encapsulation in the base-language
(otherwise one wouldn’t know what kind of encapsulation to make one’s facility com-
patible with), and therefore the solution is only valid for the class of languages on
which the assumptions hold. However, hygienic macros are still syntactic abstrac-
tions — which is to say that, despite the interaction with encapsulation required for
hygiene, they don’t interact at all with most of the language semantics, nor interact
closely even with encapsulation. This limited interaction is both an advantage and
a disadvantage: on one hand, the solution assumes only one facet of the language
semantics, and should therefore be valid on a broad class of languages satisfying this
weak assumption (roughly, the class of all languages with static scope); while on the
other hand, the solution can’t exploit the language semantics to do any of its work

13A remarkably parallel statement can be made about micros ([Kr01]): each micro specifies a
translation directly from the (source-language) operands of the micro call to a target expression,
bypassing automatic operand translation and thus giving the programmer complete syntactic control
over translation from the source language. Thus, micros are to translation what fexprs are to
computation. The parameters of the analogy are that micros bypass processing that would happen
after a macro call, and are inherently syntactic; while fexprs bypass processing that would happen
before a procedure call, and are inherently semantic.

The analogy also extends to internal mechanics of the devices: micros, as treated in [Kr01], rely
heavily on a function dispatch that explicitly performs source translations, compensating for the
loss of automatic operand translations — just as fexprs (treated here) rely heavily on a function eval

that explicitly performs evaluations, compensating for the loss of automatic operand evaluations.

7

for it, and so is technically complicated to implement.
Because fexprs are semantic abstractions, we expect any well-behaved solution for

fexprs —if such exists— to contrast with hygienic macros on all the above points.
Fexprs must interact closely with the entire language semantics, so well-behavedness
should require much stronger assumptions (though smoothness, which is the point of
the exercise, should alleviate this as it entails simple interactions), and any solution
should be valid only on a proportionately narrower class of languages; while, with
the entire language semantics available to lean on, it should be possible to achieve
a technically simple solution (which is also an aspect, or at least a symptom, of
smoothness).

The essence of our thesis —to be defended by demonstration— is that such a
solution does in fact exist: a combination of semantic assumptions that supports
fexprs in a well-behaved and simple way.

1.1.3 Scheme

The smoothness criterion is suited to improving an existing language design, but
doesn’t provide enough detail to design a language from scratch; so in staging a
demonstration of the thesis, we need to choose an existing design from which to
start. The language we’ve chosen is Scheme (primarily R5R Scheme, [KeClRe98]).

The choice of a Lisp language has two main technical advantages:

• Lisp uses the same trivial syntax for all compound expressions, thus dismissing
concrete syntax from consideration, as recommended above (early in §1.1.2).14

• Lisp treats programs as data. This is a signature feature of Lisp languages, and
fexprs can’t be supported smoothly without it: the technical utility of fexprs
is in their ability to explicitly manipulate their target-language operands, and
the only way to achieve that without introducing a phase distinction is to treat
target-language expressions as data.15

Among Lisps, Scheme is particularly suited to the work, in several ways:

• Scheme is a particularly smooth Lisp, with stated design goals to that effect and
various pioneering smooth features (though not under the name smoothness ; see

14Following the recommendation, we disregard various attempts to add more features to Lisp
syntax, such as keyword parameters in Common Lisp ([Ste90, §5.2.2]).

15In contemplating the impact of the programs-as-data feature on abstractive power, note the
following remark of M.C. Harrison at the 1969 extensible languages symposium ([Wegn69, p. 53]):

Any programming language in which programs and data are essentially interchangeable
can be regarded as an extendible language. I think this can be seen very easily from the
fact that Lisp has been used as an extendible language for years.

(Harrison preferred extendible rather than extensible because, he said, extensible sounds too much
like extensive.)

8

[KeClRe98, p. 2]). So, starting from Scheme gives us a head start in achieving a
smooth demonstration language. Smoothness of the demonstration language is
not explicitly claimed by the thesis, but should facilitate well-behavedness and
simplicity, which are claimed. (We also wouldn’t be upset if our demonstra-
tion language had an unprecedentedly high radius of abstraction, both for the
value of the achievement itself, and because it would lend additional post-facto
justification to the pursuit of the thesis.)

• Scheme is a particularly simple language. Besides being specifically claimed in
the thesis, simplicity is at least a strong correlate with smoothness; and, plainly,
a simple system is easier to work with.

• Scheme is representative of the class of languages on which the classical hygienic-
macro solution is valid (which is to say, mostly, that it has static scope). So,
placing well-behaved fexprs in a similar setting should facilitate comparison and
contrast between the two technologies.

1.2 Semantics

This section considers a second thread in the history of programming languages: the
use of mathematical calculi to describe programming-language semantics. Whereas
the previous section explained why well-behaved fexprs are of interest, this section
explains broadly how well-behavedness of fexprs can be addressed by calculi. The
principal programming activity of interest here will be meta-programming. There
will be no role in the discussion for macros, which address abstraction but not meta-
programming; and fexprs, which address both, will be contrasted with quotation
(which addresses meta-programming but not abstraction).

Of interest here are, on the programming side, Lisp, and on the mathematics side,
λ-calculus.

Alonzo Church created the λ-calculus in the early 1930s ([Bare84, §1.1]; see also
§8.1). The original theory treated logic as well as functions; but inconsistencies (anti-
nomies) were quickly discovered in the logic, and in [Chu41] he recommended a far
less ambitious subset that omitted the logical connectives, leaving only an intensional
theory of functions.16 Pure λ-calculus as usually formulated today is a slight gener-
alization of Church’s 1941 calculus.17

16That’s intensional, with an s, an adjective contrasted in logical discourse to extensional.
Roughly, a function definition by extension is a graph, i.e., a set of input-output pairs, while a
function definition by intension is a rule for deriving output from input; see [Chu41, §2]. The idea
of viewing functions extensionally is commonly attributed to Dirichlet, who more-or-less described
it in a paper in 1837 (a huge step in a progressive generalization of the notion of function that had
been going on since the later 1700s; see [Kli72, §40.2]).

17The usual modern λ-calculus is sometimes called the λK-calculus to distinguish it from Church’s

9

In the late 1950s, John McCarthy set out to design an algebraic list processing
language for artificial intelligence work ([McC78]; see also §3.3.2). Seeking a suitably
‘algebraic’ notation for specifying functions, and being aware of Church’s intensional
theory of functions, he adapted λ-notation for his language. He named the language
Lisp (acronym for LISt Processing).

1.2.1 Well-behavedness

Programmers spend much of their time reasoning informally about programs. For-
mal reasoning about programs may be used, on occasion, to prove that particular
programs are correct; but more powerfully, to prove that general classes of program
transformations preserve the meanings of programs. The general transformations are
then safe for use in meta-programs —such as optimizing compilers— and also for
use in subsequent program correctness proofs. The general classes of transformations
manifest as equation schemata in an equational theory, i.e., a formal theory whose
provable formulae equate expressions, M = N . (When M and N must be closed
terms, M = N is an equation; when they may contain free variables, it’s a schema.18

Re formal theories, see §8.2, §8.3.1.)

The stronger the equational theory —i.e., the more expressions it equates— the
more opportunities it will afford for program optimization. The more general the
schemata —i.e., the more equations are expressed by each schema, hence the more
strength the theory derives per schema— and the fewer separate schemata must be
considered, the more feasible it will be for a compiler to automatically discover suit-
able optimizations. Ideal for optimization would be a strong theory based on a few
schemata. On the other hand, from the programmer’s perspective, informal reasoning
will be facilitated by language simplicity; and by separability of interpretation con-
cerns, a.k.a. good hygiene (Chapter 5). But language simplicity manifests formally
as a small number of schemata; and, likewise, separability of interpretation concerns
manifests formally as the existence of very general schemata (whereas interference
between concerns would tend to fragment the theory into many special cases). So a
simple, clear language fosters a simple, strong theory, and vice versa.

Lisp began as a simple, clear (if exotic) programming language; and these prop-
erties have formed a definite theme in the subsequent evolution of the Lisp family

1941 λI-calculus, which differs by the constraint that a term λx.M is syntactically permissible only
if x occurs free in M . [Chu41] does mention λK-calculus, but strongly recommends λI-calculus
(which he calls simply λ-calculus) for the theorem —true for λI-calculus but not for λK-calculus—
that, for all terms M , if M has a normal form then every subterm of M has a normal form. (We
will have more to say on this point in Footnote 25 of §8.3; for the undiluted technical arguments,
see [Chu41, §17], [Bare84, §2.2].)

18Here we mean semantically closed terms, versus free semantic variables, semantic meaning
interpreted by the human audience, rather than interpreted by the formal system itself. Semantic
versus syntactic variables will be discussed in §2.1; by the notation introduced there, “x = y” is an
equation (likely unprovable), “x = y” a schema (enumerating an equation for each choice of x, y).

10

— and, in particular, of the Scheme branch of the family. Therefore, Lisp/Scheme
ought to support a simple, strong formal theory. On the other hand, λ-calculus is a
simple, strong theory (or to be technically precise, its theory, called λ, is a simple,
strong theory); and with the lambda constructor playing such a prominent role in
Lisp, naturally there has been much interest over the decades in using λ-calculus as
a semantic basis for Lisp/Scheme.

Unfortunately, despite their superficial similarities, at the outset Lisp and λ-
calculus were profoundly mismatched. λ-calculus had been designed to describe func-
tions as perceived by traditional (actually, eighteenth-century) mathematics; while
Lisp was first and foremost a programming language, borrowing from λ-calculus only
its notation for function definitions.

1.2.2 Order of operations

In traditional mathematics, the calculation of a function is specified by a single ex-
pression with applicative structure. That is, each compound expression is an operator
applied to subexpressions; and, in computing the value of the expression, the only
constraint on the order of operations is that each subexpression must be evaluated
by the time its resultant value must be used by a primitive function (as opposed
to a compound function constructed from primitives).19 λ-calculus, in particular,
is strictly applicative; and the theory λ derives its considerable strength from this
thoroughgoing disregard for detailed order of operations (see §2.3.3, §8.3).

In the earliest programming languages —assembly languages— the order of oper-
ations was completely explicit. Later languages tended toward specifying functions
algebraically; which, besides aiding program clarity, also eliminated accidental syn-
tactic constraints on the order of operations; and Lisp, with its thoroughly applicative
syntax and its lambda constructor, represented a major advance in this trend. As
more abstract programming language syntax has provided opportunities for flexibil-
ity in actual order of operations, (some) programming language designers have used
that flexibility to eliminate more and more accidental semantic constraints on order
of operations — and, in doing so, have gradually revealed how the essential order-
constraints of programming deviate from the applicative model.

Scheme takes the moderately conservative step of allowing the arguments to a
function to be evaluated in any order.20 This could be viewed as a separation of

19This is the general sense of applicative throughout the dissertation. It is borrowed directly
from [Bac78, §2.2.2], which refined it from the sense disseminated by Peter Landin (as a result of
his theoretical study of programming languages encouraged by his mentor, Christopher Strachey;
[La64], [Cam85, §4]). There is an unrelated and incompatible term applicative-order sometimes used
to describe eager argument evaluation, and opposed to normal-order for lazy argument evaluation
([AbSu96, §1.1.5]); for this distinction, we will prefer the more direct adjectives lazy and eager.

20Demonstrating the lack of consensus on eliminating order constraints, PLT Scheme restricts
standard Scheme by specifying the exact order of argument evaluation ([Fl10, §2.7]).

11

interpretation concerns (good hygiene), since it means that the syntactic device for
function application is separate from the syntactic device for explicit command se-
quencing. Scheme does require that all arguments must be evaluated before the func-
tion is applied — so-called eager argument evaluation, which isn’t purely applicative
because the applicative model only requires arguments to be evaluated when the
function to be applied is primitive; but, against this possible drawback, eager ar-
gument evaluation separates the concern of forced argument evaluation from that
of compound-versus-primitive functions (good hygiene again), thereby enhancing the
treatment of compound functions as first-class objects by rendering them indistin-
guishable from primitives.

Some languages, such as Haskell, allow argument evaluation to be postponed past
the application of a compound function — lazy argument evaluation; but in general
this takes out too much of the order of operations, so that the language interpreter
must either do additional work to put back in some of the lost order, or else lose
efficiency.21 A few languages, such as Haskell, have taken the applicative trend to
its logical extreme, by eliminating non-applicative semantics from the language en-
tirely — rendering these languages inapplicable to general-purpose programming, for
which time-dependent interaction with the external world is often part of the purpose
of the program. Haskell has addressed this shortcoming, in turn, by allowing func-
tions to be parameterized by a mathematical model of the time-dependent external
world (originally, a monad) — thus allowing purely applicative programs to describe
non-applicative computations, but dumping the original problem of the program-
ming/mathematics mismatch back onto the mathematical model. It is not yet clear
whether the mathematical models used in ‘monadic’ programming will eventually find
a useful balance between expressiveness and simplicity; see [Shu03a], [Hu00].

As an alternative to radically altering the structure of programming languages,
one could approach the problem entirely from the mathematical side by modifying

the λ-calculus to incorporate various non-applicative features. A watershed effort
in this direction was Plotkin’s λv-calculus, introduced in [Plo75], which uses eager
argument evaluation. Plotkin recommended a paradigmatic set of theorems to relate
language to calculus and establish the well-behavedness of both. In the late 1980s,
Felleisen ([Fe87]) refined the paradigm and developed variant λ-calculi incorporating
imperative control structures (first-class continuations) and mutable data structures
(variables).

21The problem is with the use of tail recursion for iteration. A properly tail recursive implemen-
tation prevents tail calls from needlessly filling up memory with trivial stack-frames; but if lazy
argument evaluation is practiced naively, then memory may fill up instead with lazily unevaluated
expressions. This was the original reason why Scheme opted for eager argument evaluation; [SuSt75,
p. 40] notes, “we . . . experimentally discovered how call-by-name screws iteration, and rewrote it to
use call-by-value.” That paper discusses the issue in more detail on [SuSt75, pp. 24–26].

12

1.2.3 Meta-programming

In meta-programming, a representation of an object-program is manipulated, and in
particular may be executed, by a meta-program. How this impacts the applicativity
of the meta-language —and the simplicity and clarity of the meta-language—and the
simplicity and strength of its theory— depends on a somewhat muddled convergence
of several factors. (If it were straightforward, the outstanding issues would have been
resolved years ago.)

1.2.3.1 Trivialization of theory

First of all, we may divide the meta-language capabilities that support meta-program-
ming into two levels: construction and evaluation of object-programs (nominal sup-
port); and examination and manipulation of object-programs (full support). For
short, we’ll call these respectively object-evaluation and object-examination.

Object-evaluation permits a meta-program p to evaluate an object-expression e
and use the result; since e is evaluated before use, applicativity may be preserved.
Object-examination, however, is inherently non-applicative: in order for p to exam-
ine the internal structure of e, p must use e without evaluating it first — directly
violating the operation-order constraint imposed by the applicative model. Object-
examination thus differs qualitatively from the non-applicative features addressed by
the aforementioned variant λ-calculi (of Plotkin and Felleisen), all of which, broadly
speaking, added further order-constraints to the model without disturbing the one
native order-constraint central to λ-calculus.

More technically, expressions in ordinary λ-calculus are considered equal —thus,
interchangeable in any context— if they behave the same way under evaluation. Us-
ing object-examination, however, a meta-program might distinguish between object-
expressions e1, e2 even if they have identical behavior, so that e1, e2 are no longer
interchangeable in meta-programs, and cannot be equated in the theory of the meta-
language. Thus the meta-language theory will have little or nothing useful to say
about object-expressions. Moreover, it is a common practice among Lisps to use
the meta-language as the object-language22 — so that a meta-language theory with
nothing useful to say about object-expressions has nothing useful to say at all. (See
§8.4.)

The trivialization of equational theory is actually not inherent in meta-program-
ming. It emerges from an interaction between the native structure of λ-calculus,

22McCarthy wanted to show the existence of a universal Lisp function, which by definition requires
that the object-language be isomorphic to all of Lisp. McCarthy’s early papers used an explicit
isomorphism between partially distinct sublanguages; but most implemented Lisps use a single
syntax for object- and meta-languages. We assume the single-syntax approach in our discussion
here, as the additional complexity of the dual-syntax approach would tend to obscure the issues we
are interested in. The dual-syntax approach is useful in addressing certain other issues, relating to
object-languages whose meta-programming capability may be strictly less than that of the meta-
language; see [Mu92].

13

and the means used to specify which subexpressions are and are not to be evaluated
before use. We consider here two common devices for this specification: quotation,
and fexprs.

1.2.3.2 Quotation

The quotation device, in its simplest form, is an explicit operator designating that its
operand is to be used without evaluation. An explicit operator usually does something
(i.e., designates an action), and so one may naturally suppose that the quotation
operator suppresses evaluation of its operand. One is thus guided subtly into a
conceptual framework in which all subexpressions are evaluated before use unless
explicitly otherwise designated by context. We will refer to this conceptual framework
as the implicit-evaluation paradigm. Just as quotation suggests implicit evaluation,
implicit evaluation suggests quotation (the most straightforward way for a context to
designate non-evaluation), and so the device and paradigm usually occur together in
a language — even though they are not inseparable, as will emerge below.

Quotation and implicit evaluation are the norm in natural-language discussions,
where most text is discussion but occasionally some text is the subject of discussion;
and, given this familiar precedent, it’s unsurprising that quotation was used to support
meta-programming in the original description of Lisp.

In principle, simple quotation is sufficient to support the paradigm; but in prac-
tice, the demands of the paradigm naturally favor the development of increasingly
sophisticated forms of quasiquotation, a family of devices in which object-expressions
are constructed by admixtures of quotation with subexpression evaluation.23 Support
for quasiquotation generally entails a distinct specialized quasiquotation sublanguage
of the meta-language; and, accordingly, use of quasiquotation generally entails spe-
cialized programmer expertise orthogonal to programmer expertise in the rest (i.e.,
the applicative portion) of the meta-language. On the evolution of quasiquotation
in Lisp, see [Baw99]; for an example of full quasiquotation support outside the Lisp
family of languages, see [Ta99].

Mathematically, the addition of quotation to λ-calculus is the immediate techni-
cal cause of the trivialization of equational theory mentioned earlier. Any potentially
evaluable expression becomes unevaluable in context when it occurs as an operand to
quotation; thus, the equational theory can never distinguish the evaluation behavior
of any expression from its syntax, and only syntactically identical expressions can be
equated. The trivialization could be prevented by introducing a notation into the cal-
culus that guarantees certain designated subexpressions will be evaluated regardless
of context. An equation relating the evaluation behaviors of two expressions would
then be distinct from an equation relating the expressions themselves. This solution,

23This pattern of development occurred not only in the computational setting of Lisp, but also
(to a lesser degree) in the natural-language context of the mathematical logic of W.V. Quine, who
coined the term quasi-quotation circa 1940 ([Baw99, §4]).

14

however, requires the researcher to step outside the implicit-evaluation paradigm —
which is not an obvious step, because the paradigm commands considerable credi-
bility by providing, through quotation and quasiquotation, both full support for the
functionality of meta-programming (though the support may not always be entirely
convenient), and a conventionally well-behaved reduction system (though without an
associated useful equational theory).

The alternative paradigm implicit in this technical fix, in which subexpressions
are not evaluated unless their evaluation is explicitly designated by context, we will
refer to as explicit evaluation. Practical use of explicit-evaluation techniques as an
alternative to quotation will be explored in §7.3.

1.2.3.3 Fexprs

The fexpr device, in its simplest form, allows arbitrary, otherwise ordinary functions
to be tagged as fexprs, and provides that whenever a fexpr is called, its operands
are passed to it unevaluated. Which particular subexpressions are and are not to be
evaluated before use must then be determined, in general, at run-time, when each
operator is evaluated and determined to be or not to be a fexpr. Thus, static program
analysis can’t always determine which subexpressions will and will not be evaluated
before use, retarding optimization. Worse, in a statically scoped language (where
the body of a compound function is evaluated in the static environment where the
function was constructed), it is necessary to give the fexpr access to its dynamic
environment (the environment where the function is called), compromising language
hygiene and causing difficulties for the programmer, the optimizer, and the equational
theory. Mitigation of these difficulties is discussed in Chapter 5.

The fexpr device is crudely compatible with both the implicit- and explicit-evalu-
ation paradigms — the distinction being simply whether fexprs suppress evaluation of
their operands (implicit evaluation), or non-fexpr functions induce evaluation of their
operands (explicit evaluation).24 From the latter view, it is a small step to view each
non-fexpr function as the literal composition of a fexpr with an operand-evaluation
wrapper. This approach is the central subject of the current dissertation.

Traditionally, however, fexprs have been treated as a separate type of function,
coexisting independently with ordinary functions — and coexisting also, in Lisp, with
a quasiquotation sublanguage. When fexprs are juxtaposed with quasiquotation, the
quasiquotation operators themselves appear as fexprs, promoting association of fexprs
with the implicit-evaluation paradigm.

Around 1980, the Lisp community responded to the various difficulties of fexpr
technology by abandoning it in favor of macros (§1.1, §3.2). Even as fexprs dis-
appeared from mainstream Lisps, though, they were taken up by a new, largely
experimental family of reflective Lisps.

24Fexprs do have a bias toward explicit evaluation, which will be brought out in §3.1.3.

15

1.2.4 Reflection

Reflection, in programming, means giving a program the capacity to view and modify
the state of its own computation. Reflection as a programming activity does not
bear directly on the current work. However, owing to the fact that reflective Lisps
have been the primary consumers of fexpr technology in the past two decades,25 the
common perception of fexprs has been colored by their use in reflection. We therefore
overview the interplay of fexprs with reflection, and ultimately consider why it has
tended to reinforce the association of fexprs with the implicit-evaluation paradigm.

In order to achieve reflection, reflective Lisps allow a running program to capture
concrete representations of various aspects of computational state that, in a tradi-
tional non-reflective Lisp, would not be made available to the program. The three
aspects usually captured are operands, environments, and continuations. Unhygienic
properties of fexprs that would otherwise be frowned upon —that they capture oper-
ands and environments— thus become virtues in a reflective setting; and some reflec-
tive Lisps use a variant form of fexprs that capture continuations as well (subsuming
the functionality of Scheme’s call-with-current-continuation). Fexprs used in
a reflective setting are generally called reifying procedures, and the act of capturing
these various partial representations of state is called reification.

The verb reify is borrowed from philosophy. Derived from the Latin res, meaning
thing or object, it means to “thingify”: to treat a noun as if it refers to an actual thing
when it does not. Philosophers accuse one another of reification. As a few examples
among many, abstractions, concepts, or sensations might be reified. To understand
each such accusation, one must fine-tune one’s understanding of thing accordingly
(e.g., one might be accused of reification for treating an infinity as a number, or for
treating a number as a material object); so that, rather than belabor the definitions of
words, one might more usefully understand the mistake of reasoning as a type error,
in which a thing of one type is treated as if it belonged to a different type [Bl94,
“reification”].

Because Lisp has a fairly well-defined notion of object as —mostly— something
that can be the value of a variable,26 it seems that reification in reflective programming
would be the act of giving object status to something that otherwise wouldn’t have
it. Environments are the most clearcut example: they are not objects in (modern)

25Reflective Lisp research began with Brian Smith’s 3-LISP, on which see [Sm84]. Subsequent
work used additional reflective Lisps to explore the roots of the reflective power of 3-LISP; see
[FrWa84, WaFr86, Baw88].

26We’re really referring to the notion of first-class object, which was discussed in the Preface, and
for which nameability by variables is just one particular requirement; but in Lisps, most objects
nameable by variables have all the rights and privileges of first-class-ness.

Christopher Strachey, by the way, originally evolved the notion of first-class value from W.V.
Quine’s principle To be is to be the value of a variable ([La00]); and Quine, after deriving the
principle in his essay “On What There Is” [Qu61, pp. 1–19], had applied it to reification in another
essay, “Logic and the Reification of Universals” [Qu61, pp. 102–129].

16

non-reflective Lisps, but they become objects when captured —reified— by fexprs.
This definition of Lisp reification is not without difficulty, as we shall see; and, as in
philosophy, the choice of terminology will be superficial to the underlying issue. But
for the choice of terminology to be credible, any definition of reification (“making
into an object”) in programming must include the granting of object status — that
is, there is no reification if the thing already was an object, or if it doesn’t become
one.

Based on this criterion alone, we observe that whether or not operand capturing,
the hallmark behavior of fexprs, can possibly qualify as reification depends on whether
one considers it in terms of the implicit-evaluation paradigm, or the explicit-evaluation
paradigm. Under the implicit-evaluation paradigm, the operands in a combination are
initially expected to be evaluated, thus expected to be unavailable to the program,
and so, arguably, they do not qualify as objects. Hence, their subsequent capture
assigns (or perhaps restores) object status to things that had been without it, and
the capture meets our necessary criterion for reification. Under the explicit-evaluation
paradigm, however, since there is no prior expectation that the operands would be
evaluated, the operands are objects to begin with; so their capture isn’t reification.

Our suspicion that this criterion is not sufficient stems from the observation that
merely providing an object to the program is an empty gesture if one does not ad-
ditionally provide suitable operations on the object (methods, in OOP parlance).
Recalling the case of environment capturing, it is of no use for a fexpr to capture its
dynamic environment unless it also has, at least, the ability to evaluate expressions in
a captured environment;27 without that ability, the captured environment is simply
an inert value.

Moreover, for the purposes of reflective Lisps, it is not always sufficient to supply
just those operations on the captured object that would otherwise have been possible
on uncaptured objects of its type. To endow the language with reflective capabilities,
environments are given some particular representation, whose concrete operations
can then be exploited in the captured object to achieve various reflective effects.
The degree of reflection depends, in part, on the choice of representation. (On this
choice of representation, see [Baw88].) Thus, to achieve reflection we have really
made two changes to our treatment of environments: we have given them the status
of objects; and we have also broken their abstraction barrier, replacing the abstract
environment type of non-reflective Lisp with a more concrete type that supports
additional reflective operations. This abstraction violation is analogous to the kind
of type error that the philosophers were objecting to under the name reification.

With all the various background elements in place, we can now properly explain
the chain of associations from fexprs, through reflection, to implicit evaluation.

27We could have said, the ability to look up symbols in a captured environment. Given the usual
Lisp primitives apply etc., the expression-evaluation and symbol-lookup operations are equal in
power.

17

1. In a climate where fexprs are supported only by reflective Lisps, fexprs are
perceived as a reflective feature.

2. Standard usage in the reflective Lisp community refers to capturing, including
operand capturing, as reification.

3. In viewing operand capturing as reification, one embraces the implicit-evalu-
ation paradigm — because under explicit evaluation, it wouldn’t be reification.

As we have seen, a careful analysis of the issues suggests that none of these three as-
sociations is necessary; but, absent a particular interest (such as ours) in the explicit-
evaluation paradigm, there has been little motivation for such an analysis. Thus, the
prevailing terminology for fexprs in reflective Lisp has promoted a paradigm that is
orthogonal to both fexprs and reflection.

1.3 Thesis

This dissertation contends that the severe difficulties attendant on fexprs in the past
are not essential, and can be overcome by judicious coordination with other ele-
ments of language design. In particular, fexprs can form the basis for a simple, well-
behaved Scheme-like language, subsuming traditional abstractions without a multi-
phase model of evaluation.

The thesis is supported by a new Scheme-like language called Kernel, created
for this work, in which each Scheme-style procedure consists of a wrapper that in-
duces evaluation of operands, around a fexpr that acts on the resulting arguments.
This arrangement enables Kernel to use a simple direct style of selectively evaluating
subexpressions (explicit evaluation), in place of most Lisps’ indirect quasiquotation
style of selectively suppressing subexpression evaluation (implicit evaluation). The
semantics of Kernel are treated through a new family of formal calculi, introduced
here, called vau calculi. Vau calculi use explicit-evaluation style to extend lambda
calculus, eliminating a long-standing incompatibility between lambda calculus and
fexprs that would otherwise trivialize their equational theories.

18

Chapter 2

Language preliminaries

2.1 About variables

In this dissertation, a variable is a mathematical symbol whose meaning is determined
locally within a portion of the mathematical discussion, as opposed to a reserved

symbol, whose meaning is fixed over the entire discussion. This is an inclusive sense
of the term variable. Particular branches of mathematics may restrict their use of the
term to symbols whose local interpretation is particularly of interest, as in high-school
algebra, where variables denote numerical unknowns. Our inclusive sense of the term
is used in programming and metamathematics, both of which are centrally concerned
with how expressions are interpreted — so that all local interpretation of symbols is
of particular interest.

Variables are notated differently here, depending on whether their meaning is to
be interpreted by the human audience (semantic variables), or interpreted by the
rules of a formal system (syntactic variables). In general mathematical discussion,
a semantic variable is a single letter in italics, with or without subscripts or primes;
thus, x, α, M , x3, F

′, etc.; while a syntactic variable is a single unitalicized English
letter; thus, x, M, etc.

Other variable notations will be introduced for more specialized discussions. For
example, Lisp uses multi-character variable names; vau calculi will do likewise; and in
discussion of those formal systems, semantic variable names may be multi-character
as well. However, italics will never be used for syntactic variables.

When a variable occurs in an expression that locally defines its meaning, the
variable-occurrence is said to be bound in the expression; otherwise, the occurrence
is free in the expression. For example, in the mathematical statement

∀x ∈ N, f(x) > 1 , (2.1)

the occurrence of x as an operand to f is bound by the universal quantifier, ∀,
while the occurrence of f is free since the definition of f is not contained within the
statement.

19

When a semantic variable occurs free in a mathematical expression surrounded
by prose, the meaning of the variable must be determined from the prose context.
When the prose context doesn’t identify a specific value for the variable, the variable
is by implication universally quantified over some domain of discourse. The domain
of discourse for the variable must then be clear from the surrounding prose; some-
times there is a single domain for all variables, but often, variables are classified into
domains of discourse by letter. Case in point: unless otherwise stated, throughout
this dissertation semantic variables based on letters i through n are constrained to
the nonnegative integers, N.

In all of the formal systems considered here, variables may be bound by variants
of λ-notation. The basic form of λ-notation is

λx.M , (2.2)

where x is some syntactic variable, and M is some mathematical expression of the
formal system. Any free occurrences of x in M are bound by the λ. For example,
given

λx.(x + y) , (2.3)

the variables x and y are both free in the body, (x + y), while in the λ-expression as
a whole, y is free and x is bound.

Semantic variables are bound here in mathematical expressions —as opposed to
prose— only by quantifiers, such as ∀ in the earlier example, (2.1), or summation
notation, such as

∑m
k=1 (which binds the index of summation k). Thus, all λ-like

expressions are formal; so that when a semantic variable occurs in such an expression,
it stands for a portion of the expression to be substituted in before the expression is
interpreted by the formal system. For example, in the above basic form for λ-notation,
(2.2), x is understood by the human audience to stand for some syntactic variable,
which must then be substituted in for x before the formal system can interpret the
expression (as x is substituted for x in (2.3)).

When a semantic variable occurs in text discussion, usually it is a reference to the
value of the semantic variable; but occasionally it is meant to refer to the semantic
variable itself, rather than to its value (such as in the last sentence of the preceding
paragraph). The distinction between the two kinds of reference is usually clear from
context, so that no special notation is then needed to distinguish between them. The
strongest contextual indication is an explicit statement of the domain of reference —
hence, “syntactic variable x” (which can only refer to the value of the semantic vari-
able, since the semantic variable itself is not a syntactic variable), “semantic variable
x” (which can only refer to the semantic variable itself, since, at least in this case,
the value of the semantic variable cannot be a semantic variable). When a passage
contains a variety of references to semantic variables, contextual disambiguation may

20

be reinforced (and/or abbreviated) by placing explicit quotation marks (“ ”) around
the semantic variable when it is being named rather than invoked.1

A variable to be interpreted before the expression in which it occurs is called a
meta-variable. Meta-variables constitute an alternative solution to the subexpression-
evaluation problem of meta-programming that was discussed in §1.2.3; they are an
implicit-evaluation device, less elaborate than quasiquotation because, in the termi-
nology of §1.2.3.1, they address only object-evaluation, not object-examination. Our
semantic/syntactic distinction between variables is often sufficient, without further
complicating notation, to disambiguate the uses of meta-variables in the dissertation,
because

• none of the formal systems of primary interest to us (Lisps, lambda calculi, and
vau calculi) use meta-variables; if they address the subexpression-evaluation
problem at all, they use some other strategy;

• semantic variables are used mostly to describe formal systems, only rarely to
describe informal mathematics; and

• semantic variables aren’t bound by any of the binding devices used in the formal
systems.

Nevertheless, Part II of the dissertation, in its detailed exploration of formal cal-
culi and their mathematical properties, will make use of rudimentary syntactic and
semantic meta-variables. Syntactic meta-variables, with names based on “2”, will
occur in contexts, which are central to the modern study of calculi. Semantic meta-
variables, with names based on “π”, will be used to characterize classes of schemata
in f-calculi. In both cases, the meta-variables are rudimentary in the sense that they
cannot be targeted to different domains: there is only one universal quantification for
syntactic meta-variables (namely, all syntactic expressions, including those involving
meta-variables), and only one universal quantification for semantic meta-variables
(namely, all semantic expressions, including those involving meta-variables).

1We resort to double-quotes in such stressful situations because they are a standard device in
natural-language discussions and should therefore be readily understood by the human audience
(notwithstanding the irony of using quotation to disambiguate discussion in a study of fexprs; use of
fexprs in prose would belong to a different dissertation, probably in a different academic discipline).
On the other hand, we more often elide these double-quotes, because most passages that could use
them are just as practically unambiguous, and easier to read, without them. Technical simplicity
would favor always using the double-quotes — but technical simplicity is a primary goal for ex-
pressions to be read by formal systems, not by the human audience. For the human audience our
goal is accuracy of understanding, which is enhanced by ease of understanding but does not always
correlate with technical simplicity, nor even with technical unambiguity. Distinguishing between
semantic variables and syntactic variables helps to provide clean separation between situations that
call for accuracy of understanding, and situations that call for technical simplicity.

21

2.2 Lisps

This section sketches basic concepts and terminology of Lisp (which are a cross-cutting
concern, as they will apply to vau calculi nearly as much as to Kernel).

2.2.1 Values

Lisp values (also called expressions, eliding the distinction between data structures
and source code) are partitioned into atoms, which are conceptually indivisible, and
pairs, which are compound structures each made up of two values in specified order
(more precisely, two references to values, in specified order).

In [McC60] there was only one kind of atom, the symbol, which was any sequence
of letters, digits, and single embedded spaces, treated as an indivisible unit. The
embedded-spaces idea was soon dropped, and other kinds of atomic values, such
as numbers, were added; but Lisp began and remains more permissive than most
programming languages in its symbols. In modern Lisps a symbol can be almost any
sequence of letters, digits, and special characters, provided it doesn’t contain certain
punctuation characters, and doesn’t start out looking like something else (as it would
if, say, it started with a digit). The main types of atoms admitted in this dissertation
are: symbols, integers (sequences of digits, not starting with zero, and optionally
prefixed by a minus sign, -), booleans (which, following Scheme, we represent by #t

for true, #f for false), strings (sequences of printable characters delimited by double-
quotes, as "hello, world"2), nil (explained below), combiners (explained in the next
subsection), and environments (explained in the next subsection).

The basic notation for representing a pair is (v1 . v2), for expressions vk; that
is, a left-paren, first of two subexpressions, period, second of two subexpressions,
and right-paren. This is sometimes called dotted pair notation. (Whitespace is a
technicality we will usually assume without explanation; it only matters in that some
may be needed to indicate where one lexeme ends and another begins.) The two
values contained in a pair are called respectively its car and cdr (for historical reasons
relating to the hardware architecture of the IBM 704 ([McC78])).

Pairs are meant to be particularly useful for building up lists, where the car of a
pair is the first element of the list and its cdr is the rest of the list, i.e., the sublist
of elements after the first. A special atom called nil stands for the empty list; nil
is written as an empty set of parentheses, () (which some Lisps identify with the
symbol nil, though we won’t use that convention here). To facilitate the use of these
list data structures, a shorthand notation is provided in which, when the cdr of a
pair expression is itself a pair or nil expression, the dot of the outer pair and the
parentheses of the cdr may be omitted together; thus,

(foo bar quux) ≡ (foo . (bar . (quux . ()))) . (2.4)

2We would need to introduce some special notation such as escape-sequences if we wanted to
embed, say, newlines or double-quotes in our string literals; but we don’t, so we don’t.

22

(Don’t mistake the prose period at the end of display (2.4), which terminates the
sentence “To facilitate . . . ”, for part of the displayed Lisp notation.)

2.2.2 Programs

Since all Lisp values were originally built up from symbols, they were called S-

expressions (S for Symbolic); and despite the addition of non-symbol atoms, Lisp
values are still sometimes called S-expressions. A strictly separate family of expres-
sions, called M-expressions, was originally envisioned to denote programs that act on
S-expressions (M for Meta); but then several man-years were unexpectedly shaved off
the implementation of Lisp by coding an interpreter that processed S-expression rep-
resentations of programs, and the precedent was established that Lisp programs are
represented by the same kind of data structures as they manipulate (along with vari-
ous other precedents that McCarthy had expected to have plenty of time to reconsider
([McC78])). Almost all Lisps represent programs by S-expressions.3

Throughout the dissertation, literal representations of S-expressions (and of frag-
ments of S-expressions) are written in monospace lettering.

The act of interpreting an S-expression as a program is called evaluation — since
Lisp is an expression-oriented language, in which every program produces a value
as its result (if and when it terminates successfully). Lisp expression evaluation has
three cases: non-symbol atoms, symbols, and pairs.

Non-symbol atoms self-evaluate; that is, they evaluate to themselves. The self-
evaluating case will figure in §5.1 as a facilitator to good hygiene.

A symbol to be evaluated is called a variable. (In the terminology of §2.1, it
is a syntactic variable, since it is interpreted by Lisp.) A meta-language structure
specifying the value of a variable —i.e., the value that would result from evaluating the
variable— is called a binding. We notate bindings by “x← v”, where x is the variable
and v its value. We will also sometimes refer to the object bound to a Lisp variable
(in whatever context we’re considering, most often a Kernel standard environment)
by the name of the variable written in italicized monospace lettering; thus, apply
is the value named by symbol apply; by extension of the notation, cond is the value
named (even if not formally bound) by symbol cond;4 and so on.

Keeping track of variable bindings during Lisp computation is a critical problem
that will recur, in various forms, throughout both parts of the dissertation; for an
overview, see §§3.3.1–3.3.3. Often (but not always) binding maintenance is regulated
using environments; an environment is a data structure representing a set of bindings,

3An exception is Robert Muller’s M-LISP ([Mu92]).
4The symbol cond would not be formally bound if it is a reserved symbol rather than a variable;

but in that case we may still wish to refer to what the symbol represents, even though what it
represents is not a first-class value. The analogous value in Kernel is first-class, but is called $cond

rather than cond; so the value bound to it would be $cond .

23

usually the set of all bindings in effect at a particular point in a program. (Internals
of the data structure won’t matter till later, e.g. §3.3, Chapter 5.)

A pair to be evaluated is called a combination. This case is the most complex,
having internal structure; and it is most central to the dissertation, since it is where
fexprs come into play. So we provide detailed terminology for the various roles that
Lisp values can play in relation to it. (About half of the following terminology is
standard for Scheme, as set down in the Wizard Book, [AbSu96, §1.1]; the other half,
for situations not covered by Scheme terminology, is remarked as it arises.)

The car of a combination is its operator ; the cdr is an operand tree; and in the usual
case that the operand tree is a list, any elements of that list are operands. (Operand

tree is an extrapolation from the standard Scheme usage operand list. Scheme doesn’t
need the more general term because it doesn’t permit evaluation of non-list pairs; but
Kernel does permit evaluation of non-list pairs, because it treats evaluation as a right
of all first-class objects.)

In the common case that the operands are evaluated, and all other actions use
the results rather than the operands themselves, the results of evaluating the oper-
ands are arguments. This is exactly the ordering constraint of the applicative model
that was discussed in §§1.2.2–1.2.3, so we call a combination of this kind an applica-

tive combination. We call a non-applicative combination an operative combination

(because its evaluation may, in general, depend directly on its operands).
The operator of a combination determines how its arguments (in the applicative

case) or operands (in the operative case) will be used. In Kernel, this determination is
made by evaluating the operator; the result of operator evaluation is, if type-correct, a
combiner, which embodies an agenda for the rest of the combination evaluation. The
combiner must specify first of all whether argument evaluation will take place, i.e.,
whether the combination is applicative or operative; and the adjectives applicative

and operative are used so much more often for combiners than in any other capacity,
that we usually just call the two kinds of combiners applicatives and operatives. (We
avoid the ambiguous term procedure, which is used in Scheme for what we call an
applicative, but often in the non-Scheme literature for what we call a combiner.)

A first-class combiner has the right to be invoked as the result of operator evalu-
ation: if it can’t be the result of operator evaluation, it’s not first-class; if it doesn’t
determine combination evaluation when it’s the result of operator evaluation, it’s
not a combiner. First-class applicatives (at least, first-class in this respect) are one
of the defining characteristics of Lisp. First-class operatives, though, were not part
of the original language design. They were introduced very early into the language
implementation, in the form of fexprs, which specify computation from operands to
combination-result in the same way that ordinary Lisp applicatives specify computa-
tion from arguments to combination-result; but first-class operatives (fexpr or other-
wise5) present a practical difficulty. As long as it is possible for operator evaluation to
produce either an operative or an applicative, there is no general way for a static pro-

5Macros are operatives, but specify computation differently from fexprs (§3.1.2ff).

24

gram analyzer —such as an optimizing compiler— to anticipate which operands are
significant as data structures (as they might be in an operative combination), versus
which operands can be replaced by any other expression that will induce an equivalent
computation when evaluated (as would be the case in an applicative combination).

To avoid this difficulty, Scheme and most other modern Lisps do not allow op-
eratives to be directly manipulated as values; hence, operator evaluation can only
produce an applicative (or a non-combiner, which would cause evaluation to fail with
a dynamic type error). A small set of symbols are then reserved for use as the op-
erators of operative combinations. Combinations using these reserved operators are
called special forms, because they are exceptions to the rule for combination evalua-
tion:6 the Lisp evaluator checks for any special-form operator first, and handles each
according to its particular operative meaning, or goes on to evaluate the operator and
operands if none of those special cases occurred.

Evaluation of the arguments to an applicative combination may be eager or lazy.
Eager argument evaluation, which is the norm in Lisp, means that the operator and
operands are all evaluated before further action (specified by the applicative combiner)
is taken. Lazy argument evaluation, which is practiced in some other functional
languages (such as Haskell), means that the argument evaluations may be postponed
until some later time. The only logical constraint on lazy order of operations is that
of the applicative model itself, that the arguments must be determined before they
are used; and within that constraint there is room for variants lying partway between
fully eager and fully lazy argument evaluation; but we have no need to consider them
here.7 Much of our discussion is orthogonal to the lazy/eager distinction; and in
those cases where a position must be taken, either fully lazy or (more often, following
Scheme) fully eager argument evaluation is used.

2.2.3 Core vocabulary

Most Lisps share a core vocabulary, inherited from their common ancestor; but even
within that core, the combiner names, call syntax, and behaviors vary noticeably
between dialects, and in particular there are some visible differences between Kernel
and Scheme (most of them driven by the difference in combiner treatment). To
avoid confusing shifts of vocabulary, Kernel usage will be preferred whenever context
permits.8 Here we briefly sketch the core Lisp vocabulary as it occurs in Kernel,
noting its differences from Scheme.

6Form is an older term for what we’re calling a combination.
7The principal partially-lazy argument-evaluation strategy is call-by-need, in which each argument

is evaluated when its value is first needed (as in lazy evaluation), but the resulting value is memoized
at that time so that the argument is not reevaluated if needed again later. In a language without
side-effects this is merely a practical optimization of lazy evaluation, whereas in the presence of
side-effects it may produce different results from fully lazy (a.k.a. call-by-name) evaluation.

8The largest concentration of exceptions, where Kernel usage would be nonsensical, is in the
historical discussion of early Lisp in §3.3.2.

25

Additional details of Kernel will be introduced throughout the dissertation as they
become relevant. The full current state of the Kernel language design is detailed in
[Shu09].

2.2.3.1 Naming conventions

Kernel inherits from Scheme certain naming conventions, involving special characters,
that indicate type information about its combiners. Predicates —combiners whose
results are always boolean— conventionally have names ending with “?”. Mutators

—combiners that modify state of existing objects— conventionally have names ending
with “!”. (There is also a naming convention for type-conversion combiners, x->y
for types x and y, but we will have no occasion here to do type conversions.)

Kernel applies these conventions more uniformly than does Scheme. This addi-
tional uniformity is visible in Kernel’s use of the predicate suffix on numeric compar-
ison operators and boolean operators, all of which are excepted by Scheme from the
convention; thus, for example, Scheme <= (an applicative that tests whether all its
arguments are in non-descending numerical order) becomes Kernel <=?, while Scheme
not (an applicative that takes one boolean argument and negates it) becomes Kernel
not? .

A type predicate is an applicative predicate that tests whether all its arguments
belong to a certain type. By convention, the name of a type predicate is x?, where x is
the name of the type. Nil is the single instance of type null, hence its type predicate is
null? . Scheme type predicate procedure? is replaced in Kernel by type predicates
combiner?, operative?, and applicative? . (The first of these three is the logical
disjunction of the other two; thus, for example, (combiner? x) would be equivalent
to (or? (operative? x) (applicative? x)).)

Scheme does nothing to distinguish operative names from applicative, so that the
programmer must learn by rote to recognize the operative names. This rote memo-
rization is somewhat mitigated by the small number of built-in Scheme operatives,
and by the fact that user-defined Scheme operatives —which are hygienic macros—
are usually limited in number by the difficulty of constructing them. Also, since
Scheme operatives aren’t first-class, the programmer cannot treat them as values,
limiting the scope of their possible misuse (along with the scope of their possible
use).

Kernel makes it easy to construct new operatives, and allows them to be used freely
as values; so the factors that mitigated rote memorization in Scheme no longer pertain.
To allow the programmer to distinguish between the two cases, Kernel uniformly
applies the convention that operative names are prefixed by “$”. (In practice, this
convention has proven so effective in clarifying the abstract semantics of user-defined
operatives, that one suspects Scheme could benefit from it even if nothing else in its
treatment of combiners were changed.)

26

2.2.3.2 Particular combiners

Each combiner is introduced here by a template for its call syntax, with semantic
variables wherever subexpressions may occur.

When a semantic variable occurs in a compound Lisp expression, it is always
understood to represent a single Lisp subexpression (never an arbitrary syntactic
fragment; for example, a subexpression can’t have unbalanced parentheses). It may
use the same notation for semantic variables as in general discussion, based on a
single italicized letter; but alternatively, it may and usually will be based on a multi-
character name, following the same rules as Lisp symbols, either in italics or delimited
by angle brackets (but not both). Italics are preferred when describing operands of
an applicative, angle brackets when describing operands of an operative; but the two
styles are never mixed in a single Lisp expression.

If the name of the semantic variable is the name of a type, either the value of
the variable (if in angle brackets) or the result of evaluating that value (if in italics)
is constrained to the named type. Thus, in ($define! 〈symbol〉 〈expression〉) the
first operand is constrained to be a symbol, whereas in (set-car! pair expression)

the first operand is constrained to evaluate to a pair.

(cons x y)

(list . arguments)

(car pair)

(cdr pair)

(set-car! pair expression)

(set-cdr! pair expression)

cons returns a freshly allocated pair with given car and cdr. list returns a
freshly allocated list of its arguments. car and cdr return the named component of
a given pair. set-car! and set-cdr! mutate a given pair by making their second
argument the new value for the named component of the pair.

Many Lisps provide special names for compositions of car ’s and cdr ’s, consisting
of the names of the composed applicatives in the order they would occur in a nested
expression, with the intermediate r’s and c’s left out. Thus,

(cadr x) ≡ (car (cdr x)) (2.5)

and so on. Common Lisp, Scheme, and Kernel provide names for all such compositions
up to four deep (caaaar through cddddr).

(read)

(write expression)

(display expression)

(newline)

read reads and returns one expression from standard input; write writes its argu-

27

ment to standard output. display is similar to write except that, when outputting
a string, display omits the delimiting double-quotes. newline sends a new-line to
standard output. (In full Scheme or Kernel, these applicatives have optional syntax
to specify ports other than standard input/output; but there is no need to override
standard input/output here.)

($if 〈test〉 〈consequent〉 〈alternative〉)

〈test〉 is evaluated, and the result must be of type boolean; if that result is true,
〈consequent〉 is evaluated and its result returned, otherwise (the result of evaluating
〈test〉 is false, and) 〈alternative〉 is evaluated and its result returned. The semantics
are slightly different in Scheme (where the operative is named if): Scheme does not
require the result of evaluating 〈test〉 to be boolean (treating all non-#f values as
“true”), and Scheme allows 〈alternative〉 to be omitted (in which case the result on
false is implementation-dependent).

($cond . 〈clauses〉)

$cond is a more general Lisp conditional, for selecting one out of a series of cases
(rather than out of exactly two). 〈clauses〉 must be a list of clause expressions, each
of the form (〈test〉 . 〈body〉), where each 〈body〉 is a list of expressions. The 〈test〉s
are evaluated from left to right until one evaluates to true, then the expressions in
the corresponding 〈body〉 are evaluated from left to right and the result of the last is
returned.

In Kernel, it is good practice always to specify #t as the 〈test〉 of the last clause,
so that the result of the conditional is always explicitly specified. Scheme allows the
last 〈test〉 to be the symbol else, which is reserved in that setting to mean that the
clause is always selected if it is reached — a specialized syntax that Kernel doesn’t
imitate, as Kernel prefers to avoid use of unevaluated keywords.

$cond and $if are equi-powerful, in that either could be defined in terms of the
other if the other were already available. In formally defining Lisps from scratch, we
will prefer to provide primitive $if, and usually omit $cond entirely, because $if is
simpler; but in Lisp programming we will more often use $cond . $cond is derived
from $if in Kernel, and cond from if in Scheme; however, traditionally in Lisp
cond is primitive while if is derived, because that was the order in which they were
introduced into the language (see [McC60]).

($lambda 〈formals〉 . 〈body〉)

$lambda is the usual constructor of applicatives in Lisp; primitive in most modern
Lisps, derived in Kernel (though more often used in practice than the primitives from
which it is derived). A great deal will be said later about the semantics of $lambda
(notably in §3.3.1 and §4.3); for the moment, it suffices to give the general sense of
it.

28

〈formals〉 is a formal parameter tree; in the most usual case, it is a list of symbols.
〈body〉 is a list of expressions.

The dynamic environment in which $lambda is called becomes the static envi-

ronment of the constructed applicative. When the applicative is called, a local envi-

ronment is constructed by extending the static environment, so that if a symbol is
looked up locally but has no local binding, a binding for it will be sought in the static
parent. (Because local lookups default to the static environment, the applicative is
said to be statically scoped ; more on that in §3.3.1.) The symbols in 〈formals〉 are
locally bound to the corresponding parts of the argument list of the applicative call;
then the expressions in 〈body〉 are evaluated left-to-right in the local environment,
and the result of the last evaluation is returned as the result of the applicative call.

(apply applicative object)

apply provides a way to override the usual rules for argument evaluation when
calling an applicative.

applicative is called using object in place of the list of arguments that would
ordinarily be passed to applicative. In particular, a statement of the form

(apply appv (list arg1 ... argn)) (2.6)

is equivalent to

(appv arg1 ... argn) . (2.7)

(Strictly, this equivalence is only up to order of argument evaluation. In (2.6), appv is
evaluated either before all the argk or after all the argk; while in (2.7), Scheme would
allow appv to be interleaved with the argk, and Kernel would always evaluate appv

first, to determine whether to evaluate the operands.)
Kernel and Scheme both allow additional arguments to apply , but with different

meanings; Kernel apply will be discussed in detail in §4.4.

($let 〈bindings〉 . 〈body〉)

$let is used to provide some specific local bindings for a local computation
(whereas $lambda parameterizes a local computation by bindings whose values are
to be specified later).
〈bindings〉 should be a list of definiend/expression pairings, each of the form

(〈definiend〉 〈expression〉), while 〈body〉 should be a list of expressions. A state-
ment of the form

($let ((〈sym1〉 〈exp1〉) ... (〈symn〉 〈expn〉)) . 〈body〉) (2.8)

is equivalent to

(($lambda (〈sym1〉 ... 〈symn〉) . 〈body〉) 〈exp1〉 ... 〈expn〉) . (2.9)

29

($define! 〈definiend〉 〈expression〉)

The 〈definiend〉 is usually a symbol; 〈expression〉 is evaluated, and the symbol is
then bound (in the dynamic environment of the call to $define!) to the result of
that evaluation.

Kernel and Scheme both allow compound 〈definiend〉s, but with drastically differ-
ent semantics. This will matter only, for the moment, in that Kernel does not support
Scheme’s use of compound definiends to define procedures without an explicit lambda:
in Kernel one would write

($define! square ($lambda (x) (* x x))) , (2.10)

where in Scheme one could use the alternative form

(define (square x) (* x x)) . (2.11)

(Kernel’s handling of compound definiends, which is incompatible with Scheme’s
shorthand (hence the omission), will figure prominently in the treatment of Kernel
style in Chapter 7.)

Note that Kernel’s $define! has a “!” suffix on its name because it mutates
the dynamic environment from which it is called; strictly speaking, Scheme’s define
doesn’t mutate the state of any first-class object, since environments in Scheme aren’t
first-class.

(eval object environment)

Evaluates object in environment .
The availability of eval enables meta-programming, and is a signature charac-

teristic of Lisp. However, it is also entangled with the controversial technique of en-
vironment capturing (§5.2). eval was only added to standard Scheme in the R5RS ,
([KeClRe98, Notes]), with a small, fixed set of “environment specifiers” for use as the
second argument.9

2.3 Meta-languages for formal systems

Two principal techniques are used in the dissertation to specify the semantics of for-
mal systems (that is, of Lisps and calculi): meta-circular evaluators, and reduction
systems. Meta-circular evaluators are used only for Lisps, in Part I. Complete reduc-
tion systems are used only for calculi, in Part II; but fragments of reduction systems
are also sometimes used to clarify points in Part I. This section outlines both tech-
niques, sufficient for their uses in Part I, and discusses tradeoffs between the two
(which are properly a cross-cutting concern).

9Common Lisp eval omits the environment argument entirely, always using a “blank” envi-
ronment for the evaluation — but then also provides elaborate devices for overriding parts of the
behavior of eval , and thereby capturing the environments used within the evaluations it performs
([Ste90, Ch. 20]).

30

2.3.1 Meta-circular evaluators

A meta-circular evaluator for a programming language L is an interpreter I for L
written in another programming language L′ in order to explain L. An L-interpreter
that is only meant to be executed isn’t what we mean by a meta-circular evaluator:
to merit characterization as a meta-circular evaluator, I should be meant for two

audiences: the abstract machine of L′, and human beings; and usually more the
latter than the former. The human audience is supposed to better understand L by
studying the source code of I — specifically, to understand from I certain (presumably
advanced) features of L in terms of the (presumably simpler) features of L′. Often,
L′ is a subset of L.

Although meta-circular evaluators can reduce the size of the programming-lan-
guage definition problem, they cannot eliminate it. This is the point that the term
meta-circular was originally intended to convey (in [Rey72]): if L = L′, the definition
would be circular, meaning that you couldn’t understand the definition of L unless you
already knew L; but even without circularity, all such definitions are meta-circular,
in that no matter how many such evaluators you have, you can’t understand any of
them unless you already know at least one programming language.

Meta-circular evaluators were the principal means for formally specifying pro-
gramming-language semantics through the 1960s and early 1970s. In the mid-1970s,
alternatives began to emerge that tie program semantics to non-program mathemat-
ical structures — denotational semantics, tying program semantics to extensionally
defined mathematical functions; and small-step operational semantics (recently so
called), tying program semantics to a term-reduction relation.10 In competition with
these more solidly founded alternatives, use of meta-circular evaluators for general-
purpose semantic specification gradually declined.

While meta-circular evaluators have declined in general use, the Lisp community
has maintained a vigorous tradition of constructing experimental Lisp interpreters
(e.g., [SteSu78b, AbSu96]). S-expression Lisp is peculiarly suited to the meta-circular
technique, both as an object-language for meta-circular evaluation, and as a meta-
language for meta-circular evaluation of Lisp. As an object-language, S-expression
Lisp is easier to interpret than most languages, because Lisp has a simple syntax,
simple internal representation suitable for both data and programs (pairs and lists),
and simple semantics assigned to the internal representation. As a meta-language,
Lisp already has built-in facilities for handling the syntax and internal representation
of Lisp. All the low-level tedium of reading S-expressions (at least for a simple
prototype interpreter) are hidden by Lisp applicative read ; of writing S-expressions,
by write ; and of handling internal representations, by cons, car, etc.; so that a Lisp
meta-circular evaluator in Lisp can concern itself almost exclusively with semantics

10Big-step operational semantics emerged later, in the late 1980s ([To88]). The difference is,
broadly, that small-step ties program semantics to the term-reduction relation itself, whereas big-
step ties program semantics to complete reduction sequences. (Big- versus small-step semantics will
be discussed in §8.3.2.)

31

(which is, recalling the purpose of the exercise, what one usually wants the meta-
circular evaluator to explain).

The central logic for a Lisp meta-circular evaluator in Kernel would look something
like

($define! interpreter

($lambda () (rep-loop (make-initial-env))))

($define! rep-loop

($lambda (env)

(display ">>> ")

(write (mceval (read) env))

(newline)

(rep-loop env)))

($define! mceval

($lambda (expr env)

($cond ((symbol? expr) (lookup expr env))

((pair? expr) (mceval-combination expr env))

(#t expr)))) .

(2.12)

The centerpiece of the interpreter is the rep-loop, which prompts the user for an
expression, evaluates it meta-circularly, prints the result, and repeats (hence the name
rep-loop, short for read-eval-print-loop). The interpreter simply sets up an initial
environment for evaluation and calls the rep-loop. The rep-loop itself contains none
of the evaluation logic, and the main meta-circular evaluation applicative mceval

contains (by our deliberate, but not unreasonable, choice) only logic that is likely to
be the same for all Lisps. (Notwithstanding which, each of these three applicatives
will be modified in two or more of the meta-circular evaluators in Chapter 6.)

2.3.2 Reduction systems

A term-reduction system is a syntactic domain of terms (data with hierarchical struc-
ture, a.k.a. term structure) together with a binary reduction relation on terms defined
as the compatible closure of a set of reduction rules.

The reduction relation is conventionally named “−→”, with subscripts when nec-
essary to distinguish between the reduction relations of different systems. The tran-
sitive closure of any relation is notated by superscripting it by a “+”, its reflexive
transitive closure, by a “*”; thus, in this case, “−→+”, “−→∗”.

The full specification of a reduction system has three parts:

1. syntax, which describes the syntactic structure of terms, and also assigns se-
mantic variables to particular syntactic domains;

32

2. auxiliary semantic functions, which are named by semantic variables, or use
semantic notations, that didn’t occur in (1); and

3. a set of reduction rule schemata, which are reduction relation assertions building
on the semantic variables and notations from (1) and (2).

Here and in Part I, only reduction rule schemata are specified mathematically, while
syntax and auxiliary functions are either implicit or at most informally described.
(A detailed discussion of full reduction system specifications will be given in §8.2,
preliminary to Part II.)

The λ-calculus, for example, has just one reduction rule schema:

(λx.M)N −→ M [x← N] , (2.13)

where x is universally quantified over syntactic variables, M and N over terms, and
notationM [x← N] invokes an auxiliary function that (hygienically) substitutes N for
all free occurrences of x in M . Thus —assuming the availability of suitable syntactic
variables— the schema asserts reductions such as

(λx.x)y −→ y

(λx.(λy.x))z −→ λy.z
(λx.(λy.y))z −→ λy.y

((λx.(λy.x))z)w −→+ z
((λx.(λy.y))z)w −→+ w .

(2.14)

A relation ⊐ is compatible iff for all M ⊐ N , whenever M occurs as a subterm
of a larger term C[M], replacing that subterm M with N in the larger term, C[N],
gives a relation C[M] ⊐ C[N]. The compatible closure of a set of reduction rules
is then the smallest compatible relation that implies all the rules. Building on the
above example (2.14),

(λx.x)y −→ y
λz.((λx.x)y) −→ λz.y

((λx.x)y)z −→ yz ,
(2.15)

and so on.
When a reduction rule M −→ N induces another rule C[M] −→ C[N] by com-

patible closure, the incomplete C with a single subterm unspecified is called a context

(often characterized as “a term with a hole in it”), while the subterm M of C[M] is
called a redex (a word formed by contraction of reducible expression), and subterm
N of C[N] a reduct .

The distinction between naive substitution and hygienic substitution is in their
treatment of M [x ← N] when M binds a variable that occurred free in N . For the
moment, we simply choose our examples so this doesn’t happen. The particular form

33

of bad hygiene caused by naive substitution will figure prominently in the discussion
of traditional macros in §3.3.3. Hygienic substitution will be defined in §3.3.3, and
again in Chapter 8 (§8.2ff). (See also §3.3.1.)

Lambda calculus has only one class of compound terms; but the reduction sys-
tems used here for Lisps and vau calculi —all of which use explicit evaluation— will
each distinguish two classes, one of expressions that are passive data, and a wider
class of terms that also includes designators of expression evaluation. As a mnemonic
notational convention, these explicit-evaluation reduction systems use three kinds of
delimiters for compound constructions. Compound expressions that may be repre-
sented by source code are delimited by parentheses, “()”. Compound expressions
that cannot be represented by source code, but may be the final result of computa-
tion, are delimited by angle brackets, “〈 〉”. Compound terms that are not expressions
are delimited by square brackets, “[]”.

Thus, for example, in a typical Lisp reduction system, the source expression for a
function to square numbers would be written as

($lambda (x) (* x x)) , (2.16)

the term designating its evaluation in an environment e would be

[eval ($lambda (x) (* x x)) e] , (2.17)

and the expression to which this term is eventually reduced (assuming e exhibits the
usual binding $lambda← $lambda) would be

〈applicative (x) ((* x x)) e〉 (2.18)

(or, in Kernel, where an applicative is explicitly distinguished from its underlying
combiner, one would have something of the form “〈applicative 〈operative . . .〉〉”).

Also, terms that denote environments are delimited by doubled symbols; i.e., the
usual delimiter is typeset twice with a small horizontal displacement. So if envi-
ronments are first-class objects, as in Kernel or vau calculus, their delimiters would
be “〈〈 〉〉”; while, if environments are represented as terms but are not admissible as
computation results, they would be delimited by “[[]]”.

2.3.3 Tradeoffs

The specification of a reduction system can be a lucid medium for articulating fine
points of order of operations (which computational activities precede which others).
The entire specification is geared toward its reduction rule schemata, and each schema
is just a statement of one specific kind of permissible succession from computational
state to computational state. Moreover, the schemata are understood separately from
each other: whether a schema can be applied to a given term is determined entirely
within that schema, regardless of any other schemata in the system. So each schema
immediately expresses a specific point for the human reader to study in isolation.

34

The downside of this unremitting independence between schemata, for descriptive
purposes, is that while detailed orderings are made explicit, any algorithmic structure
larger than a single schema is made implicit. The overall modular structure of the
reduction algorithm may have been known to a human who wrote the description;
but the description doesn’t preserve that information, so the human reader has to
reconstruct it.

An important consequence of the lack of overall structure is that there is nothing
to prevent multiple schemata from being applicable to the same term. This tendency
toward nondeterministic reduction is magnified by taking the compatible closure of
the rules, which facilitates the construction of terms with multiple redexes.

If alternative reductions of the same term would result in different final answers
(i.e., eventual reduction to different irreducible terms), then the nondeterministic
choice between reductions would constitute semantic ambiguity. However, λ-calculus
and each of its variants is equipped with a Church–Rosser theorem, which guaran-
tees that all possible alternative reductions from a given term can arrive back at the
same term later on. Formally, the Church–Rosser property says that if L −→∗ M1

and L −→∗ M2 then there exists N such that M1 −→
∗ N and M2 −→

∗ N . Thus,
from a given term L at most one irreducible term can be reached; so the system
is semantically unambiguous, and nondeterministic choice between reductions con-
stitutes algorithmic flexibility — multiple ways of doing the same thing, which can
be exploited by meta-programs (such as optimizing compilers), and which manifests
mathematically as strength of the equational theory.

While Church–Rosser nondeterminism is a desirable property for a meta-language,
it comes at a price. Proving Church–Rosser theorems is a significant effort; theorists
took half a century evolving better ways to prove Church–Rosser-ness for the pure
λ-calculus ([Ros82, §4]), simple as it is. However, the very fact that reduction sys-
tems are usually used as a meta-language, not as a programming language,11 means
that one can afford to spend far more effort pursuing Church–Rosser-ness of a single
reduction system than one could for each of many individual programs.

A general-purpose programming language can be a lucid medium for presenting
the structure of an algorithm in a coherent and modular way.

As a pointedly relevant illustration, consider the central dispatching logic of a
typical Lisp evaluator. In a reduction system specification, dispatching would appear
as a set of schemata, something like

11Logic programming languages usually aren’t compatible reduction systems, because they intro-
duce global constraints in order to achieve well-behavedness (such as computational tractability).

35

[eval a e] −→ a
[eval x e] −→ lookup(x, e)

[eval ($if v1 v2 v3) e] −→ [if [eval v1 e] v2 v3 e]
[eval ($lambda v1 . v2) e] −→ 〈applicative v1 v2 e〉

∀v0 6∈ SpecialFormOperators,
[eval (v0 v1 . . . vn) e] −→ [apply [eval v0 e]

([eval v1 e] . . .
[eval vn e])] .

(2.19)

These schemata are intended to partition all possible subjects of evaluation; but for
them to actually do so requires careful arrangement of syntactic domains elsewhere
in the specification. Semantic variables with letters e, x, a, v are quantified re-
spectively over environments, symbols, non-symbol atoms, and values; the domain
of values is partitioned by construction into symbols, non-symbol atoms, and pairs;
and SpecialFormOperators must be semantically bound to the set {$if, $lambda}.
The use of semantic variable SpecialFormOperators, in particular, makes the reduc-
tion schema for application more readable at the cost of tighter coupling between
syntax specification and dispatching logic: the elements of the set must match the
special-form schemata. Even so, the application schema contains an awkward explicit
universal quantifier (or equivalent notation) — which is why it is presented last in
(2.19), to avoid misleading the reader into applying the explicit quantifier to any of
the other schemata. The explicit quantifier could have been eliminated too, but only
by further muddling the syntax specification with yet another semantic-variable-letter
quantification, over the structurally unnatural domain of arbitrary values that aren’t
special-form operator symbols.

The same dispatching logic in a meta-circular evaluator (written in Kernel) would
be

($define! mceval

($lambda (expr env)

($cond ((symbol? expr) (lookup expr env))

((pair? expr) (mceval-combination expr env))

(#t expr))))

($define! mceval-combination

($lambda ((operator . operands) env)

($cond ((if-operator? operator)

(mceval-if operands env))

((lambda-operator? operator)

(mceval-lambda operands env))

(#t (mc-apply (mceval operator env)

(map-mceval operands env)))))) .

(2.20)

The $cond operative, which dominates the logical structure of this code, was
one of McCarthy’s key original innovations in the Lisp language ([McC78, p. 218],

36

[SteSu78b, p. 4]). Its purpose was to encompass all the cases of a piecewise-defined
function in a single expression, thus explicitly and succinctly expressing the mutual
exclusion between cases (which is what gives (2.20) its modularity) — and specifically
avoiding fragmentation of the cases into logically independent rules whose interrela-
tion must be reconstructed by the reader.

Note, also, that the clarity of the code is enhanced by its modular division into
two applicatives. No analogous modularization is possible for the reduction system
of (2.19). One could extend (2.19) with a new schema,

[eval (v1 . v2) e] −→ [eval-combination v1 v2 e] (2.21)

(presumably placed between the second and third schemata shown in (2.19)), and
adjust the last three schemata to use ‘eval-combination’ instead of ‘eval’ on their
left-hand sides; but then one would only have a slightly more verbose —hence, less
readable— specification. Selectively subdividing the meta-circular evaluator code of
(2.20) is only useful because the code has coherent structure to begin with.

Just as reduction system specifications pay for lucid order of operations by ob-
scuring algorithmic structure, general-purpose programming languages pay for lucid
algorithmic structure by obscuring order of operations. A notorious example is the
problem of distinguishing between lazy and eager argument evaluation.12 In extend-
ing the schemata of (2.19) to perform primitive applications, one might write

[apply p t] −→ applyPrim(p, t) , (2.22)

where t is quantified over terms, so that semantic function applyPrim may be invoked
without first reducing the argument-evaluation subterms within the argument list t;
or

[apply p v] −→ applyPrim(p, v) , (2.23)

so that, since v is quantified only over values, the argument-evaluation subterms
have to be reduced to values before invoking applyPrim. However, the corresponding
meta-circular evaluator code in (2.20) is the call to auxiliary applicative mc-apply ,

(mc-apply (mceval operator env) (map-mceval operands env)) ; (2.24)

and there is simply nothing inherent in this syntax to indicate whether its second
argument should be evaluated before its first argument is called. If the meta-language
uses eager argument evaluation (which Kernel does), both arguments are evaluated
before calling mc-apply , and the object-language is eager; but if the semantics of the
Kernel meta-language were modified to be lazy, the object-language would (barring
oddities elsewhere in the code) become lazy too.

12This problem is described in §5 of [Rey72], the paper that introduced the term meta-circular

evaluator.

37

Part II of the dissertation focuses exclusively on reduction systems; but it was
made the latter half of the work so that it would be preceded by the informal ex-
planation of the semantics in Part I. The informal explanation uses both kinds of
meta-language, capitalizing on the strengths of each. It uses reduction rule sche-
mata selectively, scattered through Chapters 3–4, to clarify specific points of order of
operations; but also contains an in-depth exploration of the evaluator algorithm, in
Chapter 6, that relies exclusively on meta-circular evaluators.

38

Part I

The Kernel programming language

39

Chapter 3

Preliminaries for Part I

3.0 Agenda for Part I

This chapter provides historical perspective and principles of language design prelimi-
nary to Part I. Chapter 4 explains Kernel-style operatives and applicatives. Chapter 5
considers a broad class of programming-language well-behavedness properties called
hygiene, and tactics used by Kernel to promote hygiene in the presence of fexprs.
Chapter 6 uses meta-circular evaluator code to compare the simplicity of Kernel’s
combiner support with that of other approaches to combiner support in Scheme-like
languages. Chapter 7 explores how Kernel primitives $vau , wrap, and unwrap can
be used effectively to achieve purposes traditionally addressed, in Scheme and other
Lisps, by quasiquotation and macros.

3.1 Classes of constructed combiners

There are three major classes of constructed combiners in Lisp languages.

3.1.1 Applicatives

In most Lisp languages, there is an operative $lambda that is a universal constructor
of applicatives, in the sense that it can implement all applicatives that are possi-
ble within the computational model of the Lisp in which it occurs. It is therefore
unnecessary to have any other primitive combiner constructors, if one is willing to
accept the limitation that all constructed combiners in the language will be applica-
tive. $lambda was the only combiner constructor in the original description of Lisp,
[McC60], and it was until recently the only combiner constructor in Scheme.1

1Macros were introduced to Scheme proper in the R5RS ([KeClRe98, Notes]), having appeared
as a language extension appendix to the R4RS , [ClRe91b].

40

In practice, though, it’s convenient to be able to construct new operatives — for
modularity, or for simple abbreviation.2 So, in the 1960s and 70s, Lisps developed
two strategies for constructing compound operatives ([Pi80]): macros and fexprs.

3.1.2 Macros

A macro is an operative that uses its operands to derive a syntactic replacement for
the entire combination of the macro call. The computation and substitution of this
replacement for the original combination is called macro expansion.

All macro expansion is required to take place during a preprocessing phase, strictly
prior to all non-macro expression-evaluation. This two-phase processing model is a
natural property of syntactic transformation in assembly languages, where syntax is
eliminated during assembly; and in conventionally compiled languages, where syntax
is eliminated during compilation (cf. syntactic abstraction, §1.1); but not so in Lisp.
Because of Lisp’s meta-programming view of programs as data, syntax doesn’t nec-
essarily dissappear prior to evaluation, so that it would be entirely conceivable for
macro expansion to be treated as an integral part of evaluation (a possibility fur-
ther discussed below in §3.4.1). However, the macro-preprocessability requirement is
prerequisite to the advantages of macros, discussed below, and so the requirement is
maintained in Lisp.3

3.1.3 Fexprs

The construction of fexprs differs in only two fundamental respects from the ordinary
construction of first-class applicatives via $lambda : first, a fexpr is passed its un-
evaluated operands rather than evaluated arguments (which is to say, it’s operative
rather than applicative); and second, it may also be passed the dynamic environment
from which it was called. A typical constructor of fexprs therefore looks and behaves
very similarly to $lambda , except that (first) its ordinary formal parameters will be
bound to its unevaluated operands, and (second) it may have an additional formal
parameter that will be bound to its dynamic environment.

The name fexprs dates back to LISP 1.5, which supported operatives of this
kind in the early 1960s.4 Later, when Lisp branched into multiple dialects, the feature

2The distinction intended is that modularity hides implementation, while abbreviation merely
shortens expression. Other historical uses for constructed operatives (such as variable-arity proce-
dures) were really orthogonal to operand evaluation; but these two uses have endured, because some
abbreviation and some modularity are entangled with operand evaluation, so that operatives are
genuinely needed. See [Pi80].

3Discussions of Lisp macros, especially early discussions, don’t always state the requirement
plainly, but when it matters they assume it. For example, [Pi80] presents macros as data-structure
transformers written in ordinary Lisp, —using car, cdr, list, etc.— but then later attributes, as
we will here, the key advantages of macros to the fact that they can be preprocessed.

4The memo that proposed addition of macros to LISP 1.5, [Ha63], uses FEXPR as a noun for

41

continued under the same name in MacLisp through the 1970s ([Pi83]), while a similar
facility was provided by Interlisp —the other major Lisp camp of the seventies5—
under the name nlambdas. Some experimental languages in the eighties called
them reflective, or reifying, procedures (see §1.2.4). Neither reflective nor reifying

is appropriate to the current work; and recent literature, when it doesn’t use either of
these two recent terms, prefers the oldest term for the strategy, fexprs (even among
researchers in the reflective Lisp tradition; see for example [Wa98, Mu91, Baw88]); so
we also prefer fexprs here.

The fundamental distinction between fexprs and macros is one of explicit ver-
sus implicit evaluation. (See §1.2.3.) If the fexpr wishes any of its operands to be
evaluated, it must explicitly evaluate them. The dynamic environment is provided
to the fexpr so that operands, or parts of operands, can be evaluated hygienically

(which by definition must occur in the dynamic environment; see §5.1).6 In contrast,
when a macro wishes any of its operands evaluated hygienically, it must arrange for
their evaluation implicitly, through the form of the new expression that it constructs.
Explicit evaluation of operands cannot occur hygienically during macro expansion
because, since macros are required to be preprocessable, the dynamic environment
does not necessarily exist yet during macro expansion.

3.2 The case against fexprs

Traditional (1960s–70s) Lisp macros had the limitation that, unlike most entities in
Lisp, they were not first-class; and more seriously, they suffered from occasional mis-
behaviors called variable capturing. Both problems could be worked around, though;
and up until about 1980, Lisp applicatives suffered from variants of the same two
problems.

Moreover, both problems with macros (as both with applicatives) are relatively
localized, in that the programmer can deal with them when and where he actually
uses the feature. The misbehavior of fexprs is not localized in this sense. The mere
possibility that fexprs might occur means that, in order to determine whether the
operands of a combination will be evaluated, one has to know whether the opera-
tor will evaluate to a fexpr — which can only be known, in general, at evaluation
time. Thus, a meta-program p examining an object-expression e cannot even tell

this kind of operative. On the other hand, the LISP I manual, [McC+60], mentions FEXPR as an
internal tag for the operatives, but does not use FEXPR as a noun for them.

5On the overall shape of the Lisp community over the decades, see the Lisp paper in hopl ii,
[SteGa93].

6Even in the age of dynamically scoped Lisps, it was necessary to explicitly pass in the dynamic
environment. MacLisp supported “one-argument fexprs”, whose one parameter was bound to the
entire list of operands; but then the name of the one parameter could be captured if it happened to
occur in an operand, so MacLisp also supported “two-argument fexprs”, whose second parameter
was bound to the unextended dynamic environment. [Pi83].

42

in the general case which subexpressions of e are program and which are data. An
optimizing compiler cannot distinguish, in general, between correct transformation of
code and incorrect mangling of data; and, in particular, a macro preprocessor cannot
distinguish a macro call that should be expanded from a data structure that should
be left alone.

The fundamental issues surrounding fexprs were carefully and clearly laid out by
Kent M. Pitman in a 1980 paper, [Pi80]. After enumerating reasons for supporting
constructed operatives, he discussed strengths and weaknesses of macros and fexprs
and, ultimately, recommended omitting fexprs from future dialects of Lisp:

It has become clear that such programming constructs as NLAMBDA’s and
FEXPR’s are undesirable for reasons which extend beyond mere questions
of aesthetics, for which they are forever under attack.

In other words, fexprs are (were) badly behaved and ugly.7 The Lisp community
mostly followed his recommendation (and, incidentally, accumulated quite a lot of
citations of his paper), although, as noted, fexprs occurred under other names in the
reflective Lisps of the 1980s; and the misbehavior of fexprs has continued to attract
a modicum of attention, both in regard to the feature itself (as [Wa98]) and as a
paradigmatic example of undesirable behavior (as [Mi93]).

3.3 Past evolution of combiner constructors

Prior to about 1980, Lisp applicatives and Lisp macros suffered from somewhat dif-
ferent forms of the same two problems: bad hygiene, and second-class status. Bad

hygiene means, in this context, that variable bindings aren’t strictly local to the re-
gion of the source code where binding occurred. (More general forms of bad hygiene
will be discussed in Chapter 5.) Second-class status means that there are arbitrary
restrictions on how certain kinds of objects can be employed. (First- and second-
class objects were discussed in the Preface, and a more extensive treatment occurs in
[Shu09, App. B (First-class objects)].)

3.3.1 Hygienic applicatives

The particular form of bad hygiene that affected applicatives in early Lisps is called
dynamic scope.8

7When Pitman said this in 1980, mainstream Lisps were dynamically scoped —a notoriously
poorly behaved scoping discipline that had been introduced into Lisp by a bug in the original
language description, [McC60]— which, in retrospect, seems to add a certain extra sting to Pitman’s
aesthetic criticism of fexprs. (Dynamic scope will be discussed below in §§3.3.1–3.3.2.)

8The classic reference on the cause, consequences, and cure for dynamic scope is The Art of

the Interpreter, [SteSu78b], which explores the historical development of Lisp through incremental
modifications to a meta-circular evaluator. (Not quite tangentially, that paper makes repeated use

43

The λ-calculus is statically scoped. That is, each variable-instance is bound by the
nearest same-named formal parameter of a λ-expression inside which the variable-
instance occurs prior to evaluation. For example, in the λ-calculus function

λx.(λy.(x + y)) , (3.1)

variable y is bound locally by the inner λ; while variable x, which is a free variable
of the inner λ, is bound by the outer λ. The upshot is that Function (3.1) curries

binary addition, i.e., breaks it down into a succession of unary functions: it takes a
single value x and returns a unary “add to x” function. Thus,

(λx.(λy.(x + y)))3 −→ λy.(3 + y)
((λx.(λy.(x + y)))3)4 −→ (λy.(3 + y))4 −→ 3 + 4 −→ 7 .

(3.2)

Some machinery or other is needed to keep track of variable-to-value binding in-
formation, and thus maintain the scoping discipline, during computation. λ-calculus
accomplishes this by successively rewriting each expression to encode new binding in-
formation as the information becomes available. For example, in reduction sequences
(3.2), the binding of x to 3 is preserved by rewriting λy.(x + y) as λy.(3 + y). (De-
spite this tame example, static scope maintenance by expression-rewriting does have
potential pitfalls, which will be discussed in §3.3.3, below.)

In Lisp notation, curried-add-function expression (3.1) would be written as

($lambda (x) ($lambda (y) (+ x y))) . (3.3)

However, the deliberate notational imitation of λ-calculus in the original Lisp did not
extend to Lisp semantics, which were based neither on λ-calculus, nor on expression-
rewriting. Lisp therefore needed a different, expression-preserving mechanism to
maintain the scoping discipline; and to that end it adopted a mechanism based on
environment data structures. An environment is, roughly, a list of variable-to-value
bindings.9 Each expression evaluation is provided with an environment in which to

of the term abstractive power.) Beyond that, scattered fragments of information for this section have
been drawn from other sources. Joel Moses’s The Function of FUNCTION in LISP, [Mose70], is
entirely devoted to scoping, but its treatment predates the Lisp advent of static scope. The running
example for this section, (((lambda (x) (lambda (y) (+ x y))) 3) 4), is lifted from [SuSt75,
§4]; but that is a (lucid) study of proper tail recursion, not scoping. The first edition of the Wizard
Book has a short subsection on dynamic scope, [AbSu85, §4.2.2], that was dropped from the second
edition available on the Web, [AbSu96]. Some history of scoping issues can be gleaned from the
ACM HOPL and HOPL II papers on Lisp, [McC78] and [SteGa93]; but both papers self-consciously
excuse themselves from directly covering it. ([McC78] pleads insufficient time, while [SteGa93] pleads
insufficient space.)

9In a statically scoped Lisp that allows mutations to environments (even if just to the global
environment, such as entering new top-level declarations), an environment is commonly represented
as a list of lists of bindings. We simplify our discussion of environments in this section by disregarding
environment mutation; interactions between mutation and environments are a substantial topic,
accounting for much of the discussion in [SteSu78b]. (A still more elaborate procedural representation
of environments is sometimes used in reflective Lisps; see [Baw88].)

44

look up the values of variables, and must then provide an appropriate environment
to each subsidiary evaluation.

The first implementations of Lisp treated the environment as part of the state
of the evaluator algorithm. In most subcases of evaluation, this traditional Lisp
approach to scoping agrees with the expression-rewriting approach of λ-calculus: the
Lisp evaluator recursively descends the structure of the expression, so that binding
information passes from expression to subexpression just as it would in λ-calculus.
For example, writing “[eval v e]” for evaluation of value v in environment e,

[eval ($if v1 v2 v3) e] −→ [if [eval v1 e] v2 v3 e]
[if #t v2 v3 e] −→ [eval v2 e]
[if #f v2 v3 e] −→ [eval v3 e] .

(3.4)

That is, to evaluate an $if -expression in e, first evaluate the test clause in e; and
then, if the result of the test is true, evaluate the consequent clause in e, or if the
result is false, evaluate the alternative clause in e.

When an applicative is treated as data, it is (by common understanding of the
notion of data) not part of the evaluator state; so under the traditional scoping
strategy, since binding information is part of the evaluator state, an applicative should
contain no binding information. Its information content is therefore just the content
of the $lambda -expression that specified it, and in traditional Lisps the applicative
value is simply represented by the $lambda -expression itself. Following this strategy,

[eval ($lambda (x1 . . . xn) v) e] −→ ($lambda (x1 . . . xn) v) . (3.5)

(We’re ignoring for the moment some aspects of the traditional Lisp handling of
applicatives that, though important, would only confuse our explanation of dynamic/
static scoping. Other aspects of the traditional treatment will be discussed in §3.3.2.)

Under the traditional strategy, scoping of an applicative combination follows the
same general pattern as scoping of an $if -expression, (3.4), with an environment
propagated to subexpressions by recursive descent; except that in the compound-
applicative case, local parameter-to-argument bindings are prefixed to the environ-
ment as it passes downward into the evaluation of the body of the applicative:

∀ v0 6∈ SpecialFormOperators,
[eval (v0 . . . vn) e]
−→ [apply [eval v0 e] ([eval v1 e] . . . [eval vn e]) e]

[apply ($lambda (x1 . . . xn) v) (v1 . . . vn) e]
−→ [eval v [[x1 ← v1; . . . xn ← vn]] · e]

(3.6)

(writing “[[x1 ← v1; . . . xn ← vn]]” for an environment binding variable x1 to value
v1, then x2 to v2, etc., and “·” for concatenation of environments).

Now, consider the behavior of the Lisp curried-add function (3.3). Under static
scope, (($lambda (x) ($lambda (y) (+ x y)) 3) should evaluate to an “add to

45

3” function, and ((($lambda (x) ($lambda (y) (+ x y))) 3) 4) should evaluate
to 7, as their λ-calculus analogs did in (3.2). Following the traditional strategy of
Schemata (3.5) and (3.6), though,

[eval (($lambda (x) ($lambda (y) (+ x y))) 3) e]

−→ [apply [eval ($lambda (x) ($lambda (y) (+ x y))) e]
([eval 3 e])
e]

−→+ [apply ($lambda (x) ($lambda (y) (+ x y))) (3) e]

−→ [eval ($lambda (y) (+ x y)) [[x← 3]] · e]

−→ ($lambda (y) (+ x y)) .

(3.7)

So the binding of x to 3 is simply lost ; in fact, the entire subcomputation result 3 is
lost, and

[eval ((($lambda (x) ($lambda (y) (+ x y))) 3) 4) [[+← +]]]

−→ [apply [eval (($lambda (x) ($lambda (y) (+ x y))) 3)

[[+← +]]]
([eval 4 [[+← +]]])
[[+← +]]]

−→+ [apply ($lambda (y) (+ x y)) (4) [[+← +]]]

−→ [eval (+ x y) [[y← 4; +← +]]]

−→+ [apply + ([eval x [[y← 4; +← +]]] 4) [[y← 4; +← +]]] ,

(3.8)

which then fails because there is no binding for x in environment [[y← 4; +← +]].
Under the scoping behavior of λ-calculus, local binding [[y← 4]] should have been

prefixed not to [[+ ← +]], but to [[x ← 3; + ← +]] — which was in effect only at
the point where ($lambda (y) (+ x y)) was evaluated. In modern terminology,
the environment in effect where a compound combiner is first defined is its static

environment (or, in an older usage, its lexical environment), while the environment
in effect where the combiner is applied is its dynamic environment. The scoping
discipline is then static or dynamic depending on which of these environments is
suffixed to the local bindings in the rule for applying a compound applicative. The
curried addition failed in (3.7)/(3.8) because the curried add function assumes static
scope, but the traditional strategy of (3.5)/(3.6) implements dynamic scope.

In order to implement static scope, the schema for applying a compound applica-
tive has to be able to extract the static environment from the compound applicative
value — which means that the static environment has to have been bundled into the
representation of the compound applicative at the point where the applicative was
first defined. The dynamic $lambda -evaluation schema (3.5) is replaced by

[eval ($lambda (x1 . . . xn) v) e] −→ 〈applicative (x1 . . . xn) v e〉 (3.9)

46

and the application schemata become

∀ v0 6∈ SpecialFormOperators,
[eval (v0 . . . vn) e]

−→ [apply [eval v0 e] ([eval v1 e] . . . [eval vn e])]

[apply 〈applicative (x1 . . . xn) v e〉 (v1 . . . vn)]
−→ [eval v [[x1 ← v1; . . . xn ← vn]] · e] .

(3.10)

Under these new rules,

[eval (($lambda (x) ($lambda (y) (+ x y))) 3) e]

−→ [apply [eval ($lambda (x) ($lambda (y) (+ x y))) e]
([eval 3 e])]

−→+ [apply 〈applicative (x) ($lambda (y) (+ x y)) e〉 (3)]

−→ [eval ($lambda (y) (+ x y)) [[x← 3]] · e]

−→ 〈applicative (y) (+ x y) [[x← 3]] · e〉

(3.11)

and

[eval ((($lambda (x) ($lambda (y) (+ x y))) 3) 4) [[+← +]]]

−→+ [apply 〈applicative (y) (+ x y) [[x← 3; +← +]]〉 (4)]

−→ [eval (+ x y) [[y← 4; x← 3; +← +]]]

−→+ [apply + (3 4)]

−→ 7 .

(3.12)

3.3.2 First-class applicatives

The $lambda constructor was included in the original design of Lisp, in 1960, to
support first-class applicatives; yet, first-class applicatives were embraced by the Lisp
community only with mainstream acceptance of Scheme, around 1980. The twenty-
year incubation period of first-class applicatives is commonly explained (e.g., [Gra93,
§5.1]) by observing that an applicative as a return value is only interesting if the ap-
plicative is statically scoped, and that Scheme was the first Lisp in which applicatives
were statically scoped.

The former observation (about the importance of static scope) is borne out by the
analysis of scoping issues in §3.3.1.

The latter observation, however, is false. By 1962, the extant dialect of Lisp
(LISP 1.5, [McC+62]) allowed statically scoped applicatives to be returned as values,
passed as arguments, stored in data structures, etc. The feature wasn’t passed on
to later dialects, though. How it failed is an instructive study in the nature of first-
class-ness, and, in particular, of first-class treatment of combiners.

47

The evolution of applicative treatment in LISP 1.5 was largely a playing out of
consequences from the original description of Lisp ([McC60]).

In its original form, Lisp syntax distinguished carefully between S-expressions,
which could only specify constants, and M-expressions, which included the self-
evaluating constants but could also specify arbitrary computations. The result of
evaluating an M-expression was either an S-expression, or an “S-function” mapping
S-expressions to S-expressions.10 There were just six possible forms of M-expression:

0. An S-expression. Either a constant symbol, using upper-case letters and digits;
or a dotted pair or list, delimited by parentheses, (), whose elements are S-
expressions. ([McC60] separated list elements by commas, an archaism we won’t
imitate.)

1. A variable, using lower-case letters (thus distinguishing variables from constant
symbols).

2. A combination, f [e1; . . . ; en], where f is an operator and the ek are M-expres-
sions.

3. A conditional expression, [p1 → e1; . . . ; pn → en], where the pk and ek are
arbitrary M-expressions.

4. A lambda expression, λ[(x1 . . . xn); e], for constant symbols xk and arbitrary
M-expression e. (The xk have to be constant symbols, rather than variables,
because the entire first operand is a list — which is an S-expression.)

5. A label expression, label[a;m], where a is a variable and m is an M-expression.
(This device was used to let a λ-expression m refer to itself recursively by the
variable name a.)

McCarthy felt that Lisp was suited for both theoretical and practical purposes;
and he sought to justify that belief, in [McC60], by demonstrating that a universal M-
expression for evaluating M-expressions, analogous to a universal Turing machine for
running Turing machines, is both possible (theoretically) and also less cumbersome
than its Turing-machine equivalent (practically). M-expressions don’t act on M-
expressions, though; they act on S-expressions; so, just as a universal Turing machine

10This characterization of S-functions precludes encapsulated data structures. If S-functions map
S-expressions to S-expressions, and S-functions are to be permitted both as arguments to S-functions
and as results of S-functions, then S-functions must be represented by S-expressions. Identifying
S-functions with the S-expressions that define them leads to dynamic scope, as discussed above in
§3.3.1, while representing S-functions as S-expressions under static scope requires an S-expression
representation of environments. LISP 1.5 ([McC+62]) did, in fact, represent environments as lists
of symbol-value pairs. The lack of encapsulation in early Lisp won’t matter for the discussion in
this section; but elsewhere in the dissertation, encapsulation is a significant theme. It appears as a
design goal in §1.1 (sometimes under the alias “information hiding”), a psychological factor in §1.2.4
(under the alias “abstraction barrier”), and a technical prerequisite to Kernel hygiene in §5.3.

48

acts on an encoding of a Turing machine as a string, a universal M-expression acts on
an encoding of an M-expression as an S-expression. The encoding of an M-expression
m as an S-expression m′ was:

0. If m is an S-expression, m′ is (QUOTE m).

1. If m is a variable, m′ is formed by converting the letters of m to upper case.
(So car becomes CAR, etc.)

2. If m is f [e1; . . . ; en], m
′ is (f ′ e′1 . . . e′n).

3. If m is [p1 → e1; . . . ; pn → en], m′ is (COND (p′1 e′1) . . . (p′n e′n)).

4. If m is λ[(x1 . . . xn); e], m
′ is (LAMBDA (x′1 . . . x′n) e′).

5. If m is label[a;m0], m
′ is (LABEL a′ m′

0).
11

Rule 0 of the encoding introduced quotation into the language, creating a bias
toward implicit evaluation that has persisted to the present day. Quotation and
implicit evaluation were discussed at length in §1.2. (For a different analysis of Rule 0,
see [Mu92].)

A critical property of the encoding as a whole is that S-expression m′ has the
same syntactic structure as M-expression m. On one hand, structural preservation
made it easy for a universal M-expression to simulate evaluation of m by manipu-
lating m′, promoting McCarthy’s contrast versus universal Turing machines.12 On
the other hand, structural preservation made it easy for the programmer to write
programs directly as S-expressions rather than as M-expressions. The demonstration
of a simple universal M-expression meant that an S-expression interpreter could be
readily implemented; and the ease of S-expression programming meant that the in-
terpreter would constitute a viable programming environment. The interpreter was
implemented, programmers used it, and S-expression Lisp became the de facto form
of the language.

The syntax of compound expressions in S-expression Lisp makes no distinction
between applicative operators and operands: both are S-expressions. However, M-
expression syntax assigns applicative operators to a different syntactic domain than
operands, and since evaluation was still perceived (for several more years) as acting
on encoded M-expressions, the uniform syntax of S-expressions did not create an
expectation of uniform evaluation of operators versus operands.

The operator/operand asymmetry in Lisp was also more pronounced than it might
have been because the M-expression language wasn’t really finished. McCarthy had

11The modern Scheme/Kernel equivalent of label is called $letrec. See §7.1.1.
12Universal Turing machines have to simulate object Turing machine M by manipulating a struc-

turally distorted string M ′. The distortion is guaranteed, in general, because Turing machine M is
essentially a directed graph, while string M ′ is. . . a string.

49

anticipated having more time to refine the design, during the gradual process of con-
structing a Lisp compiler; and once a programming community and body of existing
code began to develop around the S-expression interpreter, further design changes
that couldn’t be avoided were complicated by the drive to maintain compatibility
with the existing language.

Of the six forms of M-expression, Form 2 is the only one that uses applicative
operators. (Forms 4 and 5 use operative operators; Forms 0 and 3 induce operative
S-expression operators; and Form 1 is purely atomic.) However, [McC60] doesn’t (di-
rectly) specify just which of the six forms of M-expression can be used as applicative
operators. Based on the internal typing of the M-expression language, at least one
case is clearly excluded from use: Form 0 (an S-expression) can’t be an applicative op-
erator, because S-expressions aren’t S-functions. (Note, however, that this reasoning
breaks down after the shift to S-expression Lisp, where S-expressions are not neces-
sarily self-evaluating.) The proposed universal M-expression supported three of the
six forms as applicative operators: variables (Form 1), lambda-expressions (Form 4),
and label-expressions (Form 5).

The central combination-evaluation algorithm was:

($define! apply

($lambda (operator operands env)

($cond ((symbol? operator)

(apply-symbol operator operands env)

((lambda-operator? (car operator))

(apply-lambda operator

(map-eval operands env) env))

((label-operator? (car operator))

(apply-label operator operands env)))))

($define! apply-symbol

($lambda (operator operands env)

($cond ((quote-operator? operator)

(car operands))

((cond-operator? operator)

(eval-cond operands env))

((primitive-applicative? operator)

(apply-prim-appv operator

(map-eval operands env) env))

(#t (apply (lookup operator env)

(map-eval operands env)

env)))) .

(3.13)

In keeping with the principle of minimality, this algorithm only checks for the
LAMBDA and LABEL operators at a single point — in apply , but not in apply-symbol .

50

Consequently, the algorithm could evaluate an expression

((LAMBDA (X) (* X X)) 4) (3.14)

(assuming primitive applicative operator *), but not

(LAMBDA (X) (* X X)) (3.15)

(which would be handled by apply-symbol , where there is no provision for LAMBDA).
There is no technical need to add evaluator logic to handle the latter, because when-
ever a lambda-expression is wanted in a non-operator position, one can specify it
using QUOTE. For example, the expression

((LAMBDA (F X) (F (F X))) (QUOTE (LAMBDA (X) (* X X))) 4) (3.16)

would apply the function (LAMBDA (X) (* X X)) to value 4 twice, producing the
result 256.

The use of QUOTE to specify a function presupposes, however, that the function
is fully represented by its lambda-expression — in which case, as discussed earlier
(§3.3.1), the function will be dynamically scoped. This problem was discovered fairly
soon once the interpreter was in use, and the interpreter was extended to support
statically scoped functions. A new operative operator FUNCTION was added, that
bundled its operand together with the current environment into a record structure
called a funarg :

($define! apply-symbol

($lambda (operator operands env)

($cond ((quote-operator? operator) (car operands))

((cond-operator? operator)

(eval-cond operands env))

((function-operator? operator) ; ***

(list funarg-tag (car operands) env)) ; ***

((primitive-applicative? operator)

(apply-prim-appv operator

(map-eval operands env) env))

(#t (apply (lookup operator env)

(map-eval operands env) env))))) .

(3.17)

An additional clause in apply would handle the funarg according to static scope,
applying the stored operator in the stored environment. Also, by this time a default
clause had been added to apply to evaluate arbitrary compound operators that didn’t
match any other clause:

51

($define! apply

($lambda (operator operands env)

($cond ((symbol? operator)

(apply-symbol operator operands env)

((funarg-tag? (car operator)) ; ***

(apply (cadr operator) operands ; ***

(caddr operator))) ; ***

((lambda-operator? (car operator))

(apply-lambda operator

(map-eval operands env) env))

((label-operator? (car operator))

(apply-label operator operands env))

(#t (apply (eval operator env) operands ; +++

env)) ; +++

))) .

(3.18)

Under this extended algorithm, the curried-add example from §3.3.1 could be coded
as

(((LAMBDA (X) (FUNCTION (LAMBDA (Y) (+ X Y)))) 3) 4) , (3.19)

which would then evaluate correctly to 7.
The question arises of whether applicatives under this evaluation algorithm are

first-class objects. They do have the four rights of first-class objects standardly cited
for Scheme (by the Wizard Book, [AbSu96, §1.3.4]) — to be named by variables,
passed as arguments, returned as values, and stored in data structures. Yet, they
can only appear as themselves in an operator position. When they appear in any
other capacity, they have to display special tags on their fronts (QUOTE or FUNCTION),
announcing to the world that they are traveling outside their native community (in
which non-combiners aren’t welcome).

In fact, the segregation of combiners in LISP 1.5 was a stage more pronounced
than shown in (3.17) and (3.18), because thus far we have ignored the complicating
LISP 1.5 concept of property lists. Rather than an environment simply mapping each
variable to a single value, it would map each variable to a mapping from property
tags to values. The evaluator used five property tags: APVAL (used to store values
for general use), SUBR (used to store the addresses of compiled applicatives), EXPR
(used to store S-expressions representing compound applicatives), FSUBR (used to
store the addresses of compiled operatives), and FEXPR (used to store S-expressions
representing compound operatives). When a symbol was evaluated in a non-operator
position, its apval value was used; when in an operator position, its fsubr or fexpr

value was used if present (passing the operands unevaluated), or failing that its subr

or expr value (evaluating and passing the arguments). In effect, each environment
was partitioned into separate neighborhoods, with barriers of administrative overhead
between them that discouraged mixing.

52

In LISP 1.5, because environments were represented as S-expressions (specifi-
cally, alists — Association LISTs), an environment would be allocated on the heap
and remain there until deallocated by the garbage collector. After about 1965, the
evolution of Lisp branched into multiple paths ([SteGa93, §2.1]), and descendant di-
alects used alternative representations of environments to achieve faster evaluation.
Stacks, in particular, were commonly used as (or at least in) these representations,
because allocation and deallocation of space on a stack can be performed rapidly.
However, a statically scoped combiner has to preserve the environment in which it
was constructed, and if it is then to be first-class, that environment has to persist
arbitrarily long after combiner construction — until, in particular, the combiner be-
comes garbage. So an environment representation that isn’t on the heap, i.e., isn’t
within the purview of the garbage collector, can’t support first-class statically scoped
combiners. Thus the funarg feature from LISP 1.5 was dropped.

Under the right circumstances, heap allocation of environments can be fairly time-
efficient. If the Lisp dialect is purely statically scoped, then the relative position of
a variable’s storage location on the alist can always be calculated at compile-time
(for combiners whose definition is explicit in the source code, thus known at compile
time); and if environments are also encapsulated such that their content is only
used to find the storage location for any given variable, they can be represented
with arrays (i.e., contiguous memory blocks rather than linked lists of pairs); so that,
given both assumptions, symbol lookups can be implemented using fast array-element
accesses instead of linear searches. However, both assumptions were false in LISP 1.5:
dynamically scoped combiners were not only possible, but were the rule, or at least
were perceived to be the rule; and environments were unencapsulated.

The later Lisp dialects again encountered the problems of dynamic scope, and
classified them into two kinds of problem with different implementation properties
([Mose70]), called the downward funarg problem and the upward funarg problem

([AbSu85, §4.2.2]).

The downward funarg problem occurs when a dynamically scoped function f is
passed as an argument into another function where some of the free variables of f
have local bindings that override those that existed at f ’s definition. For example,
one might write (returning now to Kernel notation13)

($define! y 3)

($define! f ($lambda (x) (+ x y)))

($define! g ($lambda (y) (+ 1 (f y))))

(g 5) ,

(3.20)

13This is an opportune moment to revert to Kernel notation, because otherwise we’d now be
introducing still more syntax, in order to cope with definitions in an environment partitioned by
property lists; and the complication would only distract from the discussion, without contributing
anything useful.

53

in which free variable y is bound to 3 at the point where f is defined, but locally
bound to the argument of g at the point where f is called. Under dynamic scope,
(g 5) would evaluate to 11; while under static scope, it would evaluate to 9.

The downward funarg problem can be resolved by a limited form of $function

operator, while still using stack-based allocation of environments, as long as the stati-
cally scoped applicatives constructed by $function are only passed down the stack.14

Once an applicative call returns, its environment is deallocated from the stack, so
any statically scoped applicative created within that environment is no longer valid.
(Hence the term downward funarg.) In fact, Algol, which was a statically scoped
stack-based language, allowed procedures (applicatives) to be passed as arguments
to other procedures — but did not allow procedures to be returned as results. (As
remarked here in the Preface, procedures in Algol were Strachey’s paradigmatic ex-
ample of second-class objects.)

The upward funarg problem concerns the consequences of dynamically scoping an
applicative that is returned as the result of an applicative call. The running example
from §3.3.1,

((($lambda (x) ($lambda (y) (+ x y))) 3) 4) , (3.21)

was of this kind. The static environment of the applicative would have to be passed
up the call stack, and persist after the death and presumed deallocation of the call-
stack frame in which that environment was captured. A stack-based environment-
allocation strategy would require extraordinary measures —both complex and likely
time-expensive— to reconcile with this case of static scope. The historical perception
of upward funargs as a low priority is inherent in the name that was given to the
static-scoping feature when it was first introduced — funarg, short for FUNctional
ARGument. (Outside the literature of traditional Lisp, such bundlings of functions
with environments are usually called by the non-biasing term closures.15)

Several design biases against upward funargs were simultaneously removed in 1975
by an experimental Lisp dialect called Scheme ([SuSt75]). In Scheme, all applicatives

14This assumes that the stack grows downward, i.e., when g calls f the stack frame for g is
above the stack frame for f. Arbitrary directional conventions like this find their way into technical
terminology with great regularity (left adjoints versus right adjoints in category theory come to
mind). In fairness, this particular directional convention may have more mnemonic value when
one recognizes that stack growth is being related to syntax traversal from term to subterm, which
is traditionally called recursive descent as syntax trees are traditionally oriented with the root at
the top and subterms below — also a somewhat arbitrary directional convention, but a very well-
established one. The upward/downward terminology will relate directly to syntax, without the
intervening notion of stack, in the term-calculus treatment of §13.3.

15The term closure is due to P.J. Landin. Joel Moses ([Mose70, p. 12]) suggests a metaphorical
interpretation for the term:

Think of QUOTE as a porous or an open covering of the function since free variables
escape to the current environment. FUNCTION acts as a closed or nonporous covering.

54

were statically scoped, so it was not possible for dynamically scoped applicatives to
divert attention from the static case; applicatives, and therefore effectively environ-
ments, were encapsulated (at least in principle), opening the door for rapid compiled
lookups; there were no property lists, eliminating the administrative segregation of en-
vironments; and operators were evaluated using the same general-purpose evaluation
algorithm as operands (which, together with exclusively static scope, also eliminated
special tags on lambda-expressions in non-operator positions). This wholesale removal
of obstacles resulted in recognition, over the next several years, of the programming
and implementation advantages of statically scoped first-class applicatives that had
previously failed to garner attention (e.g. [SteSu78b, Ste78], also [SteSu76, Ste76]).
The Scheme authors, by their own account, hadn’t intended Scheme as an improved
Lisp: it was an exploration, within the general framework of Lisp, of ideas in the Ac-
tors model of computation. Actors, being of a considerably later vintage than Lisp,
had been designed with smoothnesses such as operator/operand symmetry from the
outset; and, as the Scheme authors discovered that actors were entirely isomorphic
to first-class statically scoped applicatives, Scheme applicatives inherited the entire
gamut of smoothness properties intact.

As the merits of statically scoped Lisp became evident, static scope became a
uniform property of subsequent Lisp dialects.

In a curious twist of fate (or committees), Common Lisp is statically scoped, but
preserves both the pre-Scheme operator/operand evaluation asymmetry, and segre-
gation of environments between applicatives and general values.

3.3.3 Hygienic macros

A traditional macro, in the most usual and simplest case, is specified by a list of
parameters and a template; the operands of the macro call are matched with the
parameters for substitution into the template, and the resulting expression replaces
the macro call in the source code. For example, one might specify a macro $max that
takes two parameters, compares them numerically, and returns the larger of the two,
using some syntax such as

($define-macro ($max a b) -> ($if (>=? a b) a b)) . (3.22)

This operative combination specifies a reduction schema

($max v1 v2) −→ ($if (>=? v1 v2) v1 v2) (3.23)

to be applied during a preprocessing phase, prior to ordinary evaluation. $max , and
$define-macro, fall short of first-class status exactly because they are required to
be preprocessable: they do not have the right to be employed in any way that would
entangle them with ordinary evaluation such that they couldn’t be preprocessed.

It’s clear that $define-macro is an operative, since its first two of three operands
are never evaluated (hence the $ prefix). The operative status of $max is subtler. The

55

distinguishing characteristic of an applicative, as defined in §2.2.2, is that it doesn’t
use the operands themselves, only the results of their evaluations. But a macro, by
its very nature, uses the unevaluated operands by copying them into the template.
This gives the macro complete control over when, and even whether, the operands are
evaluated. Just because an operative chooses to evaluate its operands doesn’t make
it an applicative — because the choice was its to make.

The particular macro definition (3.22) has two problems. One problem is that,
depending on the result of the comparison, one or the other operand will be evaluated
a second time. (To be precise, two copies of one or the other operand will both be
separately evaluated — a distinction that is only a difference in the pathological, but
entirely possible, case that the operand evaluation has side-effects.) Such multiple
evaluation isn’t usually what one wants to happen; when one writes an operand once,
one tends to expect that it will be evaluated at most once, unless one is invoking an
operative whose overt purpose is repetition. Macros are always prone to the problem
of unintended multiple evaluations. In any particular case, it can be prevented by
some contortion of the template; here, one could write

($define-macro ($max a b) ->

($let ((x a)

(y b))

($if (>=? x y) x y))) ;

(3.24)

but the problem must be addressed separately for each macro, because it concerns
what each particular macro chooses to do. The reason it’s a problem —the reason
why the error is very easy to commit— is that macros use implicit evaluation, so that
any programmer reading the macro (including the programmer who writes it) has to
deduce when and where operand evaluations occur, rather than being told when and
where explicitly.

The second problem with (3.22) is one of hygiene; that is, separation of inter-
pretation concerns according to lexical position in the source code. Because macro
expansion produces unevaluated source code, free variables in the macro template
will be interpreted at the source-code position where the macro is called. The run-
time behavior of the macro therefore depends on how its free variables are bound at
that point, rather than how they were bound where the macro was defined. In the
case of (3.22), one could arbitrarily change its comparison criterion simply by locally
binding symbol >=?; thus,

($let ((>=? <=?)) ($max 2 3)) (3.25)

would evaluate to 2.
The literature on macros calls this variable capturing : variable >=? in the macro

body is captured by $let at the point of call. Relating it to the preceding discussion,
though, it is essentially a downward funarg problem, in which the macro is defined at
the top level of the program and passed downward into a subexpression where its free

56

variable >=? is locally bound. In fact, traditional macros exhibit either two or four
distinct kinds of variable capturing, depending on how one breaks them down (four
according to [ClRe91a]), all of which are varieties of downward funarg problem.

On the other hand, there is usually no upward funarg problem for macros. In part,
this is because the situation that precipitates it (involving a macro defined within a
local binding construct) isn’t usually allowed to happen. Most macro preprocessing
languages have required macro definitions to occur at the top level of the source
code, so that the parameters of the macro are the only bound variables in its body
— which greatly simplifies the preprocessor algorithm, by allowing it to completely
ignore run-time binding constructs.16 Even if macros were allowed to be nested within
local binding constructs, though, the use of substitution to maintain bindings has an
intrinsic bias against the upward funarg problem. The situation is thus rather inverted
from that of the environment approach to binding maintenance, where the upward
funarg problem was the harder of the two.

To see how substitution gives rise to this alternative landscape of hygiene prob-
lems, consider the λ-calculus, whose sole reduction schema is

(λx.M)N −→ M [x← N] . (3.26)

The detailed handling of bindings, and therefore hygiene, is contained in the semantic
function M [x ← N], which substitutes term N for variable x in term M . Moreover,
the rules of substitution are self-evident whenM is a constant, variable, or application,

c[x← N] = c

x1[x2 ← N] =

{

N if x1 = x2

x1 otherwise

(M1M2)[x← N] = (M1[x← N] M2[x← N]) ,

(3.27)

so any plausible hygiene problem must hinge on the one remaining case, substitution
into a λ-expression.

An upward funarg in λ-calculus cannot be passed upward, from inside a binding
construct (λx.2) to outside it, without being subjected to a substitution 2[x← N].
Therefore, in order for the one remaining case of substitution to permit an upward
funarg problem, that case would have to discard the binding applied to the upward
funarg. For example,

(λx1.M)[x2 ← N] = λx1.M . (3.28)

The immediate effect of this rule on binding maintenance is substantially identical
to that of the self-evaluation rule for Lisp $lambda -expressions, (3.5): applicative

16In fact, some macro preprocessors for non-Lisp languages (e.g., [KeRi78]) have ignored the
syntactic and even lexical structure of the run-time language, with potentially startling (and therefore
error-prone) effects. See [ClRe91a].

57

objects are prevented from retaining binding information. However, upward-funarg
substitution Rule (3.28) is not likely to be proposed by accident. It was possible, when
proposing self-evaluation Schema (3.5), to imagine that things would somehow work
out, because one knew that there was an external data structure —the environment—
systematically preserving binding information such as what the self-evaluation schema
discarded; but here there is no such external data structure, so the discard in the
upward-funarg substitution rule really looks like loss of information, and therefore
doesn’t look like behavior expected of λ-calculus.

As a serious attempt to produce the expected behavior of λ-calculus, one might
write

(λx1.M)[x2 ← N] =

{

(λx1.M) if x1 = x2

(λx1.M [x2 ← N]) otherwise .
(3.29)

Substitution under this rule (together with the other cases in (3.27)) is sometimes
called naive or polynomial substitution. The separate provision here for x1 = x2 pre-
vents any substitution M [x← N] from rewriting bound occurrences of x in M . Also,
there is no upward funarg problem, since bindings of free variables are propagated
into the body of the λ-expression. However, there is a downward funarg problem.

Recall the downward-funarg example from §3.3.2, (3.20), which renders into λ-
calculus as

(λ

(1)

y.((λ

(2)

f.((λ

(3)

y.(1 + (f y)))5))(λ

(4)

x.(x + y))))3 .
(3.30)

In reducing this expression, there are three possible choices for what to do first: one
could reduce the application of (1), whose argument is 3; (2), whose argument is
(λx.(x + y)); or (3), whose argument is 5. ((4) is the downward funarg, so isn’t yet
being applied.) Here are the three alternative reduction steps:

(λy.((λf.((λy.(1 + (f y)))5))(λx.(x + y))))3
−→ ((λf.((λy.(1 + (f y)))5))(λx.(x + y)))[y← 3]

= (λf.((λy.(1 + (f y)))5))(λx.(x + 3))
(3.31(1))

(λy.((λf.((λy.(1 + (f y)))5))(λx.(x + y))))3
−→ (λy.(((λy.(1 + (f y)))5)[f← (λx.(x + y))]))3

= (λy.(((λy.(1 + ((λx.(x + y))y)))5)))3
(3.31(2))

(λy.((λf.((λy.(1 + (f y)))5))(λx.(x + y))))3
−→ (λy.((λf.((1 + (f y))[y← 5]))(λx.(x + y))))3

= (λy.((λf.((1 + (f 5))))(λx.(x + y))))3 .
(3.31(3))

Two out of the three alternatives have no problem. In (3.31(1)), the free variable in
the funarg is eliminated before the funarg is passed downward. In (3.31(3)), the local

58

binding construct that could capture the free variable in the funarg is eliminated
before the funarg is passed downward. Only in (3.31(2)) is the variable captured,
because the funarg is passed downward while it still has a free variable, and the local
binding construct to capture that variable is still in place.

So the λ-calculus as we’ve defined it, with Schema (3.26) and naive substitution,
isn’t Church–Rosser: a single term can be reduced to multiple results. If we were really
only interested in the calculus, we might restore both Church–Rosser-ness and static
scope under naive substitution by restricting the schema so that it only applies when
naive substitution would not cause variable capture. This would forcibly perturb the
order of reductions just exactly enough to avoid exercising the defective case in naive
substitution; in the example, it would prevent application of (2) as long as f remained
free in both its argument and its body, which would hold just until after application
of either (1) or (3). Unfortunately, it would also undermine the soundness of the
calculus as a model of the expected behavior of λ-calculus, by sometimes preventing
completion of computations that should complete under call-by-name static scope.17

Moreover, our interest is in macros, whose preprocessing requirement perturbs
the reduction order in ways that can mandate exercising the defective case in naive
substitution. To model this complication, we introduce a “macro” variant of λ into
the calculus, λm, with corresponding naive substitution rule

(λm x1.M)[x2 ← N] =

{

(λm x1.M) if x1 = x2

(λm x1.M [x2 ← N]) otherwise ;
(3.33)

and distinguish two reduction relations, −→ that involves only macro-free terms via
the usual Schema (3.26), and−→m that does minimal reduction necessary to eliminate
λm’s. The preprocessing requirement is that all −→+

m reduction be completed before
−→+ reduction can proceed. Significantly, two schemata are needed to define −→m:

(λm x.M)N −→m M [x← N] (3.34)

(λx.M)(λm y.N) −→m M [x← (λm y.N)] . (3.35)

The first of these schemata does actual elimination of a macro, by applying it. The
second is a necessary prerequisite to later application of a macro that occurs in an
operand position (which, in λ-calculus, is how one gives a macro a symbolic name).

17Because we allow a λ-expression to ignore its parameter, we expect that an expression containing
free variables may nevertheless reduce to an integer, as in (λx.5)y −→ 5. Particularly, we expect
that a free variable that is ignored will not prevent reduction — but under the restricted schema,
a reduction may be prevented by capture of an ignored free variable. This peculiar phenomenon
occurs in the (rather contorted) expression

((λf.(f (λy.(f (λz.3)))))(λx.(xy))) , (3.32)

which under call-by-name static scope ought to reduce to 3, and which actually does reduce to 3 via
the unrestricted schema with naive substitution, but which is irreducible under the restriction.

The property of a calculus that it does everything we expect it to do is technically called operational

completeness, and will be treated in Part II, especially Chapter 13.

59

In the particular example of downward-funarg Expression (3.30), suppose that
either λ (2) or (4) is changed to λm, while the other λ’s are left as-is. Then, of the
three possible reduction orders (3.31(1–3)), only (3.31(2)) can be performed during
preprocessing — by macro-operator Schema (3.34) if (2) was changed, or macro-
operand Schema (3.35) if (4) was changed. That is,

(λy.((λm f.((λy.(1 + (f y)))5))(λx.(x + y))))3
−→m (λy.(((λy.(1 + (f y)))5)[f← (λx.(x + y))]))3

= (λy.(((λy.(1 + ((λx.(x + y))y)))5)))3
(3.36(2))

or

(λy.((λf.((λy.(1 + (f y)))5))(λm x.(x + y))))3
−→m (λy.(((λy.(1 + (f y)))5)[f← (λm x.(x + y))]))3

= (λy.(((λy.(1 + ((λm x.(x + y))y)))5)))3 .
(3.36(4))

So in either case, preprocessing of naive macros has forced variable capturing.

From the macro’s point of view, the two cases of variable capturing are capture
of a free variable in the body of the macro by a local binding construct at the point
of call, (3.36(4)); and capture of a free variable in an operand of the macro by a local
binding construct in the body of the macro, (3.36(2)).

The first case, capture of a variable in a macro body, is possible when the macro
itself is a downward funarg. In our variant λ-calculus, this happens through the
auspices of macro-operand Schema (3.35); a Lisp example is the first definition of
macro $max above, (3.22).

The second case, capture of a variable in a macro operand, is possible when the
operand to the macro is, in effect, a downward funarg. (The operand to a macro isn’t
often explicitly presented as a lambda-expression; but it has the essential property of
a lambda-expression, deferred evaluation, because macros are preprocessed.) In our
macro extension of λ-calculus, this happens through the auspices of macro-operator
Schema (3.34). As a Lisp example, here is a binary version of “short-circuit or”,
which evaluates its operands left-to-right only until a result is true.

($define-macro ($or? x y) ->

($let ((temp x))

($if temp temp y))) .
(3.37)

This implementation carefully evaluates its first operand just once, storing the result
in local variable temp for possibly multiple use (using the stored result once in the
test, and perhaps a second time in the consequent clause of the $if). However, if it
evaluates its second operand, it does so inside the local scope of temp, capturing any
free occurrence of temp in that operand. So

($or? foo temp) (3.38)

60

would expand to

($let ((temp foo)) ($if temp temp temp)) . (3.39)

For those languages sophisticated enough to support declarations of non-global
macros (such as our macro extension of λ-calculus), each of the two cases of vari-
able capturing may be further divided into two subcases, depending on whether the
captured variable is bound at preprocessing time or run-time ([ClRe91a]).

In Lisp, traditional macros are actually not defined by templates. Instead, a macro
is defined by a general Lisp function, specified via $lambda , to be run at preprocessing
time with its operands as parameters, whose result is the expansion of the macro call.
For example, the non-hygienic version of $max , (3.22), could be written as

($define-macro $max

($lambda (a b)

(list ($quote $if) (list ($quote >=?) a b) a b))) .
(3.40)

(A shorter form could be achieved using the standard syntactic sugar for quasiquo-
tation, which will be discussed in §7.3.) For purposes of hygiene analysis, though,
procedural macro definitions offer nothing new over template macro definitions. A
procedural macro still gets all its input information through its operands, and deter-
mines only what source expression will replace the calling combination, and under
these constraints the procedural macro has no way to induce any other kind of variable
capturing than the four kinds already identified for template macros.

The hygiene problems of naive substitution can be eliminated by renaming the
parameter of a λ-expression when substituting into it, so as to avoid name collisions:

(λx1.M)[x2 ← N] = λx3.((M [x1 ← x3])[x2 ← N]),
where x3 6= x2 and x3 doesn’t occur free in M or N .

(3.41)

The same rule works for λm in the extended calculus (changing the λ’s to λm’s); and
when solutions to the macro hygiene problem began surfacing in the late 1980s,18

hygienic substitution was one of them ([KoFrFeDu86]).
However, a straightforward implementation of hygienic substitution takes asymp-

totically longer than naive substitution. Renaming for a single substitution, in its
obvious implementation, traverses the entire body of M ; and to assure hygienic sub-
stitution, renaming must be repeated with each λ-reduction, as new opportunities for
naming conflicts arise. It is possible to avoid this combinatorial time explosion, at
least for pure λ-calculus, by careful use of internally cross-referenced data structures
to keep track of the variable occurrences without having to repeatedly search for them
([ShiWa05]); but this technique is a recent development, a decade and a half later. In
the late 1980s, the remedy proposed for the time explosion was to switch from macro

18The history of hygienic macro technology is summarized in [ClRe91a, §5].

61

binding maintenance by substitution to macro binding maintenance by environments
([ClRe91a]).

In the environment approach to hygienic macro expansion, the two-phase model
of processing induces a segregation between run-time environments, which manage
bindings to first-class objects, and preprocessing-time (a.k.a. syntactic19) environ-
ments, which manage bindings to second-class objects. This is in contrast to the
substitution approach, where a single substitution function can be used to manage
bindings in both phases of processing; but hygienic substitution can be orthogonal
to the order in which applications are reduced, exactly because it handles just one
variable at a time, ignoring what else has or hasn’t been done yet. An environment
processes all variables in a single term-traversal — which is why it tends to lower
time complexity, but which also means that it must contain a complete description
of what is being done; so since the two processing phases do different things, they
need different environments. A run-time environment contains bindings to run-time
values, which in general don’t exist at preprocessing time; a preprocessing-time envi-
ronment contains tables of macro definitions and symbol renamings, which cease to
exist before run-time.

One feature that the environment and substitution approaches share is that, in
order to maintain hygiene, they must specifically detect run-time binding constructs
(λ in our calculus examples). If they didn’t do so, they couldn’t orchestrate symbol
renamings to prevent capture of run-time variables (two out of the four kinds of
variable capturing). From this observation it follows that, in a language with first-

class operatives (which make run-time binding constructs impossible to identify in
general before run-time), preprocessable macros cannot be hygienic.

3.3.4 First-class macros

Because macros are required to be preprocessable, they can’t be first-class objects:
they can’t be used in any way that would prevent their preprocessing. If macros
could be both preprocessable and first-class (which they can’t), they then wouldn’t
be hygienic, because preprocessable macros can’t be hygienic in the presence of first-
class operatives, and the macros themselves would be first-class operatives (though
they wouldn’t be fexprs, since fexprs use explicit evaluation while macros use implicit
evaluation).

Alan Bawden has recently proposed a device called first-class macros ([Baw00]).
His macros are preprocessable and, potentially at least, hygienic. Although they
aren’t first-class, they do come closer than other forms of Lisp hygienic macros, in
that they can be employed in some ways that other hygienic macros can’t. These
new employment opportunities are enabled by introducing a moderate dose of explicit
static typing (i.e., type declarations enforced at preprocessing time) into the language.

19The term syntactic environment is used consistently in [ClRe91a], and appears sporadically
(without definition) in the subsequent Scheme reports ([ClRe91b, KeClRe98, Sp+07]).

62

The particular limitation addressed by Bawden’s proposal is that, although an
ordinary macro declaration can be nested within a run-time binding construct, the
macro cannot then be used outside that run-time construct. That is, a macro can’t
be an upward funarg from a run-time combination. A simple form of this problem
occurs in the macro-extended λ-calculus of §3.3.3: an expression such as

((λx.(λm y.(x + y)))3)4 (3.42)

cannot be reduced properly, because the preprocessing reduction step −→m cannot
occur until after a run-time reduction step −→. If the −→ step were applied first, the
macro expression (λm y.(x+y)) would be required to absorb run-time binding [x← 3];
in terms of the environment approach to binding maintenance, the macro would have
to retain its run-time environment rather than merely its syntactic environment.

The Lisp example in [Baw00] concerns a macro

($define-macro ($delay expression) ->

(make-promise ($lambda () expression))) ,
(3.43)

which is meant to be used in conjunction with an applicative make-promise to im-
plement explicitly lazy expression-evaluations, called promises, in Scheme.20 Bawden
points out that there are at least two different ways that a programmer might rea-
sonably want make-promise to behave,21 and therefore two different ways that one
might want $delay to behave. Another applicative that uses promises —he describes
one called lazy-map— could be made to work with both implementations of promises,
by taking the appropriate make-promise as a parameter; but as a matter of good
modular encapsulation, one ought to hide make-promise within a local scope where
the promises facility is defined, and require external clients to use $delay . One would
therefore have to export $delay as an upward funarg out of the local scope where
the facility is defined, and then pass it into lazy-map as a parameter.22

It isn’t possible for lazy-map to take an arbitrary macro as a parameter at run-
time, because the actual macro call within lazy-map has to be expanded during
preprocessing. However, if the definition of lazy-map explicitly specifies that the
parameter is a $delay macro, using a macro definition exactly as in (3.43) but in
some unknown run-time environment, it would then be possible to perform the macro
expansion at preprocessing time. Bawden describes a static type system to do this.
The run-time object actually passed to lazy-map is a representation of the run-time
environment in which to look up symbol make-promise; and when a combination
within lazy-map “calls” that run-time object by specifying it in the operator posi-
tion, the combination disappears during macro expansion; but the static type system

20Bawden borrowed this example from the R5RS , [KeClRe98, §6.4]. Bawden’s macro-definition
syntax is different from the R5RS ’s, and both are different from the notation used here.

21For the reader versed in promises, the two behaviors are caching and non-caching.
22This is a manifestation of the anti-encapsulatory nature of macros that was noted while dis-

cussing the history of abstraction in §1.1.1.

63

creates an illusion for the programmer that the run-time object is an operative, and
that lazy-map never interacts directly with applicative make-promise .

However, first-class status achieved through static typing is intrinsically illusory,
because static typing is by nature a restriction on how objects can be used. Some-
times, making the restrictions on a second-class object explicit can mitigate the im-
pact of the restrictions —as with Bawden’s device— by enabling the language in-
terpreter to recognize additional situations where the restrictions aren’t really being
violated; but there must have been some restrictions to begin with, and the type
system works by enforcing them. (One would expect a language without type decla-
rations, such as Lisp, to have a propensity for first-class objects, since the programmer
is then under no illusions about fundamental restrictions on objects.)

So if one really wants to smooth out the design roughness of second-class operatives
(per §1.1.2), type declarations aren’t the answer.

3.4 The case for first-class operatives

The Smoothness Conjecture, §1.1.2, suggests that second-class object status limits
abstractive power. Therefore, we want our operatives to be first-class.

To make this a credible choice, we need to answer the fundamental objections to
first-class operatives that led to their deletion from Lisp. The root of the objections
was that, in the presence of first-class operatives, whether or not the operands of a
combination are evaluated depends on the result of evaluating the operator — which
is a general computation and so may be undecidable. This undecidability is not an
unintended side-effect of giving operatives first-class status: it is part of giving them
first-class status. First-class objects have the right to be results of general, hence
potentially undecidable, computations. To vindicate first-class operatives, we need to
show that the undecidability can be tolerated — specifically, that it doesn’t cripple
static program analysis.

Therefore, we seek to maximize the incidence of things that can be decided. Our
foremost strategy to that end is hygiene, a systematic partitioning of interpretation
concerns by location in the source code (in other words, a divide-and-conquer strat-
egy). Tactics for hygiene, and related well-behavedness properties, in the presence of
first-class operatives will be discussed in Chapter 5.

That said, a gap still remains to be closed between justifying first-class operatives,
and justifying fepxrs.

3.4.1 Single-phase macros

As an alternative form of first-class operatives, one could drop the preprocessing
requirement from macros, and perform macro expansion when the macro-call combi-
nation is evaluated. Call these single-phase macros. Since expression processing no

64

longer takes two passes, there is no longer a need for two different kinds of environ-
ments; and the two cases of macro variable-capture aren’t further subdivided into four
cases by a distinction between capture of syntactic bindings and capture of run-time
bindings. Further, the two cases of variable capture can be largely defanged, just
by stipulating that the explicit macro-transformation algorithm is interpreted in the
macro’s static environment, while the expanded code is interpreted in the dynamic
environment of the macro call. Variables destined for the static environment are
looked up during expansion, so are never in jeopardy of capture by the dynamic en-
vironment. Bindings inserted into the expanded code (as in $or?, (3.37)) can readily
avoid capturing free variables from the operands by using a unique-symbol-generator
device to select names for their variables.

To make this concrete, we posit a template-based constructor of single-phase
macros called $macro, using a similar call syntax to $lambda . It takes three oper-
ands: a formal parameter tree, a list of symbols we’ll call meta-names, and a template
expression. When the macro is called, a local environment is constructed by extend-
ing the static environment of the macro (where $macro was called). Symbols in the
formal parameter tree are locally bound to the corresponding parts of the operand list
of the call to the macro; and meta-names are bound to unique symbols that are newly
generated for each call to the macro. A new expression is constructed by replacing
each symbol in the template with its value in the local environment; and finally, this
new expression is evaluated in the dynamic environment of the call to the macro,
producing the result of the call.

Here is a hygienic single-phase version of the binary $or? macro, (3.37):

($define! $or?

($macro (x y) (temp)

($let ((temp x))

($if temp temp y)))) .

(3.44)

Symbols $let and $if can’t be captured by the dynamic environment of the macro
call because they are locally looked up and replaced during macro expansion (a hy-
giene tactic discussed in Chapter 5). The $let in the expanded expression can’t
capture free variables in the operands x and y because its bound variable temp is
unique to the particular call to $or? .

Alternatively, following the precedent of traditional Lisp macros, one might wish
to specify arbitrary macro-expansion algorithms, rather than merely templates. For
this purpose, we posit a procedural variant $macro* of the template-based $macro

constructor. $macro* takes just two operands: a formal parameter tree, and an ex-
pression called the body. As before, when the macro is called, a local environment
extends the static environment, and parameters are locally bound to parts of the
operand list. Instead of merely looking up symbols, though, the entire body is eval-
uated in the local environment; and the result of that evaluation is evaluated in the
dynamic environment. For binary $or?, one would write

65

($define! $or?

($macro* (x y)

($let ((temp (gensym)))

(list $let (list (list temp x))

(list $if temp temp y)))))

(3.45)

or, using quasiquotation with standard syntactic sugar,23

($define! $or?

($macro* (x y)

($let ((temp (gensym)))

‘(,$let ((,temp ,x))

(,$if ,temp ,temp ,y))))) .

(3.46)

3.4.2 The case for fexprs

Fexprs have an inherent clarity advantage over macros.

In part, this is because a fexpr specifies its entire computation explicitly, whereas
a macro specifies only the front (and usually lesser) half of its computation, arranging
the back half indirectly. Naturally, an algorithm is easier to understand when it is
actually stated.

However, there is also a deeper issue involved, relating to smooth language design.
The behavior of fexprs is mostly compatible with that of ordinary Lisp applicatives,
with the argument evaluation factored out. The behavior of macros, though, is at
an oblique angle to ordinary applicatives. Macros retain the local environment and
parameter matching from applicatives, and omit argument evaluation; but they also
add a second evaluation using the result of the explicitly specified algorithm, and in
doing so they fundamentally alter the significance of the body of a combiner: the
body of a $lambda -expression specifies how to compute a value, but the body of a
macro specifies how to derive an algorithm. Corresponding to the latter distinction,
variable references can have a new kind of meaning in a macro body, denoting not the
determination of a value, but the performance of a computation (which is why macros
are vulnerable to accidental redundant operand-evaluation, as noted in §3.3.3).

The particular form of fexprs proposed in this dissertation pivots on the smooth
factorization of applicatives into fexprs and argument evaluation.

As a study in the clarity/obscurity of single-phase macros (and also, for the curi-

23Under the standard syntactic sugar, a $quasiquoted expression is prefixed by backquote (‘),
and an $unquoted subexpression, i.e. one that should be evaluated, is prefixed by comma (,). In
a typical procedural macro body, the entire template-expression is quasiquoted, and just a few
subexpressions are unquoted; in this case, the whole is quasiquoted and exactly all of the symbols
are unquoted.

66

ous, their expressive power), here is an implementation of $macro* using $macro :24

($define! $macro*

($macro (ptree body) (xform x expanded)

($let ((xform ($lambda ptree body)))

($macro x (expanded)

($let ((expanded (apply xform ($quote x))))

(($macro () () expanded))))))) .

(3.47)

3.5 Kernel

The purpose of the Kernel programming language is compatible with, but distinct
from, the purpose of the dissertation.

The dissertation is concerned with the feasibility of fexprs as a language feature.
It claims that fexprs can form the basis for a simple, well-behaved language, and
uses Kernel as a practical demonstration. The ulterior motive for studying fexprs is
abstractive power, by way of the Smoothness Conjecture (§1.1.2).

The Kernel language project is concerned with the feasibility of pure stylistic de-
sign principles as the basis for a practical language. For this approach to succeed,
the pure style must be reconciled with practical concerns without compromising ei-
ther. The project claims that the Kernel language model is a pure style that can be
reconciled without compromise. The ulterior motive for pursuing purity of style is ab-
stractive power, by way of the Smoothness Conjecture — which is why the objectives
of Kernel and the dissertation are compatible.

The design goals of the Kernel project are discussed in detail in [Shu09, §0.1].
The pure style is embodied by a series of (relatively) specific guidelines, refined from
a philosophical principle in the Scheme reports:25

Programming languages should be designed not by piling feature on top
of feature, but by removing the weaknesses and restrictions that make
additional features appear necessary.

Of the seven guidelines enumerated in the Kernel report, five are at least peripherally
relevant to the dissertation:

G1 [uniformity] Special cases should be eliminated from as many aspects of the
language as the inherent semantics allow.

G1a [object status] All manipulable entities should be first-class objects.

24Another curious property of single-phase macros is that they cannot be used to implement
quotation if it wasn’t already in the language (which is expected for macros, but unexpected for
first-class operatives). Further, the derivation of $macro* from $macro uses quotation.

25This passage first appeared in the R3RS , [ReCl86, p. 2], and has been replicated by each revision
since ([ClRe91b, p. 2], [KeClRe98, p. 2]).

67

G1b [extensibility] Programmer-defined facilities should be able to duplicate all
the capabilities and properties of built-in facilities.

G3 [usability] Dangerous computation behaviors (such as hygiene violations), while
permitted on general principle, should be difficult to program by accident.

G4 [encapsulation] The degree of encapsulation of a type should be at the discretion
of its designer.

Guideline G3, often abbreviated to dangerous things should be difficult to do by acci-

dent, was devised as an articulation of how a programming language can remain sane
in the absence of a strong type system.26 The motivation for Guideline G4 is deeply
entangled with G1a (promoting smoothness) and G3 (promoting well-behavedness),
with the added observation that the designer of a type will be held responsible for its
behavior, and so should have the power to address that responsibility. G3 and G4

will bear on the treatment of hygiene in Chapter 5, and of Kernel style in Chapter 7.
The reader should keep in mind that, while the dissertation discusses the rationale

for details of Kernel only when it relates to the thesis, very little about the Kernel
design is arbitrary. About a third to half of the Kernel report, interleaved with
the descriptions of language features, consists of detailed rationale discussion of the
features, clarifying how each design choice relates to the guidelines.

26While formulated with latently typed languages in mind, this guideline is equally valid for
strongly typed languages.

68

Chapter 4

The factorization of applicatives

LAMBDA definitions should remain trivially separable from ar-
gument evaluation information.

— [Pi80, p. 183].

4.0 Introduction

Evaluation of a call to an applicative involves two logically separable parts: evaluation
of the operands, and action dependent on the resulting arguments. This is not a
language-specific statement; it is a paraphrase of the definition of the term applicative,
from §2.2.2. If the combiner call is dependent on the operands in any way other than
through the values of the arguments, the combiner isn’t applicative.

Therefore, an applicative can be factored into two parts: a front end specifying
simply that the operands are to be evaluated into arguments, and a back end specify-
ing how to perform a computation dependent on the results from the front end. The
key strategem of the dissertation, by which to support fexprs smoothly, is to view
the back end of each applicative as a fexpr. Primitive tools are provided for affixing
and removing front ends to coordinate argument evaluation (applicatives wrap and
unwrap), leaving the task of constructing back ends to a primitive fexpr-constructor,
$vau , using a call syntax similar to $lambda . Constructor $lambda is then defined
as a compound operative —constructed via $vau— that constructs an applicative by
composing the two orthogonal constructors $vau and wrap.

Breaking the classical $lambda constructor into two parts is a deep change to the
Lisp computation model, and cannot be accomplished smoothly as a small localized
amendment to the language. $lambda is almost the entire core of the language; the
only other operatives in the minimal semantics of Scheme ([KeClRe98, §7.2]) are $if
and $set! — and each of the others handles just one task, whereas $lambda covers
everything else.1 In order to make the modified computation model work out cleanly

1A quick list of roles covered by $lambda would include variable binding, compound control

69

—and especially, to allow the programmer to manage the inherent volatility of first-
class operatives— some sweeping global changes were made to the Scheme design.
Most of these changes (excepting the “$” on operative names (§2.2.3.1)) are related
to hygiene, and will be discussed in Chapter 5.

4.1 Applicatives

The primitive constructor for Kernel’s applicative data type is wrap; it simply takes
any combiner c, and returns an applicative that evaluates its operands and passes
the list of results on to c. The following equivalence holds (i.e., evaluating either
expression in the same environment would have the same consequences), up to order
of argument evaluation:

((wrap combiner) x1 ... xn)

≡ (eval (list combiner x1 ... xn)

(get-current-environment)) .

(4.1)

That is, to evaluate a combination with an applicative, build a combination that
passes the arguments to the underlying combiner, and evaluate the new combination
in the current environment.

Equivalence (4.1) would be much less generally valid if it contained symbolic
names of applicatives (wrap, eval, list, get-current-environment), rather than
the applicatives themselves. As the equivalence is stated, operators wrap, eval ,
list, and get-current-environment are non-symbol atoms, and will therefore self-
evaluate regardless of what, if anything, their standard symbolic names are bound to
in the environment where one or the other expression is to be evaluated.

We can now be more specific about our claim, in §2.2.2, that the operative/applica-
tive distinction is orthogonal to lazy/eager argument evaluation. Equivalence (4.1)
would be unchanged if applicatives constructed with wrap used lazy rather than eager
argument evaluation, provided that standard applicative list used lazy argument
evaluation too; most other equivalences in this chapter will be similarly invariant
under choice of lazy/eager policy.

Note that the argument to wrap is required only to be a combiner, not necessarily
an operative. It is entirely possible in Kernel to wrap an operative, say, twice, in which
case the equivalence dictates that the resulting combiner will evaluate its operands,
then evaluate the results of those first evaluations, and pass the results of the second
evaluations to the operative. This increases the range of free use of applicatives, and
therefore (in principle, at least) the smoothness of the language design (§1.1.2).

The standard Lisp applicative apply implicitly accesses the underlying combiner
of its applicative argument. Kernel provides a simpler and more direct (therefore

construction, recursion, and encapsulation.

70

smoother) primitive for the purpose, unwrap, which extracts the underlying combiner
of a given applicative. It affords equivalence

(unwrap (wrap combiner)) ≡ combiner . (4.2)

Given unwrap, apply can be constructed as a compound applicative, and this will
be done below in §4.4. (However, the reverse is not quite true: unwrap can only be
imperfectly approximated using apply .2)

4.2 Operatives

The general form of a $vau expression is

($vau 〈ptree〉 〈eparm〉 〈x1〉 ... 〈xn〉) . (4.3)

Evaluating the expression constructs and returns a compound operative. As noted
(of fexprs generally) in §3.1.3, it works almost the same way as classical $lambda :

• 〈ptree〉 is the formal parameter tree, a generalization of the formal parameter
list used in Scheme.

• When the constructed operative is called, the formal parameters in the tree will
be bound to the corresponding parts of the operand tree of the call.

• 〈eparm〉 is an additional formal parameter, called the environment parameter,
that will be bound to the dynamic environment of the call to the constructed
operative.

In all other respects (notably static scoping), $vau works as does Scheme $lambda .
Kernel’s smooth treatment of formal parameter trees (a.k.a. definiends) will figure

prominently in the Kernel addressing of traditional abstractions in Chapter 7; it
facilitates structured data flow in Kernel code, observable in several instances in
meta-circular evaluator code in the dissertation (one of which has already occurred,
in (2.20) of §2.3.3). In technical detail: A formal parameter tree is either a symbol,

2The essential difference is that, where unwrap gives its client actual access to the underlying
combiner, apply only gives its client the limited power of passing an arbitrary operand tree to that
combiner. A straightforward approximation would be

($define! unwrap

($lambda (appv)

($vau object #ignore

(apply appv object)))) ;

but then, (unwrap combiner) would always return an operative. If combiner were not an applica-
tive, no error would occur until the resulting “unwrapped” operative was called; and “unwrapping”
a combiner twice would never produce correct behavior.

71

nil, special atomic value #ignore, or a pair whose car and cdr are formal parameter
trees. Duplicate symbols in the tree aren’t allowed. When a symbol is matched
against a part of the operand tree, it is locally bound to that part. When nil is
matched against a part of the operand tree, that part must be nil (otherwise it’s a
run-time error). When #ignore is matched against a part of the operand tree, no
action is taken. When a pair is matched against a part of the operand tree, that part
must be a pair, and their corresponding elements are matched (car to car, cdr to cdr).

The environment parameter is either a symbol (not duplicated in the formal pa-
rameter tree) or #ignore, and is matched against the dynamic environment using the
same matching algorithm as above.

Use of special atom #ignore prevents accidental use of data that was meant
to be ignored (dangerous things should be difficult to do by accident, §3.5), and is
therefore particularly critical for the environment parameter. Ignoring the dynamic
environment promotes both hygiene and proper tail recursion, on the latter of which
see Appendix B. Note that these advantages accumulate particularly by maintaining
applicative wrappers separate from their underlying operatives (rather than simply
making all combiners operatives, and requiring them to evaluate their own arguments
if they want it to happen at all): the vast majority of opportunities for an operative to
ignore its dynamic environment only occur because the task of argument evaluation
is left to an applicative wrapper.

Here are some simple examples; the behavior of $vau will be shown in detail for
a more sophisticated example in §4.3.1.

($define! $quote

($vau (x) #ignore x))
(4.4)

When this compound operative is called, a local environment is created whose
parent environment is the static environment in which the $vau expression was eval-
uated (a child environment is an extension of its parent that is distinct for purposes
of mutation; environment mutation will be addressed in Chapter 5); then the local
environment is populated by matching the formal parameter tree, (x), against the
operand tree of the call. In this case, there must be exactly one operand, which is
locally bound by symbol x. Since the environment parameter is #ignore, the dy-
namic environment is not given a local name. There is one expression in the body of
the compound operative, x, which is evaluated in the local environment, where it has
been bound to the operand of the call, and so the unevaluated operand of the call is
returned as the result of the call — just the behavior one expects of the quotation
combiner.

$quote will be considered several times in §5.2, in relation to various undesirable
behaviors. Gathering, from these and similar instances, that quotation and quasi-
quotation do not interact well with the explicit-evaluation orientation of the Kernel
language design, they have been omitted from the standard tools of the language. (As

72

just demonstrated for $quote , Kernel is easily expressive enough for the programmer
to construct these tools if desired (which would probably be a bad idea); however, the
syntactic sugar usually used for quotation and quasiquotation would be much more
difficult to add, since Kernel is not designed for notational extensions).

($define! get-current-environment

(wrap ($vau () e e)))
(4.5)

In this definition, the wrap expression constructs an applicative from an underly-
ing compound operative. The operative takes zero operands —that is, the cdr of the
calling combination must be nil— so the applicative takes zero arguments.3 The first
instance of e is the environment parameter, which is locally bound to the dynamic
environment from which the call was made. The second instance of e is evaluated in
the local environment, where it has just been bound to the dynamic environment; so
the dynamic environment is returned as the result of the call. Standard applicative
get-current-environment was used in Equivalence (4.1), §4.1.

($define! list

(wrap ($vau x #ignore x))
(4.6)

Here, the underlying compound operative locally binds x to the entire list of oper-
ands to the operative — which are themselves the results of evaluating the operands
to the enclosing applicative. So the overall effect of the constructed applicative is to
evaluate its operands, and return a list of the resulting arguments.

4.3 $lambda

In the list example above, (4.6), Lisp programmers will have noted that standard
applicative list is much easier to construct using $lambda ; instead of

(wrap ($vau x #ignore x)) , (4.7)

one could simply write

($lambda x x) . (4.8)

$lambda is a standard operative in Kernel, but it isn’t primitive: it can be constructed
from standard primitives, using $vau .

3One might ask, if there are no operands to be evaluated or not evaluated, why we bother to
wrap get-current-environment . We prefer to make our combiners applicative unless there’s a
specific need to make them operative. It’s a matter of not crying wolf: anyone reading a program
should know to pay special attention when encountering an explicit operative. Operative definitions
will stand out more once we introduce $lambda in the next subsection (§4.3).

73

The intended behavior for $lambda is expressed by equivalence

($lambda 〈ptree〉 〈x1〉 ... 〈xn〉)
≡ (wrap ($vau 〈ptree〉 #ignore 〈x1〉 ... 〈xn〉)) .

(4.9)

In other words, a $lambda expression is just a wrapped $vau expression that ignores
its dynamic environment. The equivalence can be converted straightforwardly into
an implementation of $lambda as a compound operative:

($define! $lambda

($vau (ptree . body) static-env

(wrap (eval (list* $vau ptree #ignore body)

static-env)))) .

(4.10)

We describe how this compound operative $lambda works, first in brief, and then in
detail through an extended example.

When this $lambda is called, the first operand in the call is locally bound by
symbol ptree, and the list of remaining operands (the cddr of the combination) is
locally bound by symbol body. The dynamic environment of the call to $lambda

is locally bound by symbol static-env; that environment will become the static
environment of the applicative constructed by $lambda . The body of $lambda is
then evaluated in the local environment.

list* is a standard applicative that works almost like list, returning a list of
its arguments except that the last argument becomes the rest of the list rather than
the last element of the list.4 In this case it constructs a combination whose operator
is operative $vau (not symbol $vau), whose cadr is the intended parameter tree,
whose caddr is #ignore, and whose cdddr is the intended body. The constructed
combination is then evaluated in the intended environment static-env, so that
$vau makes static-env the static environment of the compound operative that it
constructs. That compound operative is then wrapped, and the resulting applicative
is returned as the result of the call to $lambda .

4.3.1 An extended example

To show how this works in detail, we trace through an extended example — defining
$lambda , using $lambda to define an applicative square , and using square to
square a number. For precision, we use reduction schemata.

Structured combiner terms have the forms

〈operative ptree eparm body env〉
〈applicative combiner〉

(4.11)

4list* isn’t standard in Scheme, but it was in Scheme’s predecessor MacLisp ([Pi83]), and is in
Common Lisp ([Ste90]).

74

where the first form denotes a compound operative with given parameter tree, envi-
ronment parameter, body, and static environment; and the second form denotes an
applicative with given underlying combiner. Non-object terms have the forms

[eval t1 t2] , (4.12)

where t2 should reduce to an environment, and

[combine t1 t2 t3] , (4.13)

where t1 should reduce to a combiner and t3 to an environment.
The schemata for combinations are

[eval (operator . operands) e]
−→ [combine [eval operator e] operands e]

(4.14)

[combine 〈applicative v0〉 (v1 ... vn) e]
−→ [combine v0 ([eval v1 e] . . . [eval vn e]) e]

(4.15)

[combine 〈operative ptree eparm v e1〉 operands e2]
−→ [eval v match(ptree, operands) ·match(eparm, e2) · e1] ,

(4.16)

where semantic function match implements the matching algorithm, and semantic
function · concatenates environments. For this example, we ignore the complicated
issue of environment identity, which will be exploited for hygiene in §5.3.2; largely
ignore the issue of evaluation order, which must be attended to in the presence of
side-effects (§10.2); and assume that the body of a compound operative contains just
one expression, again avoiding the issue of evaluation order.

For each primitive standard operative $foo, there must also be a rule for reducing
[combine $foo x e]; we omit these here, as they are self-evident where they occur in
the reductions.

As a guide and supplement to the reductions, the entire arrangement of envi-
ronments and (constructed) combiners through all three phases of the example is
illustrated by Figure 4.1. An environment is depicted as a boxed set of bindings, a
constructed operative is an oval, and a constructed applicative is a boxed reference to
its underlying combiner. Unused bindings in each environment are omitted; in par-
ticular, the figure omits the bindings created by the definitions — those of $lambda
in e0 and square in e1.

Suppose our compound definition for $lambda (which we repeat here),

($define! $lambda

($vau (ptree . body) static-env

(wrap (eval (list* $vau ptree #ignore body)

static-env)))) ,

(4.17)

75

e0

$vau ← $vau

wrap ← wrap

eval ← eval

list* ← list*

ptree: (ptree . body)

eparm: static-env

body: (wrap ...)

env: •

e1

$lambda ← •
* ← *

e′0

ptree ← (x)

body ← ((* x x))

static-env ← •

ptree: (x)

eparm: #ignore

body: (* x x)

env: •

•

e2

square ← •

e′1

x ← 5

Figure 4.1: Objects of the extended example.

76

is evaluated in an environment e0, in which we will assume the default bindings for
all the standard combiners used in the definition — $vau , wrap, eval , and list* .5

We have

[eval ($vau (ptree . body) static-env ...) e0]
−→ [combine [eval $vau e0] ((ptree . body) static-env ...) e0]
−→ [combine $vau ((ptree . body) static-env ...) e0]
−→ 〈operative (ptree . body) static-env ... e0〉 .

(4.18)

Now, suppose we evaluate another definition,

($define! square

($lambda (x) (* x x))) ,
(4.19)

in environment e1. It doesn’t matter to us whether e1 is related to e0 (they could even
be the same environment), so long as symbol $lambda is bound in e1 to the compound
operative $lambda we just constructed, and symbol * to standard combiner * .

For any standard applicative foo, we’ll name its underlying operative $foo; that
is, foo = 〈applicative $foo〉.

[eval ($lambda (x) (* x x)) e1]
−→ [combine [eval $lambda e1] ((x) (* x x)) e1]
−→ [combine 〈operative (ptree . body) static-env

(wrap ...) e0〉
((x) (* x x))

e1]
−→ [eval (wrap ...) e′0] where e′0 extends e0 with bindings

ptree ← (x)

body ← ((* x x))

static-env ← e1

−→ [combine [eval wrap e′0] ((eval (...) static-env)) e′0]
−→ [combine wrap ((eval (...) static-env)) e′0]
−→ [combine $wrap ([eval (eval (...) static-env) e′0]) e

′
0] .

(4.20)

From this point, it would be needlessly cumbersome to carry along the continuation
[combine $wrap (2) e′0] through the entire subsidiary evaluation of (eval ...), so

5We don’t bother to assume a binding for $define! since, to avoid tangling with environment
mutation, we will only describe the evaluation of the body of each definition — that is, evaluation
of the second operand passed to $define! .

77

we follow the subsidiary evaluation separately.

[eval (eval (list* ...) static-env) e′0]
−→ [combine [eval eval e′0] ((list* ...) static-env) e′0]
−→ [combine eval ((list* ...) static-env) e′0]
−→ [combine $eval ([eval (list* ...) e′0] [eval static-env e′0])

e′0]
...
−→ [combine $eval (($vau (x) #ignore (* x x)) e1) e

′
0]

−→ [eval ($vau (x) #ignore (* x x)) e1]
−→ [combine [eval $vau e1] ((x) #ignore (* x x)) e1]
−→ [combine $vau ((x) #ignore (* x x)) e1]
−→ 〈operative (x) #ignore (* x x) e1〉 .

(4.21)

Although the details of evaluating (list* ...) were omitted above, note that, since
it was evaluated in e′0, that is also the environment in which symbol $vau was looked
up, so that the operator later evaluated in e1 was the self-evaluating object $vau .

Splicing this subsidiary work (4.21) back into the main reduction (4.20),

[eval ($lambda (x) (* x x)) e1]
−→+ [combine $wrap ([eval (eval (...) static-env) e′0]) e

′
0]

−→+ [combine $wrap (〈operative (x) #ignore (* x x) e1〉) e′0]
−→ 〈applicative 〈operative (x) #ignore (* x x) e1〉〉 .

(4.22)

To round out the example, suppose e2 is an environment where symbol square is
bound to the applicative we just constructed. (We don’t need to assume any other
bindings in e2.)

[eval (square 5) e2]
−→ [combine [eval square e2] (5) e2]
−→ [combine 〈applicative 〈operative (x) #ignore (* x x) e1〉〉

(5) e2]
−→ [combine 〈operative (x) #ignore (* x x) e1〉

([eval 5 e2]) e2]
−→ [combine 〈operative (x) #ignore (* x x) e1〉 (5) e2]
−→ [eval (* x x) e′1] where e′1 extends e1 with binding x ← 5

−→ [combine [eval * e′1] (x x) e′1]
−→ [combine * (x x) e′1]
−→ [combine $* ([eval x e′1] [eval x e′1]) e

′
1]

−→+ [combine $* (5 5) e′1]
−→ 25 .

(4.23)

78

4.4 apply

Standard applicative apply is used to replace the usual process of argument evalu-
ation with an arbitrary computation to produce the “argument list” to be passed to
the underlying combiner of an applicative. The fixpoint of this replacement —where
the usual process is replaced by itself— is expressed by equivalence

(apply v0 (list v1 ... vn) (get-current-environment))

≡ (v0 v1 ... vn) .
(4.24)

This equivalence is taken to be basic to the purpose of apply ; but it only makes sense
if v0 evaluates to an applicative, because if v0 evaluated to an operative then the vk≥1

would be evaluated in the first form but not the second. Kernel therefore signals a
dynamic type error if the first argument to apply is not an applicative. (In MacLisp,
where generality tended to be pursued for its own sake, it was permissible to apply

a fexpr ([Pi83]). The resulting situation was in keeping with the old reputation of
fexprs as aesthetically unpleasant.)

In full generality, the behavior of Kernel’s apply is expressed by equivalence

(apply (wrap combiner) v environment)

≡ (eval (cons combiner v) environment) .
(4.25)

(Cf. the identity for wrap, (4.1).)
As a matter of free uniform treatment, i.e., smoothness, Kernel pointedly does

not require that argument v in the equivalence be a list. Scheme requires a list
argument to apply ; but in Scheme, all constructed combiners are applicative —
and automatic argument evaluation presumes a list of operands. In Kernel, one can
explicitly construct operatives that have no inherent commitment to a proper list of
operands, such as ($vau x #ignore x) (which underlies applicative list, (4.6)); so
restricting the second argument of apply to lists would be an arbitrary restriction
on underlying operatives. Thus, for example, in Kernel,

[eval (apply list 2) e] −→+ 2 . (4.26)

The environment argument to apply does not occur in Scheme because all Scheme
applicative calls are independent of their dynamic environment.6 The environment
argument in Kernel is optional; if it’s omitted, an empty environment is manufactured
for the call. That is,

(apply (wrap c) x)

≡ (eval (cons c x) (make-environment)) .
(4.27)

6Scheme supports an extended syntax for apply , taking three or more arguments, in which all
arguments after the first are consed into a list as by Kernel’s list* applicative. This would seem
to defy a natural orthogonality between application and improper list construction; at any rate,
in Kernel the list* applicative tends to arise in compound operative constructions where apply

would have to be artificially imposed (such as the construction of $lambda in (4.10) of §4.3).

79

Defaulting to an empty environment favors good hygiene (Chapter 5) by requiring
the programmer to explicitly specify any dynamic environment dependency in the
call, as in the ‘fixpoint’ equivalence for apply , (4.24).

As with $lambda in §4.3, the general equivalence for apply , (4.25), translates
straightforwardly into a compound operative implementation (where for simplicity of
exposition we ignore the optionality of the third argument):

($define! apply

($lambda (c x e)

(eval (cons (unwrap c) x) e))) .
(4.28)

80

Chapter 5

Hygiene

5.0 Introduction

Hygiene is the systematic separation of interpretation concerns between different parts
of a program, enabling the programmer (or meta-program) to make deductions about
the meaning of a particular program element based on the source-code context in
which it occurs.1 To deduce all of its meaning locally would require the uninteresting
case of a completely isolated program element; but if too little is locally deducible, rea-
soning about large software systems becomes intractable. A set of hygiene conditions
must therefore be chosen to balance local deduction against non-local interaction,
tailored to the overall paradigm of computation (which shapes both deductions and
interactions). In a purely applicative setting, such as λ-calculus, the classical hygiene
conditions are that

1. the only dependence of the behavior of a combiner on the context from which
it is called is through the arguments supplied to the call, and

2. the only dependence of a potentially calling context on a combiner is through
the behavior of the combiner when called.

Most programming languages exempt certain imperative features from hygiene,
conceding that they do not meet the conditions — usually (for example), a small fixed
set of operatives, whose unhygienic behavior is carefully limited and well-understood;
and often, mutable variables, which however can introduce module interactions that
are disorganized and difficult to track (hence the usual remonstrations against global
variables).

1[KoFrFeDu86] cites Barendregt for the informal term hygiene: H.P. Barendregt, “Introduction
to the lambda calculus”, Nieuw Archief voor Wisenkunde 2 4 (1984), pp. 337–372; it also notes the
formal property of being-free-for in [Kle52] (where it occurs in Kleene’s §34 as an auxiliary to his
definition of free substitution).

81

Macros cannot be subjected to the applicative hygiene conditions, because the
macro paradigm of evaluation is two-tiered where the applicative paradigm is one-
tiered; but traditional macros are subject to substitutional misbehaviors closely akin
to applicative bad hygiene, and, moreover, techniques now exist to reliably correct
the misbehaviors (§3.3.3, §6.4). So a modified set of hygiene conditions has been
formulated for macros ([ClRe91a, §2]).

Fexprs, though, require a different approach, and this is the subject of the current
chapter. Certain blatant violations of hygiene (operand capturing and environment
capturing) are intrinsic to the concept of fexprs; so that, in the presence of fexprs,
no universally guaranteed hygiene conditions would be strong enough to be useful.2

This chapter addresses hygiene as a relative, rather than absolute, property, with the
applicative hygiene conditions as the ideal. Further, merely observing how far fexprs
fail the conditions is inadequate. The influence of fexprs on the language semantics
is ubiquitous; in the most general case, one is left unable to deduce anything at all.
So, if useful local deductions are to be achieved, one must

1. identify special cases in which fexpr misbehavior is provably bounded; and

2. show that those cases are likely, and especially that the programmer is unlikely
to deviate from them by accident. (Cf. Kernel design Guideline G3, given here
in §3.5.)

Hygienic variable bindings were discussed in depth in §3.3. This chapter surveys
hygiene problems more broadly, and discusses tactics used in Kernel to foster spe-
cial cases in which the intrinsic hygiene problems of first-class operatives generally
(operand capturing) and fexprs particularly (environment capturing) are manageable.

5.1 Variable capturing

Macros are liable to two kinds of hygiene violations, called variable capturing, of
which fexprs are (of course) also capable. Phrased generally to cover both macros
and fexprs, they are:

1. A symbol in the body of the compound combiner is looked up in an environment
that isn’t local to the point where the body occurs. (Most common is the
environment at the point from which the combiner was called.)

2. A symbol in an operand of the call is looked up in an environment that isn’t local
to the point where the operands occur. (Most common is the local environment
of the body of the compound combiner.)

2Fexprs in this dissertation are protected by some absolute guarantees; the guarantees simply
don’t appear to be hygiene in any straightforward, absolute sense. Some consequences of these
guarantees for properties of the object language as a whole (contrasting with [Wa98], whose object
language has no guarantees analogous to them) will be discussed in Chapter 15.

82

These were discussed for macros in §3.3.3. For Kernel-style fexprs, though, both prob-
lems are unlikely to occur by accident, because Kernel fexprs are statically scoped, so
that both all interpretation subtasks that override the local environment of the body,
and all interpretation of symbols from the operands, are minimized and (thanks to
the explicit-evaluation nature of fexprs) explicitly flagged out.

To illustrate these violations, and Kernel’s resistance to them, suppose that Kernel
were equipped with a naive template-macro facility, using the syntax described in
§3.3.3. (Such a facility could be implemented using $vau .3) One might then attempt
to implement $lambda as a macro, by

($define-macro! ($lambda ptree . body) ->

(wrap ($vau ptree #ignore . body))) .
(5.1)

Naive macro expansion means that, when the macro is called, template (wrap ($vau

ptree #ignore . body)) is transcribed with parameters ptree and body replaced
by the corresponding parts of the operand tree, but symbols wrap and $vau copied
verbatim. The transcription is then evaluated in the dynamic environment of the
macro call — so that if symbol wrap or $vau has a nonstandard binding in the
dynamic environment, the call to $lambda will not have its intended meaning.

However, when a similar situation arises using $vau , in which a new expression
is explicitly constructed and then evaluated in the dynamic environment, the tools
ordinarily used to construct the new expression are all applicatives, such as list* .
Symbols introduced during the construction —in this case, wrap, $vau, ptree, and
body— are evaluated locally to determine arguments for the applicative constructors;
and the ones that aren’t parameters —in this case, wrap and $vau— usually eval-
uate locally to combiners, which are non-symbol atoms and therefore self-evaluate
regardless of any bindings in the dynamic environment. Here, for example, one would
write

($define! $lambda

($vau (ptree . body) env

(eval (list wrap (list* $vau ptree #ignore body))

env))) ,

(5.2)

and the expression evaluated in the dynamic environment of the call to $lambda

would be

(wrap ($vau ptree #ignore . body)) , (5.3)

3No magical introduction of a preprocessing phase is implied; that would require a meta-circular
evaluator, and the facility would be implemented in a distinct object-language rather than in the
same language where the facility is implemented. Here, the macro definition is processed during
evaluation, an operative is constructed that performs the naive transformation on its operands,
and that operative is bound in the dynamic environment from which the constructor was called;
therefore, a run-time-mutator suffix “!” is added to the name of the constructor, $define-macro!
rather than $define-macro .

83

whose only symbols are any that occur in ptree and body .

This hygienic outcome is stylistically encouraged in Kernel, by

• omitting quotation and quasiquotation from the standard language, so not to
facilitate the construction of expressions that introduce new unevaluated sym-
bols. The programmer could reintroduce general quotation and quasiquotation
tools using $vau (though better Kernel style would use specialized tools and
techniques for specific situations, avoiding the general devices; see §7.3.3); but
even after reintroducing general tools, the programmer would not achieve the
facility of (quasi)quotation in implicit-evaluation Lisps, because Kernel doesn’t
provide syntactic sugar for the purpose.

• avoiding use of keywords in call syntax. A prominent example is the default
clause at the end of a $cond -expression: in Scheme, the default clause uses
keyword else in stead of a test-expression; but in Kernel, the same effect is
accomplished by specifying #t as the test-expression of the last clause, which
(besides being more uniform) eliminates a possible motive to construct expres-
sions containing unevaluated symbols.

While the compound construction of $lambda neatly illustrates Kernel’s resis-
tance to capture of local variables by the dynamic environment, it is not otherwise
a simple example — because it not only isn’t hygienic (under the operative hygiene
conditions we’ve set down), but it isn’t meant to be. It is a binding construct, that
captures occurrences of its parameters (the symbols in its first operand) in its body
(any operands after the first). New binding constructs are readily defined in Kernel
—as this example shows— but, since Kernel discourages introduction of unevaluated
symbols into a constructed expression, the names of the variables bound by the new
construct are usually specified explicitly in the operands of the calling expression, de-
creasing the likelihood that the programmer will be surprised by the binding (hence,
decreasing the likelihood of accidents).4

Binding constructs will be discussed further in Chapter 7.

Note that the non-hygiene of operative $lambda does not compromise the ap-
plicative hygiene of λ-calculus only because λ-calculus classifies “λ” as administrative
syntax, rather than as an operator. The view of this as an exception to hygiene is
easier to see in Lisps, where the treatment of $lambda (or lambda) as administrative
syntax —i.e., as an unevaluated special-form operator— is obviously nonuniform.

The second kind of variable capture, in which a symbol in an operand is looked
up in the local environment of the compound combiner, is most likely to occur by

accident in the use of naive macros when the macro represents a computation for

4This might be thought of as a sort of hygiene condition for binding constructs. Cf. Footnote 9
of this chapter; and Appendix B, especially its Footnote 1.

84

which an intermediate result must be temporarily stored. For example, the binary
short-circuit or macro

($define-macro! ($or? x y) ->

($let ((temp x)) ($if temp temp y)))
(5.4)

would capture any free variable temp in operand y , only because it stored the result
of hygienically evaluating its first operand so that the result could be both test and
consequent of the $if -expression in the expansion of the call.

In operatives that require temporary storage of a dynamic-environment evalu-
ation, the Kernel programmer is naturally guided toward storing the result locally,
because arranging indirectly for its dynamic storage would require a significant willful
effort (which is, again, not something one would do by accident). Here, the indirect
approach in Kernel would be

($define! $or?

($vau (x y) env

($let ((temp ($quote temp)))

(eval (list $let (list (list temp x))

(list $if temp temp y))

env)))

(5.5)

—note the use of non-standard operative $quote (≡ ($vau (x) #ignore x)) to
embed unevaluated symbol temp in the constructed expression— while the direct
approach would be

($define! $or?

($vau (x y) env

($let ((temp (eval x env)))

($if temp temp (eval y env))))) ,

(5.6)

which, besides being evidently much simpler and more readable, cannot possibly
capture occurrences of temp in its operands x and y , because it binds temp in its
local environment but evaluates x and y in its dynamic environment.

5.2 Context capturing

Not all hygiene violations are readily classified in terms of mis-selection of bindings
for variables. A more inclusive approach classifies violations according to the nature
of non-argument information accessed by a combiner. We will call violations of this
kind context capturing. In Kernel, combiners can access three kinds of non-argument
contextual information, hence there are three classes of context capturing.

85

5.2.1 Operand capturing

Any Lisp that supports first-class operatives is subject to operand capturing, wherein
a combiner that was thought to be applicative may actually be operative and so
unexpectedly access its operands. Consider the following minimalist example5:

($define! call ($lambda (f x) (f x))) . (5.7)

Applicative call is apparently intended to take a function f and an arbitrary object
x, and call f with argument x; we expect equivalence

(call f x) ≡ (f x) . (5.8)

This equivalence holds for a tame argument f , as in

(call cos 0) =⇒ 1 (5.9)

(using “=⇒” for “evaluates to”), but, recalling non-standard operative $quote ,

(call $quote 0) =⇒ x . (5.10)

This behavior violates the encapsulation of call , by capturing and publicizing an
operand, x, that occurs only in the body of call , and that was presumably intended
to remain strictly private to that definition.

The misbehavior is, in essence, a poorly managed consequence of a type error.
Combiner call expected an applicative as its first argument, but got an operative
instead; the intended non-operativity of the argument is suggested (though not, alas,
guaranteed) by the absence of a $ prefix on the parameter name, f.6

We could replace the misbehavior with an error report by using apply to call f :

($define! call ($lambda (f . x) (apply f x))) . (5.11)

Now (call $quote 0) explicitly fails, when apply attempts to unwrap operative
$quote . This is a slightly less than pleasing resolution, because it seems to defy
our principle that dangerous things be difficult to do by accident; as another partially
mitigating measure, it may be appropriate for Kernel compilers to generate a warning
message in some problematic situations, such as —for a conservative example— when
a parameter without a $ prefix occurs directly as an operator.7

5Exactly this example (modulo trivialities of Kernel syntax) was used as a criticism of the behavior
of first-class operatives in [Baw88].

6The type constraint is not only “not guaranteed” in the sense that it isn’t enforced, but also in
the sense that it might not be intended: the naming convention distinguishes variables that should
always be operative, but does not distinguish between those meant to be strictly non-operative and
those meant to range over both operative and non-operative values.

7More interventionist arrangements might be made to prohibit this type of mistake. Some such
arrangements may even be rather straightforward to implement, using sophisticated Kernel fea-
tures such as keyed static variables ([Shu09, §11]) that are otherwise outside the purview of this
dissertation; others may be more involved, such as environment guarding that will be described
in Footnote 9 of this chapter. However, since even straightforward techniques of this sort seem to
involve meta-circular evaluation, it is unclear that their existence bears directly on the thesis of this
dissertation, which concerns the existence of a simple well-behaved language.

86

Most any software construct (such as call) is apt to behave in unexpected and
even bizarre ways when given an input outside its design specs. That said, two aspects
of this situation are especially troublesome, and Kernel takes measures to mitigate
both.

• There is no way in general to distinguish statically (i.e., prior to evaluation)
between operands that must be treated as syntax, and operands that will af-
fect the computation only through the results of evaluating them. This was
the key objection to fexprs in [Pi80], because it sabotages meta-programs that
manipulate programs as data. Such higher-order programs prominently include
compilers, as well as forming an entire genre of custom programs within the
Lisp tradition.

Kernel mitigates this problem by means of environment stabilization tactics,
which will be discussed in §5.3.

• The possibility of operand capture leads to the prospect that any vulnerable,
non-atomic operand might be mutated. Especially messy would be operand
mutation within the body of a compound operative, where it could alter the
behavior of the operative on subsequent calls.

Kernel precludes common opportunities for accidental operand mutation by
imposing immutability on selected data structures. In particular, when $vau

constructs a compound operative, it stores an immutable copy of the operand
tree to $vau ; and applicative load (analogous to C #include), rather than
simply reading S-expressions and evaluating them, makes immutable copies of
the S-expressions it reads, and evaluates the copies.8

5.2.2 Environment capturing

Any Lisp that supports fexprs will also support environment capturing, wherein a
combiner accesses its dynamic environment; fexprs wouldn’t be useful without this
feature, since without it they would have no way to induce hygienic argument eval-
uation. (This is true even of dynamically scoped Lisps, since the local environment
still has parameter bindings that could capture variables in the operands.)

Moreover, in Kernel, the basic equivalence relating wrap and eval , (4.1), implies
that applicatives too can capture their dynamic environments.

To continue the above example of (the first, unsafe version of) call , (5.7),

(call ($vau #ignore e e) 0) =⇒ 〈an environment〉 . (5.12)

Here, the value returned is actually the local environment created for the call, and
thus a child of the static environment of combiner call . This is especially trouble-
some because Kernel/Scheme programmers commonly rely, for module encapsulation,

8To be precise, Kernel’s $vau and load make immutable copies of the evaluation structures of
objects; an object’s evaluation structure is the part of the object that presumably designates an
algorithm when the object is evaluated. For details, see [Shu09, §4.7.2 (copy-es-immutable)].

87

on the inability of clients to directly extract the static environment of an exported
applicative (as below in §5.3.2, and later in §7.2).

Two simple measures in Kernel discourage accidental environment capturing.

1. The most convenient way to specify an applicative algorithm, $lambda , only
constructs combiners that #ignore their dynamic environments; the program-
mer has to use a more circuitous locution to specify an environment-capturing
applicative (explicitly composing wrap with $vau).

2. The names of operatives are conventionally prefixed with “$”, so that the pro-
grammer will not usually specify an operative without realizing its type. This
is evidently more effective in reducing accidental operand capturing than in re-
ducing environment capturing, since even knowing for certain that a combiner
is applicative only absolutely precludes operand capturing; but it should also
discourage accidental environment capturing, exactly because the behavior of
$lambda reduces the frequency of environment-capturing applicatives.

While these measures reduce the likelihood of accidents, they do not contribute much
to any special cases in which environment capturing provably cannot happen. As
with operand capturing, environment stabilization tactics (§5.3) can provide special
cases with provable hygiene.

5.2.3 Continuation capturing

Because Kernel, and Scheme, include the standard applicative call-with-current-

continuation , both languages are subject to continuation capturing, wherein a com-
biner acquires an (encapsulated) object representing all computation that will follow
once the capturing combiner returns a result, parameterized by what result will be
returned. Continuation capture can be used to implement non-sequential control
patterns, analogously to gotos in Fortran- and Algol-style languages (in fact, con-
tinuations were devised in the 1970s as a mathematical device to treat gotos).

Continuation capturing is not a fexpr-related issue (although, historically, it was
entangled with fexprs for a time in the treatment of reflective Lisps; see [Baw88]); but
it is clearly a violation of applicative hygiene, as call-with-current-continuation
does not derive its continuation from its argument. Kernel does, in fact, provide a
facility to mitigate continuation capturing, by intercepting abnormal transfer of data
similarly to the exception-handling facilities of stack-based modern languages such
as Java (except that Kernel, not being limited by a sequential control stack, allows
interception of abnormal entrances as well as abnormal exits; details are in [Shu09,
§7 (Continuations)]).9

9One might ask whether a symmetric facility could be devised to intercept uses of captured
environments. The most systemic challenge for such a facility is in choosing interceptors for a given
use. For continuation-use, interceptors are determined by the act of capturing a continuation (the

88

5.3 Stabilizing environments

A source expression has, by definition, an explicit input representation. This means
that all of its atoms are either symbols or literal constants; and since there are no
literals that denote combiners, all source-expression atomic operators have to be sym-
bols. The upshot is that a Kernel source expression has substantially no behavioral

meaning independent of the environment where it is evaluated.
This phenomenon differs Kernel from Scheme only in degree. Consider Scheme

source expression

(define square (lambda (x) (* x x))) . (5.13)

The resulting compound applicative square ceases to have its original meaning if
the binding of symbol * in its static environment is later changed. In the general
case, a Scheme processor would have to look up symbol * every single time square

is called. These repeated lookups could be eliminated, and other optimizations might
also become possible, if it could be proven that the relevant binding of * is stable

(i.e., will never change).
The corresponding Kernel source expression,

($define! square ($lambda (x) (* x x))) , (5.14)

is potentially even worse off, since the definition itself will misfire unless variables
$define! and $lambda have their standard bindings when the definition is evaluated.
If the definition occurs at the top level of the program, at least it will only be evaluated
once; but local definitions won’t even have that reassurance. It is therefore of great
importance in Kernel to cultivate circumstances under which binding stability can be
guaranteed.

If an environment is only accessible from a fixed finite set of source code regions,
it will usually be straightforward (if tedious) to prove that most of its bindings are
stable. The key to stability is therefore to avoid open-ended access to environments.
Open-ended access can occur in two ways: unbounded lexical extent, and environment

capturing. Kernel measures to discourage environment capturing were described in
§5.2.2; following, §5.3.1 discusses techniques to avoid unbounded lexical extents, and
§5.3.2 describes measures to provably bound the possible damage from environment
capturing when it occurs.

destination of the use), and the act of invoking it (the source of the use); so the determination
is all about continuations. For environment-use, though, interceptors are determined by the act
of capturing an environment (destination) and the act of capturing an operand that will later be
evaluated (the “source” being the environment at the moment of capture); so the determination
is not only about environments. The needed information might be maintained through a “weak
closure” device that would attach the dynamic environment of an operative call to symbols that it
captures. The development of such a device seems worthy of investigation (though it might turn
out to be intractable, or at least un-smooth in the sense of §1.1.2), but is beyond the scope of the
current dissertation.

89

5.3.1 Isolating environments

The lexical extent of an environment is the set of all source expressions that are
evaluated in it without an explicit call to eval .10 Whether it is possible for such an
extent to be unbounded depends on how the language processor is arranged; the usual
unbounded case is a global environment used by a read-eval-print loop to evaluate the
entire (unbounded) sequence of input expressions. If virtually all environments are
descended from the global environment, as is commonly the case in Scheme systems,
then mutating standard bindings in the global environment will cause most compound
combiners to malfunction.

The flexibility with which Kernel handles environments can be brought to bear
on this problem, by making it easy to isolate software elements in non-descendants
of the global environment.

Isolating software elements from their surrounding environment is facilitated in
Kernel by introducing a (derived) variant of $let, called $let-redirect, in which
the parent of the local environment for the body of the construct is not a child of the
surrounding environment, but instead is explicitly specified.

Ordinary $let obeys equivalence

($let ((〈sym1〉 〈exp1〉) ... (〈symn〉 〈expn〉)) . 〈body〉)

≡ (($lambda (〈sym1〉 ... 〈symn〉) . 〈body〉)
〈exp1〉 ... 〈expn〉) ,

(5.15)

and could be implemented by

($define! $let

($vau (bindings . body) dynamic

(eval (cons (list* $lambda (map car bindings) body)

(map cadr bindings))

dynamic)))

(5.16)

(where map applies a given applicative to all the elements of a given list, and returns
a list of the results11).

The general instability-resistant version, called $let-redirect, takes the intended
parent environment as its first operand (evaluated in the dynamic environment), fol-

10There are only four cases: the body of a compound combiner is in the lexical extent of the local
environment created by each call to the combiner; the operator of a combination is in any lexical
extent that the combination is in; the operands of an applicative combination are in any lexical
extent that the combination is in; and an expression evaluated at the top level of the language
processor is in the lexical extent of whatever environment the processor evaluates it in.

11Full map in Kernel not only allows multiple list arguments, as in Scheme, but also thoroughly
supports cyclic lists, on the grounds that cyclic lists wouldn’t be fully first-class if the standard tools
couldn’t handle them; details are in [Shu09, §5.9.1 (map)].

90

lowed by the same operands as ordinary $let . The constructed $lambda expression
is then evaluated in the specified parent, so that

($let-redirect 〈env〉
((〈sym1〉 〈exp1〉) ... (〈symn〉 〈expn〉))

. 〈body〉)

≡ (($eval ($lambda (〈sym1〉 ... 〈symn〉) . 〈body〉) 〈env〉)
〈exp1〉 ... 〈expn〉) .

(5.17)

$let-redirect could be implemented by

($define! $let-redirect

($vau (static bindings . body) dynamic

(eval (cons (eval (list* $lambda (map car bindings)

body)

(eval static dynamic))

(map cadr bindings))

dynamic))) .

(5.18)

Kernel supports the construction of interesting environments not descended from
the global environment, by means of a primitive make-kernel-standard-environ-

ment that takes no arguments and, each time it is called, returns a freshly constructed
environment in which all the standard Kernel bindings are visible. (This is actually a
very inexpensive facility to provide, as will emerge below in §5.3.2.) The combination

($let-redirect (make-kernel-standard-environment)

((foo foo)

(quux quux))

...)

(5.19)

would then evaluate the body, “...”, in a local environment with all the Kernel
standard bindings, and also bindings of symbols foo and quux to whatever those
symbols were bound to in the surrounding environment when the local environment
was set up. Once the local environment has been set up, mutations to the outside
environment are not directly visible in it.

To facilitate this particular case, Kernel provides a standard operative $let-safe ,
with

($let-safe 〈bindings〉 . 〈body〉)

≡ ($let-redirect (make-kernel-standard-environment)

〈bindings〉 . 〈body〉) ,

(5.20)

91

which could be implemented by12

($define! $let-safe

($vau x dynamic

(eval (list* $let-redirect

(make-kernel-standard-environment)

x)

dynamic))) .

(5.21)

5.3.2 Restricting environment mutation

Given that environment capturing cannot always be avoided, Kernel curtails its de-
structive potential by encapsulating the environment type such that

1. the programmer cannot determine the ancestors of an arbitrary environment,
and

2. an environment can only be mutated if the environment is, or can be, captured.

To illustrate how this works, consider the following Scheme code for an encapsu-
lated counter:

(define count

(let ((counter 0))

(lambda ()

(set! counter (+ counter 1))

counter))) .

(5.22)

The first time count is called it returns 1, the second time 2, and so on. The internal
counter can’t be accessed except through count because it’s stored in an environment
reachable only through the static-environment reference from count — and standard
Scheme, like Kernel, provides no general way to extract the static environment of an
applicative.13

Scheme’s set! operative, although it seems innocuous in this example, is an
indiscriminately overpowered tool in general. Whereas Kernel $define! creates or
modifies a binding in the immediate dynamic environment, Scheme set! finds the
visible binding for the specified symbol, and mutates that binding, even if the binding
is non-local. Consequently, there is no way in Scheme to make a binding visible
without also granting the observer the right to mutate it.

12$let-safe and make-kernel-standard-environment are equi-powerful, in that either could
be derived from the other. The derivation of the latter from the former would be

($define! make-kernel-standard-environment

($lambda () ($let-safe () (get-current-environment)))) .

13Some dialects of Scheme don’t respect this encapsulation, as MIT/GNU Scheme’s procedure-
environment that extracts the static environment of a compound procedure. ([MitGnuScheme].)

92

Kernel $define! only mutates its immediate dynamic environment; non-local
bindings are unaffected (although they might be locally overridden by a local binding
for the same symbol). Given an explicit reference to any environment e, one could
mutate e by assembling and evaluating a $define! combination in e; but since
$define! is Kernel’s only primitive mutator of environments, there is no way to
mutate e without an explicit reference to it. So, with no general operation to extract
the parent of a given environment, bindings in Kernel can be made visible without
granting the right to mutate them.

In addition to primitive $define!, Kernel also provides (derived) environment
mutators $set! and $provide! (both of which are equi-powerful with $define! in
that any two of the three mutators could be derived from the third). As a practical
tool, Kernel $set! is the most versatile of the three, so is developed here in order to
illustrate the restrictions on environment mutation. $provide! is specifically suited
for programmer-defined modules, and will be developed in §7.1.2.

The following implements operative $set! :14

($define! $set!

($vau (e d v) dynamic-env

(eval (list $define! d

(list (unwrap eval) v dynamic-env))

(eval e dynamic-env)))) .

(5.23)

The key to this implementation is that $define! will evaluate its second operand
in the target environment determined by evaluating e in dynamic-env, but we need
v to be evaluated in dynamic-env ; so we make the second operand to $define! an
operative combination, whose operands therefore won’t be evaluated before calling it.
Here we’ve used the underlying operative of eval , which will take its unevaluated
first operand (v, which is the unevaluated third operand of $set!) and evaluate it in
the environment that is its second operand (dynamic-env, the dynamic environment
from which $set! was called).15

14The implementation of $define! using $set! is simpler than that of $set! using $define! :

($set! (get-current-environment)

$define!

($vau (d v) e (eval (list $set! e d v) e))) .

15Alternatively, we could have evaluated v in dynamic-env before we constructed the $define!

expression, and embedded the result in the constructed expression as an operand to non-standard
operative $quote . For illustrative purposes, here is an implementation using this approach:

($define! $set!

($vau (e d v) dynamic-env

(eval (list $define! d

(list $quote (eval v dynamic-env)))

(eval e dynamic-env))) .

93

standard-env

...

e1

counter ← 0

e2

self ← •

ptree: ()

eparm: #ignore

body: (...)

env: •

•

outside-env

count ← •

Figure 5.1: Objects in the Kernel $let-safe /$let version of count .

Using $set!, here is a translation of count into Kernel:

($define! count

($let-safe ((counter 0))

($let ((self (get-current-environment)))

($lambda ()

($set! self counter (+ counter 1))

counter)))) .

(5.24)

The $let-safe creates a local environment, call it e1, with binding counter ← 0,
whose parent environment exhibits the standard Kernel bindings. The $let then
creates a local environment e2 whose parent is e1, with binding self ← e1 in e2;
the latter binding arises because $let evaluates value expressions for its bindings
in the surrounding environment: the surrounding environment is e1, and the value
expression is (get-current-environment), so the value to be bound is e1. Finally,
$lambda constructs an applicative with static environment e2. The arrangement of
objects is illustrated by Figure 5.1.

Note that the need for additional code in the Kernel version of count —code
for binding and accessing variable self— is consistent with the language design
principles stated in §3.5. Non-local environment mutation (which is a potentially
dangerous activity) must have an explicitly specified target (so the programmer has
to do it deliberately); and permission for non-local environment mutation (dangerous)
must be explicitly supported by providing a name for the environment to be mutated
(deliberate).

Lest the above Kernel implementation of count be taken dogmatically, here is an

94

e1

counter ← 0

self ← •ptree: ()

eparm: #ignore

body: (...)

env: •

•

outside-env

count ← •

Figure 5.2: Objects in the Kernel $letrec version of count .

alternative Kernel implementation that more closely parallels the Scheme version.

($define! count

($letrec ((self (get-current-environment))

(counter 0))

($lambda ()

($set! self counter (+ counter 1))

counter))) .

(5.25)

The call to $let-safe has been omitted, reducing the nesting depth to that of the
Scheme implementation (and, of course, leaving the local environment vulnerable to
mutations of the surrounding environment — which may make the earlier version,
(5.24), better style if the surrounding environment is vulnerable). The call to $let

has been replaced with $letrec , a variant also available in Scheme (and discussed
here in §7.1.1), that evaluates its binding expressions in the constructed local environ-
ment rather than in its surrounding parent environment; thus, the local environment
is returned by get-current-environment , and locally bound by variable self. The
arrangement of objects is illustrated by Figure 5.2.

The encapsulation of type environment affords an inexpensive means for con-
structing fresh standard environments, as for make-kernel-standard-environment
(or $let-safe). Rather than create fresh copies of all the standard bindings for each
standard environment,16 one can assume the existence of a ground environment that
is the parent of all standard environments, exhibiting all the standard bindings of

16The current draft of the Kernel report, [Shu09], specifies more than a hundred standard bindings,
and does not yet elaborate most non-core data types, such as number, character, string, and port.
Those types should roughly double the number of standard bindings.

95

the language, but with no means to capture or mutate it; so one can construct fresh
standard environments as easily as one would construct the local environment for any
compound-combiner call.

There is also another form of environment stability in standard Scheme that Kernel
lacks in general (as do some dialects of Scheme): the set of symbols that are bound in
a local Scheme environment is fixed at the time the environment is constructed. The
Scheme global environment is exempted from this form of stability, so that global
definitions can be added over time; but local Scheme define s are required to be
placed at the beginning of the local block so that they can be treated as syntactic
sugar for letrec s. In contrast, Kernel $define! can imperatively create a local
binding at any time for any symbol.

This facet of Kernel is not necessary to its combiner-handling;17 it was chosen as a
simple and uniform device compatible with strictly local environment mutation (and,
therefore, supportive of Kernel’s resistance to non-local environment mutation).

The standard Scheme policy toward mutation of local environments is shaped by
the Scheme standard’s treatment of environment as an incidental term for the set
of all bindings visible at some point in a program. Bindings are perceived to be the
only underlying reality; so it would be unnatural to speak of “adding a binding to
the local environment,” as if environments had prior existence. Kernel environments,
though, are first-class objects, which is a natural consequence of their capturability
(key for fexprs) and their encapsulation (key for binding stability); so “adding a
binding to a local environment” is an entirely conceivable act. Kernel could have
restricted local environment mutation to local bindings established at environment
construction; but that restriction is superfluous to Kernel’s primary binding-stability
measure (limiting non-local environment mutation), and contrary to Kernel’s removal-
of-restrictions design philosophy. The restriction will also emerge, in §7.1.1, as a
source of nonuniformity in the semantics of Scheme letrec .

17As the Kernel design is currently written, [Shu09], $define! is an optional feature (along with
all other explicit environment mutators — though $letrec is required).

96

Chapter 6

The evaluator

6.0 Introduction

This chapter addresses the algorithmic simplicity of Kernel’s combiner support, in
comparison to that of other approaches to programmer-defined operatives in Scheme-
like languages — that is, simplicity of the evaluator algorithm; as opposed to sim-
plicity of use, which is addressed mainly by demonstration throughout Part I. As
simplicity is a structural property of the algorithms (rather than a fine-grained me-
chanical detail), the algorithms are presented here as meta-circular evaluators (rather
than as reduction systems; cf. §2.3.3).

For each algorithm, only those parts of a meta-circular evaluator are presented
that materially contribute to combiner-handling. Low-level mechanics, such as simple
constructors/accessors/mutators for different types of data structures, are reserved
to Appendix A. The starting point for the algorithms is the top-level code

($define! interpreter

($lambda () (rep-loop (make-initial-env))))

($define! rep-loop

($lambda (env)

(display ">>> ")

(write (mceval (read) env))

(newline)

(rep-loop env)))

($define! mceval

($lambda (expr env)

($cond ((symbol? expr) (lookup expr env))

((pair? expr) (mceval-combination expr env))

(#t expr)))) .

(6.1)

97

Applicatives interpreter and rep-loop are adjusted slightly for preprocessed mac-
ros, in §§6.2–6.4, to insert a preprocessing phase between rep-loop and mceval; and
applicative mceval , slightly for first-class operatives in §§6.5–6.6, to eagerly evaluate
the operator of a combination.

For the illustrative purposes of the chapter, only a few elements of the object
language are needed. No attempt is made to handle errors usefully. The only com-
biners supported are a few arithmetic applicatives and cons (convenient for testing
the object-languages); operatives $if and $define! (vital for testing the object-
languages); and whatever combiner-handling primitives are appropriate to the par-
ticular evaluator, as Scheme $lambda and apply , or Kernel $vau wrap and unwrap.
Compound combiner bodies are assumed to consist of a single expression (rather than
a sequence of expressions to be evaluated left-to-right, which would add nothing to a
comparison of combiner-handling strategies).

In meta-circular evaluators for Scheme, it is common to name the central meta-
circular evaluation applicative eval, and similarly to name its companion applicative
apply, overriding the standard Scheme bindings for those symbols. The practice is
workable in Scheme because Scheme programs almost never use eval , and don’t of-
ten use apply .1 However, this would work quite poorly if the meta-circular evaluator
were written in Kernel, because Kernel compound operatives practice explicit evalu-
ation, in which eval and apply are used routinely; and the meta-circular evaluators
are actually written here in Kernel (although Kernel code that exploits first-class op-
eratives is reserved to Appendix A); therefore, several of the meta-circular combiners
have “mc” in their names.

Meta-circular evaluators are sometimes written with an additional continuation

argument to mceval , that explicitly represents all computation that will follow the
evaluation, as a function of the result of the evaluation. Continuations are appro-
priate for a meta-circular evaluator that explains control flow, where what will be
done next is of primary concern; proper tail recursion ([Shu09, §3.10]) and non-linear
control flow are usually explained in terms of continuations. A continuation-passing
meta-circular Kernel evaluator would be worthwhile for a study of Kernel (cf. §3.5),
because Kernel’s non-linear control flow support differs from Scheme’s ([Shu09, §7
(Continuations)]). However, for this chapter a continuation argument to mceval is
an unnecessary complication, since continuations have no interesting interactions with
ordinary combiners under any of the evaluator variations considered here.

1The meta-circular evaluator in the Wizard Book ([AbSu96, Ch. 4]) never uses Scheme eval (in
fact, standard Scheme didn’t yet have eval when the second edition of the Wizard Book came out),
and uses Scheme apply in just one place, within meta-circular apply-primitive-procedure . To
enable this one use, it saves Scheme apply under the name apply-in-underlying-scheme.

98

6.1 Vanilla Scheme

The baseline for comparisons will be the “vanilla Scheme” strategy: a fixed set of op-
eratives designated by special-form operators, without any facilities for programmer-
defined operatives (neither macros nor fexprs). Most of the other combiner-handling
strategies in the chapter will be embellishments of the vanilla strategy.

The combination dispatching logic for this strategy is

($define! mceval-combination

($lambda ((operator . operands) env)

($cond ((if-operator? operator)

(mceval-if operands env))

((define-operator? operator)

(mceval-define! operands env))

((lambda-operator? operator)

(mceval-lambda operands env))

(#t (mc-apply (mceval operator env)

(map-mceval operands env))))))

($define! map-mceval

($lambda (operands env)

(map ($lambda (expr) (mceval expr env))

operands))) .

(6.2)

Predicates if-operator?, define-operator?, and lambda-operator? are de-
fined by

($define! if-operator? ($make-tag-predicate $if))

($define! define-operator? ($make-tag-predicate $define!))

($define! lambda-operator? ($make-tag-predicate $lambda)) ,
(6.3)

where $make-tag-predicate constructs an applicative predicate to test its argu-
ment for equality to a specified symbol. Operative $make-tag-predicate is one
of several constructed meta-language operatives, scattered through the chapter, part
of whose purpose is to avoid explicit quotation. Avoiding quotation is good Kernel
programming style, as quotation was repeatedly found to proselytize bad hygiene in
Chapter 5; and it also serves to reduce dependence in this chapter on Kernel seman-
tics that differ from Scheme. (The implementation of these compound meta-language
operatives is, of course, at the heart of the Kernel/Scheme semantic difference; for
example, $make-tag-predicate would be a Scheme macro that explicitly quotes its
operand, or a Kernel fexpr that simply uses its operand.)

99

The handling of object-language $if is orchestrated by meta-language $if :

($define! mceval-if

($lambda ((test consequent alternative) env)

($if (mceval test env)

(mceval consequent env)

(mceval alternative env)))) .

(6.4)

To facilitate populating the initial object-language environments constructed by
make-initial-env, we posit a meta-language operative $mc-define!, which works
identically to meta-language $define! except that, after meta-language-evaluating
its second operand, it deposits its bindings in an object-language ground environment
(rather than in its meta-language dynamic environment, as $define! would). Initial
object-language environments are then fresh children of the ground environment:

($define! ground-environment (make-mc-environment))

($define! make-initial-env

($lambda ()

(make-mc-environment ground-environment))) ,

(6.5)

where make-mc-environment constructs an object-language environment with given
parent. (Conditions under which this strategy is safe were discussed in §5.3.1.) Like
$make-tag-predicate (introduced in (6.3)), $mc-define! allows the chapter to
remain independent of the implicit/explicit-evaluation differences between Scheme
and Kernel.

Object-language applicatives are constructed by meta-language make-applica-

tive , which converts a meta-language applicative to an object-language applicative;
that is, mc-apply ing the object-language applicative has the effect of apply ing the
meta-language applicative from which it was constructed. The population of the
object-language ground environment (for this and the next several sections) is then

($mc-define! <? (make-applicative <?))

($mc-define! <=? (make-applicative <=?))

($mc-define! =? (make-applicative =?))

($mc-define! >=? (make-applicative >=?))

($mc-define! >? (make-applicative >?))

($mc-define! + (make-applicative +))

($mc-define! - (make-applicative -))

($mc-define! * (make-applicative *))

($mc-define! / (make-applicative /))

($mc-define! cons (make-applicative cons))

($mc-define! apply (make-applicative mc-apply)) .

(6.6)

100

The construction of mceval-lambda further assumes a meta-language applicative
match!, which takes an object-language environment, parameter tree, and operand
tree, and binds parameters in the object-language environment accordingly. Then,

($define! mceval-lambda

($lambda ((ptree body) env)

(make-applicative

($lambda arguments

($let ((env (make-mc-environment env)))

(match! env ptree arguments)

(mceval body env)))))) .

(6.7)

This construction is somewhat atypical of meta-circular evaluators: meta-circular
evaluators usually avoid blatantly exploiting the first-class status of applicatives in
the meta-language, because they are trying to explain as much of the object-language
as possible, and first-class applicatives are a likely subject for explanation. However,
in this chapter we are trying to explain as little of the object-languages as needed
to compare their combiner-handling strategies, so it makes sense to simplify our
constructions by using first-class meta-language applicatives to orchestrate object-
language combiners.

Given meta-language match!, object-language $define! is straightforward (as-
suming Kernel-style compound definiends, rather than Scheme-style; cf. §2.2.3.2):

($define! mceval-define!

($lambda ((definiend definition) env)

(match! env definiend (mceval definition env)))) .
(6.8)

At the end of each section of the chapter, the size of that section’s evaluator will
be compared to the vanilla evaluation phase based on line count. Since line count is
somewhat style-dependent,2 usually only rough percentages (to the nearest 5%) will
be given. In absolute size, the vanilla evaluation phase comprises 49 lines of high-
level executable code (the parts shown in this chapter); but 10 of them (20%) are to
populate the ground environment with arithmetic applicatives and cons, which are
conveniences for testing and somewhat arbitrary in number. The comparisons in later
sections will exclude those ten lines. Vanilla evaluation also comprises 69 lines of low-
level executable code (the parts reserved to the appendix; which, in contrast to the
high-level code presented here, heavily exploit features of the Kernel meta-language
that differ from Scheme).

2A reasonably consistent style is attempted. Lines are counted in the original source files, which
are subject to a 79-character margin (though maximizing readability usually prevents lines from
getting nearly that long); narrower effective margins in the typeset dissertation force some code to
occupy additional lines. Also, the line counts exclude comment lines, blank lines (though one might
defensibly include blanks, since their contribution is very similar to that of linebreaks — readability
through formatting), and load commands (equivalent to C #includes).

101

6.2 Naive template macros

Naive macro definitions occur at the top level of interpretation, i.e., they can’t be
embedded in any other expression. In this case, they must be entered directly at the
>>> prompt of rep-loop. The essential elements for a template macro definition are
the name for the macro, parameter tree, and template in which the parameters are
to be substituted for. The syntax used here (from §3.3.3) is

($define-macro (name . parameters) -> template) . (6.9)

Nothing about the behavior of mceval is changed. The top-level code is tweaked
so that, rather than pass the input expression (from (read)) directly to mceval , we
first run it through an applicative preprocess, thus:

($define! interpreter

($lambda () (rep-loop (make-initial-macro-env)

(make-initial-env))))

($define! rep-loop

($lambda (macro-env env)

(display ">>> ")

(write (mceval (preprocess (read) macro-env) env))

(newline)

(rep-loop macro-env env))) .

(6.10)

macro-env remembers what macro definitions have been entered. Macro-environ-
ments require a different lookup primitive than run-time environments: when a sym-
bol is looked up in a macro environment, failure to find a binding for the symbol
isn’t an error. This is natural to macro preprocessing, which just leaves things alone
(rather than complain) if it doesn’t know what to do with them. So macro environ-
ments are a conceptually distinct data type.

It doesn’t much matter, for the initial macro environment, just what macro-

lookup returns when it doesn’t find a binding, as long as it allows the failure to be
handled easily. However, it will matter for later uses of macro environments, and
different —even individually customized— behaviors will eventually be desired (the
latter for hygienic macros in §6.4), so we specify the unbound-symbol behavior flexibly
by a meta-language applicative argument to make-empty-macro-env ; when a symbol
lookup fails, the symbol is passed to this applicative argument to determine the
result. Here (arbitrarily for now, but compatibly with the hygienic-macro treatment
to come),

($define! make-initial-macro-env

($lambda ()

(make-empty-macro-env ($lambda (x) x)))) .
(6.11)

102

preprocess simply checks for a macro definition, and either handles the defini-
tion, or scans through the source expression looking for macro calls to transform.

($define! preprocess

($lambda (expr macro-env)

($if ($and? (pair? expr)

(define-macro-operator? (car expr)))

(preprocess-define-macro! (cdr expr) macro-env)

(expand expr macro-env))))

($define! define-macro-operator?

($make-tag-predicate $define-macro)) .

(6.12)

(Meta-language operative $and? is a “short-circuit” version of logical and, that
doesn’t bother to evaluate its second operand if its first operand evaluated to false.)

expand scans through a source expression, performing macro transformations.

($define! expand

($lambda (expr macro-env)

($if (pair? expr)

(check-for-macro-call

(map ($lambda (expr) (expand expr macro-env))

expr)

macro-env)

expr)))

($define! check-for-macro-call

($lambda (expr macro-env)

($if (symbol? (car expr))

($let ((x (macro-lookup (car expr) macro-env)))

($if (symbol? x)

expr

(expand (apply-macro x (cdr expr))

macro-env)))

expr))) .

(6.13)

(This implementation actually supports a sort of second-class “upward funarg” macro,
in that, since the operator of a combination is expanded before being checked to see
whether it names a macro, it would be possible for a macro-calling operator to expand
to the name of a macro and thereby cause that macro to be called.)

preprocess-define-macro! binds the given macro name to a meta-language
applicative that performs the appropriate template-substitution transformation on
its arguments. (There is no difficulty in binding the macro name to a non-object-

103

language object, since the macro environment will never be directly accessible from
the object language.)

($define! preprocess-define-macro!

($lambda (((name . parameters) #ignore template)

macro-env)

(macro-match! macro-env name

(make-macro parameters template))))

($define! make-macro

($lambda (parameters template)

($lambda operands

($let ((macro-env (make-empty-macro-env

($lambda (x) x))))

(macro-match! macro-env parameters operands)

(transcribe template macro-env)))))

($define! transcribe

($lambda (template macro-env)

($cond ((symbol? template)

(macro-lookup template macro-env))

((pair? template)

(cons (transcribe (car template)

macro-env)

(transcribe (cdr template)

macro-env)))

(#t template))))

($define! apply-macro apply) .

(6.14)

The #ignore parameter to process-macro-define! skips over the “->” in the def-
inition syntax. A properly paranoid implementation of transcribe would make a
structural copy of each result returned by macro-lookup, so that during evaluation
(by mceval), if one occurrence of a macro operand were mutated, other occurrences
of the same operand would be unaffected.

Note the resemblance between make-macro here, and mceval-lambda in (6.7).

The naive template-based preprocessing phase takes about 120% as many lines
of high-level executable code as the vanilla evaluation phase. Low-level support code
for preprocessing is about 60% as long as for evaluation, because evaluation support
involves two object-language data types (environments, applicatives), while prepro-
cessing support involves just one (macro-environments).

104

6.3 Naive procedural macros

To do full justice to the preprocessing constraint on procedural macros, one would
need to prohibit macro expansions from containing objects that can’t be specified
directly through source-code — such as first-class applicatives. We approximate pro-
cedural macros here; but within the framework of our interpreter the prohibition is
artificial, and we do not enforce it. (Recall that embedded first-class combiners were
one of the hygiene tactics discussed in §5.1.)

The procedural macro definition syntax assumed here is (borrowing again from
§3.3.3)

($define-macro name expr) , (6.15)

where expr must evaluate (in the object-language) to an applicative.3

The change itself is almost entirely encapsulated within preprocess-define-

macro! :

($define! preprocess-define-macro!

($lambda ((name definition) macro-env)

(macro-match! macro-env name

(mceval definition (make-initial-env)))))

($define! apply-macro mc-apply) .

(6.16)

There is no make-macro, since the argument to apply-macro is now an object-
language applicative supplied by mceval; and no transcribe , since expansion is
now the responsibility of the procedural macros themselves.

However, in order to make a procedural macro facility useful, two other (imple-
mentationally orthogonal) supporting object-language features are usually included
with it.

One of these is quasiquotation. Because the output of a macro cannot (usually)
contain embedded combiners, some means is needed for the macro to build structures
that intersperse unevaluated symbols with computed subexpressions (the unevalu-
ated symbols being used to designate the evaluation-time combiners that can’t be
directly embedded in the expansion). For template-based macros, any symbol in the
template that isn’t a parameter name is copied into the expansion; but for proce-
dural macros, unevaluated symbols must be produced as a result of computation.
Therefore quotation is needed, at a minimum, and quasiquotation greatly simplifies

3Some Lisp meta-circular Lisp evaluators take advantage of the similarity between the object-
and meta-languages by evaluating procedural macros in the meta-language. However, one weakness
of the (otherwise quite versatile) practice of writing Lisp evaluators in Lisp is that one is vulnerable
to confusion between the object- and meta-languages; and evaluating macros in the meta-language
greatly exacerbates the problem. It would therefore seem a poor choice for a meta-circular evaluator,
whose raison d’être is to aid understanding.

105

most tasks. Of all the approaches to operative construction considered in this chapter
(or this dissertation), procedural macros are the only one that specifically motivates
quasiquotation.

There is no need to provide quotation here because, having failed to enforce the
prohibition against embedding combiners in a macro expansion, we don’t need to
embed their unevaluated names in the expansion.

The second feature usually included with procedural macros is gensyms, generated
symbols that are guaranteed to be absolutely unique — that is, each time the symbol
generator is called, it produces a symbol that cannot possibly occur in any other
way. The symbol generator is traditionally called gensym . Symbols generated during
a macro call cannot possibly occur free in its operands; and they therefore prevent
one of the two kinds of variable capturing, if the macro uses them properly. The
technique was illustrated for a macro $or? in §3.4.1.

gensym will be essential for both hygienic and single-phase macros (§§6.4–6.5),
so its implementation is relevant. The meta-language might or might not support
gensyms (standard Scheme and standard Kernel don’t); and if it doesn’t, then, to
guarantee uniqueness, object-language gensyms will have to be disjoint from the meta-
language symbol type. To keep the chapter independent of this detail (reserving it to
the appendix), we assume meta-language applicatives gensym (which might or might
not be standard), and mc-symbol? (which might or might not do the same thing as
meta-language symbol?). The only changes to high-level code are the replacement
of symbol? by mc-symbol? in mceval , and exportation of gensym to the object-
language:

($define! mceval

($lambda (expr env)

($cond ((mc-symbol? expr) (lookup expr env))

((pair? expr) (mceval-combination expr env))

(#t expr))))

($mc-define! gensym (make-applicative gensym)) .

(6.17)

There are a few other uses of symbol? in the high-level code, but they all test either
for macro names or for macro parameter names; and since at this point we don’t
allow nested macro definitions, neither of those could possibly be a gensym.

(The use of mc-symbol? in mceval will continue through the remaining sections
of the chapter —it could have been done earlier if there’d been any apparent reason—
but the mc-define! of gensym is unique to the procedural macro algorithm of this
section. Later sections that use gensym will use it internally, with no reason to export
it to the object language.)

The change from template to procedural macros has actually produced a net
savings of about 30% of the high-level preprocessing code (85% rather than 120%
of vanilla evaluation phase). On the other hand, introducing quasiquotation would

106

more than make up the difference. Also, low-level code to implement gensyms adds,
at it happens, exactly one more line than was saved in high-level preprocessing.

6.4 Hygienic macros

Hygienic macro transformations are template-based (as §6.2), rather than procedural
(§6.3). This section shows how template-based macro transformations are imple-
mented hygienically.

Although a single template-based macro transformation is computationally trivial,
Scheme’s hygienic macro facility as a whole is Turing-powerful. Rather than selecting
a macro transformation based solely on the operator symbol of the combination (the
traditional selection strategy of Lisp), Scheme uses the operator symbol to select a
table of patterns, then matches the patterns against the entire structure of the calling
combination to select a transformation. The individual pattern/transformation pairs
are analogous to the syntax productions of a Chomsky type 0 grammar — hence,
Turing power.

The introduction of a second computational model into macro expansion offers no
interesting characteristics for the current discussion, as it is a substantial step away
from uniformity (hence, smoothness) and is largely orthogonal to binding mainte-
nance. (Re orthogonality to binding maintenance, note that the same tactic could
be applied as readily to the naive template-macros of §6.2.) Therefore, this section
doesn’t implement pattern-based invocation for its transformations.

For consistency, $define-macro will use the same syntax as for naive template-
based macros in §6.2:

($define-macro (name . parameters) -> template) . (6.18)

However, hygienic macro definitions don’t have to be global — they can be nested,
using a $let-like syntax. Moreover, the nestable syntax is fundamental to demon-
strating hygiene. Just as a hygienic applicative remembers the environment at its con-
struction, so a hygienic macro remembers the macro-environment at its construction;
but if hygienic macros could only be defined globally, they would all be remembering
the same macro-environment, and there would be no way to exercise the inter-macro
aspects of the hygiene. (Recall from §3.3.3 that inter-macro interference accounts for
two out of four cases of variable capturing.)

The syntax used here for local macro declarations is

($let-macro ((name . parameters) -> template) expr) , (6.19)

where the declared macro is only visible in a local macro-environment used to pre-
process expr , and the macro’s static macro-environment is the macro-environment
provided for the preprocessing of the $let-macro -expression.

107

The only high-level preprocessing code retained here from the naive treatments
(§§6.2–6.3) is preprocess itself, (6.12).

The constructor for hygienic macros, make-macro, takes three arguments, parallel
to vanilla mceval-lambda in (6.7): parameter tree, body, and macro-environment.
make-macro is also the most complicated (or subtle, as [ClRe91a] puts it) element of
the hygiene maintenance, so will be explained last in the section, when the reader no
longer has any other unknowns to worry about. Meanwhile, knowing the call format
for make-macro, preprocess-define-macro! is simply

($define! preprocess-define-macro!

($lambda (((name . parameters) #ignore template)

macro-env)

(macro-match! macro-env name

(make-macro parameters template macro-env)))) .

(6.20)

Macro-environments will map each symbol to one of four kinds of values:

• a symbol, indicating that the looked-up symbol is renamed.

• a macro.

• $lambda , the second-class combiner initially designated by operator $lambda.

• $let-macro, the second-class combiner initially designated by operator $let-
macro.

Explicit bindings to $lambda and $let-macro are needed because, in the process
of symbol-renaming to maintain hygiene, the algorithm might temporarily rename
symbols $lambda and $let-macro.

To streamline the handling of these cases in expand , macros and $lambda and
$let-macro are all given a single representation: a meta-language applicative of
two arguments, that takes its operand-tree and macro-environment, and performs all

further preprocessing of the calling combination. Thus,

($define! macro? applicative?)

($define! apply-macro

($lambda (macro operands macro-env)

(macro operands macro-env))) .

(6.21)

It then suffices for expand to handle variable renaming and (what it believes to be)

108

macro calls:

($define! expand

($lambda (expr macro-env)

($cond ((pair? expr)

($let ((x (macro-lookup (car expr)

macro-env)))

($if (macro? x)

(apply-macro

x (cdr expr) macro-env)

(map ($lambda (x)

(expand x macro-env))

expr))))

((mc-symbol? expr)

(macro-lookup expr macro-env))

(#t expr)))) .

(6.22)

(This implementation doesn’t support expanding a compound operator to $lambda

or $let-macro, so there are no “second-class upward funargs” as in §6.2. There, the
feature arose naturally, even somewhat simplifying the implementation of expand ;
whereas here, it would complicate things.4)

Bindings to $lambda and $let-macro are placed in a ground macro-environment
by means of an operative $mc-macro-define!, analogously to the population of the
evaluation-time ground environment via $mc-define! (in §6.1, surrounding (6.5)):

($define! ground-macro-env (make-empty-macro-env

($lambda (x) x)))

($define! make-initial-macro-env

($lambda ()

(make-child-macro-env ground-macro-env))) .

(6.23)

Meta-language applicatives $lambda and $let-macro will each return a pair
whose car is an unevaluated symbol. General quotation is avoided, in this case, by
means of a meta-language operative $make-tag-prefixer , which takes one operand,
〈prefix〉, and returns an applicative of one argument that conses 〈prefix〉 with its
argument. (($make-tag-prefixer foo) (+ 2 3)) would evaluate to (foo . 5).
Then,

($define! make-lambda ($make-tag-prefixer $lambda))

($define! make-let-macro ($make-tag-prefixer $let-macro)) .
(6.24)

4[ClRe91a, §2] mentions that the authors had implemented variants of their hygienic algorithm
with and without expansion of compound operators into syntactic keywords.

109

$let-macro is straightforward: construct the new macro using make-macro, bind
it in a child of the surrounding macro-environment, and preprocess the body of the
$let-macro -expression in the child macro-environment:

($mc-macro-define! $let-macro

($lambda ((((name . ptree) #ignore template) body)

macro-env)

($let ((macro (make-macro ptree template macro-env))

(macro-env (make-child-macro-env macro-env)))

(macro-match! macro-env name macro)

(expand body macro-env)))) .

(6.25)

$lambda is more involved. It renames all the parameters of the expression; but
to do so, it must recursively traverse the parameter tree (its first operand) to find
each parameter name, generate a gensym to rename it to, and register the renaming
in a local child of the surrounding macro-environment. Then it expand s the body
of the expression (its second operand) in the local macro-environment, so that the
renamings performed on the parameter tree will be imposed on free variables in the
body as well. Thus:

($mc-macro-define! $lambda

($lambda ((ptree body) macro-env)

($let ((macro-env (make-child-macro-env macro-env)))

($let ((ptree (rename-ptree! ptree macro-env)))

(make-lambda ptree (expand body macro-env))))))

($define! rename-ptree!

($lambda (ptree macro-env)

($cond ((mc-symbol? ptree)

($let ((gs (gensym)))

(macro-match! macro-env ptree gs)

gs))

((pair? ptree)

(cons (rename-ptree!

(car ptree) macro-env)

(rename-ptree!

(cdr ptree) macro-env)))

(#t ptree)))) .

(6.26)

Finally, make-macro takes the parameter tree, template, and static macro-envi-
ronment for a macro; and constructs an applicative that uses all those elements, an
operand-tree, and the dynamic macro-environment from which the macro is called,
to perform expansion of a call to the macro. Expansion of the call is a two-phase
process: first, transcribe the template of the macro with appropriate substitutions

110

(of operands for parameters) and renamings (of non-parameter symbols in the tem-
plate), and second, expand the transcribed expression in a local child of the dynamic
macro-environment.

Transcription uses a special “substitution” macro-environment, constructed via
make-empty-macro-env and then populated with bindings of parameters to operands
(reminiscent of the use of a macro-environment in the naive template make-macro,
in (6.14)). The subtle heart of the hygienic algorithm is in what happens when a
symbol in the template is found to be unbound in the substitution macro-environment.
The unbound symbol is renamed to a gensym; the renaming is registered in the
substitution macro-environment, so that other occurrences of the same symbol in the
template will be renamed to the same gensym; and a binding is registered in the local

macro-environment from the gensym back to whatever value the original symbol was
mapped to in the static macro-environment of the macro.

If a non-parameter symbol 〈symbol〉 occurs free in the template, it won’t be cap-
tured by the dynamic macro-environment because it has been temporarily renamed
to a gensym that, being unique, cannot possibly be bound by the dynamic macro-
environment; and after expansion of the transcription it will revert to whatever it
was in the static macro-environment, regardless of whether 〈symbol〉 had a different
binding in the dynamic macro-environment. If 〈symbol〉 occurs bound in the tem-
plate (via $lambda), its bound occurrences in the template will be renamed again
during expansion of the transcription, to still another gensym that won’t capture any
symbols in the operands — and, in particular, won’t capture 〈symbol〉 if it occurs in
the operands.

111

Here is hygienic make-macro :

($define! make-macro

($lambda (parameters template static-menv)

($lambda (operands dynamic-menv)

($define! new-menv

(make-child-macro-env dynamic-menv))

($define! subst-menv

(make-empty-macro-env

($lambda (s)

($let ((gs (gensym)))

(macro-match! subst-menv s gs)

(macro-match! new-menv

gs (macro-lookup s static-menv))

gs))))

(macro-match! subst-menv parameters operands)

($let ((expr (transcribe template subst-menv)))

(expand expr new-menv)))))

($define! transcribe

($lambda (template subst-menv)

($cond ((mc-symbol? template)

(macro-lookup template subst-menv))

((pair? template)

(cons (transcribe (car template)

subst-menv)

(transcribe (cdr template)

subst-menv)))

(#t template))))

(6.27)

The high-level preprocessing code for hygienic macros, as presented here sans

pattern-matching, is about 65% longer than for the naive template algorithm (195%
versus 120% of vanilla evaluation phase). The low-level preprocessing code is about
15% longer (70% versus 60% of vanilla evaluation phase).

6.5 Single-phase macros

Single-phase macros were described in §3.4.1. Although their indirection and lack
of commonality with applicatives (the latter being a sort of non-smoothness) are

112

undesirable, they are an interesting case for a study of hygiene, because if no other
means is provided in the language for producing symbols as the result of computation
—such as quotation5— there seems to be no way for single-phase macros to cause
variable capture.

The object-language constructor of single-phase macros is an object-language op-
erative $macro, whose call syntax is

($macro 〈parameters〉 〈meta-names〉 〈template〉) . (6.28)

〈parameters〉 is the usual parameter tree, 〈meta-names〉 is a list of symbols, and
〈template〉 is an arbitrary expression. When the macro is called, a local child of its
static environment is created; local bindings are made of parameters to operands,
and of meta-names to freshly created gensyms; the template is transcribed, replacing
every symbol in the template by the value it is bound to in the local environment;
and the transcribed expression is then evaluated in the dynamic environment of the
macro call.

Here, operatives are first-class objects, so the operator of a combination is always
evaluated. This could be accomplished within mceval-combination , but it will
be convenient to introduce the operator evaluation directly into mceval; to main-
tain clarity in comparing different evaluators, the applicative that receives the com-
biner, operand tree, and dynamic environment is then called combine rather than
mceval-combination . The modified mceval is

($define! mceval

($lambda (expr env)

($cond ((mc-symbol? expr) (lookup expr env))

((pair? expr)

(combine (mceval (car expr) env)

(cdr expr)

env))

(#t expr)))) .

(6.29)

combine distinguishes between object-language operatives and object-language ap-
plicatives, and invokes the appropriate low-level tool for either:

($define! combine

($lambda (combiner operands env)

($if (mc-operative? combiner)

(mc-operate combiner operands env)

(mc-apply combiner

(map-mceval operands env))))) .

(6.30)

5This constraint would rule out more than just operand capturing. For example, the standard
Scheme applicative string->symbol would violate it, as would gensym .

113

The meta-language constructor for object-language operatives converts a meta-
language applicative of two arguments —operand-tree and dynamic environment—
into an object-language operative with that behavior. Thus,

(mc-operate (make-operative meta-appv) operands env) (6.31)

would be equivalent to

(meta-appv operands env) . (6.32)

The mc-define!s for $if, $define!, and $lambda then use exactly the same meta-
language $lambda -expressions as for vanilla Scheme (from (6.4), (6.7), and (6.8)):

($mc-define! $if

(make-operative

($lambda ((test consequent alternative) env)

($if (mceval test env)

(mceval consequent env)

(mceval alternative env)))))

($mc-define! $define!

(make-operative

($lambda ((definiend definition) env)

(match! env definiend (mceval definition env)))))

($mc-define! $lambda

(make-operative

($lambda ((ptree body) env)

(make-applicative

($lambda arguments

($let ((env (make-mc-environment env)))

(match! env ptree arguments)

(mceval body env))))))) .

(6.33)

114

The only other element needed is $macro :

($mc-define! $macro

(make-operative

($lambda ((parameters names body) static-env)

(make-operative

($lambda (operands dynamic-env)

(mceval

($let ((local-env (make-mc-environment

static-env)))

(match! local-env parameters operands)

(gensyms! local-env names)

(transcribe body local-env))

dynamic-env))))))

($define! gensyms!

($lambda (env names)

($cond ((mc-symbol? names)

(match! env names (gensym)))

((pair? names)

(gensyms! env (car names))

(gensyms! env (cdr names))))))

($define! transcribe

($lambda (body env)

($cond ((mc-symbol? body) (lookup body env))

((pair? body)

(cons (transcribe (car body) env)

(transcribe (cdr body) env)))

(#t body)))) .

(6.34)

The evaluation phase of this algorithm takes about 60% more lines of high-level
code than that of vanilla Scheme. In comparison, the smallest of the preprocessing
phases in the preceding sections —that of procedural macros— was about 85% as
long as the vanilla evaluation phase. The low-level evaluation code has increased by
about 30% of the vanilla low-level code, of which 20% is gensyms, and the remaining
10% is the object-language operative type.

6.6 Kernel

The Kernel meta-circular evaluator shares elements of the preceding section that are
generic to first-class operatives: the operator-evaluating version of mceval , (6.29);

115

meta-language tools make-operative and mc-operate ; and, based on the latter
tools, the mc-define!s for $if and $define! (from (6.33)).

The basic meta-language tools for object-language applicatives are mc-wrap and
mc-unwrap (rather than make-applicative and mc-apply that were used in all the
previous sections of the chapter). There is no need for an mc-apply in the meta-
language, since its only use by the evaluator was in handling applicative combinations,
and combine now handles that case by calling itself recursively:

($define! combine

($lambda (combiner operands env)

($if (mc-operative? combiner)

(mc-operate combiner operands env)

(combine (mc-unwrap combiner)

(map-mceval operands env) env)))) .

(6.35)

However, make-applicative facilitates population of the object-language ground
environment, so is constructed from the more basic tools, by

($define! make-applicative

($lambda (meta-appv)

(mc-wrap

(make-operative

($lambda (operands #ignore)

(apply meta-appv operands)))))) .

(6.36)

Meta-language mc-wrap, mc-unwrap, and mceval are all needed in the object-lan-
guage as primitives, so

($mc-define! wrap (make-applicative mc-wrap))

($mc-define! unwrap (make-applicative mc-unwrap))

($mc-define! eval (make-applicative mceval)) .
(6.37)

Object-language apply and $lambda are no longer object-language primitives. The
only other object-language primitive needed is $vau :

($mc-define! $vau

(make-operative

($lambda ((ptree eparam body) static-env)

(make-operative

($lambda (operands dynamic-env)

($let ((local-env (make-mc-environment

static-env)))

(match! local-env ptree operands)

(match! local-env eparam dynamic-env)

(mceval body local-env))))))) .

(6.38)

116

The Kernel evaluation phase takes about 25% more high-level code than vanilla
evaluation. (The absolute net difference is 9 lines.) The low-level code for Kernel is
actually two lines shorter than for vanilla Scheme.

6.7 Line-count summary

Table 6.1 gives the net change in the combined evaluation and (when present) pre-
processing phases of each algorithm relative to vanilla Scheme. The percentages of
low-level code represent larger absolute numbers.

algorithm high-level low-level
naive template macros 120% 60%
naive procedural macros 85% 85%
hygienic macros 195% 95%
single-phase macros 60% 30%
Kernel fexprs 25% -5%

Table 6.1: Line-count increase for each algorithm, vs. vanilla Scheme.

117

Chapter 7

Programming in Kernel

7.0 Introduction

If Kernel is to satisfy the spirit of the thesis, it has to satisfy the claims of the
thesis simultaneously, not serially: Kernel must subsume Lisp’s traditional syntactic
abstractions —macros— together with its own peculiarly fexpr-based abstractions,
and be well-behaved at the same time. Complicating this task, Kernel hygiene is not
absolute but (as observed in Chapter 5) depends on the style of programming used;
and, moreover, the introduction of general quotation facilities into Kernel —together

with fexprs— was found to be antagonistic to good hygiene.

This chapter considers how Kernel can support a coherent programming style that
uses Kernel’s native fexpr support, fosters good hygiene, and achieves the purposes
traditionally addressed in Lisp by quotation and macros. Neither general quotation
nor macro-style constructors (such as Scheme’s $syntax-rules) are introduced.

7.1 Binding

7.1.1 Declarative binding

Scheme and Kernel both support block declarations through a family of standard
let operatives, all derivable from more primitive facilities (using Scheme’s hygienic
macro facility, or Kernel’s $vau).1 Each operative takes a list of bindings and a list
of expressions (called the body), and evaluates the expressions in a local environment
with the given bindings; the operatives in the family differ from each other in details
of how they set up the local environment.

1While the R5RS ([KeClRe98]) treats these hygienic-macro derivations as primary definitions,
the R6RS ([Sp+07]) presents some of the more awkward hygienic-macro definitions as merely “ap-
proximate”, relying instead on formal semantics for the primary definitions. In effect, the R6RS has
conceded that some of its let operatives cannot be derived using its abstraction facilities.

118

R5R Scheme provides three standard let operatives —let, let*, and letrec—
to which R6R Scheme adds letrec*.2

Kernel has four basic $lets —$let, $let*, $letrec , and $letrec*— and an
additional two $lets tailored to insulate their local environments from the environ-
ments that surround them — $let-redirect and $let-safe .

This subsection reviews all six Kernel $lets, both as preparation for their use
in more advanced techniques, and as a demonstration of the facility of constructing
new binding tools afforded by Kernel’s simultaneous smooth treatment of operatives,
environments, and compound definiends.

Tools

The most basic operative in the facility is $let, which is merely a shorthand for
calling an explicit $lambda -expression:

($let ((〈p1〉 〈v1〉) · · · (〈pn〉 〈vn〉)) . 〈body〉)

≡ (($lambda (〈p1〉 · · ·〈pn〉) . 〈body〉) 〈v1〉 · · · 〈vn〉) ,
(7.1)

derivable in Kernel by

($define! $let

($vau (bindings . body) env

(eval (cons (list* $lambda (map car bindings) body)

(map cadr bindings))

env))) .

(7.2)

A critical difference between Scheme let and Kernel $let is that, in Kernel, the
definiends —the 〈pk〉 in (7.1)— can be compound. This allows any of the 〈vk〉 to spec-
ify a structured result that is then automatically destructured for separate binding of
its parts (whereas in Scheme the whole would have to be bound first, and then broken
down into its parts). Kernel treats definiends uniformly: any definiend may be com-
pound, and is matched structurally against pairs and nil as specified in §4.2. Kernel’s
smooth handling of definiends greatly streamlines the use of Kernel environments in
managing complex patterns of data flow; and, more specifically, streamlines various
combiner constructions throughout the dissertation (e.g., $letrec later in this sub-
section, mceval-combination et al. in Chapter 6), and the handling of encapsulation
below in §7.2.3

The “*” variant $lets process bindings in order from left to right, each binding in
the local environment provided by the preceding binding, so facilitating specification

2R6R Scheme also has two other let operatives, let-values and let*-values. However, those
two exist to support a Scheme misfeature called multiple-value return. In Kernel, “multiple-value
return” is a mundane special case of single-value return; see Footnote 3, below.

3Rationale for Kernel’s definiend handling —including how it interacts with Kernel’s treatment of
continuations to de-exceptionalize multiple-value return— is discussed in [Shu09, §4.9.1 ($define!)].

119

of a series of bindings where each may depend on its predecessors. In the case of
$let* ,

($let* ((〈p1〉 〈v1〉) · · · (〈pn〉 〈vn〉)) . 〈body〉)

≡ ($let ((〈p1〉 〈v1〉))
($let ((〈p2〉 〈v2〉))
· · ·

($let ((〈pn〉 〈vn〉))
($let () . 〈body〉))· · ·)) ,

(7.3)

which behavior is derivable in Kernel by

($define! $let*

($vau (bindings . body) env

(eval ($if (null? bindings)

(list* $let bindings body)

(list $let

(list (car bindings))

(list* $let* (cdr bindings) body)))

env))) .

(7.4)

The ($let () . 〈body〉) at the bottom of the nesting discourages accidents when
n = 0, by guaranteeing that the body will always be evaluated in a local environment.

The “rec” variant $lets compute the value for each binding within the local
environment where the binding will be created. The primary reason to do so is
recursion: if a combiner is bound in its own static environment, then it can see its own
name in order to call itself.4 $define! facilitates recursion too, but uses imperative
style for its environment mutation (more general, but therefore more error-prone);
and does not introduce a local block, so is non-global only when a local block has
been introduced by another construct.

Standard Scheme requires that the set of symbols to be bound in a local envi-
ronment must be fixed at environment construction (see also §5.3.2). The status of
Scheme letrec’s local bindings is therefore problematic during the time that the
values for those bindings are being locally computed: the bindings “exist” but have
not been given values, so that it is an error (meaning it’s wrong but the interpreter
isn’t required to notice5) for any of those value computations to use any of the local
bindings. The implementation of Scheme letrec as a hygienic macro initializes the
bindings to a hypothetical “undefined” value that, when discovered as the result of a
symbol lookup, causes an error; the values for the bindings are then locally computed,
and the bindings are mutated using Scheme set! .

4In principle, one can implement recursion using just $lambda , but the constructions to do so
are cumbersome; see [AbSu96, Exercise 4.21].

5R6R Scheme is required to notice.

120

Because Kernel $define! can locally bind symbols that had been locally un-
bound, there is no need to introduce a new concept (that of “undefined value” or
“uninitialized binding”) to explain $letrec . Its behavior follows equivalence

($letrec ((〈p1〉 〈v1〉) · · · (〈pn〉 〈vn〉)) . 〈body〉)

≡ ($let ()

($define! (〈p1〉 · · · 〈pn〉) (list 〈v1〉 · · · 〈vn〉))
. 〈body〉) .

(7.5)

While this equivalence is possible because $define! can bind previously unbound
symbols, it is simple because of $define!’s uniform treatment of compound defin-
iends, which allows all the bindings to be made in parallel after all the values have
been computed (guaranteeing that none of them will be able to see any of the other
local bindings).

Kernel $letrec is derivable by

($define! $letrec

($vau (bindings . body) env

(eval (list* $let ()

(list $define!

(map car bindings)

(list* list (map cadr bindings)))

body)

env))) .

(7.6)

Kernel $letrec* is equivalent to a nesting of $letrec s, just as $let* is equiv-
alent to a nesting of $let s:

($letrec* ((〈p1〉 〈v1〉) · · · (〈pn〉 〈vn〉)) . 〈body〉)

≡ ($letrec ((〈p1〉 〈v1〉))
($letrec ((〈p2〉 〈v2〉))
· · ·

($letrec ((〈pn〉 〈vn〉))
($letrec () . 〈body〉))· · ·)) .

(7.7)

Each binding value is evaluated in the environment where its binding(s) will be
created, and each successive value computation can see the bindings from previ-
ous clauses. The ($letrec () . 〈body〉) at the bottom of the nesting discourages
accidents when n = 0 by guaranteeing that the body will always be evaluated in a
local environment.

Because each binding clause is processed in a different environment, there cannot
be mutual recursion between combiners constructed by different clauses; however,

121

Kernel’s treatment of compound definiends affords the flexibility to construct and
separately bind mutually recursive combiners within a single clause, as in

($letrec* ((foo ($lambda () 1))

((bar

baz) (list ($lambda () (baz))

($lambda () (bar))))

(quux ($lambda () (bar))))

(quux))

(7.8)

(which won’t produce a symbol-not-found error, though it won’t do anything else
useful either).

$letrec* is derivable by

($define! $letrec*

($vau (bindings . body) env

(eval ($if (null? bindings)

(list* $letrec bindings body)

(list $letrec

(list (car bindings))

(list* $letrec* (cdr bindings) body)))

env))) .

(7.9)

The two remaining members of Kernel’s $let family, $let-redirect and $let-

safe , were discussed in §5.3.1 as means to promote stable bindings. They isolate their
local block from the surrounding environment, by using some other environment as the
parent for the local environment — either a specified environment ($let-redirect),
or a freshly constructed standard environment ($let-safe).

For these two operatives, the processing of binding clauses is auxiliary to the pri-
mary purpose of insulating the local block. Therefore, only one binding strategy is
supported: computing the binding values in unspecified order in the surrounding envi-
ronment (as for $let), which complements the local insulation by allowing controlled
importation of information from the surrounding environment.

Usage

The environment-isolating $lets —$let-redirect and $let-safe— could become
a cause of accidents if they were used casually; the programmer ordinarily expects
symbol meanings to be drawn from surrounding context, and exceptions to that rule
should be rare and well-marked. Use of isolated blocks should therefore be reserved
for large modular units of a software system. Since the isolating $lets aren’t to
be used often, and to clearly mark the rare occasions that they are used, they have

122

comparatively long, descriptive names.
The four Scheme-like members of the family have two uses in Scheme, both of

which continue in Kernel.
The simpler Scheme use is for temporary storage of auxiliary computation results

that are only needed in a certain block. One might write

($let ((temp (foo x y)))

(+ temp (* temp temp))) ,
(7.10)

in which side-calculation (foo x y) (whatever it is) is performed once and the result
stored for repeated use in the ensuing formula.

The more advanced use in Scheme is to provide local bindings that are only
accessible to compound combiners constructed in the local block, but that persist
between calls to those combiners. A classic example (which was discussed in §5.3.2,
and which arises in practice in §A.5) is an applicative that returns a larger integer
each time it is called, using a persistent local variable to keep track of what to return
next. The Kernel implementation of this example requires two local bindings: one for
the integer, and another referencing the local environment itself. The latter binding
gives the applicative means to mutate the persistent local environment.

($define! get-next-integer

($letrec ((self (get-current-environment))

(n 0))

($lambda ()

($set! self n (+ n 1))

n))) .

(7.11)

In Kernel, persistent local bindings are commonly shared by multiple compound
combiners, as in (hypothetically; a better way to do this will be developed in §7.1.2)

($letrec ((n 0))

($define! add-to-count

($let ((self (get-current-environment)))

($lambda () ($set! self n (+ n 1)))))

($define! get-count

($lambda () n))
...

) .

(7.12)

Permission to mutate the persistent local environment —conferred here by the bind-
ing of self— is potentially dangerous, and so should not be distributed any more
widely than necessary. Whenever a locally constructed combiner is given permission

123

to mutate the persistent local environment, any third-party combiner that captures
its local environment will then also acquire that permission. Here, $set! acquires
(and uses) permission to mutate the persistent local environment, and if $set! be-
haves as expected, + can acquire that permission, too (underlining the importance of
stabilizing the bindings of $set! and +). On the other hand, once a local environment
has been constructed for get-count, capturing that local environment would only
allow a third party to see the persistent local bindings, not to modify them.

It is therefore good practice to limit local mutation-permissions to those locally
constructed combiners that need it.

While a local block in Scheme might contain multiple local combiners, as in this
example, Scheme makes it awkward to export more than one object to the surrounding
environment; even if a list of multiple objects were returned as the value of the block,
Scheme doesn’t provide declarative means to separately bind the elements of the
returned list in the surrounding environment (since it doesn’t support Kernel-style
compound definiends). However, Kernel affords convenient multiple exportation, as
seen in the next subsection (§7.1.2).

7.1.2 Imperative binding

Standard Scheme supports just two cases of environment mutation: top-level define ,
which adds bindings to the global environment; and set!, which cannot create bind-
ings, but which can mutate any visible binding non-locally (undermining binding
stability, as discussed in §5.3.2). Scheme restricts local define to the beginnings of
blocks, so that it is effectively not a mutator, but an alternative notation for declar-
ative letrec .

Kernel’s three standard environment-mutators —$define!, $set!, and $pro-

vide!— are technically equi-powerful, in that any of them can be derived from ei-
ther of the others; but they are practically suited to play different roles. $define! is
streamlined for mutating the current environment (a task it performs more versatilely
than standard Scheme supports, as discussed above in §7.1.1). $set! is better suited
than either of the others for general forms of environment mutation — with an explic-
itly computed target environment, explicitly computed value to bind to, and general
definiend; it is commonly used to mutate an ancestor of the current environment, as
illustrated in §5.3.2 and §7.1.1.

$provide! is suited to the specialized task of constructing several bindings in a
local block and then exporting them back to the surrounding environment.

The first operand to $provide! is a list of symbols to be bound, and the remaining
operands are the body of a local block. A local child of the surrounding environment
is constructed; the expressions in the body are locally evaluated left-to-right; and
then each symbol is bound in the surrounding environment to whatever it is bound
to in the local environment. This behavior follows equivalence

124

($provide! 〈symbols〉 . 〈body〉)

≡ ($define! 〈symbols〉
($let ()

($sequence . 〈body〉)
(list . 〈symbols〉)))

(7.13)

(where $sequence evaluates its operands left-to-right in its dynamic environment
and returns the result of the last evaluation), derivable by

($define! $provide!

($vau (symbols . body) env

(eval (list $define! symbols

(list $let ()

(list* $sequence body)

(list* list symbols)))

env))) .

(7.14)

Using $provide!, one might then write (adapting the multiple-export fragment
from (7.12))

($provide! (add-to-count get-count)

($define! n 0)

($define! add-to-count

($let ((self (get-current-environment)))

($lambda () ($set! self n (+ n 1)))))

($define! get-count ($lambda () n))) .

(7.15)

Technically, the same thing could be accomplished using $define! or $set! . One
could write

($define! (add-to-count get-count)

($let ((n 0))
...

(list add-to-count get-count))) ,

(7.16)

returning the exported combiners in a structure to be broken down for binding to
the compound definiend; but then the programmer would have to manually maintain
coordination between the definiend at the top of the block, and the list of exported
objects at the bottom of the block — which might be very remote from each other in

125

a large module. Alternatively, one could write

($let ((outside (get-current-environment))

(n 0))
...

($set! outside (add-to-count get-count)

(list add-to-count get-count))) ,

(7.17)

so that the lists to be coordinated are adjacent; but then the surrounding environment
captured for use by $set! has also been made available to all of the tools in the local
block, none of which need it, multiplying its potential binding instability.

Use of $provide!, (7.15), in contrast to both alternative approaches, encapsulates
mechanical details of the intended bad hygiene —the exportation— so that the client
can more reliably avoid unintended bad hygiene.

7.2 Encapsulation

In modern programming languages, when a local block is encapsulated and exports
multiple combiners, the exports usually constitute one or more encapsulated data
types. Standard Scheme does not support programmer-defined encapsulated data
types; but Kernel, in accordance with its design Guideline G4 (The degree of en-

capsulation of a type should be at the discretion of its designer, §3.5 and [Shu09,
§0.1.2]), does provide a simple device for generating encapsulated types. Kernel’s
type-generation device figures prominently in Kernel style, complementing the multi-
ple-exportation facility of Kernel’s provide! (§7.1.2) and exploiting Kernel’s uniform
treatment of compound definiends.

Kernel’s type-generation facility consists of a single standard applicative, make-
encapsulation-type ([Shu09, §8 (Encapsulations)]). Each time it is called, make-

encapsulation-type returns a list of three freshly allocated applicatives, (e p? d)

where

• e, called an encapsulator, takes one argument, and returns a freshly allocated
encapsulation object. The argument to e is called the content of the encapsu-
lation.

• p? takes zero or more arguments, and returns true iff all of them are encapsu-
lations generated by e.

• d , called a decapsulator, takes one argument, which must be an encapsulation
generated by e, and returns its content.

The three applicatives form a matched set of tools for a newly constructed data type
(that exists for the duration of the Kernel interpreter session). The content of an
encapsulation can only be accessed via its matching decapsulator, so that limiting

126

visibility of the decapsulator limits access to the content of matching encapsulations.
A common Kernel idiom is to call make-encapsulation-type inside a $provide!

block, so assigning local names to its three results through a compound definiend,
then use the encapsulator and decapsulator as private tools from which to construct
public tools that are exported from the block. Schematically,

($provide! (public-constructor

type-predicate?

public-accessor)

($define! (encapsulator

type-predicate?

decapsulator) (make-encapsulation-type))

($define! public-constructor

($lambda · · ·))

($define! public-accessor

($lambda · · ·))) .

(7.18)

This idiom is used repeatedly in Appendix A (§A.5–§A.6), where it encompasses
most of the low-level code for the meta-circular evaluators. Another example is the
implementation of promises in [Shu09, §9 (Promises)].

7.3 Avoiding macros and quotation

Although general quotation facilities ($quote , $quasiquote , etc.) could be con-
structed in Kernel, their coexistence with first-class operative support would provoke
bad hygiene (as found repeatedly in Chapter 5 on Kernel hygiene, and also noted of
single-phase macros in §3.4.1). Macro constructors —template or procedural, naive
or hygienic— could also be constructed, but to do so would be of merely computa-
tional, not abstractional, interest. This section discusses how Scheme tasks involving
general quotation and macros can be accomplished via a Kernel programming style
that involves neither.

7.3.1 Macros

The elimination of macros and quotation is essentially a shift from implicit to explicit
evaluation. Starting from Scheme-style hygienic macros, the first step in the shift
is to convert the macros from template form, to procedural form using quasiquo-
tation. This step is straightforward, because quasiquotation is still a template-based
implicit-evaluation device; but the template in a quasiquoted expression, unlike that
in a template-macro, can be eliminated gradually — as will be done below in §7.3.2.

127

Put another way, all macros implicitly evaluate a constructed expression, but tem-
plate macros also perform the expression construction implicitly; procedural macros
by nature perform expression construction explicitly, so the residual use of quasiquo-
tation is only piecewise-implicit, not systemically implicit.

For now, we ignore hygiene issues in the conversion, to focus on the more global
algorithmic changes; hygiene will be restored later, during quotation elimination in
§7.3.2.

Scheme hygienic macros also use pattern-directed invocation, each macro selecting
from amongst multiple call-syntax–to–template clauses. In principle, the clauses are
(as noted in §6.4) analogous to syntax rules of a Chomsky type 0 grammar, hence can
be used to perform Turing-powerful syntax transformations; under the Smoothness
Conjecture (§1.1.2), however, Turing-powerful pattern-directed macro invocation is
an abstractional liability, since it heightens the mismatch between computations in
the two mutually segregated phases of processing. Procedural macros —and fexprs—
use ordinary Lisp facilities to express syntax transformations, obviating the need for
a separate syntax-transformation sublanguage.

If clause-selection were the only control structure in Scheme’s macro sublanguage,
the equivalent procedural macro could always make do with a top-level conditional
($if or $cond) to choose between the alternatives, and quasiquotation to handle
each alternative when chosen. However, clause selection only achieves Turing power
if one is willing to construct auxiliary macros to handle subcomputations; and these
auxiliary macros cannot be made local to the macro definition that they assist.6

Therefore, to reduce clutter of the client’s namespace with auxiliary macros that
modularly ought to be hidden, Scheme increases the expressive power of each indi-
vidual clause by means of an ellipsis facility for specifying and rearranging repeated
subpatterns. The ellipsis symbol (...) in a pattern indicates zero or more repetitions
of the subpattern it follows; and ellipsis can be distributed (in the algebraic sense)
in the template over the parts of a compound subpattern. For example, a Scheme
pattern-macro for simple $let,7

($define-syntax $let

($syntax-rules ()

(($let ((name val) ...) exp ...)

(($lambda (name ...) exp ...) val ...))) ,

(7.19)

distributes ellipsis of the binding-clause pattern (name val) over the parts of the pat-
tern. Distribution of ellipsis in a template-clause can be implemented in a procedural

6That is, one cannot declare the auxiliary macros in a local syntactic environment and then
export the primary macro from that local syntactic environment as an upward funarg; cf. §3.3.4.

7Full Scheme $let requires at least one expression in the body (because Scheme $lambda does),
and provides an extended syntax allowing the constructed $lambda -expression to call itself recur-
sively ([KeClRe98, §4.2.4]).

128

macro using map; here,

($define-macro $let

($lambda (bindings . body)

‘(($lambda ,(map car bindings) . ,body)

. ,(map cadr bindings)))) .

(7.20)

(As footnoted in §3.4.1, standard syntactic sugar for quasiquotation uses prefix back-
quote (‘) to designate a quasiquoted expression, and prefix comma (,) to designate
its unquoted, i.e. evaluated, subexpressions.)

Once macros are in procedural form, their remaining systemic commitment to
implicit evaluation can be eliminated by rewriting them as fexprs that explicitly
evaluate the same expression used in the procedural macro; that is,

($define-macro 〈name〉
($lambda 〈ptree〉
〈exp〉))

−→
($define! 〈name〉

($vau 〈ptree〉 〈eparm〉
(eval 〈exp〉 〈eparm〉))) .

(7.21)

In the above case of simple $let, (7.20), one would have

($define! $let

($vau (bindings . body) env

(eval ‘(($lambda ,(map car bindings) . ,body)

. ,(map cadr bindings))

env))) .

(7.22)

The fact that expression construction now occurs during evaluation rather than before
evaluation has no effect on the outcome of computation, because macro expression
construction has no side-effects.8

7.3.2 Quasiquotation

The remaining implicit evaluation in our converted code consists entirely of quotation,
which is distributed rather than systemic; that is, it can be eliminated gradually,
whereas the template-macro/procedural-macro and macro/fexpr distinctions were all-
or-nothing.

8Since macro expansion is Turing-powerful, it can have the side-effect of nontermination; but
we take nonterminating macro expansion to be axiomatically an error, since the purpose of macro
expansion is to provide syntax for subsequent evaluation, so that nonterminating macro expansion
has literally no purpose.

129

We have also neglected, thus far, to preserve the hygiene of the original Scheme
macros we were converting; for example, in the above quasiquoting fexpr, (7.22), sym-
bol $lambda is introduced by the construction and could be captured by the dynamic
environment env. The usual measures to restore hygiene, from §5.1, also further
reduce the amount of quotation used (consonant with the quotation/bad-hygiene
correlation). Capture of variables introduced by the construction is eliminated by
unquoting the symbols, so that the constructed expression contains self-evaluating
combiners rather than unevaluated symbols; simple $let would become

($define! $let

($vau (bindings . body) env

(eval ‘((,$lambda ,(map car bindings) . ,body)

. ,(map cadr bindings))

env)))

(7.23)

(the difference from (7.22) being the comma prefix on $lambda). Capture of variables
in the operands, by bindings introduced into the construction, is eliminated by pulling
the binding and its bound variable occurrences out of the constructed expression,
hence unquoting them; in the case of binary $or? from §5.1, naive fexpr

($define! $or?

($vau (x y) e

(eval ‘(,$let ((temp ,x)) (,$if temp temp ,y)) e)))

(7.24)

would become hygienic

($define! $or?

($vau (x y) e

($let ((temp (eval x e)))

($if temp temp (eval y e))))) .

(7.25)

Above and beyond the needs of hygiene, there are often further actions of the
constructed expression that could just as well have been performed directly in the
local environment, outside the constructed expression; and these usually should be
performed locally, as source code is clearer when it specifies what to do than when
it specifies how to specify what to do (i.e., direct code is clearer than indirect code).
This was done, for example, in the compound construction of $lambda in §4.3, (4.10),
where the call to wrap was performed locally rather than add a second layer to the
expression-construction.

If there is any quasiquotation left by now (binary $or?, for example, lost the last
of its quotation when it was made hygienic in (7.25)), the remaining quasiquotation
should be converted to explicit pair constructions using list, list*, and (when
occasionally clearer than list*) cons. Experience with Kernel to date suggests
that, by this point in the conversion, any remaining expression-construction is fairly
simple, so that the calls to list etc. will not themselves become a significant obstacle

130

to programmers reading the source code; note that overall smoothness of the language
should contribute to simplicity of expression-constructions (cf. the role of compound
definiends in the derivation of $letrec in §7.1.1, (7.6)). In the event that a large
complicated expression-construction is still needed, though, the Kernel programmer
has the option of modularizing the construction by means of local auxiliary combiners
— because in Kernel, the auxiliary combiners can be declared locally, and so not
clutter the client’s namespace.

7.3.3 Quoted symbols

With macros and quasiquotation eliminated, the only possible remaining vestige of
implicit-evaluation style is the quotation of individual symbols. The vast majority of
quoted symbols in macro templates will have been eliminated during conversion, by
one or the other hygiene measure; and the Kernel design further reduces the need to
embed unevaluated symbols in constructed expressions by avoiding keywords, such
as the else in the call-syntax of Scheme $cond (§2.2.3.2).

Explicitly embedded symbols can often be avoided stylistically, by designing com-
pound operatives so that all the unevaluated symbols for a constructed expression
are provided by the operands. All the derived binding constructs in §7.1 worked this
way, each extracting its definiends and body from its operand tree. The practice is
relatively hygienic, because the constructed expression will usually be evaluated in
the dynamic environment, which is where its captured parts were originally specified.
Free variables in the constructed expression are interpreted in the context where they
appeared (that surrounds the calling combination); bound variables in the constructed
expression are bound by declarative definiends that are specified in the same context
as the variables (that of the calling combination), as with the $let constructs of
§7.1.1; and even imperative definiends, as to $provide!, are apparent in the context
where the bindings will take effect. Also, aside from hygiene, an operative that draws
its variables and definiends from its operands is a more general tool than if these
things were hardwired into the operative, which is also good programming style by
promoting reusability.

Besides the construction of expressions to be evaluated, two other uses for an
unevaluated symbol are: to serve as a tag in a data structure, and to be used for
comparison with another object that might be the same symbol. The latter arises,
e.g., when checking a tag on a data structure; also, when looking up a symbol in a
table, as in the implementation of environments for the meta-circular evaluator, §A.5;
and when analyzing a value that has been read, as in the special-form handling of
the Scheme meta-circular evaluator, §6.1.

In these cases, the programmer can avoid introducing general quotation facilities
by combining the specification-by-operands technique with currying (§3.3.1). That is,
the requisite unevaluated symbol is provided to an operative constructor, which then
returns an applicative specialized to perform the relevant operation for that symbol

131

by drawing the symbol from its static environment (which is the local environment
of the constructor). Schematically,

($define! $constructor

($vau (symbol) #ignore

($lambda (· · ·) · · · symbol · · ·))) .
(7.26)

From the vanilla Scheme meta-circular evaluator (§A.5, §A.3),

($define! $make-tag-predicate

($vau (tag) #ignore

($lambda (x) (eq? x tag))))

($define! if-operator? ($make-tag-predicate $if))

($define! define-operator? ($make-tag-predicate $define!))

($define! lambda-operator? ($make-tag-predicate $lambda)) .

(7.27)

132

Part II

The vau calculus

133

Chapter 8

Preliminaries for Part II

8.0 Agenda for Part II

This chapter provides historical perspective, concepts, and conventions preliminary
to Part II. Chapter 9 develops pure vau calculi, clarifying that fexprs are not an
inherently imperative (side-effect-ful) feature. Chapters 10–12 develop impure vau
calculi, establishing that our fexpr strategy remains tractable in an imperative set-
ting. Chapters 13–14 prove basic well-behavedness results for vau calculi — Church–
Rosser-ness, standardization, and operational soundness. Chapter 15 relates the non-
reflective fexpr facility of vau calculi to the reflective fexpr facility of Mitchell Wand’s
well-known paper [Wa98].

8.1 Some history

8.1.1 Logic and mathematics

Progress in mathematics almost demands a complete disre-
gard of logical scruples.

— Morris Kline, [Kli72, §18.4].

Top-down design is a great way to redesign a program you
already know how to write.

— P.J. Plauger, [Pla86].

We selectively review the historical interplay between mathematics and logic.

Confusion may be avoided later by recognizing, at the outset, that there are no
universally agreed-upon boundaries for logic and mathematics. Rather, each of the
two subjects is pursued by a living community, and so ultimately each is defined by its
community: logic is what logicians study, and mathematics is what mathematicians

134

study. Historically, logic is the study of inference, and mathematics is the study of
number; and this might still be claimed, since study of inference can be stretched to
include nearly any reasoning, while number can be stretched to include nearly any-
thing reasoned about; but in practice, rapid technological expansion of mathematics
over the past four and a half centuries, and of logic over the past one and a half, has
provided great scope for disagreement over the boundaries of both disciplines.

The modern entanglement of mathematics with logic was precipitated by the
scientific revolution.

The ancient Greeks had imposed on mathematics such a high standard of rig-
orous justification that, for about two thousand years, it prevented generalizations
of number beyond the positive rationals. The scientific revolution called for more
powerful mathematical tools. Mathematicians first responded by abandoning rigor
in order to exploit extended forms of number — negative, complex, and infinite and
infinitesimal.1 By the early nineteenth century, though, the trend toward still more
general numbers led back into rigor. Driven by the ubiquity of directed magnitudes
in physics, and guided by the correspondence between complex arithmetic and plane
geometry, mathematicians were looking for a generalization of complex numbers that
would correspond to three-dimensional geometry ([Kli72, §32.2]); and there is such
a generalization, called quaternions; but general quaternion multiplication is non-
commutative.2 Mathematicians taking a non-rigorous approach had managed the
earlier kinds of numbers by assuming —incautiously but, in the event, correctly—
that the basic laws of arithmetic for positive integers would continue to hold for the
extensions; but when the familiar laws ceased to hold, a rigorous approach was needed
to work out what modified laws should apply.3

In the new paradigm of mathematical rigor, elements of a formal system would
be constructed mechanically, and their properties then deduced by logic. Once made
respectable by the success of quaternions, the new paradigm was used on an expanding

1The prolific mathematical advances of the eighteenth century (largely delimited, in both time
and content, by the life of Leonard Euler) were fueled by these extended forms of number. Irrational
numbers are less strongly associated with that century; by 1700, they had already been in wide
—though by no means universal— use in Europe for about one and a half centuries. Historically,
irrational numbers have been much more widespread than negative numbers: irrationals had to
be deliberately rejected (which they usually were), but negative roots of equations simply weren’t
conceived of. (See [Kli72, §13.2].)

2Arithmetically, the three products of the later vector analysis —scalar, dot, and cross— are
fragments of the quaternion product; and the cross product isn’t commutative, so the quaternion
product isn’t either. Geometrically, the quaternion product corresponds to rotation in three-space
(and four-space); and permuting a sequence of general rotations produces different results, so per-
muting a sequence of quaternion multiplications produces different results.

3Scientific paradigm shifts, such as the ones in mathematics that we’re describing, may look
like a reasoned progression of ideas when viewed from a comfortable distance, yet in detail be more
population replacement than conversion of individuals. Sir William Rowan Hamilton, who discovered
quaternions in 1843, already belonged to the minority of mathematicians at the time who favored a
rigorous approach — as did George Boole, who treated logic algebraically a few years later.

135

range of formal systems. At first, researchers pursued formal systems in the numerical
vein, notably leading them beyond quaternions to linear algebra. Even the early work
of George Boole and Augustus De Morgan in the mathematical treatment of logic has
a numerical flavor to it. However, in the last decades of the century, Gottlob Frege
attempted a radically different formal treatment of logic —the logistic program— in
which formal logic is founded on its own small set of formal principles, and all of

mathematics is then derived from it.
Frege began his program by constructing a new symbolic language for logic, re-

placing verbal syllogisms (in use since the ancient Greeks — “Some A is all B” and
the like4) with a calculus of propositions (substantially modern, though using his own
idiosyncratic notation). In doing so, he introduced so many of the staple concepts of
modern logic that he may fairly be considered its founder. Among his contributions,
of particular relevance here are the rigorous treatment of variables; decomposition
of propositions into propositional function and argument; and distinction between a
proposition p and the assertion that p is true. (See [Chu71, §iv.15], [Kli72, §51.4].)
Frege’s magnum opus was the two-volume Grundgesetze der Arithmetik (The Funda-
mental Laws of Arithmetic), of which Volume 1 came out in 1893 and Volume 2 in
1903.

Meanwhile, from about 1895 Georg Cantor’s investigation of infinite sets began to
uncover antinomies5 ([Kli72, §41.9]). In ordinary logic, once an antinomy is proven,
every expressible proposition can be proven, and proof itself becomes a worthless ex-
ercise. Further, a foundational problem in Cantor’s set theory had wider implications,
because uncountably infinite sets are used in analysis (the theory of real numbers,
i.e., including irrationals). Then Bertrand Russell adapted one of the earlier anti-
nomies to Frege’s logic (latterly called Russell’s Paradox), communicating it to Frege
in 1902, just as the final volume of Frege’s Grundgesetze was going to press. Further
logical antinomies were discovered in the next few years ([Kle52, §11]). Thus the
foundational crisis spread from analysis (underlain by uncountably infinite sets) to
all of mathematics (underlain by logic).

In evident response to the crisis, three schools of thought emerged on the proper
foundations for mathematics, called logicism (Frege’s approach), intuitionism, and
formalism.6 ([Kle52, Ch. iii], [Kli72, Ch. 51].)

4If you aren’t quite sure what “Some A is all B” means, the problem isn’t you; the correct
interpretation of syllogisms was sometimes a topic for debate in its own right. Today, we would
conduct such a debate in terms of existential and universal quantifiers, set membership (∈), and
subset (⊆) — all of which in their modern forms are due to Frege.

Incidentally, Aristotle would not have used a quantifier (here, “all”) on the predicate B; quantifi-
cation of the predicate was a refinement introduced in the early nineteenth century by another Sir
William Hamilton, this one a Scottish philosopher.

5An antinomy is a pair of mutually contradictory statements that are both provable. The term
antinomy is therefore more precise than the more commonly used paradox, which has been used col-
loquially for any logical conclusion that seems to defy common sense (such as Frederic’s predicament
in Act II of The Pirates of Penzance, [GiSu1880]).

6These names were assigned to the schools later.

136

Russell collaborated with Alfred North Whitehead in a second attempt at Frege’s
logistic program, deriving mathematics from logic; their attempt culminated in the
three-volume Principia Mathematica of 1910–13. They attributed the antinomies to
impredicative definitions, i.e., definitions that are not strictly prior to what they define
(such as the set of all sets, impredicative since the set contains itself; or the set of all
sets that do not contain themselves, viciously impredicative since its self-containment
leads immediately to Russell’s Paradox). To eliminate impredicativity, they stratified
properties (i.e., propositional functions) in the Principia by nonnegative integer type,
restricting each function to take arguments of strictly lower type.7 However, having
carefully arranged this stratification, they also introduced an axiom to collapse the
hierarchy (for every proposition involving properties of type ≥ 1 there is an equivalent
proposition with properties all of type 0), for which the justification, by their own
admission, was only that it was what was needed to found analysis. Even the authors
considered this axiom a stopgap.

Some mathematicians objected that infinity cannot be achieved, only perpetually
approached, and therefore it is nonsensical to treat any infinite structure (such as an
infinite set) as a completed object; this position had occasional proponents through
the nineteenth century.8 From 1907, it was incorporated into a detailed philosophy
of mathematics, intuitionism, by L.E.J. Brouwer. In the intuitionist view, mathe-
matics is exact thought, while logic is an application of thought to the experience
of language; so logic is based on mathematics, rather than mathematics on logic as
in logicism. Mathematics determines the validity of logical principles; logical consis-
tency or inconsistency is irrelevant to the validity of mathematical principles. When
deriving logic from mathematics, intuitionists reject the Law of the Excluded Middle
(for every proposition p, p ∨¬p), on the grounds that it only applies to completed,
i.e. finite, structures (and one can only perpetually approach “every proposition”).
In effect, they thus allow for the possibility of undecidable propositions; and, in the
process, also just happen to eliminate the known antinomies whose existence is of no
concern to mathematics. Without the Law of the Excluded Middle, parts of classical
mathematics apparently cannot be salvaged, and others require much more elaborate
devices than in their classical treatments. (But even Brouwer contributed to areas of
mathematics outside those justified by his philosophy.)

The nineteenth-century mathematicians supposed that each of their formal the-
ories was about some reality outside the formalism (e.g., Frege’s logic was meant to
model correct reasoning, making it that much more appalling when antinomies were
derived from it). At the end of the century, though, David Hilbert developed a dif-

7Ironically, and perhaps insightfully, the properties predicative and impredicative cannot be ad-
dressed in Russell and Whitehead’s logic, because these properties pertain to properties of every
type n ∈ N.

8That is, they objected to reifying the infinite (§1.2.4). The objection was expressed by Gauss
in 1831; by Kronecker in the 1870s and 80s; and later by Poincaré, whose criticisms tended toward
the snide, made more obnoxious by his accompanying tendency to be right. (For an acute mind,
philosophies of mathematics make good target practice.)

137

ferent approach. An axiomatic theory was to be based entirely on formal axioms
and rules of deduction, and the formal consequences of the theory would be studied
independent of whether any system of objects conforms to the theory. The existence,
or multiplicity, of systems conforming to the theory was then a separate question.

When the logical antinomies surfaced, Hilbert agreed that infinite structures are
not completed objects; but he did not consider difficulties with the previously pro-
posed formalisms sufficient cause to abandon either classical mathematics (notably,
analysis) or the Law of the Excluded Middle, both of which he judged too useful
to give up without a fight. Instead, his impulse was to study the consequences of
alternative formalizations of mathematics. He proposed specifically (in 1904) that
one could prove the consistency of a formal theory that correctly models classical
mathematics. About fifteen years later, he undertook to drive this program forward
himself,9 and a school of formalists developed around him. In the formalist program,
a formal theory is set up that models an informal theory of interest (typically some
portion of classical mathematics), and an informal theory —called the metamathe-

matics— is used to reason about the formal theory and, hopefully, prove that it is
consistent:

informal theory
(subject)

�

model of
-

interpretation of

formal
theory .

?

used to
reason
about

informal theory
(metamathematics)

(8.1)

Conclusions about the subject theory are valid only insofar as the metamathematics
uses principles whose validity is accepted beforehand; so Hilbert used substantially
intuitionistic metamathematics.

If mathematics is ‘what mathematicians do’, then its future must be dominated by
those who advocate wider mathematical investigations. Hilbert’s overarching strat-
egy retained existing mathematics and opened new frontiers for exploration, while the
logicists’ and intuitionists’ instinct was to fall back to a secure perimeter; so the future
could only belong, in this general and aphilosophical sense, to Hilbert.10 Moreover,

9The evolution of Hilbert’s program is described in some depth in [Za03].
10That is, of the three foundational approaches the future belonged to Hilbert; most mathemati-

cians didn’t have to take sides in the foundational dispute to get on with their work. Also keep in
mind that the advantage to Hilbert lay in proliferation, not suppression: the other two philosophi-
cal positions have continued since, as have their research agendas — with metamathematics added
to their toolkits. Regarding the longevity of the philosophical positions, Quine (himself a logicist)
observes in “On What There Is” ([Qu61, p. 14 of 1–19]) that the three positions on the founda-

138

his new frontier of metamathematical investigation turned out to be so powerful that,
by an acute use of it, Kurt Gödel was able to prove in 1931 that Hilbert’s specific
proposal (to prove classical mathematics consistent via intuitionistic metamathemat-
ics) is impossible. Gödel’s Second Theorem says that for any sufficiently powerful
formal mathematics M, if M is consistent then M cannot prove itself consistent
(or, put in its more confrontational form, ifM is able to prove itself consistent then
M is actually not consistent);11 therefore a consistent formalization of intuitionistic
mathematics cannot be used to prove its own consistency, let alone that of a classical
superset.

Just at this point, with Gödel’s Theorems about to make mathematical founda-
tions a much more overtly treacherous subject, the history of lambda calculus splits
off as a distinct historical thread.12 Alonzo Church suggested in 1932 ([Chu32/33]) an
alternative set of axioms for logic, with the two intents to (1) prohibit free variables
in propositions, in connection with which he introduced λ-notation to explicitly bind
the parameter of a propositional function;13 and (2) avoid antinomies without com-
pletely abandoning the Law of the Excluded Middle, for which he abandoned instead
reductio ad absurdum (if assuming p leads to an antinomy, then ¬p; which Brouwer
considered intuitive and therefore beyond reproach). In unremittingly formalist style,
he expressed the hope that if his axioms weren’t consistent one might be able to fix
the problem by tweaking them slightly, and also remarked that since the formal sys-
tem has in itself no meaning at all, it might turn out to be useful as something other
than a logic. He did tweak his axioms slightly the next year (1933); but by 1935 it
had emerged that there were antinomies in the system that were not readily avoided,
arising from basic elements of its structure — facilitated, in fact, by the first-class
status of functions in his system.14

tions of mathematics correspond to the three medieval positions on the existence of universals (i.e.,
roughly, on the existence of abstractions). Quine’s analogy would group Plato with Frege, Russell,
and Whitehead; John Locke with Brouwer; and William of Ockham with Hilbert.

11For sufficiently powerfulM (essentially,M encompassing integer arithmetic), one can construct
a proposition A ofM that amounts to “this proposition is unprovable”. If A is proven, that would
show that A is false, thus would constitute a proof of ¬A; if ¬A is proven, that would constitute a
proof of A; so ifM is consistent, both A and ¬A are unprovable. (This is Gödel’s Theorem, thatM
must be either incomplete or inconsistent.) But then, a proof thatM is consistent would constitute
proof that A and ¬A are unprovable; and a proof that “A is unprovable” is a proof of A, and a
proof of A means that M is inconsistent. (This, however, is scarcely more than a demonstration
of plausibility; for a sound informal explanation of the proof (and for the proof itself), see [Kle52,
§42].)

12General sources for the history of lambda calculus up to about 1980 are [Ros82], [Bare84, §1.1].
13In fact, λ was the only variable-binding device in Church’s logic; rather than introduce multiple

binding devices, he contrived higher-order propositional functions to do universal and existential
quantification independent of binding.

14The antinomy demonstrated in [KleRo35] is a form of the Richard Paradox, which concerns the
use of an expression in some class to designate an object that, by definition, cannot be designated
by expressions of that class. (A version due to G.G. Berry concerns the twenty-one syllable English
expression “the least natural number not nameable in fewer than twenty-two syllables”.) Naturally,

139

Church’s remark on non-logical applications was more fruitful. While the part
of the system involving only functions fostered antinomies when combined with the
logical operators, he and J.B. Rosser did prove that the functional part in isolation was
consistent ([ChuRo36]); and at the same time Church proposed that the functional
part of the system, in its own right, is sufficient to specify all effectively computable
functions ([Chu36]), broadly the Church–Turing Thesis.15 Church then systematically
developed the functional part as a model of computation in its own right, collecting his
treatment into a (highly compact) 1941 book titled The Calculi of Lambda-Conversion

([Chu41]).

8.1.2 Logic and lambda calculus

The traditional notion of logical consistency as freedom from contradictions is useless
for reasoning about the formal system of lambda calculus, because lambda calculus
doesn’t have a negation operator, so there is no way to formulate a contradiction.
Instead, one uses a more general notion of formal consistency as the property that
not every expressible proposition is provable. Consistency in this general sense is
prerequisite for the lambda calculus to mean anything useful (as inconsistency would
entail that all expressions mean the same thing), and also bears directly on whether
lambda calculus could ever be embedded in a larger formal system —such as Church’s
1932 logic— that does include negation, without instantly producing antinomies.

Church’s 1932 system had provided five general postulates for rewriting any sub-
term of a proposition to produce an equivalent proposition, three of which are retained
in the lambda-calculus subsystem:16

I. Renaming of bound variables (α-renaming). That is, λx1.T −→ λx2.(T [x1 ←
x2]), where x2 doesn’t occur free in T .

granting the designators first-class status aids formulation of the antinomy. A different antinomy
in combinatory logic based on Russell’s Paradox was later (1942) developed by Curry, involving
far fewer logical postulates than Kleene and Rosser’s, and relying much more heavily on first-class
functions (specifically, the Fixed Point Theorem); see [Ros82, §2].

15Church’s 1936 paper showed that the λ-definable functions and the recursive functions are the
same. Alan Turing had independently developed a mechanical notion of calculability that he also
considered universal, which he subsequently showed ([Tu37]) to be equivalent to Church’s functional
notion. (See [Sho95].) The Church–Turing Thesis, that the class defined in all these ways is just
the effectively calculable functions, may be called Church’s Thesis, or Turing’s Thesis, by those who
believe that one or the other of them had the idea first. Turing ended up as Church’s doctoral student;
in fact, most of the people we’re talking about at this point were Church’s students, with the notable
exception of Curry (who was three years older than Church, and was a student of Hilbert). Church’s
students included Kleene, Rosser, Turing, and later John Kemeny (co-inventor of the programming
language basic), Hartley Rogers, Jr. (author of [Rog87], the bible of recursive function theory),
and Dana Scott (co-inventor of denotational semantics, a.k.a. Scott-Strachey semantics). Regarding
names for the Church–Turing thesis, we prefer any doubt in our choice to lean toward Richard
Feynman’s rule, “Always give them more credit than they deserve.” ([Dy92].)

16The other two rewriting postulates concerned Church’s versions of existential and universal
quantification (Σ and Π).

140

II. Replacement of a lambda-application by substitution (β-reduction). That is,
(λx.T)T ′ −→ T [x← T ′].

III. Replacement of a substitution by a lambda-application (β-expansion). That is,
T [x← T ′] −→ (λx.T)T ′.

A pair of terms rewritable as each other under these rules are said to be convertible.
The basic Church–Rosser result was that there exist pairs of terms in the lambda
calculus that aren’t convertible; thus, if the system were extended with basis pos-
tulates making some lambda-terms provable, they wouldn’t necessarily all become
provable. (The lambda calculus itself, viewed as a subsystem of Church’s 1932 logic,
contains no provable propositions since all thirty seven of his basis postulates involve
non-lambda operators.)

To prove their result, Church and Rosser considered just the effect of β-reduction
(Rule II) on equivalence classes of terms under α-renaming (Rule I), thus replacing
the problem of bounding an undirected relation (conversion) with the more structured
problem of bounding a directed relation (reduction). Studying the reflexive transitive
closure of the directed relation, −→∗, they showed that for any T there is at most
one irreducible T ′ such that T −→∗ T ′, called a normal form T ′ of T ; therefore, any
two normal forms cannot be convertible to each other. Besides consistency, Church
and Rosser’s treatment also provides a suitable view of lambda calculus as a model
of computation, i.e., as directing the relation from a computational query (T) to its
answer (normal form T ′ with T −→∗ T ′).

The Church–Rosser strategy for studying directed rewriting systems grew over the
ensuing decades into a substantial subject in its own right; for a broad overview, see
[Ros82].

Parallel to Church’s development of lambda calculus (for which, remember, one of
Church’s goals had been to avoid free variables in propositions), H.B. Curry had been
developing a combinatorial logic in which there were no variables at all. (E.g., [Cu29].)
In the framework of lambda calculus, a combinator is any term with no free variables;
and, as it turns out, all possible combinators can be built up (up to behavioral equiva-
lence) out of just the two combinators K =λx.(λy.x) and S = λx.(λy.(λz.((xz)(yz)))).
(For example, the identity combinator I =λx.x is equivalent to (SK)K.)17 Curry’s
principal focus was metamathematical, studying the combinators as abstract func-
tions, rather than logical, studying the combinators as propositional functions; so he
chose to work with propositions of the form T = T ′ for combinatorial terms T, T ′,
rather than treating the terms themselves as potentially provable.

17As footnoted in §1.2, Church preferred a restricted lambda calculus, called λI-calculus, with
the syntactic constraint that in any term λx.T , T must contain at least one free occurrence of x.
Although λI-calculus is Turing-powerful, it cannot express the K combinator, λx.(λy.x) — which is
why the calculus more commonly used today, lacking the syntactic constraint and therefore able to
express K, is called λK-calculus.

141

Curry’s equational approach was later absorbed into the study of lambda calculi,
with T = T ′ iff T, T ′ are convertible. This approach gives lambda calculus an equa-

tional theory, in which the propositions are the possible equations between terms,
and formal equality is required to be a congruence on terms (that is, reflexive sym-
metric transitive and compatible). Where the Church–Rosser result, in its original
presentation, only bore indirectly on consistency by guaranteeing that if one term
were postulated (designated as provable) it wouldn’t necessarily imply all the others,
in the setting of an equational theory the Church–Rosser result says directly that the
theory is consistent, i.e., that not every equation is provable.

8.2 Term-reduction systems

Although fragmentary term-reduction systems were used in Part I as an informal
explanatory aid, in this part we will study complete reduction systems in depth;
and this will require their precise specification, including precise notation for keeping
straight the associated structures of multiple systems.18 The totality of structures
associated with a reduction system will be called, somewhat informally, a calculus.

Several of the main structures of a given calculus are named by regularly varied
forms of a general name for the calculus, consisting of a standard base letter qualified
by suffixes or subscripts. The base letter is generally chosen to identify the central
operator of the calculus: λ (lambda) for calculi based on that traditional constructor,
f(vau) for calculi based on the explicit-evaluation constructor of operatives. Heuristi-

cally, suffixes are used to distinguish variation by adding something, while subscripts
are used to distinguish variation by modifying something. Thus, λK-calculus adds
permissible syntax to the syntactically restricted λI-calculus; λδ-calculi add reduc-
tion rules of a certain class called δ-rules; λv-calculus modifies the rule for applying
a λ-expression. Many authors designate one particular calculus to be named with-
out suffixes or subscripts; in [Chu41], “λ-calculus” meant “λI-calculus”, while most
modern authors, including the current one, use “λ-calculus” for “λK-calculus”.

As stated, but not fully elaborated, in §2.3.2, the specification of a reduction
system has three parts:

1. syntax, which describes the syntactic structure of terms, and assigns semantic
variables to particular syntactic domains;

2. auxiliary semantic functions, which are named by semantic variables, or use
semantic notations, that didn’t occur in (1); and

18The uniform conventions presented here are designed particularly to facilitate keeping simulta-
neous track of many different reduction systems of widely varying kinds, including all those discussed
in this chapter (even though some of them aren’t treated formally in their discussion) as well as all
those developed or considered in later chapters. Elements of the conventions were drawn eclectically
from various sources, including [Bare84], [FeHi92], [WrFe94].

142

3. a set of reduction rule schemata, which are reduction relation assertions building
on the semantic variables and notations from (1) and (2).

The set of terms of a calculus is named by setting its base letter in upper-case
non-italic, and its suffixes in non-italic; thus, Λ for λ-calculus, Ffor f-calculus, ΛI
for λI-calculus, etc. (However, if a suffix of the calculus name is a lower-case greek
letter, it is boldfaced rather than non-italic; λδ-calculus would have term set Λδ.)
The set of closed terms, i.e., terms with no free variables, is named by superscripting
the term set name with “0”; thus, Λ0, F0, etc. The set of free variables of a term T
is denoted FV(T).

The term set is generated (usually, though not always, freely) by a context-free
grammar. In specifying the grammar, each syntactic domain is given a base letter for
use in naming semantic variables quantified over that domain, which doubles as the
nonterminal for that domain in syntax production rules; and a verbal name, using
one or more words (possibly abbreviated). The syntactic domain of terms is always
called “Terms”. There are two modes for specifying the domains.

• A domain may be specified by an EBNF (Extended Backus-Naur Form) pro-
duction rule. The production operator is “::=”, alternatives are separated with
“|”, and superscript “∗” indicates zero or more repetitions of an element of a
rule. The nonterminal symbol used for the domain is the base letter for se-
mantic variables over that domain. The verbal name of the domain is given in
parentheses to the right of the rule.

• A primitive domain, i.e., a domain whose members are atomic objects, usually
isn’t explicitly enumerated. Instead, the base letter and verbal name of the
domain are designated by asserting membership of the former in the latter via
“∈”. In this symbolic-notation setting, the verbal name is merged into a single
compound word, with capitalization marking the beginnings of the constituent
words.

For example, the syntax for the pure λ-calculus would be

Syntax:
c ∈ Constants

x ∈ Variables

T ::= c | x | (TT) | (λx.T) (Terms) .

(8.2)

Outside the specification of the syntax rules themselves, by convention when paren-
theses, “()”, occur at the outside of a term they may be omitted; so for terms in Λ
one may write “T1T2”, “λx.T”. (However, other delimiters such as “[]” are never
elided.)

To simplify the treatment of diverse calculi in this part of the dissertation, the
semantic variable letter for terms is always chosen to be “T” (whereas in common

143

practice for λ-calculus, including practice in this dissertation other than Part II, terms
use semantic variable letters M , N , and sometimes others).

A derivative syntactic domain in any calculus is that of contexts. Informally, a
context is “a term with a hole in it”. More precisely, a context has the syntactic
structure of a term except that, at exactly one point in its syntax tree where a term
could occur, syntactic meta-variable “2” occurs instead. The semantic variable letter
for contexts is always chosen to be “C”. Notation “C[T]” signifies the term resulting
from syntactic replacement of 2 by T in C.

A variable x is captured by a context C if for any term T with x ∈ FV(T), the
free occurrences of x in T are bound in C[T]. (It is still possible that x ∈ FV(C[T])
due to free occurrences of x in C.) The set of variables captured by C is denoted
CV(C).

For λ-calculus,

C ::= 2 | (CT) | (TC) | (λx.C) (Contexts) . (8.3)

In principle, the syntax of contexts could always be left implicit, since it can be
generated in a purely automatic way from the syntax of terms: the production rule
for C parallels that of T , with 2 as an alternative, non-recursive alternatives omitted,
and recursive alternatives modified so that exactly one subexpression is a context. For
clarity, though, we will often provide an explicit syntax of contexts.

The derived syntactic domain of poly-contexts generalizes that of contexts by
allowing multiple meta-variables 2k, and multiple occurrences of each meta-variable.
An m-ary poly-context (poly-context with arity m) has the syntactic structure of a
term except that, at zero or more points in its syntax tree where a term could occur,
some syntactic meta-variable 2k, with 1 ≤ k ≤ m, occurs instead. The semantic

variable letter for poly-contexts is always chosen to be “P”. Notation “P [
→

T]” signifies

the term resulting from syntactic replacement of each occurrence of 2k in P by
→

T (k),

the kth component of
→

T . Notation “ar(P)” signifies the arity m of P , “ar(
→

T)” the

arity m of
→

T .

By convention, each poly-context has a fixed arity, i.e., can only be used with one
certain number of operands. This arity has to be fixed by the discussion in which
the poly-context occurs, since it cannot be reconstructed from the syntax of the poly-
context, in which there may be zero occurrences of some meta-variables allowed by
its arity. Often, the arity of a poly-context is fixed indirectly, by requiring that it be
applicable to some particular vector of operands.

To facilitate the use of poly-contexts, vectors may be specified algebraically via a
summation notation. For semantic variable k over integers, and semantic expression
p(k) in variable k, notation “

∑

k p(k)” signifies the term vector whose kth element is
p(k), for k ranging from 1 to the largest consecutive integer for which p(k) is defined.

For example, given vector of functions
→

f ⊆ (Terms → Terms) and vector of terms

144

→

T , the vector constructed by applying elements of
→

f to corresponding elements of
→

T

would be
∑

k (
→

f (k))(
→

T (k)) with arity min(ar(
→

f), ar(
→

T)).

The word Variable will be used in a syntactic domain name only when that domain
is managed via substitution. Syntactic domain name Symbols, and semantic variable
letter s, are used in f-calculi for syntactic variables (in the sense of §2.1) that are
managed via environments. Variable substitution is provided as an auxiliary semantic
function using some variant of notation “(T1[x← T2])”. In λ-calculus,

c[x← T] = c

x1[x2 ← T] =

{

T if x1, x2 are syntactically identical

x1 otherwise

(T1T2)[x← T3] = (T1[x← T3])(T2[x← T3])

(λx1.T1)[x2 ← T2] = λx3.((T1[x1 ← x3])[x2 ← T2])
where x3 6∈ {x2} ∪ FV(T1) ∪ FV(T2) .

(8.4)

Also, binary reduction relations are understood to be relations between equivalence
classes under α-renaming of substitutionally managed variables; that is, equivalence
classes of the congruence generated, in the case of λ-calculus, by

λx1.T ∼ λx2.(T [x1 ← x2]) where x2 6∈ FV(T) . (8.5)

In effect, terms are treated as syntactically identical when they are congruent under
this relation — a treatment that must be respected by any auxiliary semantic func-
tions, including substitution. Note that the congruence only relates terms: contexts
are not terms and so are not subject to α-renaming (though a term generated by
replacement into a context is subject to α-renaming).

Syntactic equivalence (up to however much α-renaming the formal system sup-
ports) is designated by operator “≡α”, to avoid confusion with the various uses of
“=” associated with equational theories (which will be discussed momentarily).

The binary relation directly enumerated by the reduction rule schemata of a cal-
culus (that is, the set of reduction rules enumerated by systematically filling in all
permissible combinations of syntax for the semantic variables in each schema19) is
given a name using a different base letter than the calculus itself. The relation is
named by this base letter in boldface, often using the same qualifiers as its associated
calculus. In λ-calculus, the base letter for the reduction relation is β, so the name
of the relation is β; while the λv-calculus has relation βv. By convention, the enu-
merated reduction relation of a calculus uses base letter β even if the calculus itself

19This use of the term enumerated emphasizes that, under reasonable assumptions, the binary
relation can be enumerated by diagonalization. The reasonable assumptions are that each semantic
variable is universally quantified over an enumerable (a.k.a. countable) syntactic domain, and that
any additional constraints are decidable.

145

doesn’t use base letter λ; f-calculi qualify it with a subscript f, so the reduction rela-
tion of pure f-calculus would be β f. (There will be little occasion here for reduction
relations using other base letters.)

When stating that the enumerated reduction relation holds between terms, infix
operator “−→” is superscripted to designate the relation. If the name of the relation
doesn’t itself involve subscripts, infix “−→” is superscripted by the name of the
relation (not boldfaced). When the relation name has subscripts, some infix operator
superscript is chosen on a case-by-case basis; typically, the relation’s base letter is β,
and the infix superscript omits the β and concatenates its subscripts, as −→v for βv,
or −→ ffor β f.

Reduction rule schemata are specified using the unqualified reduction operator
“−→”. For example, the schema for pure λ-calculus is

(λx.T1)T2 −→ T1[x← T2] . (8.6)

This particular schema is traditionally called the β-rule (related to the names β-

reduction and β-expansion). A few other schemata have their own traditional names,
such as

λx.(Tx) −→ T if x 6∈ FV(T) , (8.7)

called the η-rule, whose enumerated reduction relation is called η.
For the principal reduction relation (or, step relation) of a calculus, the infix

operator of the enumerated binary relation is changed by shifting its superscript
to a subscript; thus, −→v becomes −→v, etc. In most calculi, the step relation is
the compatible closure of the enumerated relation, and this will be assumed unless
otherwise stated for a particular calculus. The reflexive closure of the step relation
is then designated by a superscript “?”, the transitive closure by a superscript “+”,
and the reflexive transitive closure by a superscript “∗”; thus, −→?

v, −→
+
v , −→∗

v.
In general discussion, occasionally one needs to distinguish an anonymous enu-

merated reduction relation from its compatible closure, without naming an associ-
ated calculus. The infix operator is then super/subscripted by “•”; thus, −→• for the
anonymous enumerated relation, −→• for its compatible closure.

The equational theory of a calculus varies the name of the calculus by boldfacing
the base letter and suffixes. Thus, the equational theory of λI-calculus is λI , of
λv-calculus is λv, etc. In calculi where the step relation is compatible, the equational
theory is simply the congruence generated by the step relation; if the step relation
isn’t compatible, the equational theory is explicitly specified. The equality relation
determined by the theory uses infix operator “=” with the same subscripts as the
step relation; thus, =v, = f.

20

20We are defining =• to be a semantic symbol, not a syntactic one; thus, T1 =• T2 is a meta-
mathematical assertion, not a formal one. Another important metamathematical notation in the
literature is T ⊢ T1 =T2, asserting that T1 =T2 belongs to theory T (an instance of metamathemat-

146

When a formal system —be it an equational theory or a reduction relation— must
be specified by an inductive process other than compatibility, its inductive postulates
may be stated via metamathematical notation

A1 . . . An

B
, (8.8)

where Ak, B are propositions of the system, denoting that if all the Ak are provable,
then B is provable. For example, one might have a parallel reduction relation with

T1 −→ T ′
1 T2 −→ T ′

2

T1T2 −→ T ′
1T

′
2

. (8.9)

Note that the Ak are formal propositions, not semantic assertions; if any semantic re-
strictions must be placed on the postulate, they are presented separately, maintaining
a crisp distinction between object theory and metamathematics. Thus, rather than
mixed (and therefore, by our conventions, invalid) notation

x 6∈ FV(T)

λx.(Tx) −→ T
, (8.10)

one would write

λx.(Tx) −→ T if x 6∈ FV(T) . (8.11)

Here is a complete reduction system specification for λ-calculus:

λ-calculus.

Syntax:
c ∈ Constants

x ∈ Variables

T ::= c | x | (TT) | (λx.T) (Terms)
C ::= 2 | (CT) | (TC) | (λx.C) (Contexts)

Auxiliary functions:
c[x← T] = c

x1[x2 ← T] =

{

T if x1 = x2

x1 otherwise

(T1T2)[x← T3] = (T1[x← T3])(T2[x← T3])

(λx1.T1)[x2 ← T2] = λx3.((T1[x1 ← x3])[x2 ← T2])
where x3 6∈ {x2} ∪ FV(T1) ∪ FV(T2)

Schemata:
(λx.T1)T2 −→ T1[x← T2] .

(8.12)

ical notation F ⊢ F asserting that formula F is provable in formal system F). Our notation is more
succinct, e.g. “T1 =v T2” rather than “λv ⊢ T1 = T2”. Occasionally, authors may write =• for the
formal operator, thus “λv ⊢ T1 =v T2” (e.g., [FeFrKoDu87]); but under our notational conventions
this would be a confusion between formal theory and metamathematics.

147

A frequently useful class of calculi are the λδ-calculi. These are formed from λ-
calculus —or from most variants of λ-calculus— by adding so-called δ-rules, which
are reduction rules of the form (T1T2) −→ T ′ where T ′ is closed and the Tk are closed
normal forms. (See [Bare84, §15.3], [Plo75, §3].) Rules of this form are convenient
when studying programming languages because they model the action of primitive
functions; and they are admissible theoretically because, as long as no two δ-rules
have the same left side and different right sides, their addition to a λ-like calculus
preserves Church–Rosser-ness. (That is to say, in essence, that a δ-redex in a larger
term T never disrupts, nor is disrupted by, another redex in T .) Since most results
about the calculus are relative to whatever δ-rules are chosen, it is usually convenient
to encapsulate the individual input-output pairs into a single semantic function which
is not specified in detail, and invoke the semantic function in a single schema. The
syntactic domain of constants may also be partitioned at the same time into several
subdomains. For example, one might amend λ-calculus Specification (8.12) by

Amendments for a λδ-calculus.
Syntax:

n ∈ Numbers

p ∈ PrimFns

c ::= n | p (Constants)
Auxiliary functions:

δ: PrimFns× Constants p→Λ0

Schemata:
(pc) −→ δ(p, c) if δ(p, c) is defined

(8.13)

(where operator p→ signifies a partial function). The schema limits δ-rule operands to
constants, not just to closed normal forms. The programming languages we consider
often do not have quite the same notion of halting as the calculi that model them, so
that a non-constant may be irreducible in the programming language but reducible
in the calculus. (E.g., SECD versus λv-calculus, below in §8.3.2.) It is therefore
convenient for modeling by λ-calculus that we restrict δ-rule operands to the syntactic
domain of constants, which by nature are irreducible in both systems. (This is also
convenient for specification since the syntactic domains are equipped with semantic-
variable letters.)

8.3 Computation and lambda calculi

8.3.1 General considerations

When a calculus is used to study some aspect of functions, syntactically distinct
terms represent intensionally distinct algorithms. Each equation means that two
intensionally distinct algorithms are extensionally indistinguishable, i.e., they have
the same effects. For the calculus to fully model the domain, there should be at

148

least one term representing each computable extensional function of interest; and for
the calculus to be a useful tool for study, there should be many equations between
intensionally distinct algorithms for each function.21

Neither Church–Rosser-ness nor compatibility of the step relation guarantees a
strong theory. Church–Rosser-ness guarantees that all alternative reductions of a
term T (that is, terms T ′ such that T −→• T

′) are equal; but it is entirely possible
to set up a reduction relation in which each T is reducible in at most one way, in
which case Church–Rosser-ness is trivial. Compatibility says that every nontrivial
context C engenders new reduction rules, hence new equations (T −→• T

′ implies
C[T] −→• C[T ′], T =• T

′ implies C[T] =• C[T ′]); but it is entirely possible to set
up a context-free syntax in which terms are non-recursive, i.e. a term cannot occur
within a larger term, so that the only context is the trivial one, C=2. However, both
properties facilitate strong theory. If there are nontrivial contexts, compatibility in-
duces equational strength; if a term can have nonoverlapping subterms, compatibility
induces alternative reductions; and if a term has alternative reductions, Church–
Rosser-ness induces equational strength.

When the particular focus of study is simply computation, there is no need for
functions to interact syntactically with their operands, which is to say, no need for
explicit evaluation. So, one may reasonably design the calculus around implicit eval-
uation, decoupling operand processing from the rest of computation and thereby
permitting a stronger theory. On the other hand, when the particular focus of study
is abstraction (per §1.1), the objects to be modeled are abstractive languages; and
where a computational function maps a semantic object to a semantic object (say,
an integer to an integer), an abstractive language maps a program text to another
abstractive language. So, the syntax of each function operand (being part of the
program text) potentially matters, which is to say that the function is operative.22

The portion of the theory dealing with operatives is necessarily weaker than that

21Maximally, the equational theory would be Hilbert Post complete, meaning that, for every equa-
tion e that isn’t in the theory (isn’t provable), postulating e would render the theory inconsistent.
The theory λη (closure of relation β ∪ η), restricted to the terms in Λ that have normal forms, is
Hilbert Post complete ([Bare84, §2.1]).

22Although abstractive languages have just made a cameo appearance, the discussion in which
they have appeared is about abstractive behavior of functions, that is, parametric artifacts within
a program. The objects of our calculi —terms, and subexpressions within terms— are naturally
understood to model programs and program objects (such as functions); calculi of the kinds con-
sidered in this dissertation do not directly model abstractive languages, and therefore are not very
well suited to support a theory of abstractive power. As an attempt to shift the focus toward ab-
stractive languages, one might try to model an abstractive language as a context, which takes a
term as “input”, and does interact with that input syntactically; and this has in fact been done, in
[Mi93]; but the corresponding “output” is a term, not a context, so at best this approach models a
single abstractive step, with no possibility of further steps to follow. Alternatively, [Shu08] proposes
to address abstractive power through a different class of formal systems, resembling abstract state
machines in which each state models an abstractive language, and each transition between states is
labeled by a program text.

149

dealing with applicatives — although, if the theory is set up so that applicatives are
clearly identified (as by a wrap device), the purely applicative subtheory may retain
its strength, and lend additional strength to partially constrained impure cases.

Although compatible Church–Rosser calculi may be highly useful models for study-
ing various computational facilities, they have not been historically successful as
primary definitions of those facilities. This difficulty showed itself immediately: Al-
though Church came to believe that λ-definability characterized effective calculability,
he was unable for several years to convince Kleene (whose research into their capa-
bilities had led Church to his belief), nor Gödel. By contrast, Turing’s automaton
candidate for effective calculability was readily persuasive to Gödel, and to others;
λ-calculus gained greatly in credibility from being proved equi-powerful to Turing
machines. ([Sho95].)

8.3.2 Semantics

In 1960, Christopher Strachey hired a technical assistant, Peter Landin, whom he
encouraged to spend part of his time on a side project of investigating the theory
of programming languages (as a result of which, the job Landin was hired to do re-
ceived too little of Landin’s time ([Cam85, §4], [La00])). From his theoretical study,
Landin proposed in 1964 an automaton, the SECD machine,23 for performing reduc-
tion of terms in a λ-calculus (extended somewhat for data and primitive operations).
The computational facilities defined by the SECD machine are typical of many pro-
gramming languages; they are not, however, consistent with the facilities of Church’s
λ-calculus. Particularly, SECD doesn’t reduce the body of an applicative until and
unless the applicative is called (so SECD halts on λx.T even if it has no normal form),
and SECD practices eager argument evaluation (call-by-value), fully reducing the ar-
gument of an applicative combination before performing the call (so SECD doesn’t
halt on (λx.T)T ′, even if it has a normal form, unless it also halts on T ′).24

In 1975 ([Plo75]), Gordon Plotkin proposed a general strategy to redress the
definition-versus-study problem, applying his strategy to the particular case of the
SECD machine. In broad outline, his approach would begin with an intuitively val-
idated operational semantics as primary formal definition of a subject facility, then
custom-build a compatible calculus sufficiently similar to the operational semantics
that one could prove suitable correspondences in both directions (semantics to calcu-
lus, calculus to semantics).

23The original paper on the SECD machine is [La64]. SECD is an initialism for the four compo-
nents of each configuration of the machine, called a dump: Stack, Environment, Control, Dump.

24Remember that in λ-calculus (but not λI-calculus), λx.T may ignore its argument. In λI-
calculus, there would be no difference between call-by-value and call-by-name unless side-effects were
introduced. This could be construed to imply that the K combinator is side-effect-ful. However, our
treatment of impure f-calculi in Chapter 10 will favor a more conventional view, that call-by-value
causes argument nontermination to become a quasi-side-effect.

150

For the operational semantics, Plotkin proposed to use a binary relation between
computational configurations of an abstract machine. He refined his views on this
point in [Plo81]. Although one could use as operational semantics the step relation
of a low-level mechanical automaton (such as the SECD machine that he necessarily
started with in his 1975 paper), he argued that this approach would retard intuitive
validation of the formal definition (which is critical since, as the primary formal
definition, it could only be validated intuitively). Instead, he recommended that low-
level automaton bookkeeping features such as states be omitted, and computation on
large configuration structures be built up inductively from computation on smaller
structures. One might use this technique to define a binary relation directly from
initial configuration to final configuration of the abstract machine, and in fact Plotkin
did this in the 1975 paper; but as later refined, his strategy was to define instead a
computation step relation, so that the relation would remain primitive.

The two variants of his strategy, in which the computation relation either maps
initial to final configuration, or takes primitive steps, are modernly called big-step

operational semantics and small-step operational semantics. Big-step operational se-
mantics was later developed as a strategy for type theory by Mads Tofte (in his doc-
toral dissertation, [To88]). The small-step approach affords a closer correspondence
with the reduction step of a calculus, and we will prefer it here.

The totality of structures associated with an operational semantics will be named
•-semantics to distinguish it from the corresponding •-calculus ; here, λv-semantics
corresponding to λv-calculus. The computation step relation in operational semantics
will be designated by infix operator “7−→”, subscripted similarly to the step relation
of the corresponding calculus; in this case, 7−→v. In small-step semantics, notation
eval•(T1) = T2 means that T1 7−→

∗
• T2 and T2 is irreducible; in big-step semantics,

eval•(T1) = T2 is synonymous with T1 7−→• T2. For all the semantics in this disserta-
tion, 7−→• will be unambiguous, i.e., to each term T1 there will be at most one term
T2 with T1 7−→• T2; therefore, eval• will always be a partial function.

For perspective, following are the postulates of Plotkin’s λv-semantics, as he re-
cast it from its low-level automaton version (itself a slight simplification of Landin’s
automaton). He assigned an integer “time” to each relation, for later use in his
treatment of the correspondence with his calculus, providing in effect a clue to the
otherwise absent small-step structure of the computation; here we denote the time
by stacking it above the relation operator.

151

λv-semantics.
Postulates:

c
1
7−→ c

λx.T
1
7−→ λx.T

T1
t
7−→ λx.T2 T ′

1
t′

7−→ T ′
2 T2[x← T ′

2]
t′′

7−→ T3

T1T
′
1

t+t′+t′′+1
7−→ T3

T
t
7−→ c T ′ t′

7−→ c′

TT ′ t+t′+1
7−→ δ(c, c′)

if δ(c, c′) is defined .

(8.14)

The operational semantics and calculus can’t be isomorphic (or why bother with
the calculus at all?), but need to correspond closely enough that one can learn about
the semantics by studying the calculus. Plotkin proved that

• every computation in the semantics is a reduction in the calculus; and

• every equation in the calculus implies that the terms are operationally equivalent

in the semantics, i.e., that interchanging them as subterms of a larger term won’t
change halting behavior, nor the result if it is an observable.

The operational equivalence relation uses infix operator “≃” with the subscripts of the
equality of the calculus. Precisely, T1 ≃• T2 iff for all closed C[T1], closed C[T2], and
observable T ′, eval•(C[T1]) is defined iff eval•(C[T2]) is defined, and eval•(C[T1]) = T ′

iff eval•(C[T2]) = T ′. A suitable definition of “observable” is provided as a parameter
of the correspondence; typically, the observables are a syntactic domain called Con-

stants (as above in (8.12) and (8.13)). Plotkin used the constants as observables, and
his second correspondence result says exactly that =v⊆≃v.

These general correspondence criteria allow that, as long as the calculus does
everything that the semantics does, and doesn’t violate the semantics publicly (i.e.,
observably), it can do as it likes in private. In particular, the semantics only has to
complete a reduction when the result is observable — which, in the case of Plotkin’s
semantics for SECD, (8.14), means that computation can return an unnormalized
λx.T provided λx.T will itself behave appropriately when applied.25

25Observable behavior is not only of interest when studying programming languages. Essentially
the same notion occurs in the theoretical pursuit of λ-calculus, under the name solvability: a term
T ∈ Λ0 is solvable if there exist T1, . . . , Tn ∈ Λ such that (. . . ((TT1)T2) . . . Tn) = I. (I = λx.x.)
Solvability is key to Barendregt’s advocacy of λK-calculus over Church’s λI-calculus. Church wanted
to treat every unnormalizable term as being meaningless ([Chu41, §17]), but setting all such terms
equal in λK would render the theory inconsistent. Barendregt argued that unsolvability is the
proper criterion for meaninglessness in λK ([Bare84, §2.2]).

152

Plotkin’s λv-calculus differs from ordinary λ-calculus only by adding a syntactic
constraint on the operand in the β-rule:

Amendment for λv-calculus.
Schemata:

(λx.T1)T2 −→ T1[x← T2] if T2 is not of the form T3T4 .
(8.15)

Note that, although one might casually refer to λv-calculus as “call-by-value” or
“eager-argument-evaluation” λ-calculus, whether the syntactic constraint in (8.15)
really qualifies as eager argument evaluation depends on one’s notion of evaluation.
It does qualify when correlated with Plotkin’s λv-semantics, (8.14), exactly because
that semantics doesn’t reduce the body of an applicative; but one might imagine
an operational semantics in which applicative bodies are reduced as far as possible,
and under that semantics λv-calculus would be only intermediate between eager and
lazy. A call-by-value calculus under that stronger notion of evaluation would further
restrict the β-rule so that T2 could have the form λx.T3 only if T3 is irreducible;
and that calculus would have a weaker equational theory than λv, since its reduction
relation would have less flexibility to choose alternative orders of operations.26

Plotkin’s strategy also has one other major element: he proposes that the corre-
spondences between semantics and calculus should be mediated by a standardization
theorem.

The Standardization Theorem for λ-calculus, due to Curry and Feys,27 says that
if T1 −→

∗
β T2, then there is a reduction from T1 to T2 that performs its individual

reduction steps in a canonical order (a.k.a. normal order, a.k.a. standard order; see
[Bare84, §11.4]). Because there is a standard-order reduction iff there is any reduction
at all, when theorem-proving one can often restrict one’s attention to standard-order
reductions without (thanks to the Standardization Theorem) loss of generality, con-
siderably simplifying the task of proof. Plotkin realized that, in attempting to prove
the correspondences between an operational semantics and calculus, the task would

26If one further (or instead) restricted β-reduction to irreducible arguments, one would also have
to resolve a technical difficulty: naively restricting the β-rule in this way destroys Church–Rosser-
ness. As noted in [Plo75, §4], the problem arises because substitution does not preserve the property
of irreducibility; i.e., T1[x← T2] may be reducible even though T1, T2 are both irreducible. Hence, a
combination (λx′.T3)T1 subject to β-reduction may cease to be β-reducible following a substitution
((λx′.T3)T1)[x← T2]. Church–Rosser-ness would then fail on the following example (adapted from
Plotkin):

(λx.((λy.z)(λw.(x(λx.(xx))))))(λx.(xx)) −→• (λx.z)(λx.(xx)) −→• z

(λx.((λy.z)(λw.(x(λx.(xx))))))(λx.(xx)) −→• (λy.z)(λw.((λx.(xx))(λx.(xx)))) .

The latter reduct cannot be reduced to z under the restricted β-rule, because its operand
λw.((λx.(xx))(λx.(xx))) has no normal form.

27[Bare84, §11.4] cites H.B. Curry and R. Feys, Combinatory Logic, Vol. I, Studies in Logic 65
(North-Holland, Amsterdam), 1958. The latter volume, “Curry and Feys”, was the standard refer-
ence on λ-calculus in the 1960s and 70s, prior to the 1981 appearance of Barendregt’s The Lambda

Calculus (of which [Bare84] is the revised edition).

153

be tremendously simplified if one had first identified, and proven a standardization
theorem for, a standard order of reduction coinciding closely with the operational
semantics.28 A small-step operational semantics has an evident advantage in this
regard, since it should already largely determine the corresponding standard order of
reduction.

8.3.3 Imperative semantics

In the late 1980s, Matthias Felleisen applied Plotkin’s strategy to two language facil-
ities that are traditionally considered imperative: first-class continuations (sequential

control), and mutable data structures (sequential state). Just as Plotkin had intro-
duced flexibility into the semantics–calculus correspondences in modeling SECD by a
calculus, so Felleisen further weakened Plotkin’s criteria to accommodate the imper-
ative behaviors of his calculi for imperative control/state. In fact, after successfully
constructing a variant λ-calculus by weakening one criterion,29 he went on to try two
alternative ways of modifying Plotkin’s strategy to model the same facilities.

The common problem of imperative control and state is that whenever the im-
perative facility is invoked (by transferring control, or by mutating state), the con-
sequences of the invocation aren’t local to the immediate redex: they may have, in
general, global consequences distributed across the entire term in which the redex
occurs; and Felleisen constructed his calculi on the assumption that the consequences
were in fact global. The notion of global consequences is, on the face of it, non-
compatible.

8.3.3.1 Imperative control

We first consider Felleisen’s 1987 operational semantics of first-class continuations,
λvC-semantics (per [FeFrKoDu87]). Syntactically, he added to Λ two new operators,
C and A (mnemonically, Capture continuation and Abort):

T ::= c | x | (TT) | (λx.T) | (CT) | (AT) (Terms) . (8.16)

The treatment of this imperative language involves repeated inductions over a selected
subset of the syntax structure; so Felleisen contrived to specify this subset just once,

28Standardization in Plotkin’s treatment constrains order of reduction, so that the terminology
“standard order of reduction” offers useful intuition — but with the caveat that, unlike Curry and
Feys’ notion of standardization, Plotkin’s does not always uniquely determine order of reduction.
The same will be true of the generalization of his approach here, late in Chapter 13.

29The basic work occurred in his doctoral dissertation, [Fe87]. The treatments here are based on
[FeFrKoDu87] and [FeFr89].

154

in the form of a restricted syntactic domain of contexts:

V ::= c | x | (λx.T) (Values)
T ::= V | (TT) | (CT) | (AT) (Terms)

C ::= 2 | (CT) | (TC) | (λx.C)
| (CC) | (AC) (Contexts)

E ::= 2 | (ET) | (VE) (Evaluation contexts) .

(8.17)

Using evaluation contexts, the small-step semantics for SECD-style λ become simply

E[(λx.T)V] 7−→ E[T [x← V]] , (8.18)

while those for A and C are

E[AT] 7−→ T

E[CT] 7−→ T (λx.(A(E[x]))) where x doesn’t occur in E .
(8.19)

Both A and C remove the context E from around the redex, while C also packages E
into a combiner and passes it to T .

These semantics are based on a network of mutually supporting assumptions,
entirely plausible when viewed from within, but (like the reflection/implicit-evalu-
ation association discussed in §1.2.4) on careful analysis, unnecessary. Here, the
supporting network consists largely of the following four assumptions:

(1) All continuations are bounded by termination; that is, they specify future
computation just until arrival at a final result. Continuations were originally con-
ceived as a way to represent the future of a computation as a function ([Rey93]), and
within its domain a function always terminates. However, the purpose of computa-
tion is not necessarily to terminate with a result (although traditionally this has been
assumed; see [GoSmAtSo04]); and continuations in practical programming are unlike
functions in that continuations have input but, from the program’s perspective, no
output. (Captured continuations in Kernel are, in fact, not combiners ([Shu09, §7
(Continuations)]).)

(2) Continuation capture gives the capturer complete control over all future com-
putation up to termination. This is evidently predicated on the existence of a unique
termination event. (But, as mentioned in §5.2.3, continuation capture in Kernel does
not necessarily give the capturer complete control over the future of computation.)

(3) Continuation capture is performed eagerly. That is, redex CT is exercised
at the first moment its context becomes an evaluation context (the moment C[CT]
has the form E[CT]). This is not how Scheme continuation-capture works; there the
analog of C is a procedure call/cc , which, being a procedure, is call-by-value so
takes no action until after argument evaluation. Superficially, call-by-value behavior
would appear in the operational semantics as making CE an evaluation context and
restricting the C schema to value operands:

E ::= 2 | (ET) | (VE) | (CE) (Evaluation contexts)

E[CV] 7−→ V (λx.(A(E[x]))) where x doesn’t occur in E .
(8.20)

155

(Call-by-value A could be articulated similarly.) However, even if continuation cap-
ture is thus postponed, when it does occur it will still be eager in the sense that the
entire evaluation context E is packaged into a function all at once; there is nothing to
suggest lazily packaging up just that part of the context that will actually have to be
restored when the continuation is invoked, because evidently all of the context will
have to be restored when the continuation is invoked. Lazy packaging of this kind
might be suggested if C did not remove its evaluation context; that is, if

E[CT] 7−→ E[T (λx.(A(E[x])))] where x doesn’t occur in E (8.21)

(which is, in fact, how call/cc works). One might then imagine a further variant of
the formalism in which, rather than putting all of E into the captured continuation at
once, one would lazily add surrounding context to it as it is passed outward through
that context (as an upward funarg; cf. §3.3.2ff), keeping the continuation-handling as
local as possible within the overall term and avoiding reference to a unique outermost
continuation (i.e., termination event).30 However, since C does remove its context E,
there is no redundancy between captured and surrounding contexts to suggest lazy
context capture.

(4) Continuation-capture is a global event. This assumption is implicit in much of
the above (termination, complete control, removal of context), and is the particular
point with which Felleisen’s three alternative treatments of continuations attempted
to cope.

Felleisen’s first approach was to formulate a compatible calculus for almost all of
the semantics, and then add a minimal number of non-compatible “computation rule”
schemata to provide the base case for outward propagation of information from the
point of call (CT or AT). To distinguish the non-compatible overall relation from its
compatible subset, he used a different infix operator, ⊲. Since ⊲vc isn’t compatible, it
can’t be Church–Rosser (which by definition requires compatibility); but, postulating
−→∗

vc⊆ ⊲vc, he required of ⊲vc that for all T1, T2, T3, if T1 ⊲vc T2 and T1 ⊲vc T3 then
there exists T4 such that T2 ⊲vc T4 and T3 ⊲vc T4 (the so-called diamond property, just
the condition that −→∗

• has to satisfy in order for −→• to be Church–Rosser). He
could therefore reason most of the time using traditionally well-behaved −→∗

vc, and
the rest of the time with the incompatible but still somewhat well-behaved ⊲∗vc. The
smallest equivalence containing ⊲vc he denoted =⊲

vc; but =⊲
vc isn’t compatible, so its

theory λvC
⊲ (unlike the theory λvC of =vc) isn’t really what one understands as an

“equational” theory.
The rule schemata for the inductive handling of continuations are

30Lazy capture of surrounding context will be supported by fC-calculus, in Chapter 11.

156

(AT1)T2 −→ AT1

V (AT) −→ AT

(CT1)T2 −→ C(λx1.(T1(λx2.(A(x1(x2T2))))))
where x1 6∈ FV(T1) ∪ {x2} and x1, x2 6∈ FV(T2)

V (CT) −→ C(λx1.(T (λx2.(A(x1(V x2))))))
where x1 6∈ FV(T) ∪ {x2} and x1, x2 6∈ FV(V) ,

(8.22)

and the computation rule schemata for the base cases are

AT ⊲ T
CT ⊲ T (λx.(Ax)) .

(8.23)

Felleisen couldn’t meet Plotkin’s calculus-to-semantics correspondence criterion, that
the full theory of the calculus should imply operational equivalence, because the
relations of Schemata (8.23) clearly don’t imply operational equivalence: one doesn’t
expect in general that C[AT] will have the same observable effect as C[T], nor C[CT]
as C[T (λx.(Ax))]. So =⊲

vc 6⊆≃vc. Weakening the criterion slightly, he proved that

(1) =vc⊆≃vc, and

(2) for all T1, T2, if, for all E, E[T1] =⊲
vc E[T2], then T1 ≃vc T2.

The latter result, though stronger than the former, is difficult to use, since its would-
be user must first show —presumably by induction— that E[T1] =⊲

vc E[T2] for all E;
but it does relieve the user of checking non-evaluation contexts, which operational
equivalence would otherwise engage.

Felleisen’s second approach to modeling continuations, in [Fe88], was to introduce
an enclosing syntactic frame, which he called a prompt-application, that would act as
an explicit bound on continuations — in place of the implicit bound of termination
from his earlier λvC

⊲-calculus. His prompt-application syntax was “(#T)”; adding
this to the λvC-calculus syntax of (8.17),31

T ::= V | (TT) | (CT) | (AT) | (#T) (Terms)

C ::= 2 | (CT) | (TC) | (λx.C)
| (CC) | (AC) | (#C) (Contexts)

E ::= 2 | (ET) | (VE) | (#E) (Evaluation contexts) .

(8.24)

31We have chosen to present here, for clarity of exposition, the λvC⊲-calculus from Felleisen’s
early paper [FeFrKoDu87]. His later control calculi, in [Fe88] and [FeHi92], are based on a different
version of λvC⊲-calculus, with no primitive abort operator A. For continuity of exposition, we
prefer to construct hybrid modified calculi (in this case, a hybrid λv#C-calculus), by applying the
modifications from the later papers to the version of λvC⊲-calculus from the earlier paper.

157

The base-case schemata for C and A, (8.23), can then be converted from computation
rules using ⊲ to ordinary rules using −→:

#(AT) −→ #T
#(CT) −→ #(T (λx.(Ax)))

#V −→ V ,
(8.25)

where the third schema, #V −→ V , removes the prompt-application operator at
the end of evaluation (akin to the self-evaluation base case for Lisp eval). The
problematic weakened calculus-to-semantics correspondence is restored to Plotkin’s
simpler form, =v#c⊆≃v#c.

Because prompt-application was made a compatible feature of the syntax (com-
patibility being the point of the exercise), it can be embedded at will within larger
terms, C[#T]. In that capacity it is an additional facility of the programming lan-
guage, serving to limit how much control over the future is granted by continuation
capture (i.e., weakening the complete-control assumption). The facility is a rudimen-
tary form of the exception-handling supported by languages such as Java and (more
so) Kernel.

Note that the introduction of an explicit bounding frame for evaluation is sugges-
tive of the explicit-evaluation paradigm of the current work.

Felleisen’s third approach, with Robert Hieb ([FeHi92]), was to base the seman-
tics/calculus correspondences on non-identity mappings from reduction sequences of
either system to the other. Recall that Plotkin had been looking, to begin with, at
configuration-reduction semantics (SECD) that had very different syntax than their
intended term-reduction calculi; he was just conveniently able to establish an iso-
morphism from the automaton to an operational semantics whose syntax coincided
exactly with the calculus. Moreover, as long as the mappings are sufficiently straight-
forward, they should not obstruct using the calculus to study the semantics.

Consider the compatible reduction relation −→vc of λvC
⊲-calculus, without the

computation step relation ⊲vc. The inductive Schemata (8.22) will cause As and Cs
to bubble up to the top level of the term, where they will accumulate irreducibly
because there is no base-case device to eliminate them. If the semantics/calculus
syntax were required to correspond identically, the calculus would have to eliminate
all the As and Cs because the semantics eliminates them; and this cannot be done
compatibly — but if the correspondences can be approximate, then it suffices to add
some simplification schemata so that the accumulated As and Cs are reduced to a
single operator.

The primary foci for simplification are terms of the form C(λx.T), which are
created by the inductive C-handling schemata in (8.22). Within a term of this form, T
can be reduced as if it has no surrounding context, because any surrounding context
will be removed by the outer C; the context C(λx.2) approximates #2 of λv#C-

158

calculus. Paralleling computation rule Schemata (8.23),

C(λx.(AT)) −→ C(λx.T)
C(λx.(CT)) −→ C(λx.(T (λx′.(Ax′)))) where x′ 6=x .

(8.26)

Call this system λvC
′-calculus. For any terms T, T ′ and x 6∈ FV(TT ′), if T 7−→vc T

′

then C(λx.T) −→∗
vc′ C(λx.T

′).

Also, =vc′ ⊆≃vc. Of the two correspondence results Felleisen proved from λvC
⊲-

calculus to λvC-semantics, this is stronger than the first result but weaker than the
second: T1 =vc T2 implies T1 =vc′ T2, since −→vc′ has all the schemata of −→vc plus
simplification Schemata (8.26); but E[T1] =⊲

vc E[T2] for all E does not necessarily
imply T1 =vc′ T2. The difficulty arises because simplification Schemata (8.26) can
only eliminate a control operator inside another if the outer operator is a C with a
λ just inside it — which is a common pattern since it is created by the inductive
C-handling schemata in (8.22), but is not a necessary pattern. (For example, let
T1 = C(λx.c) and T2 = C(C(λx.c)).)

To shore up the equational theory, [FeHi92] introduced additional schemata, so
that arbitrary control-operator applications could be converted into the form needed
for simplification:

AT −→ C(λx.T) where x 6∈ FV(T)

CT −→ C(λx1.(T (λx2.(A(x1x2)))))
where x1 6=x2 and x1 6∈ FV(T) .

(8.27)

Call this system λvCd-calculus (the somewhat arbitrary name used in [FeHi92]).
With the additional schemata, =vcd⊆≃vc turns out to be exactly as powerful as the
clumsier correspondence from Felleisen’s first approach; that is, T1 =vcd T2 iff for all
E, E[T1] =⊲

vc E[T2].

The formulation of Schemata (8.27) requires some care, against both cyclic re-
ductions (which become a problem if they interfere with existence of normal forms)
and violations of Church–Rosser-ness. Note that the difficulty of untangling these
problems in (8.27) results from cascading complexity of non-orthogonal interaction
between C and λ, visible first in (8.22), and then in (8.26).

8.3.3.2 Imperative state

To handle sequential state, Felleisen partitioned the syntactic domain of variables
into assignable and non-assignable,

xλ ∈ NonAssignableVars

xσ ∈ AssignableVars

x ::= xλ | xσ (Variables) ,

(8.28)

159

and introduced a new construct called a sigma-capability to perform assignment, with
notation “(σxσ.T)”:

V ::= c | xλ | (λx.T) | (σxσ.T) (Values)
T ::= V | (TT) | xσ (Terms) .

(8.29)

When a sigma-capability σxσ.T is applied to a value V , (σxσ.T)V , the language
evaluator assigns V to xσ and then evaluates T . Operator σ does not perform binding;
xσ must be bound by some enclosing λ. The assignment to xσ persists until the next
assignment to xσ, if any (possibly, but not necessarily, after evaluation of T).

Placing the capability syntactic frame σxσ.2 around T avoids the awkwardness of
an expression that returns no value (type void in Java); but it is also convenient for
making the assignment “bubble up” to the top level of the term, as control operators
A and C did in the λvC-calculi. One might imagine bubbling-up schemata for a
λvS-calculus such as

((σxσ.T1)V)T2 −→ (σxσ.(T1T2))V
V1((σxσ.T)V2) −→ (σxσ.(V1T))V2 .

(8.30)

This simple arrangement is complicated, however, by the need to track the assigned
values of variables over time. The traditional technique is to maintain a global store,
which is a mapping from locations to values ([Stra00]). An abstract-machine con-
figuration in the semantics consists of a term paired with a store. When a subterm
(λxσ.T)V is β-reduced, rather than substituting V for xσ in T , we map a fresh loca-
tion l to V in the store, and substitute l for xσ in T . Evaluating a subterm l consists
of replacing it by its value in the current store (which depends on when the subterm
is evaluated).

160

λvS
′-semantics.

Syntax (amending λv-semantics):
xλ ∈ NonAssignableVars

xσ ∈ AssignableVars

l ∈ Locations

x ::= xλ | xσ (Variables)
V ::= c | xλ | (λx.T) | (σxσ.T) | (σl.T) (Values)
T ::= V | (TT) | xσ | l (Terms)

B ::= l ← V (Bindings)
S ::= {{B∗}} (Stores)

Auxiliary functions (amending λv-semantics):

{{B1 . . . Bm}} · {{B
′
1 . . . B

′
m′}} = {{B1 . . . Bm B

′
1 . . . B

′
m′}}

lookup(l, {{l′ ← V }} · S) =

{

V if l= l′

lookup(l, S) otherwise

dom({{l1 ← V1 . . . lm ← Vm}}) = {l1 . . . lm}

Schemata:

〈E[(pc)], S〉 7−→ 〈E[δ(p, c)], S〉 if δ(p, c) is defined

〈E[(λxλ.T)V], S〉 7−→ 〈E[T [xλ ← V]], S〉

〈E[(λxσ.T)V], S〉 7−→ 〈E[T [xσ ← l]], {{l ← V }} · S〉
where l 6∈ dom(S)

〈E[l], S〉 7−→ 〈E[lookup(l, S)], S〉 if l ∈ dom(S)

〈E[(σl.T)V], S〉 7−→ 〈E[T], {{l ← V }} · S〉 .

(8.31)

Locations are essentially just another kind of variable, with global scope and no
possibility of local shadowing. Two configurations are considered equivalent when
they differ only by an isomorphism of locations, just as terms are considered equiv-
alent when they differ only by an isomorphism of bound variables. However, stores
present a new kind of challenge, because they are fundamentally alien to a term-
reduction system (whereas contexts, the basis for continuations in λvC-calculi, are
native to terms). Before constructing a calculus, we want to eliminate the stores.
Moreover, setting up direct correspondences between a semantics with stores and a
calculus without would be problematic at best. So Felleisen devised first an isomor-
phic semantics without stores, and then constructed a calculus corresponding to the
store-free semantics.

In eliminating the store, one has to decide where to keep the value assigned to a
location. Felleisen abandoned the idea of keeping the value for a location in a single
place; instead, he proposed to maintain copies of the value at all points in the term
where the location occurs as a subterm. Wherever ΛS′ would use a subterm l, with
a visible binding l← V1 in the store, the store-free syntax ΛS has a labeled term V l

1 .

161

When l is assigned a new value V2, each subterm V l
1 is replaced by V l

2 ; and when V l

is evaluated, the label is removed so that subsequent assignments to l won’t replace
that subterm. The labeled-value substitution semantic function, that replaces values
of label l, has notation “(T1[•

l ← T2])”.
This arrangement is complicated by the need to handle self-referencing terms.

Technically, self-reference arises in λvS-semantics when an assignable variable xσ

occurs in the body of a λ- or σ-expression that, in turn, occurs in a value assigned
to xσ; e.g., (σxσ.xσ)(λxλ.xσ). To represent such circular structures by finite terms,
when an l-labeled value has an l-labeled subterm, the subterm must be the special
anonymous l-labeled value, “•l”; so (σxσ.xσ)(λxλ.xσ) would reduce (in a context that
binds xσ) to (λxλ.•

l)l. The anonymous •l is also used, as a notational convenience,
when the variable in a capability frame σxσ.2 is given a location; that is,

(σxσ.T)[xσ ← Ll] = σ•l.(T [xσ ← Ll]) . (8.32)

When a labeled subterm V l is delabeled by evaluation, its internal self-references •l

are all expanded to V l, reducing the subterm to V [•l ← V l]; in the running example,
(λxλ.•

l)l becomes (λxλ.(λxλ.•
l)l). The internal copies of V l are pending algorithmic

recursive calls, rather than self-references to the identity l of a data structure (which
would presumably be fixed at the time pre-existing V l is evaluated), since the se-
mantics practices implicit evaluation (so that all expressions —including references
to assignable variables— are algorithms rather than data structures). Consequently,
evaluation of the subterm stops after this one level of expansion, as all the internal
self-references are embedded within λ- or σ-expressions, from which recursive calls
are algorithmically deferred.

Distributing the store into the term has the fringe benefit of eliminating garbage
collection as a formal consideration (which would have required configurations to be
considered equivalent not only under trivial isomorphism of locations, but under non-
trivial elimination of unreachable bindings): when the last reference to a location
disappears from the term, no explicit binding for the location lingers after it. The
price for this simplification is paid at the meta-level (metamathematics, language
interpreter). Metamathematically, the syntax of terms is no longer context-free, be-
cause all the subterms of a term must now maintain consistency with the same implicit
store. This in turn weakens the metamathematical notion of compatibility, because
some terms are syntactically prohibited from some contexts. For a naive language in-
terpreter, each term may be much larger than an equivalent configuration with store,
since each referenced value of an assignable variable is repeated at each reference
point; while, if an interpreter seeks to conserve space by using pointers to a single
copy of each subterm, it takes on an additional administrative burden (which may
amount to simulating a store, hence garbage collection).

162

λvS-semantics.
Syntax (amending λv-semantics):

xλ ∈ NonAssignableVars

xσ ∈ AssignableVars

l ∈ Labels

x ::= xλ | xσ (Variables)
V ::= c | xλ | (λx.T) | (σxσ.T) | (σ•l.T) (Values)
T ::= V | (TT) | xσ | •

l | V l (Terms)

A ::= xσ | V
l (Assignable values)

X ::= xσ | •
l (Capability parameters)

L ::= • | V (Label subjects)
where

a term Ll has the form •l iff it occurs within a larger term V l;
a term λx.T cannot contain a subterm V l with x ∈ FV(V l); and
in a term T1T2, if V l

1 is a subterm of T1, and V l
2 of T2, then V1, V2

must be identical up to content of labeled subterms.

(8.33)

(Rigorously, maintaining the first context-sensitive constraint requires active mea-
sures in both the schemata and the definition of substitution, to anonymize labeled
subterms as they are introduced into contexts with the same label; we will elide these
measures, for clarity of exposition.)

The qualification up to content of labeled subterms on the third context-sensitive
constraint allows for a self-referencing structure that is referenced from multiple points
within the structure. For example, a subterm (σxσ.((σx

′
σ.(xσx

′
σ))(λxλ.xσ)))(λxλ.x

′
σ)

should reduce in suitable context to (λxλ.(λxλ.•
l)l′)l(λxλ.(λxλ.•

l′)l)l′ (and thence to
final evaluation result λxλ.(λxλ.(λxλ.•

l)l′)l).

λvS-semantics.
Schemata:

E[(pc)] 7−→ E[δ(p, c)] if δ(p, c) is defined

E[(λxλ.T)V] 7−→ E[T [xλ ← V]]

E[(λxσ.T)V] 7−→ E[T [xσ ← V l]]
where l doesn’t occur in E, T, V

E[V l] 7−→ E[V [•l ← V l]]

E[(σ•l.T)V] 7−→ E[T][•l ← V l] .

(8.34)

Definitions of the substitution functions (for non-assignable variables, assignable vari-
ables, and labeled values) are tedious but straightforward, except for the case of
substitution for the parameter in a capability frame (σX.2), where X can only be
replaced by an anonymous labeled value:

163

(σX.T)[xλ ← V] = σX.(T [xλ ← V])

(σX.T)[xσ ← Ll] =

{

σ•l.(T [xσ ← Ll]) if X =xσ

σX.(T [xσ ← Ll]) otherwise

(σX.T)[•l ← Ll] = σX.(T [•l ← Ll]) .

(8.35)

(The one subcase that replaces the parameter was given earlier, as (8.32). For the
complete labeled-value substitution function, see [FeFr89, §4].)

Despite the administrative complexity incurred by self-reference in λvS-semantics,
the self-reference is of a restrained form: references can only consist (as cautiously ob-
served earlier) of algorithmically deferred lookup of a symbol to determine the value
result of a previous evaluation. The restraint would be more apparent if bindings were
managed by environments rather than by substitution; then λ- and σ-expressions
would evaluate to closures (as in §3.3.2), each capturing its static environment, and
any assignable-variable instances in the body of the resulting applicative would not be
touched until the applicative was actually applied to an argument. (Sic: a capability
would evaluate to an applicative, which when applied would assign its argument to
its parameter in its static environment, instead of creating a local environment for the
binding.) A more immediate form of self-reference is supported by Scheme’s (and Ker-
nel’s) data-mutation applicatives set-car! and set-cdr!, in that a self-referencing
algorithm can cause non-termination only if it is applied, but a self-referencing data
structure can cause non-termination merely by being evaluated.

The non-compatible λvS
⊲-calculus corresponding to λvS-semantics bubbles as-

signments up to the top level, and then distributes the assigned value to the entire
term by substitution in a computation rule:

λvS
⊲-calculus.

Schemata (assignment):

((λxσ.T1)V)T2 −→ (λxσ.(T1T2))V if xσ 6∈ FV(T2)
V1((λxσ.T)V2) −→ (λxσ.(V1T))V2 if xσ 6∈ FV(V1)

((σX.T1)V)T2 −→ (σX.(T1T2))V
V1((σX.T)V2) −→ (σX.(V1T))V2

(λxσ.T)V ⊲ T [xσ ← V l] where l doesn’t occur in T, V

(σ•l.T)V ⊲ T [•l ← V l] .

(8.36)

Delabeling (i.e, evaluation of a labeled value) is also side-effect-ful, so also has to be
globally coordinated. Labeled values are therefore also bubbled up to the top level,
where delabeling is performed by a computation rule; but bubbling-up of labeled
values can’t alter the labeled value (as bubbling up a capability alters the capability),
so instead additional λ’s are introduced to shift the labeled value upward:

164

λvS
⊲-calculus.

Schemata (delabeling):

V1V
l
2 ⊲ V1(V2[•

l ← V l])

V l ⊲ V [•l ← V l]

V lT −→ (λxλ.(xλT))V l where xλ 6∈ FV(T)
(V A)T −→ (λxλ.((V xλ)T))A where xλ 6∈ FV(V T)
V1(V2A) −→ (λxλ.(V1(V2xλ)))A where xλ 6∈ FV(V1V2) .

(8.37)

In the same paper where Felleisen and Hieb describe their compatible control cal-
culus, λvCd-calculus, they also describe a compatible state calculus (in our nomen-
clature, λvSρ -calculus; [FeHi92, §4]). Where the compatible control calculus uses
contexts C(λx.2) as bounding frames, the compatible state calculus uses admixtures
of λ with σ to construct bounding frames providing a partial environment in effect over
a subterm. In their treatment, an environment is a set of assignable-variable bindings
(versus the location bindings of a store), linearized by an ordering of the variables,
and with at most one binding for each variable. Because the binding frames are
extremely cumbersome in the unsweetened notation of ΛS, they introduce syntactic
sugar “ρe.T” for effecting environment e over subterm T :32

ρ{xσ,1 ← V1, . . . xσ,m ← Vm}.T
= (λxσ,1 . . . xσ,m.((σxσ,1 . . . xσ,m.T)V1 . . . Vm))(λxλ.xλ) . . . (λxλ.xλ)

(8.38)

(which depends, in turn, on abbreviation

((λx1x2 · · · .T)V1V2 · · ·) = (· · · (((λx1.(λx2. · · ·))V1)V2) · · ·) (8.39)

and similarly for σ).33

ρ -frames must involve both λ and σ because otherwise there would be no way
for ρ to express self-reference: the much simpler ρ{xσ ← V }.T =(λxσ.T)V would put
any free occurrence of xσ in V outside the scope of the specified binding xσ ← V .34

32We are using our own internally consistent base letters for semantic variables. Whereas we use
e for environments, in [FeHi92] they used θ; and they consistently used e for expressions, which we
call terms, T .

33Shorthand (8.39), without which the right-hand side of (8.38) would be effectively unreadable, is
standard in studies of λ-calculus. Such conventional abbreviations of λ-calculus are mostly avoided
in this dissertation, on the principle that they remove from sight technical details that cannot safely
be put out of mind.

34This difficulty arises because Felleisen’s binding construct for assignable variables, λxσ .2, is
non-orthogonal to applicative combination (presumably in structural imitation of his other binding
construct, λxλ.2, whose sole purpose is applicative combination). The corresponding fcalculus
(Chapter 12) will use an assignable-variable binding construct orthogonal to combination.

165

The basic λvSρ -calculus simplification schemata, analogous to the λvS
⊲-calculus

computation rule schemata of (8.36) and (8.37), are

ρe.((λxσ.T)V) −→ ρe ∪ {xσ ← V }.T
where xσ 6∈ dom(e) ∪ FV(V)

ρe ∪ {xσ ← V1}.(V2xσ) −→ ρe ∪ {xσ ← V1}.(V2V1)

ρe ∪ {xσ ← V1}.((σxσ.T)V2) −→ ρe ∪ {xσ ← V2}.T .

(8.40)

Without the computation rules, though, explicit bindings accumulate at the top level,
even if the bound variables aren’t used. It is therefore necessary to introduce a garbage-
collection schema:

ρe ∪ {xσ ← V }.T −→ ρe.T if xσ 6∈ FV(ρe.T) . (8.41)

Note that, by keeping each assignable-variable binding in just one place, the λvSρ-
calculus entirely eliminates labeled subterms, and with them all the convoluted provi-
sions for algorithmic self-reference. Each assignable-variable subterm remains in place
until it is evaluated (as would a symbol under an explicit-evaluation discipline); and
further, when it finally comes time to replace the variable with its currently assigned
value, the replacement is done without substitution.

8.4 Meta-programming

8.4.1 Trivialization of theory

It was observed in §1.2.3 that adding object-examination to an implicit-evaluation
calculus trivializes its equational theory. To see this in detail, consider the addition
of a quotation device to λ-calculus. Denote quotation of a term T by (QT). The
normal form of QT ought to contain essentially the same information as unevaluated
T itself; so assume, for simplicity, that QT is irreducible.

The root of the problem is that equality should be compatible. With the introduc-
tion of quotation context Q2, this means that T1 =• T2 should imply QT1 =• QT2.

Our expectation for the behavior of quotation is that QT1 means the same thing
as QT2 only when T1 and T2 denote the same evaluable structure; so for compati-
bility, T1 =• T2 only when T1 and T2 denote the same evaluable structure. Under
implicit evaluation, though, the only difference between an evaluable structure and
the result of evaluating it is whether it has been reduced yet; so two terms denote the
same evaluable structure just when they are syntactically identical. Thus, the only
equations are the reflexive ones T = T that are required of every equational theory by
definition (equality being reflexive symmetric transitive and compatible). An equa-
tional theory that contains only reflexive equations is trivial, a property that is dual
to inconsistency since a trivial theory is perfectly uninformative by admitting nothing
whereas an inconsistent theory is perfectly uninformative by admitting everything.

166

A trivial equational theory, besides being useless, also flies in the face of the usual
practice in calculi of generating the equational theory from the reduction relation
(unless the reduction relation is empty, in which case reduction is useless too). That
is, we ordinarily expect T1 −→

∗
• T2 to imply T1 =• T2, and T1 =• T2 to imply the

existence of a term T3 with T1 −→
∗
• T3 and T2 −→

∗
• T3. Suppose that, in order

to retain the use of the equational theory in studying the reduction relation, we
are willing to adjust our understanding of “quotation” by admitting QT1 =• QT2

whenever T1 and T2 have a common reduct.
To further support object-examination, suppose operators E , L, andR (mnemonic

for Eval, Left, and Right), and schemata

E(QT) −→ T
L(Q(T1T2)) −→ QT1

R(Q(T1T2)) −→ QT2 .
(8.42)

If we were still trying for the traditional semantics of quotation, these schemata would
be complicated by the need to prevent reduction of a quoted subterm; but now we
are deliberately allowing that subcase. Call this system λQ-calculus. Since reduction
implies equality,

E(QT1) =Q T1

L(Q(T1T2)) =Q QT1

R(Q(T1T2)) =Q QT2 .
(8.43)

Writing K for the combinator λx.(λy.x), we have for all terms T , (KK)T −→∗
β K;

therefore, for all terms T1 and T2,

(KK)T1 =Q (KK)T2 . (8.44)

By compatibility,

E(R(Q((KK)T1))) =Q E(R(Q((KK)T2))) ; (8.45)

and by the behaviors of the meta-programming operators, (8.43),

E(R(Q((KK)T1))) =Q T1

E(R(Q((KK)T2))) =Q T2 .
(8.46)

So T1 =Q T2, for every possible T1 and T2, which is to say that the theory λQ is
inconsistent.

In proving inconsistency, we used compatibility but never actually reduced a
quoted subterm. A single reduction step on a quoted subterm allows us to further
prove that −→Q isn’t Church–Rosser (−→∗

Q doesn’t have the diamond property).
Suppose T1, T2 have no common reduct, and x 6∈ FV(T1); then

R(Q((λx.(T1T1))T2)) −→Q QT2

R(Q((λx.(T1T1))T2)) −→Q R(Q(T1T1)) −→Q QT1 .
(8.47)

167

(It is possible to choose T1, T2 with no common reduct despite equational inconsistency
exactly because reduction is not Church–Rosser.)

The explicit-evaluation solution to this predicament is to explicitly distinguish
between a combination T1T2 and a term designating evaluation of T1T2. We use
operator E to designate evaluation of its operand; so T1T2 can only be reduced by
compatible reduction of T1 or T2; β-reduction requires an evaluation context, E(T1T2).

We’ll call this new system λE-calculus.
Of the three meta-programming Schemata (8.42), the first is unchanged,

E(QT) −→ T . (8.48)

There are several ways one might adapt the object-examination schemata, the sim-
plest of which is

L(T1T2) −→ T1

R(T1T2) −→ T2 .
(8.49)

Here, each examination operator (L or R) eagerly extracts the appropriate part of
its operand, but does not initiate evaluation of its operand. The programmer can in-
duce operand evaluation before examination by putting an E inside the examination
operator (L(E2) or R(E2)); and can exempt the result of examination from a sur-
rounding evaluation context by putting aQ outside the examination operator (Q(L2)
or Q(R2)). One could modify the schemata so that the examination operator au-
tomatically initiates operand evaluation before examination, but that would require
new syntax to distinguish the operator before initiation from the operator after initi-
ation (which, as the schemata stand, we can distinguish with existing syntax). One
could modify the schemata so that examination only takes place in the presence of a
surrounding evaluation context (E(L2) or E(R2)), but there is no need to wait for an
evaluation context since examination terms LT or RT are not themselves subject to
examination before reduction (so reducing them eagerly doesn’t cause inconsistency),
and eager reduction promotes strong theory.

Constants self-evaluate,

Ec −→ c . (8.50)

Variable evaluations, Ex, are irreducible, because the calculus uses variable substitu-

tion, so Ex represents an incomplete evaluation that should proceed once substitution
replaces x with some evaluable term T (via (Ex)[x← T]).

As a first attempt at handling application evaluation, one might have

E((λx.T1)T2) −→ E T1[x← T2] . (8.51)

However, the operator of a combination might need to be reduced first in order to
achieve the form λx.T1, and for strength of theory we would also like to be able to

168

reduce the operand before β-reduction. So, as a second attempt, we split the schema
into two stages, the first to initiate subterm evaluation and the second to β-reduce:

E(T1T2) −→ E ′((ET1)(Q(ET2)))
E ′((λx.T1)T2) −→ E T1[x← T2] .

(8.52)

New operator E ′ keeps track of the fact that operand evaluation has already been
initiated35 (so it isn’t initiated multiple times, which would reintroduce an erratic form
of implicit evaluation). The quotation context Q2 around the operand evaluation
ET2 is needed to prevent the operand from being evaluated a second time after being
substituted into the evaluation context of the body.

As a first attempt at a schema for evaluating λ-expressions, one might have

E(λx.T) −→ (λx.(Q(ET))) ; (8.53)

but since λ-expressions, like examination terms LT and RT , aren’t subject to exami-
nation, there is no need to wait for a surrounding evaluation context before initiating
evaluation of the body, and for strength of theory we would rather not wait. So
we introduce new syntax 〈λx.T 〉 to indicate that body evaluation has already been
initiated, and schemata

(λx.T) −→ 〈λx.(ET)〉
E〈λx.T 〉 −→ 〈λx.T 〉 .

(8.54)

The second application-evaluation schema in (8.52) is adjusted to use 〈λx.T 〉 rather
than (λx.T), and not to initiate a second evaluation of T .

In all,

λE-calculus.
Syntax (amending λ-calculus):

T ::= c | x | (TT) | (λx.T) | 〈λx.T 〉
| (LT) | (RT) | (ET) | (QT) | (E ′T) (Terms)

Schemata:
E(QT) −→ T
L(T1T2) −→ T1

R(T1T2) −→ T2

Ec −→ c
Qc −→ c

E(T1T2) −→ E ′((ET1)(Q(ET2)))
E ′(〈λx.T1〉T2) −→ T1[x← T2]

E ′(pc) −→ δ(p, c) if δ(p, c) is defined
(λx.T) −→ 〈λx.(ET)〉
E〈λx.T 〉 −→ 〈λx.T 〉

(8.55)

35Operators E and E ′ correspond to meta-circular evaluator applicatives eval and combine . The
name C was considered before E ′, but was rejected because it could also be mnemonic for Cons.
The limited vocabulary of single-symbol operator names is one reason why f-calculi will introduce
Lisp-like multi-character operator names.

169

As an illustration of the eager subterm-evaluation devices,

E((λx.x)(QT)) −→E E(〈λx.(Ex)〉(QT))
−→E E

′((E〈λx.(Ex)〉)(Q(E(QT))))
−→E E

′((E〈λx.(Ex)〉)(QT))
−→E E

′(〈λx.(Ex)〉(QT))
−→E E(QT)
−→E T .

(8.56)

Note that it is possible to construct a cons device from the facilities provided, e.g.
C=λx.(λy.(Q((Ex)(Ey)))) — which is, essentially, a quasiquotation construct (§7.3,
§3.4.1). Then,

E((CT1)T2) −→
+
E (ET1)(ET2) . (8.57)

In generating an equational theory λE from −→E , the proof of inconsistency
from λQ-calculus is foiled because there are no equations of the form T1T2 =E T3

unless T3 =T ′
1T

′
2 with T1 =E T

′
1 and T2 =E T

′
2. Equation (8.44), which equated two

combinations with arbitrary operands T1 and T2, has become

E((KK)T1) =E E((KK)T2) , (8.58)

and its consequence Equation (8.45) has become

R(E((KK)T1)) =E R(E((KK)T2)) ; (8.59)

and this doesn’t lead in general to T1 =E T2 because operator R can’t act until its
operand is reduced to something of the form (T1T2). (In fact, its argument never
achieves this form here, since E((KK)T) −→+

E 〈λx.〈λy.(Ex)〉〉.)

8.4.2 Computation and logic

Trivialization of theory is not a computational problem. The λ-calculus augmented
by quotation operator Q, with its traditional semantics (preventing evaluation of
its operand), is a valid programming system, and remains so with the addition of
operators E , L, R. The only computational difficulty in the previous subsection
(§8.4.1) arose in a failed attempt to modify the programming system for the sake
of its logical treatment — and even that difficulty, non-Church–Rosser-ness, isn’t
necessarily a computational problem either; though unwanted in this case, in some
programming situations nondeterministic behavior might be intended.

This is an instance of a much broader principle. Programming power demands
freedom to mix behaviors freely; this is the essence of the Smoothness Conjecture
(§1.1.2), that removing restrictions on how language facilities can be used increases the
potency of the language. Hence the early gravitation of Lisp interpretation technology
toward using Lisp as its own meta-language, and hence Lisp’s formidable abstractive

170

power. Yet, substantially the same blurring of descriptive levels in a logical system
is cosmically fatal, invalidating the foundations of the system; it is the root cause of
the classical antinomies — circular logic, a.k.a. impredicativity (§8.1.1), a.k.a. tangled

hierarchies ([Hof79]). Logical power demands crisp separation between descriptor
and described;36 this is a recurring historical theme of §8.1.1 — presumed by Russell
and Whitehead’s Principia, proven by Gödel’s Second Theorem, and witnessed by
the logical failure of Church’s λ-calculus (whose expressive flexibility fostered both
computational power and logical antinomies).

Consider the classical Russell’s Paradox: the set A of all sets that do not contain
themselves, A = {X | X 6∈ X}, provably does not contain itself (by reductio ad

absurdum), and also provably does contain itself (by reductio ad absurdum and the
Law of the Excluded Middle). The Lisp analog would be an applicative predicate A

of one argument, which assumes that its argument X is a predicate of one argument,
and returns true iff X returns false on argument X :

($define! A

($lambda (X)

(not? (X X)))) .
(8.60)

When A is given itself as argument, it never terminates; but note the vast difference in
scale of repercussions. Set A failing to resolve its own self-membership caused many
of the greatest mathematical minds of the early twentieth century to reassess the
whole infrastructure of their subject. Applicative A failing to return when given itself
as argument just isn’t a very big deal. Programmers are accustomed to working with
algorithms that don’t terminate on all inputs, and this one is already by nature at the
mercy of the termination behavior of its argument; so, depending on circumstances,
the programmer might not even consider nontermination of (A A) to be a bug, but
just a practical restriction on how A should be used.

The key point to keep in mind, while struggling with the logical properties of
calculi, is that the problem is how to reason about computation — not how to com-
pute. For computation itself, the only problem that can arise is that we might have
specified a different facility than we had meant to (on which we reassure ourselves,
in part, by reasoning about its properties).

In contrasting computation with logic, brief mention may be made of the Curry-

Howard correspondence. The original correspondence, foreshadowed by Curry and
Feys in 1958 and sharpened by Howard in 1969 ([Bare84, §A.3]), identifies simple
types τ in λ-calculus with propositions p in intuitionistic logic, such that there exists
a term T with type τ iff there exists a proof P of proposition p — and, remarkably, the
syntactic structure of T is isomorphic to that of P. In 1990, Timothy Griffin showed

36One might frame this in quantum-mechanical terms, as crisp separation between observer and
observed. Evidently quantum mechanics under the Copenhagen interpretation more resembles logic
than computation.

171

an extended correspondence between simple types in Felleisen’s then-recent λvC
⊲-

calculus and proofs in classical logic, [Gri90],37 sparking a small flurry of follow-up
research in the years since (see [DoGhLe04]).

Note, however, that despite the temptation to intuit the Curry-Howard correspon-
dence as relating computation with logic, in fact the correspondence is between two
logical systems — one for constructing proofs of propositions in logic, and one for
constructing simple types for terms in a calculus (thus reasoning about computation,
rather than actually doing computation).

37Griffin was working at Rice University, to which Felleisen had relocated following his doctoral
program.

172

Chapter 9

Pure vau calculi

9.0 Introduction

In the setting of computational semantics and calculi, pure means without side-effects.
A function is pure if applying it never has side-effects. A calculus is pure if subterm-
reduction never has side-effects.

Purity belongs to the same general class of well-behavedness properties as hygiene
(Chapter 5). Like hygiene, purity is concerned with interactions between parts of
a program, and its detailed definition must be parameterized in general by certain
interactions that are permitted in the given language. The main specifically permitted
interaction in Lisp/λ-calculus, for both properties, is function application.

However, hygiene —as presented in Chapter 5— starts from the position that all

interactions are suspect, and then focuses in on plausibly eliminable interactions that
may compromise static scope (such as operand or environment capture); side-effects
are disregarded for Lisp hygiene, even though they are generally non-static, because
they are considered too fundamental to the Lisp paradigm for their elimination to
be plausible. Purity starts by looking only at actions within a subcomputation that
affect the context in which the subcomputation occurs (“upward” influences, heedless
of “downward” influences of the context on the subcomputation), and focuses in on
influences by one subcomputation that must be resolved before some other, disjoint
subcomputation can proceed. In the high-level view of a semantics/calculus, function
application is the only upward influence excepted from the notion of side-effects.

Side-effects are a form of ill-behavedness, weakening the equational theory of the
calculus in that (1) when a subterm reduction contains a side-effect, it cannot be
equated compatibly with a resultant value, and (2) when a subterm reduction is
predicated on side-effects of other, disjoint subterm reductions, it may not even have

a unique resultant value (nor unique side-effects) with which to be equated.

In our understanding of the thesis, we take as given that Scheme is a reasonably
well-behaved language, and use it as a standard against which to judge the change
in well-behavedness when fexprs are introduced. Our interest in side-effects in the

173

presence of fexprs is, therefore, primarily focused on side-effects that were not al-
ready allowed in the absence of fexprs. Hygiene violations in the presence of fexprs
create new opportunities for side-effects, by exposing a greater variety of contexts
to possible influence; but since these new opportunities are contingent on bad hy-
giene, they are indirectly mitigated by the measures against bad hygiene discussed
in Chapter 5. What we do want in order to support the well-behavedness claim of
the thesis, and what the current chapter provides, is a demonstration that fexprs
are not themselves inherently side-effect-ful, i.e., that there is such a thing as a pure
f-calculus. Treating pure f-calculi first also allows us to work out the fundaments

of the vau-based approach before introducing the complications of sequential control
and state in Chapters 10–12.

9.0.1 Currying

Frege observed in 1893 that, for a minimalist theory of functions, it suffices to support
functions of a single argument ([Ros82, §1]); an n-ary function can be modeled by a
series of n unary functions, each of which builds the next knowing all its predecessors’
arguments, until the last (nth) function in the series, knowing all n arguments, per-
forms the operation of the modeled n-ary function. The principle was rediscovered
in the 1920s by M. Schönfinkel, and the technique of modeling an n-ary function
by a higher-order unary function is today commonly called currying (after Curry,
whose combinatory logic (§8.1.2) extended Schönfinkel’s work). Church also used
this principle to simplify his treatment of functions, limiting λ-expressions to a single
parameter.

However, the simplification to exclusively unary functions is only valid when study-
ing computation alone. We expect f-calculi to address abstraction as well as compu-
tation, and this necessarily includes the treatment of arbitrarily structured operand
lists. (Cf. the roles of generalized parameter trees in the derivations of apply and
list in Chapter 4, and of binding constructs in Chapter 7.) Therefore, although cur-
rying will usually be apropos to some strictly computational subset of each f-calculus
(a subset that will, in fact, be isomorphic or near-isomorphic to λ-calculus), devices
in f-calculi that work directly with the structure of operand trees will not be subject
to currying.

9.1 fe-calculus

Fragments of a pure calculus were used in §4.3.1 to explain the semantics of Kernel.
No deterministic order of reduction was assumed, so the system so described would
not suffice as a primary definition of full Kernel, which is side-effect-ful; but for the
pure subset of the language, we take it as a starting point. (Deterministically ordered
semantics will be formulated in Chapter 10.) We call this system fe-calculus (e being

174

the semantic-variable base letter for environments).

fe-calculus.

Syntax:
d ∈ PrimitiveData

o ∈ PrimitiveOperatives

s ∈ Symbols (with total ordering ≤)

B ::= s← T (Bindings)
e ::= 〈〈B∗〉〉 (Environments)

S ::= d | o | e | #ignore | ()
| 〈operative T T T T 〉 (Self-evaluating terms)

A ::= [eval T T] | [combine T T T] (Active terms)
T ::= S | s | (T . T) | 〈applicative T 〉

| A (Terms)

V ∈ {T | every active subterm of T
is within an operative or
environment} (Values)

where
bindings in an environment are in order by bound symbol; and
no two bindings in an environment bind the same symbol.

(9.1)

The separately stated constraints on environments enforce environment normaliza-
tions. Without these normalizations, the equational theory would be severely weak-
ened (two environments differing only by permutation of visible bindings wouldn’t be
equal in the theory, and other equation failures would follow from that by compati-
bility); and without grammar constraints, the normalizations could only be enforced
by reduction rule schemata. Schemata were used to enforce environment normal-
ization in λS-calculus, (8.40) and (8.41); but in that calculus, environments didn’t
have their own dedicated syntax: they were represented by an admixture of λ- and
σ-expressions, whose use for environments could not be constrained in the gram-
mar because λ- and σ-expressions also had other uses in the semantics and calculus.
Here the syntax of environments is dedicated; so, given the opportunity, we prefer
to enforce the normalization grammatically, thereby simplifying the reduction rule
schemata with which proofs will have to contend.

Technically, the separately stated constraints are context-sensitive, in the Chom-
sky sense; but here they cause no difficulty because they are contextually local. That is,
although they limit how terms T can be constructed, and how contexts C can be con-
structed, they do not in any way limit which terms T can be used with which contexts
C. (Contextually non-local syntax constraints reduce the advantage in equational
strength afforded by compatibility, by reducing the set of equations C[T1] =• C[T2]
implied by any given T1 =• T2. We will introduce only one such in our f-calculi, in
Chapter 12, to support an innately non-local facility.)

175

Recall that the traditional treatment of λ-calculus had only one compound syn-
tactic domain, T (e.g., (8.2)). Here in (9.1) there are six compound domains; but
only one of them, B, exists to impose a structural constraint within the grammar.
The other four auxiliary compound domains (e, S, A, V) are provided for conve-
nient reference elsewhere, such as in specifying semantic functions and reduction rule
schemata. Notably, S is the domain of terms that self-evaluate,

[eval S e] −→ S , (9.2)

while V is the domain of terms that can be passed as operands to an operative, and
A exists to facilitate the definition of V .

An auxiliary compound domain (i.e., other than the primary domain T and the
simple domains, here d, o, s) acts as a structural constraint just when it occurs on
the right-hand side of a nontrivial rule — the only such occurrence here being the B
in “e ::= 〈〈B∗〉〉”. When a grammar is designed to avoid such structural constraints, it
generally has a great many occurrences of T on the right-hand sides of nontrivial rules
(in place of some other, structurally constraining nonterminal); and each occurrence
of T on a right-hand side is another possible position for the meta-variable 2 in
contexts. Thus, the fewer structural constraints there are, the more is implied by
the property of compatibility, fostering a strong reduction relation, and through it a
strong equational theory.

Also, secondarily, lack of structural constraints simplifies the treatment of con-
texts. A naive mechanical generation of syntax rules for contexts C would introduce
a distinct context-nonterminal for each nonterminal in the syntax of T that can be
an ancestor of T ; here, one would have nonterminals C, CB, Ce, CS, and CA. (V isn’t
a nonterminal, so one wouldn’t automatically have CV .) But as long as the grammar
is unambiguous, and each recursive occurrence of T only involves a single nontrivial
syntax rule (e.g.,

T ::= A ::= [eval T T]), (9.3)

we can abbreviate each corresponding occurrence of C to a single rule (in the example,

C ::= [eval C T] | [eval T C]), (9.4)

generating the nontrivial syntax directly from C and eliding the intermediate non-
terminals. The entire syntax for fe-contexts only requires one auxiliary nonterminal,
CB, for the structural constraint implied by B on the nontrivial right-hand side 〈〈B∗〉〉:

176

C ::= 2 | [eval C T] | [eval T C]
| [combine C T T] | [combine T C T] | [combine T T C]
| (C . T) | (T . C)
| 〈operative C T T T 〉 | 〈operative T C T T 〉
| 〈operative T T C T 〉 | 〈operative T T T C〉
| 〈applicative C〉
| 〈〈B∗ CB B

∗〉〉 (Contexts)

CB ::= s← C (Binding contexts) .

(9.5)

Constraints on the form of redexes, or of reducts, should be deferred to the reduc-
tion rule schemata, since one could imagine a different reduction relation on the same
syntax without those constraints. (For example, in fe-calculus we don’t syntactically
constrain the first two subterms of a compound operative term, even though we may
(and, in fact, do) require fully determined parameter trees when constructing an op-
erative.) Constraints within the grammar should be limited to factors intrinsic to
the function of the structure so constrained — as in the case of environments, whose
whole reason for being would collapse if they were not lists of bindings.

The domain name Values is chosen for consistency with Plotkin’s usage ([Plo75]).
The immediate technical significance of the value domain is that it defines eager argu-
ment evaluation: values are what the argument-evaluation terms have to be reduced
to before an applicative call, in order for the argument evaluation to be considered
eager. The subjective underlying principle is that in any value V , a reducible subterm
must represent potential subcomputation, to be realized only when V is invoked by
a surrounding evaluation process. Applicatives may be unwrapped without invoking
them, so the body of an applicative value must also be a value. The body of a com-
pound operative, though, represents a computation to be performed just when the
operative is called, so the operative is a value even if its body isn’t; the analogous
situation in Plotkin’s λv-calculus (§8.3.2) is that a λ-expression is a value even though
its body may be reducible.

The treatment of environments as values engages deep issues in the treatment of
variables.

Explicit evaluation explicitly distinguishes between collecting operands into a local
environment, and distributing them from there to the body of a compound operative;
whereas the β-rules of λ-calculi collect and distribute in a single atomic step, via
substitution. If operands are distributed via substitution, then variables can only be
values (i.e., can only qualify as eagerly evaluated) if all operands are reduced to values
before being distributed by substitution, so that all substitutions actually performed
preserve the property of being a value; and since distribution is linked with collection,
this means that substitutable variables can only be values if all argument evaluation
is eager. However, variables distributed via explicit-evaluation environments —a.k.a.
symbols— are not subject to this limitation. A symbol can be treated as a value even
if it is bound to a non-value in the relevant environment, exactly because the symbol

177

can only be replaced by the non-value when its lookup is explicitly directed by a
surrounding eval — so that the surrounding eval term isn’t a value, but the symbol
within it is.

So, if we define all environments to be values, and thus treat bound terms in
an environment as potential computations awaiting invocation (i.e., lookup), we can
support both eager and lazy argument evaluation under different circumstances in the

same calculus, without compromising the status of symbols as values. This also has
the merits that (1) by not requiring values in bindings, we avoid imposing a syntactic
constraint for the preferably reduction-schematic choice of eager argument evaluation;
and (2) by admitting more reducible subterms, we introduce greater flexibility in order
of reduction, and thus strengthen the equational theory.

The semantic function for concatenating environments must account for the en-
vironment normalization constraints of the grammar (a small price to pay for sim-
plifying proofs involving the schemata). For convenience of notation, we extend the
ordering of symbols to bindings, with (s← T) ≤ (s′ ← T ′) iff s ≤ s′; and universally
quantify ω over B∗. The auxiliary environment functions are

fe-calculus.
Auxiliary functions (for managing environments):

〈〈〉〉 · e = e
e · 〈〈〉〉 = e

〈〈B1〉〉 · 〈〈B2 ω〉〉 =

〈〈B1B2 ω〉〉 if B1 < B2

〈〈B2〉〉 · (〈〈B1〉〉 · 〈〈ω〉〉) if B2 < B1

〈〈B1 ω〉〉 otherwise

〈〈ω B〉〉 · e = 〈〈ω〉〉 · (〈〈B〉〉 · e)

lookup(s, 〈〈s′ ← T 〉〉 · e) =

{

T if s= s′

lookup(s, e) otherwise

match(#ignore, T) = 〈〈〉〉

match((), ()) = 〈〈〉〉

match(s, T) = 〈〈s← T 〉〉

match((T1 . T2),
(T ′

1 . T ′
2)) = match(T1, T

′
1) ·match(T2, T

′
2)

if T1, T2 have no symbols in common .

(9.6)

The reduction rule schemata fall into two groups: those concerning only structures
of the general syntax from (9.1), and those concerning the behaviors of particular
primitive operatives. We adopt the usual Lisp shorthand for eliding dots and internal
parentheses in lists (§2.2.1).

There are six general schemata: three schemata for evaluating combinations,
which were given (modulo semantic variable and reduction-relation names) in §4.3.1;

178

self-evaluation Schema (9.2) and a symbol-evaluation schema, which were implicit in
§4.3.1; and an applicative-evaluation schema.

fe-calculus.
Schemata (general):

[eval S e] −→ S (9.7S)

[eval s e] −→ lookup(s, e)
if lookup(s, e) is defined

(9.7s)

[eval (T1 . T2) e] −→ [combine [eval T1 e] T2 e] (9.7p)

[eval 〈applicative T 〉] −→ 〈applicative [eval T]〉 (9.7a)

[combine 〈operative V1 V2 T e1〉 V3 e2]
−→ [eval T match((V1 . V2),(V3 . e2)) · e1]

if match((V1 . V2),(V3 . e2)) is defined (9.7β)

[combine 〈applicative T 〉 (T1 . . .Tm) e]
−→ [combine T ([eval T1 e] . . . [eval Tm e]) e] . (9.7γ)

(9.7)

As in §4.3.1, the body of a compound operative is limited to one expression since,
without side-effects, sequentially evaluating a sequence of expressions would serve no
purpose. Schema (9.7β) imposes eager argument evaluation on compound applica-
tives, by refusing to apply an underlying compound operative until the arguments
have been reduced to values V3. (We will want eager argument evaluation in the
impure calculi of Chapters 10–12, so for convenience then we set things up that way
now; but we could also construct a lazy-argument-evaluation calculus — fen-calculus,
versus fev-calculus— simply by using T3 in the schema rather than V3.)

As an alternative to Schema (9.7a), we could have depended applicatives from
nonterminal S rather than T ,

S ::= 〈applicative T 〉 ; (9.8)

evaluation of applicatives would then be covered by self-evaluation Schema (9.7S),

[eval 〈applicative T 〉] −→ fe 〈applicative T 〉 . (9.9)

These two strategies (Syntax (9.8) and Schema (9.7a)) coincide when the underlying
content of the applicative is self-evaluating, but may disagree in general. That is,
both strategies have [eval 〈applicative S〉] = fe 〈applicative [eval S]〉 for all S, but
only Schema (9.7a) has [eval 〈applicative T 〉] = fe 〈applicative [eval T]〉 for all T .
This difference should have no impact on correct programs, because the content of an
applicative, if type correct, is always a combiner, hence all correctly typed applicatives
eventually self-evaluate. However, in the absence of obvious semantic guidance on the
choice, we prefer the strategy that maximizes equalities rather than inequalities.

By preference, most or all of the reduction rules for primitive operatives should
be analogous to δ-rules of λδ-calculi (§8.2): because traditional δ-rules conform to a

179

simple, versatile fixed pattern proven not to compromise the Church–Rosser-ness of
λ-calculus, they allow a programming language to be conveniently populated by any
number of pedestrian primitive functions without laboriously extending the Church–
Rosser proof for each individual function. The notion of δ-rules requires, however,
some adaptation for use with f-calculi. The constraints on δ-rules for λ-calculi are
that the arguments should be closed normal forms, and that the result should be
closed:

• If the arguments weren’t required to be normal, they might be reduced; and
if the arguments weren’t required to be closed, they might be altered by sub-
stituting for free variables. Either of these situations might destroy Church–
Rosser-ness, because λ-calculus δ-rules don’t have to be invariant under either
kind of change to the arguments. (Lack of invariance under argument reduction
was the root of non-Church–Rosser-ness in the λQ-calculus of §8.4.1, (8.47).)

• If the result weren’t required to be closed, substitution for a variable that occurs
free in the result could have a different effect if done before δ-reduction than if
done after δ-reduction.1

fe-calculus has nothing analogous to free variables: only an eval- or combine-operator
can induce changes to a subterm,2 and information cannot pass downward through
an eval- or combine-operator ([eval . . .] or [combine . . .]). So a subterm can only
change if it contains an active subterm, i.e., if it contains a redex, i.e., if it isn’t a
normal form. We don’t want to require normal arguments, though, because we want
some primitives to act on compound combiners that might not have normal forms
(e.g., $wrap/$unwrap; re lack of normal forms, cf. λv-calculus, §8.3.2).

Definition 9.10 A fe-calculus δ-form is a triple 〈π1, π2, π3〉 of semantic polyno-
mials3 over the term set Fe, such that

(1) in any term satisfying π1, any active subterm must be entirely contained
within a minimal nontrivial poly-context4 that satisfies semantic variable V ;

1Lack of invariance under substitution was the root of non-Church–Rosser-ness in the normal-
argument λ-calculus variant discussed in Footnote 26 of §8.3.2.

2Strictly, this is true only because, in addition to omitting substitution from fe-calculus, we
are also handling environment normalization by means of (separately stated) grammar constraints
rather than by reduction rule schemata.

3In case the notion of semantic polynomial falls short of intuitive evidence: a semantic polynomial
has the structure of a term except that, at zero or more points in its syntax tree where subexpressions
could occur, semantic variables occur instead, and for all permissible values of the semantic variables,
the term will be syntactically correct. The differences from poly-context are that semantic variables
are used instead of syntactic meta-variables, and the domains of the variables needn’t be Terms, nor
even subsets of Terms.

4A minimal nontrivial poly-context is one such that the only way to further weaken it, removing
a constraint so as to be satisfied by a larger set of terms, would be to make it trivial (i.e., just a
meta-variable). Formally, see Definition 13.1 in §13.1.1.

180

(2) in any term satisfying π1, if a minimal nontrivial poly-context within the term
satisfies semantic variable V , then every proper subterm of that poly-context
in the term must be unconstrained by π1;

(3) no semantic variable occurs more than once in π1;

(4) π2 is a semantic variable based on e (thus, quantified over Environments)
that doesn’t occur in π1; and

(5) all semantic variables in π3 also occur in π1 or π2.

A set Z of fe-calculus δ-forms is consistent if for all 〈π1, π2, π3〉, 〈π
′
1, π

′
2, π

′
3〉 ∈ Z, if

〈π1, π2, π3〉 is distinct from 〈π′
1, π

′
2, π

′
3〉, then there is no term that satisfies both π1

and π′
1. The class of all consistent sets of fe-calculus δ-forms is called ∆e.

A fe-calculus δ-rule schema is a reduction rule schema of the form

[combine π0 π1 π2] −→ π3 (9.11)

where π0 ∈ PrimitiveOperatives and 〈π1, π2, π3〉 is a fe-calculus δ-form.

By Condition 9.10(1), if a redex under a δ-rule schema is transformed by reducing
a subterm (under any schema of the calculus), the redex will still be a value; and
by Condition 9.10(2), the redex will still be a redex under that same δ-rule schema.
So the schema commutes with subterm reductions, and the addition of the δ-rule
schema does not compromise Church–Rosser-ness. Condition 9.10(1) also enforces
eager argument evaluation on δ-rules, analogously to Schema (9.7β) for compound
operatives; that isn’t necessary for a pure calculus, but will enforce determinism
in the presence of side-effects in Chapter 10. Condition 9.10(2), which is stronger
than strictly needed for the above (it says that π1 never constrains proper subterms
of an operative or environment — note that the left-hand side of Schema 9.7β does

constrain proper subterms of an operative), will also be separately used in establishing
well-behavedness properties in §14.2.2.

Here are the δ-rule schemata for the Kernel combiner-handling primitives:

[combine $vau (V1 V2 V3) V4] −→ 〈operative V1 V2 V3 V4〉

[combine $wrap (V1) V2] −→ 〈applicative V1〉

[combine $unwrap (〈applicative V1〉) V2] −→ V1 .

(9.12)

In general,

fe-calculus.
Auxiliary functions (for δ-rules):

δ: PrimitiveOperatives→ ∆e

Schemata (for δ-rules):

[combine o π1 π2] −→ π3 if 〈π1, π2, π3〉 ∈ δ(o) . (9.13δ)

(9.13)

181

9.2 Equational weakness of fe-calculus

In λ-calculus, two λ-expressions are equal whenever their bodies are equivalent when
evaluated; that is, under the usual implicit-evaluation treatment of λ-calculus,

T1 =β T2 implies (λx.T1) =β (λx.T2) . (9.14)

The analogous result for fe-calculus would be that

∀e, [eval T1 e] = fe [eval T2 e]
implies

∀V1, V2, e, 〈operative V1 V2 T1 e〉
= fe 〈operative V1 V2 T2 e〉 ;

(9.15)

but this is not true, because fe-calculus does not initiate evaluation of the body of a
compound operative until the operative is called, and thereby given an operand tree.
Something new must be added to the calculus, to express —and act on— intent to
partially evaluate the body. Moreover, this addition will have to be structural: we
can’t make do with a minor adjustment in the schemata such as the quote-eval device
in λE-calculus (§8.4.1), because we declare our intent-to-evaluate via an evaluation
context, [eval 2 T]; this presupposes a term T for the intended environment; and we
can’t construct a term for the local environment before actually calling the operative,
because we don’t know what to bind to the parameters. Partial evaluation requires
a way to express incomplete environments.

The quote-eval trick worked for λE-calculus because the evaluation frame of that
calculus, E2, was already designed to do partial evaluation, by pausing on subterms
Ex until some other term T was substituted for x. We will express incomplete envi-
ronments here by introducing a substitution mechanism into the fe-calculus, allowing
construction of a local environment for a compound operative by binding the pa-
rameters to syntactic variables, for which values will be substituted from an operand
tree when it becomes available. We call the resulting environment-with-substitution
system fp-calculus (p being mnemonic for Partial evaluation).

9.3 fx-calculus

As a prelude to the full fp-calculus, we first work out the infrastructure for substitution
in f-calculi, by constructing a f-calculus with substitution but without environments,
called fx-calculus (x being the semantic-variable base letter for variables).

In discarding the syntax for environments themselves (nonterminal e), we must
excise the environment operands from active terms.

fx-calculus.
Syntax (active terms):

A ::= [eval T] | [combine T1 T2] (Active terms) .
(9.16)

182

The syntactic domain of symbols does not occur naturally in fx-calculus, because
without environments there is no way to give them an evaluation rule that will be
consistent with the later extension to fp-calculus. In its place, we restore the syntactic
domain of substitutable variables as in λ-calculus,

fx-calculus.

Syntax (substitution):
x ∈ Variables

T ::= x (Terms) .

(9.17)

Variables are values, because we have attached them to the syntax by T ::= x rather
than A ::= x. As noted earlier (in discussion following (9.5)), for the integrity of the
calculus, substitution must preserve the property of being a value; therefore, since
variables are values, they can only be substituted for by values. (We will enforce this,
below, by defining substitution only of values ((9.19)), even though we could as easily
have defined substitution of arbitrary terms.)

Since hygienic substitution renames bound variables (§3.3.3), syntactic equivalence
≡α is again up to renaming of bound variables (which it wasn’t in fe-calculus because
there was no such thing as a bound variable).

Because fe-calculus used environments, which seem to be large monolithic struc-
tures,5 it seemed natural for fe-calculus to use compound definiends so that each local
environment would be constructed all at once. Without environments, though, there
is no psychological bias to treat the parsing and distribution of operand trees mono-
lithically; and when we restore environments together with substitutable variables
(in fp-calculus, §9.4), disposition of operand trees will be separate from environment
construction (the latter taking place when a compound operative is constructed, the
former when it is called). We are therefore free to choose between operand disposition
in a single complex act directed by a compound definiend; or operand disposition in
a series of simple acts directed by elementary building blocks, analogous to currying
of λ-calculus (§9.2). Given the choice, we prefer elementary building blocks, on the
principle that both the dispositions themselves and their interactions should be more
accessible to study when decomposed into simple acts.

We introduce a set of three elementary building blocks from which to construct
operatives that parse and substitutively distribute their operand trees: one to parse a
dotted pair, one to parse nil, and one to substitute for a single variable (analogous to
(λx.T) of λ-calculus). Expecting that the fine-grained building blocks will lead to deep
nestings of combiner constructors, we adopt a compact symbolic style of combiner
construction operators, retaining the more verbose keyword style of fe-calculus only
for operators designating action (i.e., eval and combine).

5In the presence of environment mutation, it is difficult not to think of environments as large
structures with object identity (cf. §§5.3.2, 7.1.1). At this point, we are biased toward that view
of them by programming experience; formally, environment mutation will not be addressed until
Chapter 12.

183

fx-calculus.

Syntax (compound combiners):
S ::= 〈 f2.T 〉 | 〈 f0.T 〉 | 〈 fx.T 〉 (Self-evaluating terms)
T ::= 〈T 〉 (Terms) .

(9.18)

As usual, FV(T) denotes the set of free variables of T , the difference from λ-calculus
being that variables are bound by frather than λ.

fx-calculus.
Auxiliary functions (substitution):

x1[x2 ← V] =

{

V if x1 = x2

x1 otherwise

〈 fx1.T 〉[x2 ← V] = 〈 fx3.((T [x1 ← x3])[x2 ← V])〉
where x3 6∈ {x2} ∪ FV(T) ∪ FV(V)

P [
→

T][x← V] = P [
∑

k

→

T (k)[x← V]]
if P doesn’t involve any syntactic variable .

(9.19)

The rule for P [
→

T][x← V] covers, in effect, “everything else”: all the syntactic struc-
tures that substitution passes over without affecting them — both primitive terms
that aren’t syntactic variables (primitive data, primitive operatives, ignore, and nil),
and non-binding compound structures (f2- and f0-operatives, applicatives, evals, com-
bines, and pairs).

fx-calculus.

Schemata (compound combiner calls):
[combine 〈 f2.T0〉 (T1 . T2)]

−→ [combine [combine T0 T1] T2] (9.20 f2)

[combine 〈 f0.T 〉 ()] −→ T (9.20 f0)

[combine 〈 fx.T 〉 V] −→ T [x← V] (9.20β)

[combine 〈T0〉 (T1 . . .Tm)]
−→ [combine T0 ([eval T1] . . . [eval Tm])] . (9.20γ)

(9.20)

Schema (9.20 f2) is essentially a currying operation (§9.0.1). It has no part in en-
forcing eager argument evaluation, since non-terminating T1 or T2 will still prevent
termination of the larger term after the currying; and in later impure calculi, with
side-effects, the currying transformation will preserve ordering of side-effects from
T0, T1, T2 as well.

The evaluation schemata differ from those of fe-calculus in three ways: removal of
the second operand to eval (since there are no environments), deletion of the symbol-
evaluation schema (since there are no symbols), and adoption of the more compact
notation for applicatives.

184

fx-calculus.

Schemata (evaluation):

[eval S] −→ S (9.21S)

[eval (T1 . T2)] −→ [combine [eval T1] T2] (9.21p)

[eval 〈T 〉] −→ 〈[eval T]〉 . (9.21a)

(9.21)

The definition of δ-rules for fe-calculus was exceptional in its lack of provisions
for substitutable variables (the only calculus we will consider with this lack), while δ-
rules for fx-calculus are exceptional in their lack of environments (our only f-calculus
with this lack).

Definition 9.22 A fx-calculus δ-form is a tuple 〈π1, π3〉 of semantic polynomials
over the term set Fx, satisfying Conditions 9.10(1)–9.10(3) and, additionally,

(5) all semantic variables in π3 also occur in π1;

(6) a syntactic variable is bound by π3 at the position of a semantic variable in
π3 iff it is bound by π1 at the position of that semantic variable;

(7) a syntactic variable can occur in a term satisfying π3 only within a part of
the term matching a semantic variable in π3;

(8) the class of terms satisfying π1 is closed under substitution; and

(9) π1 does not require any syntactic variable to be bound more than once, nor
to occur both bound and free.

A set Z of fx-calculus δ-forms is consistent if for all 〈π1, π3〉, 〈π
′
1, π

′
3〉 ∈ Z, if 〈π1, π3〉

is distinct from 〈π′
1, π

′
3〉, then there is no term that satisfies both π1 and π′

1. The
class of all consistent sets of fx-calculus δ-forms is called ∆x.

A (particular) fx-calculus δ-rule schema is a reduction rule schema of the form

[combine π0 π1] −→ π3 (9.23)

where π0 ∈ (PrimitiveOperatives− {$vau}) and 〈π1, π3〉 ∈ ∆x.

When a term is reduced via −→ fx, any subterm T1 satisfying the left side of a δ-rule
π −→ π′ may be subjected to substitution for one of its syntactic variables. However,
Condition 9.22(8) guarantees that the subterm T ′

1 resulting from this substitution will
still satisfy π1; and Conditions 9.22(6) and 9.22(7) guarantee that if T1 were reduced
via π −→ π′ to T2, and T2 were subjected to the same substitution as T1, the result
T ′

2 of the substitution would be the same as that of reducing T ′
1 via π −→ π′. Thus,

as for fe-calculus, addition of the δ-rule does not compromise Church–Rosser-ness.
(Condition 9.22(9) prevents a class of pathological cases that will be dealt with in
§13.1.2; cf. Definition 13.43.)

185

In general,

fx-calculus.
Auxiliary functions (for δ-rules):

δ: (PrimitiveOperatives− {$vau})→ ∆x

Schemata (for δ-rules):

[combine o π1] −→ π3 if 〈π1, π3〉 ∈ δ(o) . (9.24δ)

(9.24)

No (natural) fx-calculus schema can be constructed for $vau , because its natural
behavior is heavily dependent on a source definiend — which requires symbols, which
fx-calculus doesn’t have.

All together, the syntax and schemata for fx-calculus are

fx-calculus.
Syntax:

d ∈ PrimitiveData

o ∈ PrimitiveOperatives

x ∈ Variables

S ::= d | o | #ignore | ()
| 〈 f2.T 〉 | 〈 f0.T 〉 | 〈 fx.T 〉 (Self-evaluating terms)

A ::= [eval T] | [combine T T] (Active terms)
T ::= S | x | (T . T) | 〈T 〉 | A (Terms)

V ∈ {T | every active subterm of T
is within an operative} (Values)

Schemata:
[eval S] −→ S (9.25S)

[eval (T1 . T2)] −→ [combine [eval T1] T2] (9.25p)

[eval 〈T 〉] −→ 〈[eval T]〉 (9.25a)

[combine 〈 fx.T 〉 V] −→ T [x← V] (9.25β)

[combine 〈T0〉 (T1 . . .Tm)]
−→ [combine T0 ([eval T1] . . . [eval Tm])] (9.25γ)

[combine o π1] −→ π3 if 〈π1, π3〉 ∈ δ(o) (9.25δ)

[combine 〈 f2.T0〉 (T1 . T2)]
−→ [combine [combine T0 T1] T2] (9.25 f2)

[combine 〈 f0.T 〉 ()] −→ T . (9.25 f0)

(9.25)

9.4 fp-calculus

We’re now ready to implement partial evaluation in the presence of environments
(per §9.2), by merging fe-calculus with fx-calculus.

186

The syntax of fp-calculus is almost entirely a merge of the syntax rules of fe-
calculus and fx-calculus. It contains all the syntax rules of fe-calculus except the
compound-combiner forms; and it contains all the syntax rules of fx-calculus except
the active terms. The only syntax entirely new to fp-calculus is a single new elemen-
tary building block for compound operatives, to effect dynamic-environment capture.

fx-calculus.
Syntax (environment capture):

S ::= 〈ǫ.T 〉
Schemata (environment capture):

[combine 〈ǫ.T0〉 T1 e] −→
[combine [combine T0 e 〈〈〉〉] T1 e] . (9.26ǫ)

(9.26)

The complete syntax is

fp-calculus.
Syntax:

d ∈ PrimitiveData

o ∈ PrimitiveOperatives

s ∈ Symbols (with total ordering ≤)
x ∈ Variables

B ::= s← T (Bindings)
e ::= 〈〈B∗〉〉 (Environments)

S ::= d | o | e | #ignore | ()
| 〈 f2.T 〉 | 〈 f0.T 〉
| 〈 fx.T 〉 | 〈ǫ.T 〉 (Self-evaluating terms)

A ::= [eval T T] | [combine T T T] (Active terms)
T ::= S | s | x | (T . T) | 〈T 〉 | A (Terms)

V ∈ {T | every active subterm of T
is within an operative or
environment} (Values)

where
bindings in an environment are in order by bound symbol; and
no two bindings in an environment bind the same symbol.

(9.27)

The environment concatenation and lookup functions are retained from fe-calculus,

187

fp-calculus.
Auxiliary functions (retained from fe-calculus):

〈〈〉〉 · e = e
e · 〈〈〉〉 = e

〈〈B1〉〉 · 〈〈B2 ω〉〉 =

〈〈B1B2 ω〉〉 if B1 < B2

〈〈B2〉〉 · (〈〈B1〉〉 · 〈〈ω〉〉) if B2 < B1

〈〈B1 ω〉〉 otherwise

〈〈ω B〉〉 · e = 〈〈ω〉〉 · (〈〈B〉〉 · e)

lookup(s, 〈〈s′ ← T 〉〉 · e) =

{

T if s = s′

lookup(s, e) otherwise .

(9.28)

The match semantic function of fe-calculus is no longer useful, since compound defin-
iends will be processed at operative construction rather than operative call (details
later in the section).

The general schemata of fx-calculus are modified only by straightforwardly reintro-
ducing an environment operand to eval and combine (illustrated momentarily). The
conditions for a δ-form require another revision, to merge the environment-based con-
ditions from fe-calculus Definition 9.10 with the substitution provisions of fx-calculus
Definition 9.22.

Definition 9.29 A fp-calculus δ-form is a tuple 〈π1, π2, π3〉 of semantic polynomi-
als over the term set Fp, satisfying Conditions 9.10(1)–9.10(5), Conditions 9.22(7)–
9.22(9), and

(6) a syntactic variable is bound by π3 at the position of a semantic variable in
π3 iff it is bound by π1 or π2 at the position of that semantic variable;

(8a) the class of terms satisfying π2 is closed under substitution; and

(9a) π2 does not require any syntactic variable to be bound more than once, nor
to occur both bound and free.

A set Z of fp-calculus δ-forms is consistent if for all 〈π1, π2, π3〉, 〈π
′
1, π

′
2, π

′
3〉 ∈ Z, if

〈π1, π2, π3〉 is distinct from 〈π′
1, π

′
2, π

′
3〉, then there is no term that satisfies both π1

and π′
1. The class of all consistent sets of fp-calculus δ-forms is called ∆p.

A (particular) fp-calculus δ-rule schema is a reduction rule schema of the form

[combine π0 π1 π2] −→ π3 (9.30)

where π0 ∈ (PrimitiveOperatives− {$vau}) and 〈π1, π2, π3〉 ∈ ∆p.

Semantic function δ now has type (PrimitiveOperatives− {$vau})→ ∆p. A schema
can be constructed for $vau , because fp-calculus has symbols (unlike fx-calculus,
which had no $vau-schema for this reason); but because operand acquisition in fp-
calculus uses substitution, the natural behavior of $vau must introduce new syntactic

188

variables bound over the body of the combiner, requiring some non-polynomial (i.e,
non-δ-rule) auxiliary semantic device to select new syntactic variables that do not
occur free in the body. Semantic function definiend takes as input a definiend tree,
as detailed in §4.2, and a set of proscribed syntactic variables; and outputs a context
(to form an operative around the body), an environment (providing local bindings of
parameter symbols to syntactic variables), and an updated set of proscribed syntactic
variables. A second, higher-level semantic function vau uses definiend to translate
the operand tree of $vau into an operative. We write Pω(Z) for the set of finite
subsets of a set Z.

fp-calculus.
Auxiliary functions (definiend compilation):

definiend : Terms× Pω(Variables)

p→Contexts× Environments× Pω(Variables)

definiend((),X) = 〈〈 f0.2〉, 〈〈〉〉,X〉
definiend(#ignore,X) = 〈〈 fx.2〉, 〈〈〉〉, (X ∪ {x})〉

where x 6∈ X

definiend(s,X) = 〈〈 fx.2〉, 〈〈s← x〉〉, (X ∪ {x})〉
where x 6∈ X

definiend((T1 . T2),X) = 〈〈 f2.C1[C2]〉, (e1 · e2),X2〉
where definend(T1,X) = 〈C1, e1,X1〉

and definend(T2,X1) = 〈C2, e2,X2〉

vau : Terms× Environments p→Terms

vau((T1 #ignore T2), e) = C[[eval T2 (e′ · e)]]
where definiend(T1, (FV(T2) ∪ FV(e))) = 〈C, e′,X〉

vau((T1 s T2), e) = 〈ǫ.(fx.C[[eval T2 (e′ · 〈〈s← x〉〉 · e)]])〉
where x 6∈ (FV(T2) ∪ FV(e))
and definiend(T1, (FV(T2) ∪ FV(e) ∪ {x})) = 〈C, e′,X〉

Schemata ($vau):
[combine $vau V e] −→ vau(V, e)

if V is a valid operand tree for $vau . (9.31v)

(9.31)

All together, the schemata are

189

fp-calculus.
Schemata:

[eval S e] −→ S (9.32S)

[eval s e] −→ lookup(s, e) if lookup(s, e) is defined (9.32s)

[eval (T1 . T2) e] −→ [combine [eval T1 e] T2 e] (9.32p)

[eval 〈T 〉 e] −→ 〈[eval T e]〉 (9.32a)

[combine 〈 fx.T 〉 V e] −→ T [x← V] (9.32β)

[combine 〈T0〉 (T1 . . .Tm) e]
−→ [combine T0 ([eval T1 e] . . . [eval Tm e]) e] (9.32γ)

[combine o π1 π2] −→ π3 if 〈π1, πe, π3〉 ∈ δ(o) (9.32δ)

[combine 〈ǫ.T0〉 T1 e]
−→ [combine [combine T0 e 〈〈〉〉] T1 e] (9.32ǫ)

[combine 〈 f2.T0〉 (T1 . T2) e]
−→ [combine [combine T0 T1 e] T2 e] (9.32 f2)

[combine 〈 f0.T 〉 () e] −→ T (9.32 f0)

[combine $vau V e] −→ vau(V, e)
if V is a valid operand tree for $vau . (9.32v)

(9.32)

190

Chapter 10

Impure vau calculi —
general considerations

10.0 Introduction

While the pure f-calculi of Chapter 9 demonstrate that our fexpr strategy is not itself
side-effect-ful, that does not necessarily imply that our strategy can coexist peace-
fully with other, side-effect-ful features in a calculus. We therefore present, in this
and the next two chapters, impure f-calculi incorporating the basic imperative fea-
tures of sequential control (Scheme-style continuations) and sequential state (mutable
environments), comparable to Felleisen’s λvCd- and λvSρ -calculi (§8.3.3).

Our treatment of imperative facilities is broadly similar to Felleisen’s in that “bub-
bling-up” schemata shift each side-effect-ful directive from its source to the upper
syntactic limit of its influence,1 and then substitution broadcasts the directive down-
ward again to all points concerned. Since substitution is already involved, the only
interesting feature of fe-calculus (i.e., absence of substitution) is precluded; so we
derive our imperative f-calculi from fp-calculus.

However, our imperative facilities use separate substitution devices, for a total of
four classes of substitution — one for partial evaluation (introduced in fx-calculus),
one for control (in fC-calculus), and two for state (in fS-calculus).

This is a striking departure from λ-calculus. Church’s 1932 logic achieved an ele-
gant economy by using only λ for binding variables (viewing existential and universal
quantification as higher-order functions); and in the λ-calculus subset of his logic, λ
plays such a central and ubiquitous role that, once immersed in λ-calculus, one tends

1We retain the term “bubbling up” from Felleisen’s work, where it is especially appropriate since
most of his imperative constructs cause a sort of churning transformation as they move upward
through a term, as, e.g., ((σxσ .T1)V)T2 −→ (σxσ .(T1T2))V . This characteristic churning occurs
because his constructs imitate the functional structure of λ (thus his σ, C, etc.); and our imperative
constructs make no attempt to follow this paradigm, so they cause much less churning, some moving
upward with scarcely a ripple; but we still appreciate the imagery of a construct that naturally tends
upward because it is lighter than its surrounding context.

191

to imagine that variables and substitution can only take the forms given to them by
λ. However, when Felleisen used these forms in his imperative calculi, they spawned
complications. The delimiting syntactic frames for side-effects are essentially non-
functional binding constructs; this became manifest in the later compatible revisions
of his calculi (λvCd- and λvSρ -calculi), where the delimiting frames relied heavily on
λ, and thereby became gratuitously entangled with issues of function application.2

f-calculi, on the other hand, have neither historical nor structural investment in a
single binding construct: the traditional operator name “λ” is not used and, while
the binding construct 〈 fx.2〉 in fp-calculus acts via compound-operative calls, it is
evidently a convenient add-on (to strengthen the equational theory) rather than a
necessity, since fe-calculus handles the calls with no substitution at all.

Embracing the notion of substitution as add-on, we therefore simplify our imper-
ative calculi by adding on separate, customized substitution devices. Each uses a
separate syntactic domain of variables, to prevent the formal occurrence of meaning-
less interactions between the different substitution devices. Each separate domain
of variables has its own distinct binding construct(s) — operative-delimiting frames
for fp-calculus, control-delimiting frames for fC-calculus, state-delimiting and state-
query-delimiting frames for fS-calculus. Each binding construct distributes informa-
tion across its delimited syntactic region via a substitution function customized to
the particular directive transaction.

Control- and state-delimiting constructs differ from the operative construct by
being persistent, in that each delimiting frame serves as a catalyst for an unbounded
number of bubble/substitute transactions, whereas an operative frame is always con-
sumed in the act of substitution. All three imperative binding frames differ from the
operative construct by being themselves capable of bubbling upward (necessary for
control frames so that first-class continuations can be upward funargs; for state frames
so that first-class environments can be upward funargs; and for state-query frames so
that code fragments can be reasoned about before their time-dependent bindings are
known). They differ from each other in when they can bubble upward (state frames
and state-query frames interact with each other); and they use substitution functions
with fundamentally different behaviors (control frames use a substitution that splices
contexts into a term at selected points; state frames use one that splices bindings into
environments, and another that excises environment identities).

2Actually, the use of λ as sole binding construct in Felleisen’s λvS-calculi is illusory; each λvS-
calculus has two distinct binding constructs, using two distinct substitution functions (at least;
λvS⊲-calculus could be viewed as having three constructs and three functions). The illusion of
a single construct is created by overloading the symbol “λ” for both constructs, and requiring
the assignable-variable binding construct to imitate the applicative-combination behavior of the
declarative construct.

192

10.1 Multiple-expression operative bodies

In Lisp, the body of a $lambda expression is not required to contain just one ex-
pression; it may be a list of expressions, of arbitrary length. When the constructed
applicative is called, the expressions in the body are evaluated from left to right,
and the result of evaluating the last expression is returned (§2.2.3.2). Kernel’s $vau
works similarly (§4.2).

Hitherto, we have briefly deferred the complication of multi-expression bodies
in our formal treatments as irrelevant, on the grounds that multi-expression bodies
would serve no purpose in the absence of side-effects (§4.3.1, §9.1). Now that we are
about to treat side-effects, we still omit the complication from our formal systems,
but provide a technical justification: the Kernel report specifies, given a primitive op-
erative $vau that requires a single-expression body, how to derive a library operative
$vau supporting multi-expression bodies by exploiting eager argument evaluation
([Shu09, §5.1.1 ($sequence) and §5.3.1 ($vau)]). The simple-body primitive $vau

therefore suffices both computationally and abstractively (the latter because the more
advanced syntax can be supported without resorting to a meta-circular evaluator).

10.2 Order of argument evaluation

Historically, Scheme has differed from most Lisps by pointedly not requiring that the
arguments to an applicative be evaluated in any particular order (such as left-to-
right). Kernel also leaves the argument evaluation order unspecified; and, moreover,
where in Scheme this was merely a deliberate omission, in Kernel the deliberate
omission has other, inclusive consequences for the semantics.3

Nondeterministic order of argument evaluation is a thorny problem for formal
calculi. Our whole strategy for treating well-behavior is based on Church–Rosser-
ness, which fails in the presence of observably nondeterministic behavior. Nor can
we require observably deterministic behavior with our nondeterministic argument-
evaluation order: for arbitrary arguments, it is formally undecidable whether all
evaluation orders will produce the same results; so if we want to prove observably
deterministic behavior, we have to impose restrictive types on the arguments (and
the less restrictive we want the types to be, the more complicated the type system
will become, per the Smoothness Conjecture, §1.1.2).

Fortunately, having recognized the strategic difficulty in well-behaved nondeter-

3Kernel observes a uniform set of policies for handling cyclic lists, based on the side-effect-ful-ness
and specified order of list processing (following Kernel design guideline G3 : dangerous things should
be difficult to do by accident). If the order of argument evaluation were specified as right-to-left, a
cyclic operand list would be an error. If the order were specified left-to-right, argument evaluation
would loop through the cycle forever (or until stopped by an interrupt or jump). Since the order is
unspecified, each operand is evaluated exactly once, and an argument list is constructed with the
same cyclic structure as the operand list. [Shu09, §3.9 (Self-referencing data structures)].

193

minism, we have no need to grapple with it in the current work, because the Kernel

design doesn’t prohibit performing argument evaluation in a fixed order. The design
consequences of Kernel’s argument evaluation order are contingent only on the order
not being specified in the design; they don’t require the design to take any position
on the question of formal nondeterminism, and it doesn’t.4 Implementations are per-
mitted to use some particular evaluation order, and our calculi are free to do likewise.
All of our impure f-semantics impose right-to-left argument evaluation. (It is of some
interest to consider what other choices would equally well support the formal results
of following chapters, and we will remark on this as occasion warrants.)

10.3 fi-semantics

The pure fp-calculus was presented in §9.4 without an associated fp-semantics; but
each impure extension of fp-calculus will have an attendant semantics. So, in using fp-
calculus as a common starting point for the impure calculi, we present first a suitable
semantics, imposing deterministic order of evaluation on the pure calculus.

The term-syntax of fi-semantics is just that of fp-calculus. We do make a cos-
metic change to its specification from (9.27): we rename domain Variables to Partial-

EvaluationVariables (recalling, from §9.2, that partial evaluation was the purpose
for which those variables were introduced), and add a subscript p to their semantic
variable base name, in anticipation of adding other, distinct variable domains.

4Most of the Scheme reports, too, use theoretically noncommittal words to permit arbitrary
argument evaluation orders (unspecified order, [KeClRe98, §4.1.3], [ClRe91b, §4.1.3]; order is not

specified, [Cl85, §II.1]; in any order, [SteSu78a, §A]). Only the R3RS uses a theoretically loaded
word, indeterminate ([ReCl86, §4.1.3]).

194

fi-semantics.
Syntax (terms and values):

d ∈ PrimitiveData

o ∈ PrimitiveOperatives

s ∈ Symbols (with total ordering ≤)
xp ∈ PartialEvaluationVariables

B ::= s← T (Bindings)
e ::= 〈〈B∗〉〉 (Environments)

S ::= d | o | e | #ignore | ()
| 〈 f2.T 〉 | 〈 f0.T 〉
| 〈 fxp.T 〉 | 〈ǫ.T 〉 (Self-evaluating terms)

A ::= [eval T T] | [combine T T T] (Active terms)
T ::= S | s | xp | (T . T) | 〈T 〉 | A (Terms)

V ∈ {T | every active subterm of T
is within an operative or
environment} (Values)

where
bindings in an environment are in order by bound symbol;
and no two bindings in an environment bind the same symbol.

(10.1)

Following Felleisen (§8.3.3.1), we specify the permissible redex positions by a re-
stricted domain of evaluation contexts:5

fi-semantics.
Syntax (contexts):

E ::= 2 | (T . E) | (E . V) | 〈E〉
| [eval T E] | [eval E V]
| [combine T T E]
| [combine T E V]
| [combine E V V] (Evaluation contexts) .

(10.2)

Evaluation contexts regulate subterm evaluation order ; for example, productions
E ::= (T . E) | (E . V) enforce right-to-left pair-subterm reduction: when a pair
structure, such as a list, contains non-values, they are reduced from right to left
within the structure. In the presence of side-effects, subterm evaluation order be-
comes deeply entangled with differences between schemata in the semantics versus in
its corresponding calculus; while order of argument evaluation is a separate though
related issue, regulated by the schema that schedules argument evaluations (in the
calculus, Schema (9.32γ)). We will return to these points below in §10.5, where we
will have the complete semantics to refer back to.

5Technically, V isn’t a nonterminal because its definition isn’t a syntax production, so V oughtn’t
occur in a syntax production. We use it so as a shorthand for specifying a term T in the production
and then verbally imposing an external constraint on the syntax.

195

All the auxiliary semantic functions are carried over unchanged from fp-calculus,
and we do not repeat their definitions here (noting that, if we were to repeat their def-
initions, we would add subscripts p to semantic variables x; these definitions occurred
in (9.19), (9.28), and (9.31)).

The computation schemata are

fi-semantics.
Schemata:

E[[eval S e]] 7−→ E[S] (10.3S)

E[[eval s e]] 7−→ E[lookup(s, e)]
if lookup(s, e) is defined (10.3s)

E[[eval (V1 . V2) e]]
7−→ E[[combine [eval V1 e] V2 e]] (10.3p)

E[[eval 〈V 〉 e]] −→ E[〈[eval V e]〉] (10.3a)

E[[combine 〈 fxp.T 〉 V e]] 7−→ E[T [xp ← V]] (10.3β)

E[[combine 〈V0〉 (V1 . . .Vm) e]]
7−→ E[[combine V0 ([eval V1 e] . . . [eval Vm e]) e]] (10.3γ)

E[[combine o π1 π2]] 7−→ E[π3]
if 〈π1, π2, π3〉 ∈ δ(o) (10.3δ)

E[[combine 〈ǫ.T 〉 V e]]
−→ E[[combine [combine T e 〈〉] V e]] (10.3ǫ)

E[[combine 〈 f2.T 〉 (V1 . V2) e]]
−→ E[[combine [combine T V1 e] V2 e]] (10.3 f2)

E[[combine 〈 f0.T 〉 () e]] −→ E[T] (10.3 f0)

E[[combine $vau V e]] 7−→ E[vau(V, e)]
if V is a valid operand tree for $vau . (10.3v)

(10.3)

10.4 Alpha-renaming

Although the separate domains of variables in our impure calculi will have distinct
binding constructs and customized substitution functions, the substitution functions
on one domain of variables cannot entirely ignore the other domains of variables. Most
‘substitution’, whatever its precise form, involves intermixing fragments of terms; and
intermixing of term fragments has the potential to capture variables of any kind (§3.3),
regardless of which kind of variable originally motivated the intermixing. Therefore,
the preventative measures to maintain hygiene —namely, selective α-renaming of
bound variables— must account for all kinds of variables at once, rather than just
the one kind whose substitution motivated its use.

196

Fortunately, a single α-renaming function can be devised that encompasses the
hygiene needs of all substitution functions, and whose provision for each kind of
variable is limited to a clause specifying its behavior on the binding construct for
variables of that kind. As long as we define each substitution function by invoking
the universal α-renaming function, each time we add a new domain of variables we
have only to specify α-renaming on its binding construct, to preserve hygiene on all
substitution functions (past, present, and future). The task of defining n separate
domains of variables is therefore linear in n — rather than quadratic in n, as it would
be if we had to provide separately for each variable domain in each substitution
function.

To implement this strategy, we define each hygienic substitution function to be the
composition of an unhygienic variant with function α. The unhygienic variant, noted
by using floor-brackets “⌊ ⌋” rather than full square brackets “[]”,6 simply assumes
that no variable renaming is required to avoid capturing. Function α takes as input
a term and a set of proscribed variables, and returns a sanitized version of the term
in which all bound variables have been renamed to avoid the proscribed set. In the
case of ordinary partial-evaluation substitution,

fi-semantics.
Auxiliary functions (substitution):

T [xp ← V] = α(T, {xp} ∪ FV(V) ∪ FV(T))⌊xp ← V ⌋

x′p⌊xp ← V ⌋ =

{

V if x′p = xp

x′p otherwise

P [
→

T]⌊xp ← V ⌋ = P [
∑

k

→

T (k)⌊xp ← V ⌋]
if P doesn’t involve any subterm belonging to

PartialEvaluationVariables

α(〈 fxp.T 〉,X) = 〈 fx′p.(α(T,X ∪ {xp, x
′
p})⌊xp ← x′p⌋)〉

where x′p 6∈ X

α(P [
→

T],X) = P [
∑

k α(
→

T (k),X)]
if P doesn’t bind any syntactic variable .

(10.4)

This is straightforwardly equivalent (for fp-calculus and fi-semantics) to the earlier
definition from (9.19).

6The intended mnemonic is that hygienic substitution does at least as much as unhygienic sub-
stitution, and possible a little more, but there’s a strict bound on how much more it might do.

197

10.5 Non-value subterms

Five of the f-semantic schemata (pair and applicative evaluation, and applicative,
ǫ, and f2 combination, (10.3p) (10.3a) (10.3γ) (10.3ǫ) and (10.3 f2)) do not merely
wrap evaluation contexts around their fp-calculus analogs ((9.32p) (9.32a) (9.32γ)
(9.32ǫ) and (9.32 f2)), but also require values in positions where the fp-calculus sche-
mata allow arbitrary subterms— car and cdr of the pair in (10.3p), etc. The need
for this restriction in the semantics is that, although the definition of evaluation con-

text determines a unique path downward through the syntax tree of a term, it doesn’t
specify how far down to descend: a single large term T may be expressible in the form
Ek[Tk] for several different choices of Ek, Tk with Tk a fp-calculus redex — necessarily,
each such choice nested in its predecessor (e.g.,

[combine 〈[eval not? e]〉 (#f) e] , (10.5)

which contains fp-calculus redexes at evaluation contexts 2 and [combine 〈2〉 (#f) e]).
Placing value-subterm constraints on the pair/applicative schemata excludes all but
the largest possible choice of E, ensuring deterministic order of computation.

The task for the corresponding calculus is then to admit multiple orders of reduc-
tion —to strengthen the equational theory— without altering the deterministic-order
effect of any subterm on the rest of the computation. A subterm may have three kinds
of ‘effect on the rest of the computation’: (1) any side-effect emitted by the subterm;
(2) the value resulting from the subterm, if any; and (3) failure to reduce to a value,
when that causes the surrounding computation to fail as well. We call (1) and (3)
non-local effects (reserving the name side-effect for (1), an explicit upward-bubbling
syntactic frame), and note that a value never has non-local effects: it cannot nonter-
minate (fail to reduce to a value); and, by design postulate (definition of value) in all
our formal systems, it cannot ever emit a side-effect.

Requiring all active subterms to be contained within values, as in δ-rules (Con-
dition (9.10(1))) and as in fi-semantics (Schemata (10.3) — note that operatives are
values by definition, so their bodies in Schemata (10.3β) etc. are unconstrained),
limits non-local effects to those specified within the schema, where they are easy to
regulate since their ordering is explicit. If a calculus schema is relaxed by allowing
non-value subterms, there are three kinds of implicit ordering to be managed: or-
dering of non-local effects that were already latent in different subterms; ordering
of latent effects of the subterms relative to side-effects that are introduced explicitly
by the schema; and ordering of both of those —latent subterm effects and explicit
schema effects— relative to effects that are indirect consequences of the schema.

Safety against the first two cases (latent subterm effects, and latent subterm ef-
fects with explicit schema effects) concerns only the schema itself; the definition of
evaluation context, which determines the proper ordering of non-local effects; and
some basic conventions about what a side-effect frame looks like, so that we actually
know when we introduce one. Against the first case, it is sufficient that the schema
does not alter the determined order of the effects of the subterms. Against the second

198

case, it is sufficient that the schema schedules any new explicit effects to occur after
all the latent ones have completed. For example, pair evaluation Schema (9.32p)
introduces no explicit side-effects, so it’s safe against the second case; and against
the first case, it preserves the left/right ordering of the subterms, which will suffice if

evaluation contexts use the same subterm ordering for combines as they do for pairs
(both right-to-left in (10.2)).

Whether Schema (9.32p) is safe against the third case —indirect consequences— is
less obvious. Just as we assumed some basic conventions on what a side-effect frame
looks like, we also assume that, besides side-effect frames, the only other possible
redexes are eval frames and combine frames. Only redexes have the potential to have
further, indirect consequences; so on the right-hand side of Schema (9.32p), the only
expressions with this potential are the top-level combine frame, and the eval frame
that is introduced around the operator. By treating the eval frame pessimistically as
if it were already a side-effect, we can observe that, under the determined ordering
of subterms, its consequences are positionally scheduled to occur after any effects
of the operand subterm T2 (an advantage for this calculus of right-to-left subterm
ordering). What remains is to ensure that any indirect consequences of the eval
frame will necessarily be scheduled after any effects that are already latent in its
subterm T1. This, though, is actually a recursive imposition —imposed on all the
schemata of the calculus— of the constraint we are already trying to impose on each
individual schema: that a top-level eval frame or combine frame will only induce side-
effects that are scheduled to occur after all side-effects of the subterms. Any violation
of this constraint has to start with some particular schema.

So as long as every schema ensures its own safety against cases one and two, and
every schema avoids scheduling a non-top-level redex before the effects of some other

subterm (as Schema (9.32p) avoids by scheduling the eval frame after any side-effects
of T2), the “recursive” subcase of case 3 will take care of itself.

10.6 fi-calculus

Of the five fp-calculus schemata subjected to value-subterm constraints by f-seman-
tics, all but one of them satisfy the weaker effect-ordering safety requirements for an
impure calculus. The outlier is (9.32γ), which —for nontrivial operand lists— in-
terleaves argument evaluations with possibly-side-effect-ful subterm reductions. The
only subterm whose side-effects are scheduled safely, to occur before those of any
argument evaluations, is the rightmost subterm, a smallish detail that, for simplicity,
we will not bother to exploit, although one certainly could do so. We provide safety
in our impure f-calculi by basing them on a variant of fp-calculus called fi-calculus,
which differs just by requiring the operator and operands of the γ-rule to be values.

The subscript i on the base letter is understood, and therefore omitted by conven-
tion, on the full names of impure f-calculi. (Thus, “ fC-calculus” for “ fiC-calculus”,
etc.)

199

fi-calculus.
Schemata (amending fp-calculus):

[combine 〈V0〉 (V1 . . .Vm) e]
−→ [combine V0 ([eval V1 e] . . . [eval Vm e]) e] (10.6γ) .

(10.6)

10.7 fr-calculi

When formally proving well-behavedness of impure f-calculi in Chapter 14, it will
be convenient to establish first proofs of well-behavedness for weaker variants of the
calculi. For technical reasons (to be clarified in that chapter), these variants are
called “regular”; they are named by adding a subscript r to the base letter — thus,
fr-calculus (the generic regular calculus), frC-calculus, etc.

Most of the constraints placed on the regular variants of the calculi are omissions
of some subset of the schemata that involve impure frames; those omissions have no
effect on the pure subset, fi-calculus, of the impure calculi, since fi-calculus evidently
doesn’t have any schemata involving impure frames. One constraint on the regular
variants does affect the pure subset, though: the regular variants retain all the value-
subterm constraints of fi-semantics (whereas fi-calculus does this only on the γ-rule).
The generic fr-calculus is simply fi-semantics with the evaluation contexts removed
from the schemata.

fr-calculus.
Schemata (amending fi-calculus):

[eval (V1 . V2) e] −→ [combine [eval V1 e] V2 e] (10.7p)

[eval 〈V 〉 e] −→ 〈[eval V e]〉 (10.7a)

[combine 〈ǫ.T 〉 V e]
−→ [combine [combine T e 〈〈〉〉] V e] (10.7ǫ)

[combine 〈 f2.T 〉 (V1 . V2) e]
−→ [combine [combine T V1 e] V2 e] (10.7 f2) .

(10.7)

The equational strength of fr-calculus (compared to the purely reflexive equational
theory of fi-semantics) comes entirely from compatibility — which should not be
underestimated, noting that (10.6γ) systematically introduces parallel redexes, and
that reduction of the body of an operative was the whole point of having substitution
in the pure calculus.

The omitted schemata are always schemata that don’t involve substitution (so
that substitution can be dealt with by the generic theory, leaving only simpler non-
substitutive cases to be added back in on a case-by-case basis), but whose omission
leaves only schemata that cannot disable each other (as, for example, a fp-calculus
f2-redex, per (9.32 f2), could be temporarily disabled while a side-effect frame emitted

200

by T2 bubbles up through it, as in

[combine 〈 f2.T0〉 (T1 . [side-effect 〈· · ·〉 T2]) e]
−→• [combine 〈 f2.T0〉 [side-effect 〈· · ·〉 (T1 . T2)] e]
−→• [side-effect 〈· · ·〉 [combine 〈 f2.T0〉 (T1 . T2) e]]

(10.8)

where the first and third terms are f2-redexes but the second isn’t).
The kinds of schemata that may be omitted by the regular calculi are

• garbage-collection schemata, most of which must be omitted because their use is
contingent on some non-localized property of subterms that the generic theory
doesn’t provide for (such as a certain variable not occurring free in a subterm);

• bubbling-up schemata, which are often omitted if they don’t involve substitution
since they are major sources of interference with other schemata (as in (10.8));
and

• impure-frame simplification schemata that perform simple but potentially inter-
fering transformations (often, self -interfering, as with a redex pattern [a [a 2]]
in a term [a [a [a T]]]).

201

Chapter 11

Imperative control

11.0 Introduction

In this chapter, we introduce imperative control analogous to that of Felleisen’s
λvC-calculi. (Kernel’s advanced continuation facilities ([Shu09, §7 (Continuations)]),
which seem to require greater primitive support than offered here, have no bearing
on the thesis of the dissertation.)

11.1 Common structures

Our control device uses two kinds of upward-bubbling syntactic frames:

[catch xc 2], the binding frame, which is initiated by a capture action (such as
calling call/cc), and delimits the region within which xc can be thrown to;
and

[throw xc 2], which specifies the destination xc, and delimits the term being sent
to that destination.

The common syntax for control is

fC-calculus and fC-semantics.
Syntax (amending fi-semantics):

xc ∈ ControlVariables

Ap ::= [eval T T] | [combine T T T] (Active partial-
evaluation terms)

A ::= Ap | [catch xc T] | [throw xc T] (Active terms) .

(11.1)

Because catch and throw are active, they can occur in a value only if contained within
an operative or environment. Control variables are not terms.

202

The two activities of the control device are upward movement of a throw, and
upward movement of a catch. When a throw bubbles upward, it deletes surrounding
context until it arrives at a matching catch; as a calculus reduction,

[catch xc E[[throw xc T]]] −→∗
fc [catch xc [throw xc T]]

−→ fc [catch xc T] .
(11.2)

This does not involve any substitution. When a catch bubbles upward, however, it
must modify all matching throws. To see why, suppose a catch of variable xc bubbles
upward past a context E. (Assume xc doesn’t occur free in E.) Frame E[[catch xc 2]]
is transformed to [catch xc E[2]]; but any matching subterm [throw xc T] that bubbles
up to this frame would delete the E just within the catch; so, to preserve the meaning
of the throw, [throw xc 2] must be transformed to [throw xc E[2]]. (To put it another
way: [catch xc 2] is the target of each matching [throw xc 2], so as the target moves,
the matching throws have to adjust their aim.) The substitution function to perform
this transformation is

fC-calculus and fC-semantics.
Auxiliary functions (substitution):

T [xc ← C] = α(T, {xc} ∪ FV(T) ∪ FV(C))⌊xc ← C⌋

[throw xc T]⌊x′c ← C⌋ =

{

[throw xc C[T ⌊x′c ← C⌋]] if xc =x′c
[throw xc (T ⌊x′c ← C⌋)] otherwise

P [
→

T]⌊x′c ← C⌋ = P [
∑

k

→

T (k)⌊x′c ← C⌋]
if P doesn’t involve any throw

T [xc ← x′c] = α(T, {xc} ∪ FV(T) ∪ {x′c})⌊xc ← x′c⌋

[throw xc T]⌊x′c ← x′′c⌋ =

{

[throw x′′c (T ⌊x′c ← x′′c⌋)] if xc = x′c
[throw xc (T ⌊x′c ← x′′c⌋)] otherwise

P [
→

T]⌊x′c ← x′′c⌋ = P [
∑

k

→

T (k)⌊x′c ← x′′c⌋]
if P doesn’t involve any throw

α([catch xc T],X) = [catch x′c (α(T,X ∪ {xc, x
′
c})⌊xc ← x′c⌋)]

where x′c 6∈ X .

(11.3)

A control variable is free when it occurs in a throw not within a matching catch. α
only has to be specified here for structures that bind control variables, as precisely
all other cases are covered by (10.4).

Just as the syntactic domain of values was closed under substitutions V1[xp ← V2],
it is also closed under substitutions V [xc ← C] since 2[xc ← C] only modifies throws,
which are already active.

In this type of substitution, function α alone is insufficient to guarantee hygiene.
Hygiene also requires in general that C does not bind any variables — since if C
did bind some variable x, [throw xc T]⌊xc ← C⌋ = [throw xc C[T ⌊xc ← C⌋]] would

203

capture any free occurrences of x in T . As a matter of notational convenience, (11.3)
isn’t limited to the hygienic case; but in practice, all schemata that use this type of
substitution will use non-binding C.

We make two changes to the definition of δ-rule from fp-calculus, Definition 9.29,
by allowing polynomials over the extended term set Fc, rather than its subset Fp,
and by excluding $call/cc from the set of δ-rule combiners (because, like $vau , its
schema won’t be strictly polynomial).

Definition 11.4 A fC-calculus δ-form is a triple 〈π1, π2, π3〉 of semantic polyno-
mials over the term set Fc satisfying all the conditions of Definition 9.29 (9.10(1)–
9.10(5), 9.22(7)–9.22(9), and 9.29(6)–9.29(9a)). The class of all consistent sets of
fC-calculus δ-forms is called ∆c.

A fC-calculus δ-rule schema is a reduction rule schema of the form

[combine π0 π1 π2] −→ π3 (11.5)

where π0 ∈ (PrimitiveOperatives − {$vau , $call/cc}) and 〈π1, π2, π3〉 is a fC-
calculus δ-form.

Semantic function δ now has type (PrimitiveOperatives− {$vau , $call/cc})→ ∆c.

11.2 fC-semantics

The additional computation rules for processing catch and throw are

fC-semantics.
Schemata (catch and throw):

E[[catch xc T]] 7−→ [catch x′c E[((T [xc ← x′c])[x
′
c ← E])]]

where x′c 6∈ FV(E) ∪ FV([catch xc T])
(11.6c)

[catch xc E[[catch x′c T]]] 7−→ [catch xc E[(((T [x′c ← x′′c])
[x′′c ← E])
[x′′c ← xc])]]

where x′′c 6∈ FV(E) ∪ FV([catch x′c T])
(11.6cc)

[catch xc V] 7−→ V if xc 6∈ FV(V) (11.6g)

[catch xc E[[throw xc T]]] 7−→ [catch xc T] (11.6ct) .

(11.6)

The third schema garbage-collects an unused catch; waiting until no other computa-
tion can be performed is a straightforward way to effect the garbage-collection without
compromising determinism.

One can’t just add these schemata onto fi-semantics, though, because all of the
pre-existing computation schemata, (10.3), require a term of the form E[Ap]; intro-
ducing a top-level catch frame disables all of them. To correct this difficulty (which

204

only arises because the semantics isn’t compatible), we introduce a schema that lifts
each catch-less computation step to a catch-framed step:

fC-semantics.
Schemata (lifting unframed schemata):

[catch xc E[Ap]] 7−→ [catch xc T] if E[Ap] 7−→c T .

(11.7)

(This is why we bothered to distinguish in the syntax, (11.1), between active terms
A and active partial-evaluation terms Ap.)

11.3 fC-calculus

The computation schemata of our semantic systems are unbounded, in the sense
that each schema requires its redex to match an evaluation context that spans the
unbounded gap between the top level of the redex, and the targeted active subterm.
The reduction rule schemata of our corresponding calculi, though, can afford to be
strongly bounded, each matching its redex against a pattern of fixed, minimal size,
focused narrowly on the neighborhood of an active subterm; the unbounded gap
between redex and top-level term is bridged by compatibility. Fixed minimal patterns
are simple, so we prefer them. Upward-bubbling frames move upward by just one
level of syntax per reduction step; and frames interact with each other only when
they actually make contact, with no intervening context at all.

We specify a single syntactic level of evaluation context, upward through which
side-effects bubble, via a restricted syntactic domain of singular evaluation contexts
(following [FeHi92, §3.1]). An evaluation context is singular iff it is nontrivial but is
not the composition of any two nontrivial contexts:

f-calculus.
Syntax (contexts):

Es ::= (T . 2) | (2 . V) | 〈2〉
| [eval T 2] | [eval 2 V]
| [combine T T 2]
| [combine T 2 V]
| [combine 2 V V] (Singular evalua-

tion contexts) .

(11.8)

The syntactic domain of evaluation contexts is the closure of the singular evaluation
contexts under n-ary composition. The general bubbling-up schema for throw is then

Es[[throw xc T]] −→ [throw xc T] . (11.9)

There is also a special bubbling-up schema for throw when its immediate context is
another throw,

[throw x′c [throw xc T]] −→ [throw xc T] . (11.10)

205

This works because, algorithmically, the inner throw directs the result of T to destina-
tion xc rather than to the outer throw; the destination of the outer throw is irrelevant,
because no result is ever provided to it by the inner throw.

A catch can also bubble up through an evaluation context,

Es[[catch xc T]] −→ [catch x′c E
s[((T [xc ← x′c])[x

′
c ← Es])]

where x′c 6∈ FV(Es) ∪ FV([catch xc T]) .
(11.11)

There is no need for a throw to bubble up through a non-matching catch, because
the catch can bubble up ahead of it until, assuming the throw does have a matching
catch further up, the matching and non-matching catches merge.

In principle, a catch is actually a declarative construct —computationally it
doesn’t do anything, despite its potentially far-reaching substitutive consequences—
so that one could allow a catch to bubble up through some non-evaluation contexts,
such as C =[combine 2 T1 e]. This however would become fairly messy (under certain
carefully circumscribed conditions, Church–Rosser-ness would require a catch to be
able to sink back down into C, and undergo a sort of fission in doing so), so the
current treatment omits it.

All together, the general schemata for fC-calculus are

fC-calculus.
Schemata (amending fi-calculus):

Es[[catch xc T]]
−→ [catch x′c E

s[((T [xc ← x′c])[x
′
c ← Es])]

where x′c 6∈ FV(Es) ∪ FV([catch xc T]) (11.12c)

[catch xc [catch x′c T]] −→ [catch xc (T [x′c ← xc])] (11.12cc)

[catch xc T] −→ T if xc 6∈ FV(T) (11.12g)

Es[[throw xc T]] −→ [throw xc T] (11.12t)

[throw x′c [throw xc T]] −→ [throw xc T] (11.12tt)

[catch xc [throw xc T]] −→ [catch xc T] (11.12ct) .

(11.12)

The underlying operative of call/cc has schema

[combine $call/cc (V1) V2]
7−→ [catch xc [combine V1 (〈〈 f2.〈 fxp.〈 f0.[throw xc xp]〉〉〉〉) V2]]

where xc 6∈ FV(V1) ∪ FV(V2) .
(11.13)

(This is the Scheme behavior of call/cc ; in Kernel, the value passed to V1 would be
a first-class continuation, not a combiner.)

The regular variant calculus, frC-calculus, retains the catch bubbling-up schema
since it involves substitution, and must therefore omit the catch-throw simplification
schema since the catch bubbling-up could disable it. The catch-catch and throw-
throw simplifications are omitted since they would be self-interfering, and the garbage-
collection since its use constraint is inherently non-regular. The only other general

206

schema, throw bubbling-up, is retained because there is simply nothing else left for
it to interfere with.

frC-calculus.
Schemata (amending fr-calculus):

Es[[catch xc T]]
−→ [catch x′c E

s[((T [xc ← x′c])[x
′
c ← Es])]

where x′c 6∈ FV(Es) ∪ FV([catch xc T])

Es[[throw xc T]] −→ [throw xc T] .

(11.14)

Schema (11.13) is also included in the regular variant frC-calculus.

207

Chapter 12

Imperative state

12.0 Introduction

In this chapter we introduce imperative state comparable to that of Felleisen’s λvS-
calculi, in the form of environment mutation. (Our mutable environments here are
single-parented; Kernel supports multi-parent environments ([Shu09, §3.2, §4.2 (En-
vironments)]), but multi-parented-ness of environments has no obvious analog in
Felleisen’s calculi.)

12.1 Common structures

As with imperative control, we describe first the syntax and auxiliary functions shared
by both the semantics and the calculus (fS-semantics and fS-calculus); but, in con-
trast to the treatment of imperative control, here these common syntax and functions
are sufficient only for the semantics. For the semantics goal of self-evident correct-
ness, fS-semantics assumes that all bindings in all environments are mutable, and
performs symbol lookup in a single atomic step. For the calculus goal of strong equa-
tional theory, fS-calculus provides additional syntax for degrees of immutability, with
specialized mutable-to-immutable substitution functions so that stable bindings and
environments can be exploited when they occur (as anticipated in Chapter 5); and
provides additional syntax and substitution functions so that symbol lookup can be
analyzed into multiple explicit steps.

12.1.1 State variables

A state variable xs is the identity of a stateful environment. State variables are
compound variables: they have the usual characteristics of variables (bound by a
binding construct, subject to substitution functions), but also have operationally
significant internal structure. Given a state variable xs, the identity of its parent can

208

be uniquely reconstructed; and this parentage identification is invariant across both
α-renaming of xs and α-renaming of the parent of xs.

Internally, an environment identity xs is a []-delimited nonempty string of primi-
tive state indices,

i ∈ StateIndices (with total ordering ≤)

xs ::= [i+] (State variables) .
(12.1)

The suffixes of xs are the identities of its ancestors; thus, [ii′i′′] would have parent
[i′i′′] and orphan grandparent [i′′]. The leftmost index i in a state variable xs = [iwi]
distinguishes xs from siblings with the same parent, x′s = [i′wi]; but i has no meaning
independent of the suffix that follows it. That is, if wi 6= w′

i, then the meaning of
prefix i in xs = [iwi] has nothing to do with its meaning in x′s = [iw′

i]. In particular,
α-renaming that replaces prefix i with i′ in [iwi] would have no effect on the i prefix
of [iw′

i].
State renaming substitution uses notation 2[xs ← i], specifying that the prefixing

index of xs should be replaced with i. Quantifying semantic variables wi over strings
of state indices, the elementary operation is

[w′
iiwi][[iwi]← i′] = [w′

ii
′wi]

[w′
i][[iwi]← i′] = [w′

i] if iwi isn’t a suffix of w′
i .

(12.2)

Auxiliary function path maps a state variable xs to the sequence of ancestors of
xs that are searched when looking up a symbol.

fS-semantics.
Auxiliary functions (environment ancestry):

path([i]) = [i]
path([ii′wi]) = [ii′wi] path([i′wi]) .

(12.3)

State variables will usually be treated as atomic units. There will be a surgical
intrusion of the internal structure of state variables into the schema for $vau (which
must construct a child of its static environment); but the only widespread intrusions
into the high-level treatment (i.e., above the level of defining certain auxiliary func-
tions) will be (1) the existence of function path, (2) the possibility that substitutions
for xs may affect x′s even if x′s 6= xs, and (3) the context-sensitive syntactic constraint
that a free state variable cannot have a bound ancestor.

This syntactic constraint violates the principle of contextual locality (as discussed
following (9.1)): not only does it restrict how terms can be constructed, and how
contexts can be constructed, but it also restricts which terms are permissible in which
contexts. Suppose xs is, by its internal structure, a child of x′s; context C binds xs,
but not x′s; context C ′ binds x′s, but not xs; and term T contains a free occurrence of
xs. Then C[T] is a term, and C ′[C[T]] is a term, but C ′[T] is not a term.

209

There is no purely syntactic way to eliminate the nonlocality, because it follows
from the intrinsic purposes served by the syntactic elements involved (here, C ′, T , xs,
and x′s), prior to the particular reduction rule schemata imposed on them.1 A binding
of xs, as by C, uniquely determines the identity of the environment designated by free
occurrences of xs. In particular, α-renaming of xs is possible iff the binding of xs is
available, because only then can we be sure that we have in hand all the instances of xs

that need to be renamed. Similarly, binding of x′s, as by C ′, uniquely determines the
identity of the environment designated by free occurrences of x′s. However, because
the ancestry of xs is encoded within each occurrence of xs, the identity of the parent
x′s of xs is uniquely determined by a binding for x′s (as in C ′), not by a binding for xs

(as in C). Consider, then, what would happen if we α-renamed the x′s bound by C ′

in C ′[T]. The free occurrence of xs in T signifies a child of the environment uniquely
determined by the binding of x′s in C ′; therefore, the identity xs of that environment
must be updated to reflect the renaming of x′s — but then, to guarantee consistency,
every reference to the child environment xs must be renamed at the same time; and
we don’t have all those references in hand, because the relevant binding of xs isn’t
included in the given term, C ′[T]. Thus, in order for α-renaming to function correctly,
the binding of x′s must encompass the bindings of its children.

As an alternative to the nonlocal constraint, we could change our understanding
of binding, such that any substitution for xs is blocked when it encounters a binding
for any ancestor of xs. In effect, free occurrences of xs in T would not be free in
C ′[T], but would not be explicitly bound, either. Special provisions would have to
be made, throughout the machinery of the calculus, for these neither-this-nor-that
variable occurrences: they would have to be viewed either as permanently unbound, or
as implicitly bound. Terms with permanently unbound variable occurrences would be
semantically useless, so admitting them to the syntax would add only manifestly use-
less formal equations to the theory. On the other hand, terms with implicitly bound
variable occurrences could be trivially rewritten with explicit bindings, a pedestrian
normalization task that would still require the rest of the calculus machinery to pro-
vide for the unnormalized terms. Therefore, if we are going to encode environment
ancestry in the variables, we judge the nonlocal syntactic constraint superior to these
alternatives.

If the ancestry of an environment were not encoded in the variables, there would
be no need for the nonlocal syntax. However, for a usefully strong formal theory, we
want to maximize local deductions about symbol lookups — and if a symbol binding
isn’t local to the environment at which its lookup starts, then the ancestry of that
environment is prerequisite to any further reasoning about the lookup. Hence, locally
encoding the ancestry strengthens the theory.

Any correct encoding of environment ancestry will be substantially equivalent to
the one chosen here, inasmuch as it would logically require comparable supporting
machinery in the same places in the calculus (as remarked earlier: auxiliary functions,

1Cf. the discussion of syntactic constraints following (9.5), §9.1.

210

schema for $vau , existence of function path , possibility that substitutions for one envi-
ronment may affect other environments, and context-sensitive syntax constraint). The
chosen encoding has particularly natural information granularity: When α-renaming
an environment to avoid collisions, we are only allowed in general to modify that
information that distinguishes the environment from its siblings, because in general
we don’t have access to the bindings of its ancestors and so cannot in any way alter
the representations of their identities. A state index is exactly the unit of information
we are able to modify during a single α-renaming, and dividing the encoded state
variable into these units precisely minimizes the number of elements that need to be
modified.

12.1.2 Environments and bindings

The binding frame for state variables has the form

[state Xs 2] , (12.4)

where Xs is a state definiend, specifying the identities of the environments defined by
the frame, and 2 is the delimited syntactic region within which the defined environ-
ments can be accessed.

Assignment is supported by a frame

[set [[ωs]] 2] , (12.5)

where ωs is a list of stateful bindings, each of the form [xs, s] ← V . (The restriction
of the right-hand sides of bindings to values V , rather than terms T as in the stateless
calculi, will prevent a major sapping of equational strength in the stateful calculi.)
Set frames are the sole repository of stateful bindings.

Operationally, all we need in the representation of a mutable environment is its
identity,

e ::= 〈〈xs〉〉 . (12.6)

Lookup can then be handled with no additional syntax and no additional substi-
tution, provided we don’t care to partially evaluate incomplete subterms (which we
never care to do in the semantics, but do routinely in the calculus), and are willing
to embed a complete unspecified evaluation context E into the symbol-evaluation
schema (which we do routinely in the semantics, but not in the calculus):

[state Xs [set [[ωs]] E[[eval s 〈〈xs〉〉]]]]
7−→ [state Xs [set [[ωs]] E[V]]]

if lookup([path(xs), s], [[ωs]]) = V
and path(xs) are all defined by Xs .

(12.7)

The state syntax common to both semantics and calculus is

211

fS-semantics.
Syntax (amending fi-semantics):

i ∈ StateIndices (with total ordering ≤)

xs ::= [i+] (State variables)

Bp ::= s← V (Stateless bindings)
Bs ::= [xs, s]← V (Stateful bindings)
e ::= 〈〈xs〉〉 (Environments)

Xs ::= [x∗s] (State definiends)

Ap ::= [eval T T] | [combine T T T] (Active partial-
evaluation terms)

A ::= Ap | [state Xs T] | [set [[B∗
s]] T] (Active terms)

where
state variables in a state definiend are in order by first state index;
no two state variables in a state definiend have the same first state

index;
bindings in a set list are in order primarily alphabetically by state

variable, secondarily by symbol;
no two bindings in a set list have the same left-hand side; and
no free state variable in a state term [state Xs T] is descended from

a state variable in Xs.

(12.8)

The definition of free variable set FV(T) has one subtle case, owing to the com-
pound character of state variables. In a state term [state [ws] T], all proper ancestors
of ws (if any) are considered to “occur”, and are therefore free unless also defined by
the definiend [ws]. That is,

ancestors(ws) =
⋃

xs∈ws

path(xs)

FV([state [ws] T]) = (FV(T) ∪ ancestors(ws))− ws .

(12.9)

Under this definition, a state term [state [[i′′i′i][i]] T] would be syntactically illegal,
under the last context-sensitive constraint of (12.8), because [i] is defined by the
definiend while its child [i′i] occurs free.

Xs ·X
′
s denotes the sorted merge of definiends Xs, X

′
s, provided no state variable

in Xs has the same first state index as any state variable in X ′
s. Semantic variables ws

are quantified over strings (vectors) of state variables. We extend the total ordering
of state indices to partially order state variables by comparing first elements, xs ≤ x′s
iff xs(1) ≤ x′s(1). (Also, besides treating strings as vectors, whenever convenient we
use set operations to selectively delete elements from a string, e.g. “ws ∩ path(xs)”
meaning the string of elements of ws that are ancestors of xs; or coerce strings to
sets of their constituent elements, e.g. “ws ⊆ FV(T)” meaning every element of ws

belongs to FV(T).)

212

fS-semantics.
Auxiliary functions (state definiends):

[ws] · [] = [ws]
[] · [ws] = [ws]

[xs] · [x
′
sws] =

{

[xsx
′
sws] if xs < x′s

[x′s] · ([xs] · [ws]) if x′s < xs

[xsx
′
sws] ·Xs = [xs] · ([x

′
sws] ·Xs) .

(12.10)

Delimited lists of stateful bindings, in set frames, are managed similarly to state-
less environments, (9.28). We quantify semantic variables ωs over sequences B∗

s , ωp

over B∗
p ; and order stateful bindings (i.e., Bs ≤ B′

s) primarily alphabetically by state
variable, secondarily by symbol.

fS-semantics.
Auxiliary functions (stateful binding sets):

[[]] · [[ωs]] = [[ωs]]
[[ωs]] · [[]] = [[ωs]]

[[B′
s]] · [[Bs ωs]] =

[[B′
sBs ωs]] if B′

s < Bs

[[Bs]] · ([[B
′
s]] · [[ωs]]) if Bs < B′

s

[[B′
s ωs]] otherwise

[[ωsBs]] · [[ω
′
s]] = [[ωs]] · ([[Bs]] · [[ω

′
s]])

DVs([[]]) = {}
DVs([[[xs, s]← V]]) = {xs}

DVs([[ωs]] · [[ω
′
s]]) = DVs([[ωs]]) ∪ DVs([[ω

′
s]])

lookup([xs, s], [[[x
′
s, s

′]← V ωs]])

=

{

V if [xs, s] = [x′s, s
′]

lookup([xs, s], [[ωs]]) otherwise

lookup([xsws, s], [[ωs]])

=

{

lookup([xs, s], [[ωs]]) if this is defined
lookup([ws, s], [[ωs]]) otherwise

xs × (s← V) = [xs, s]← V

xs × 〈〈〉〉 = [[]]

xs × 〈〈Bp ωp〉〉 = [[xs × Bp]] · (xs × 〈〈ωp〉〉) .

(12.11)

Function DVs([[ωs]]) extracts the set of state variables that should be defined by
some enclosing state frame to support the left sides of bindings [[ωs]]. DVs([[ωs]]) ⊆
FV([set [[ωs]] T]).

Function xs × 〈〈ωp〉〉 is an orthogonal alternative to redefining function definiend ,
which we assume unchanged from (9.31). Given partial-evaluation definiend Xp and

213

proscribed variables set X , instead of modifying definiend to produce stateful bind-
ings, we let it construct a stateless environment 〈〈ωp〉〉 and retrofit the state variable
to its contents, xs × 〈〈ωp〉〉.

Because a state frame can bind multiple state variables in parallel, renaming state
variables one at a time would be awkward. One would be forever picking apart com-
pound state-definiends into their constituent parts, undermining the succinctness oth-
erwise afforded by parallel binding, and with considerable intermediate-to-high-level
exposure of the semi-encapsulated internal structure of the individual state variables
— only to reassemble the disassembled compound definiends at earliest opportunity.
Therefore, the state-variable renaming substitution function supports renaming mul-
tiple state variables in parallel. The general notation used is 2[ws ← wi]; each state
variable ws(k) is renamed by changing its first state index to wi(k).

The empty string (for which we had no need before this) is denoted φ.
In a parallel renaming xs⌊w

′
s ← w′

i⌋, if xs is descended from more than one of the
w′

s, more than one of the indices in xs must be changed — and this requires some
care in the mechanical definition of the substitution, lest one index change 2⌊w′

s(k)←
w′

i(k)⌋ cause the target to no longer match the pattern w′
s(k + j) for a later index

change 2⌊w′
s(k+j)← w′

i(k+j)⌋. For example, renaming [i2i1]⌊[i1][i2i1]← i′1i
′
2⌋ ought

to transform [i2i1] to [i′2i
′
1]; but if the first index change 2⌊[i1]← i′1⌋ is performed first,

its result [i2i
′
1] won’t match the pattern for the second index change, 2⌊[i2i1] ← i′2⌋.

To elicit the correct behavior, when performing the first index change on the target
xs = [i2i1], we also perform that index change on the remaining patterns w′′

s = [i2i1];
the general relation is then

xs⌊x
′
sw

′
s ← i′w′

i⌋ = (xs⌊x
′
s ← i′⌋)⌊(w′

s⌊x
′
s ← i′⌋)← w′

i⌋ , (12.12)

and in this example,

[i2i1]⌊[i1][i2i1]← i′1i
′
2⌋ = [i2i

′
1]⌊[i2i

′
1]← i′2⌋

= [i′2i
′
1]⌊φ← φ⌋

= [i′2i
′
1] .

(12.13)

214

fS-semantics.
Auxiliary functions (substitution):

T [ws ← wi] = α(T, ws ∪ FV(T) ∪
(ws⌊ws ← wi⌋))⌊ws ← wi⌋

[w′
iiwi]⌊[iwi]← i′⌋ = [w′

ii
′wi]

xs⌊x
′
s ← i′⌋ = xs if x′s 6∈ path(xs)

xs⌊φ← φ⌋ = xs

xs⌊x
′
sw

′
s ← i′w′

i⌋ = (xs⌊x
′
s ← i′⌋)⌊(w′

s⌊x
′
s ← i′⌋)← w′

i⌋

φ⌊w′
s ← w′

i⌋ = φ
(xsws)⌊w

′
s ← w′

i⌋ = (xs⌊w
′
s ← w′

i⌋)(ws⌊w
′
s ← w′

i⌋)

〈〈xs〉〉⌊w
′
s ← w′

i⌋ = 〈〈xs⌊w
′
s ← w′

i⌋〉〉

[]⌊w′
s ← w′

i⌋ = []
[xsws]⌊w

′
s ← w′

i⌋ = [xs]⌊w
′
s ← w′

i⌋ · [ws]⌊w
′
s ← w′

i⌋
[state [ws] T]⌊w′

s ← w′
i⌋ = [state [ws]⌊w

′
s ← w′

i⌋ (T ⌊w′
s ← w′

i⌋)]

([xs, s]← V)⌊w′
s ← w′

i⌋ = [xs⌊w
′
s ← w′

i⌋, s]← V ⌊w′
s ← w′

i⌋
[[]]⌊w′

s ← w′
i⌋ = [[]]

[[Bs ωs]]⌊w
′
s ← w′

i⌋ = [[Bs⌊w
′
s ← w′

i⌋]] · ([[ωs]]⌊w
′
s ← w′

i⌋)
[set [[ωs]] T]⌊w′

s ← w′
i⌋ = [set [[ωs]]⌊w

′
s ← w′

i⌋ T ⌊w
′
s ← w′

i⌋]

P [
→

T]⌊w′
s ← w′

i⌋ = P [
∑

k

→

T (k)⌊x′s ← i′⌋]
if P doesn’t involve any state variable .

(12.14)

In addition to this explicit state-variable renaming, which is needed occasionally to
maintain hygiene when rearranging terms (though, as in the control calculus of Chap-
ter 11, most renaming will be handled quietly by function α), a second state-variable
substitution function is provided to delete a state variable, for garbage collection (or,
in principle —though not attempted here— because that environment provably won’t
be mutated). The notation for the deletion function is 2[xs 6←].

To maintain hygiene across state-variable deletion, renaming by function α avoids
not only proscribed state variables, but proscribed state indices. The more stringent
requirement arises because state-variable deletion causes structural rearrangement of
its descendants:

[w′
iiwi]⌊[iwi] 6←⌋ = [w′

iwi] . (12.15)

If [w′
iwi] is already the name of another environment, the two environments are in-

advertently merged. Function α chooses its renamings 2⌊[iwi] ← i′⌋ to guarantee
not only that there is no proscribed variable [i′wi], and no proscribed variable with
ancestor [i′wi] (lest we capture an ancestor of a free variable), but that no proscribed
variable uses i′ at all (which covers all the aforementioned cases, and deletion as well).

215

fS-semantics.
Auxiliary functions (substitution):

rename(φ,X) = 〈φ,X〉

rename(xs,X) = 〈i, (X ∪ {xs⌊xs ← i⌋})〉

where i > max(
⋃

[wi]∈X

wi)

rename(wsw
′
s,X) = 〈wiw

′
i,X

′′〉
where rename(ws,X) = 〈wi,X

′〉
and rename(w′

s,X
′) = 〈w′

i,X
′′〉

α([state [ws] T],X) = [state [ws⌊ws ← wi⌋]
α(T,X ′)⌊ws ← wi⌋]

where rename(ws,X) = 〈wi,X
′〉 .

(12.16)

A subtlety is that state-variable function rename always produces a vector of state
indices in increasing order ; consequently, the reduction relation of the semantics,
which is meant to be deterministic, can expect the ordering of state variables within
a state definiend to be unperturbed by required renaming. Further, because of the
way α([state [ws] T],X) uses rename, it will always assign larger indices to states
bound in T than it does to states in ws.

fS-semantics.
Auxiliary functions (substitution):

T [xs 6←] = α(T, {xs} ∪ FV(T))⌊xs 6←⌋

[w′
iiwi]⌊[iwi] 6←⌋ = [w′

iwi] if w′
i 6= φ

[iwi]⌊[iwi] 6←⌋ = φ
x′s⌊xs 6←⌋ = x′s if xs 6∈ path(x′s)

〈〈x′s〉〉⌊xs 6←⌋ = 〈〈x′s⌊xs 6←⌋〉〉

φ⌊xs 6←⌋ = φ
(x′sws)⌊xs 6←⌋ = (x′s⌊xs 6←⌋)(ws⌊xs 6←⌋)

[state [ws] T]⌊xs 6←⌋ = [state ([ws]⌊xs 6←⌋) (T ⌊xs 6←⌋)]

([x′s, s]← V)⌊xs 6←⌋ = [x′s⌊xs 6←⌋, s]← V ⌊xs 6←⌋ if xs 6= x′s
([xs, s]← V)⌊xs 6←⌋ = φ

[[]]⌊xs 6←⌋ = [[]]
[[Bs ωs]]⌊xs 6←⌋ = [[Bs⌊xs 6←⌋]] · ([[ωs]]⌊xs 6←⌋)

[set [[ωs]] T]⌊xs 6←⌋ = [set [[ωs]]⌊xs 6←⌋ T ⌊xs 6←⌋]

P [
→

T]⌊xs 6←⌋ = P [
∑

k

→

T (k)⌊xs 6←⌋]
if P doesn’t involve any state variable .

(12.17)

T [xs 6←] is undefined if xs occurs free in T as the identity in a first-class environment
〈〈xs〉〉, because in that case the substitution fails to produce a syntactically valid term.

216

(The free occurrence is replaced by the empty string; this produces invalid syntax
only in the semantics, because the calculus will allow identity-less environments.)

We adjust the definition of δ-rule from fi-calculus by allowing polynomials over
the extended term set of fS-semantics, and by excluding $define! from the set of
δ-rule combiners. We call the fS-semantics term set Fss (second “s” for “semantics”)
to distinguish it from the larger set Fs of fS-calculus. (By limiting the polynomials
to be ‘over Fss’, we mean that the explicit syntax in the polynomials is restricted to
that syntactic domain, not that the semantic variables within the polynomials are
so constrained. As with all schemata and auxiliary functions, when shifting from
fS-semantics to fS-calculus we broaden our interpretations of the semantic variables

— as, most obviously, semantic variables based on “T” are quantified over Fss for the
semantics, over Fs for the calculus.)

A slight technical adjustment is also needed to δ-form Condition 9.10(2), because
it specifies unconstrained subterms, whereas our term syntax now places constraints
on arbitrary terms in arbitrary contexts.

Definition 12.18 A fS-calculus δ-form is a triple 〈π1, π2, π3〉 of semantic poly-
nomials over the term set Fss satisfying all the conditions of Definition 9.29, except
that Condition 9.10(2) is relaxed to allow subterm constraints inherent in their sur-
rounding context. The class of all consistent sets of fS-calculus δ-forms is called
∆s.

Semantic function δ now has type (PrimitiveOperatives− {$vau , $define!})→ ∆s.

12.2 fS-semantics

The computation schemata for bubbling up of state and set frames are

217

fS-semantics.
Schemata (bubbling up):

E[[state [ws] T]]
7−→ [state [ws]⌊ws ← wi⌋ E[T [ws ← wi]]]

where rename(ws,FV(E[[state [ws] T]])) = 〈wi,X 〉
(12.19σ)

[state [ws] E[[state [w′
s] T]]]

7−→ [state [ws] · ([w
′
s]⌊w

′
s ← w′

i⌋) E[T [w′
s ← w′

i]]]
where rename(w′

s,FV(E[[state [w′
s] T]]) ∪ ws) = 〈w′

i,X 〉
(12.19σσ)

[state [ws] [set [[ωs]] E[[state [w′
s] T]]]]

7−→ [state [ws] · ([w
′
s]⌊w

′
s ← w′

i⌋) [set [[ωs]] E[T [w′
s ← w′

i]]]]
where rename(w′

s,FV([set [[ωs]] E[[state [w′
s] T]]]) ∪ ws)

= 〈w′
i,X 〉 (12.19!σ)

[state Xs E[[set [[ωs]] T]]]
7−→ [state Xs [set [[ωs]] E[T]]] (12.19!)

[state Xs [set [[ωs]] E[[set [[ω′
s]] T]]]]

7−→ [state Xs [set [[ω′
s]] · [[ωs]] E[T]]] . (12.19!!)

(12.19)

A set without a surrounding state is assumed to be an error, so we don’t provide
schemata for it.

The computation schema for symbol evaluation is

fS-semantics.
Schemata (symbol evaluation, amending fi-semantics):

[state [ws] [set [[ωs]] E[[eval s 〈〈xs〉〉]]]]
7−→ [state [ws] [set [[ωs]] E[V]]]

if lookup([path(xs), s], [[ωs]]) = V and path(xs) ⊆ ws .

(12.20)

The computation schema for $vau , (10.3v), doesn’t itself need to be changed; but
its auxiliary function vau, from (9.31), needs adaptation to use stateful environments
(and will be adapted further in §12.3.6 to allow for degrees of immutability).

218

fS-semantics.
Auxiliary functions (definiend compilation):

vau((T1 #ignore T2), 〈〈[wi]〉〉)
= C[[state [[iwi]] [set [iwi]× ep [eval T2 〈〈[iwi]〉〉]]]]

if definiend(T1,FV(T2) ∪ {[wi]}) = 〈C, ep,X〉
and [iwi] 6∈ FV(ep) ∪ FV(T2)

vau((T1 s T2), 〈〈[wi]〉〉)
= 〈ǫxp.C[[state [[iwi]] [set [iwi]× (ep · 〈〈s← xp〉〉)

[eval T2 〈〈[iwi]〉〉]]]]〉
if xp 6∈ FV(T2),

definiend(T1,FV(T2) ∪ {[wi]}) = 〈C, ep,X〉,
and [iwi] 6∈ FV(ep) ∪ FV(T2) .

(12.21)

A fresh non-δ schema is needed for $define! . Otherwise, the stateless schemata
(including the aforementioned for $vau) just need to be lifted.

fS-semantics.
Schemata ($define! ; lifting):

E[[combine $define! (V1 V2) 〈〈xs〉〉]]
7−→ E[[combine C[[set (xs × ep) #inert]] V2 〈〈〉〉]]

if definiend(V1, {}) = 〈C, ep,X 〉 (12.22d)

[state Xs E[Ap]]
7−→ [state Xs T] if E[Ap] 7−→s T (12.22⊥σ)

[state Xs [set [[ωs]] E[Ap]]]
7−→ [state Xs [set [[ωs]] T]] if E[Ap] 7−→s T . (12.22⊥!)

(12.22)

There are four computation schemata for garbage collection, distinguished by
whether the definiend of the state is or is not empty, and whether the body of the
state is or is not a set. (Two schemata will suffice in the calculus, where we needn’t
impose a deterministic order of collection, and so don’t care whether the body is a
set.) To simplify the conditions on the schemata, we say xs is used in T to mean
that some free occurrence of xs in T is the identity of a first-class environment 〈〈xs〉〉
occurring somewhere other than within the right-hand side of a stateful binding whose
left-hand state variable is xs (that is, the free occurrence of 〈〈xs〉〉 isn’t within the V
of a stateful binding [xs, s]← V).

219

fS-semantics.
Schemata (garbage collection):

7−→
[state [] V]

V (12.23g0)

7−→
[state [ws] [set [[]] V]]
[state [ws] V] (12.23g0!)

[state [wsxsw
′
s] V]

7−→ [state [wsw
′
s ∩ path(xs)]

[state [wsw
′
s − path(xs)]

V][xs 6←]]
if all of ws are used in V , and xs is not used in V

(12.23g)

[state [wsxsw
′
s] [set [[ωs]] V]]

7−→ [state [ws w′
s] [set [[ωs]] V]][xs 6←]

if all of ws are used in [set [[ωs]] V],
and xs is not used in [set [[ωs]] V] .

(12.23g!)

(12.23)

(Note that in (12.23g!), some elements of ωs might be deleted — and those are the
same elements that make no contribution to determining whether xs is used.)

12.3 fS-calculus

The state calculus, besides being compatible, has three features beyond its semantics:
local schemata for lookup; immutable bindings; and immutable environments.

12.3.1 Syntax of lookup

In the strictly mutable case, symbol evaluation is a transaction between the point of
evaluation, at the bottom of the syntax tree, and the point of binding (a set frame),
somewhere higher in the syntax tree. As usual, we manage the transaction in the
calculus by a directive frame that bubbles upward, and a substitution function that
broadcasts a reply downward.

The directive frame has the form

[get [[ωg]] 2] , (12.24)

where ωg is a list of stateful binding requests, each of the form

xg ← [xs, s] , (12.25)

where xg is a get variable, bound by the get frame, and used within the scope of the
frame, 2, to designate the eventual resultant value of the requested lookup. When

220

the get frame encounters a set frame with binding [xs, s]← V , it broadcasts V to its
body via substitution 2[xg ← V]; or, if the get frame encounters a state frame that
binds xs, it broadcasts lookup failure via 2[xg 6←].

The target for these substitutions is a special syntactic device, of either form

[receive wg]
or [receive wg/V] ,

(12.26)

where wg is the sequence of get variables designating possible results along the
environment-search path for the symbol evaluation, and optional /V provides a value
to use if all lookups wg fail. For example, the following reductions lookup a symbol
s in environment 〈〈x′s〉〉 with orphan parent 〈〈xs〉〉, where s is not locally bound (no
binding with left-hand side [x′s, s]), but is bound in the parent (binding [xs, s]← V).
(We assume for the example that no α-renaming is needed.)

[state [xsx
′
s] [set [[[xs, s]← V]] E[[eval s 〈〈x′s〉〉]]]]

−→ fs [state [xsx
′
s] [set [[[xs, s]← V]] E[[get [[x′g ← [x′s, s] xg ← [xs, s]]]

[receive x′gxg]]]]]

−→∗
fs [state [xsx

′
s] [set [[[xs, s]← V]] [get [[x′g ← [x′s, s] xg ← [xs, s]]]

E[[receive x′gxg]]]]]

−→ fs [state [xsx
′
s] [set [[[xs, s]← V]] [get [[x′g ← [x′s, s]]]

E[[receive x′g/V]]]]]

−→ fs [state [xsx
′
s] [get [[x′g ← [x′s, s]]]

[set [[[xs, s]← V]] E[[receive x′g/V]]]]]

−→ fs [state [xsx
′
s] [set [[[xs, s]← V]] E[V]]] .

(12.27)

The syntax extension for mutable lookup is

221

fS-calculus.
Syntax (lookup, amending fS-semantics):

xg ∈ GetVariables (with total ordering ≤)

Bg ::= xg ← [xs, s] (Stateful binding
requests)

D ::= φ | /V (Optional
default values)

A ::= Ap | [state Xs T] | [set [[B∗
s]] T]

| [get [[B∗
g]] T]

| [receive x∗g] (Active terms)

T ::= S | s | xp | [receive x
+
g /V]

| (T . T) | A (Terms)
where

binding requests in a get list are in order by left-hand side;
no two binding requests in a get list have the same left-hand side;

and
no two get variables in the get-variable list of a receive are

identical.

(12.28)

A receive without a default value is an active term, because it might represent a
lookup that will ultimately fail (reducing by substitution to [receive]), and so can
only be used in situations where a nonterminating subcomputation is allowed. A
receive with a default value cannot fail, because we already know that at least one of
its binding requests was successful; and it must ultimately reduce to a value, because
the right-hand sides of stateful bindings are required to be values; so we can safely
use it in situations where a value is expected, provided the use doesn’t depend on
which value it reduces to. (Recall that δ-rules must be invariant under substitution,
by Conditions 9.22(8) and 9.29(8a).)

12.3.2 Syntax of environments

Evaluation of a mutably bound symbol is a non-local event, i.e., it cannot be handled
internally to the eval subterm that initiates it, because its binding, if any, is main-
tained by a set frame, higher up in the syntax tree. In contrast, evaluation of an
immutably bound symbol can and should be a local event (as in fi-calculus), promot-
ing stronger equational theory (as anticipated in the treatment of hygiene, Chapter 5).
To enable this local treatment, we distribute the representation of immutable bindings
to the environment structures, 〈〈. . .〉〉:

222

fS-calculus.
Syntax (environments, amending fS-semantics):

e ::= 〈〈xs
?B∗

p〉〉 (Environments)
where

bindings in an environment are in order by bound symbol; and
no two bindings in an environment bind the same symbol.

(12.29)

When an environment is completely stable —no mutation can occur to it nor to any
of its ancestors— we dispense with its state-variable identity altogether, leaving only
a fi-style environment 〈〈ωp〉〉, thus recognizing equationally that stable environments
with the same bindings are interchangeable.

12.3.3 Auxiliary functions

The state-variable substitution functions extend straightforwardly to cover the new
syntax. Semantic variables ωg are quantified over sequences of stateful binding re-
quests, B∗

g .

fS-calculus.
Auxiliary functions (substitution):

(s← V)⌊ws ← wi⌋ = s← V ⌊ws ← wi⌋
(Bp ωp)⌊ws ← wi⌋ = Bp⌊ws ← wi⌋ ωp⌊ws ← wi⌋
〈〈ws ωp〉〉⌊ws ← wi⌋ = 〈〈ws⌊ws ← wi⌋ ωp⌊ws ← wi⌋〉〉

(xg ← [xs, s])⌊ws ← wi⌋ = xg ← [xs⌊ws ← wi⌋, s]
[[Bg ωg]]⌊ws ← wi⌋ = [[Bg⌊ws ← wi⌋]] · [[ωg]]⌊ws ← wi⌋

[get [[ωg]] T]⌊ws ← wi⌋ = [get [[ωg]]⌊ws ← wi⌋ T ⌊ws ← wi⌋]

(s← V)⌊xs 6←⌋ = s← V ⌊xs 6←⌋
(Bp ωp)⌊xs 6←⌋ = Bp⌊xs 6←⌋ ωp⌊xs 6←⌋
〈〈ws ωp〉〉⌊xs 6←⌋ = 〈〈ws⌊xs 6←⌋ ωp⌊xs 6←⌋〉〉
〈〈xs ωp〉〉⌊xs 6←⌋ = 〈〈ωp⌊xs 6←⌋〉〉

(xg ← [x′s, s])⌊xs 6←⌋ = xg ← [x′s⌊xs 6←⌋, s] if x′s 6= xs

[[Bg ωg]]⌊xs 6←⌋ = [[Bg⌊xs 6←⌋]] · ([[ωg]]⌊xs 6←⌋)
[get [[ωg]] T]⌊xs 6←⌋ = [get [[ωg]]⌊xs 6←⌋ T ⌊xs 6←⌋]
[get [[ωg]] · [[xg ← [xs, s]]]

T]⌊xs 6←⌋ = [get [[ωg]] T [xg 6←]]⌊xs 6←⌋ .

(12.30)

Recall that substitution T ⌊xs 6←⌋ was undefined in the semantics, (12.17), when xs

occurred free in T either on the left-hand side of a stateful binding, or as the identity
of a first-class environment 〈〈xs〉〉. Here, the extended syntax for environments admits
〈〈xs〉〉⌊xs 6←⌋ = 〈〈〉〉. When xs occurs free on the left side of a stateful binding, we leave
the substitution undefined, inhibiting deletion of xs until and unless the stateful
binding is eliminated (cf. §12.3.7). When xs occurs free on the right side of a stateful

223

binding request, we define the state substitution by inducing a lookup-failure get
substitution, T [xg 6←].

In defining auxiliary functions to manage delimited lists of stateful binding re-
quests, [[ωg]], we order requests by get variable (i.e., (xg ← [xs, s]) ≤ (x′g ← [x′s, s

′]) iff
xg ≤ x′g).

fS-calculus.
Auxiliary functions (stateful binding request sets):

[[]] · [[ωg]] = [[ωg]]
[[ωg]] · [[]] = [[ωg]]

[[B′
g]] · [[Bg ωg]] =

{

[[B′
gBg ωg]] if B′

g < Bg

[[Bg]] · ([[B
′
g]] · [[ωg]]) if Bg < B′

g

[[ωg Bg]] · [[ω
′
g]] = [[ωg]] · ([[Bg]] · [[ω

′
g]])

DVs([[]]) = {}
DVs([[xg ← [xs, s]]]) = xs

DVs([[ωg]] · [[ω
′
g]]) = DVs([[ωg]]) ∪ DVs([[ω

′
g]])

DVg([[]]) = φ
DVg([[xg ← [xs, s]]]) = xg

DVg([[ωg ω
′
g]]) = DVg([[ωg]]) DVg([[ω

′
g]]) .

(12.31)

Get variables, like state variables, can be bound in parallel and so ought to be
renameable in parallel. Semantic variables wg are quantified over strings of state
variables. As before ((12.16)), function rename always produces a renamed vector
in increasing order, and α([get 〈〈ωg〉〉 T],X) assigns larger revised names to variables
bound in T that it does to variables bound by ωg.

224

fS-calculus.
Auxiliary functions (substitution):

T [wg ← w′
g] = α(T, wg ∪ w

′
g ∪ FV(T))⌊wg ← w′

g⌋

xg⌊φ← φ⌋ = xg

xg⌊x
′
gw

′
g ← x′′gw

′′
g⌋ =

{

x′′g if xg = x′g
xg⌊w

′
g ← w′′

g⌋ otherwise

(xg ← [xs, s])⌊wg ← w′
g⌋ = xg⌊wg ← w′

g⌋ ← [xs, s]
[[]]⌊wg ← w′

g⌋ = [[]]
[[Bg ωg]]⌊wg ← w′

g⌋ = [[Bg⌊wg ← w′
g⌋]] · [[ωg]]⌊wg ← w′

g⌋

[get [[ωg]] T]⌊wg ← w′
g⌋ = [get [[ωg]]⌊wg ← w′

g⌋ T ⌊wg ← w′
g⌋]

φ⌊wg ← w′
g⌋ = φ

(xgw
′′
g)⌊wg ← w′

g⌋ = xg⌊wg ← w′
g⌋w

′′
g⌊wg ← w′

g⌋
(/V)⌊wg ← w′

g⌋ = /(V ⌊wg ← w′
g⌋)

[receive w′′
gD]⌊wg ← w′

g⌋ = [receive w′′
g⌊wg ← w′

g⌋
D⌊wg ← w′

g⌋]

P [
→

T]⌊wg ← w′
g⌋ = P [

∑

k

→

T (k)⌊wg ← w′
g⌋]

if P doesn’t involve any get variable

rename(xg,X) = 〈x′g, (X ∪ {x
′
g})〉

where x′g > max (X ∩GetVariables)

rename(wgw
′
g,X) = 〈w′′

gw
′′′
g ,X

′′〉
where rename(wg,X) = 〈w′′

g ,X
′〉

and rename(w′
g,X

′) = 〈w′′′
g ,X

′′〉

α([get [[ωg]] T],X) = [get [[ωg]]⌊wg ← w′
g⌋

α(T,X ′)⌊wg ← w′
g⌋]

where wg = DVg([[ωg]])
and rename(wg,X ∪ wg) = 〈w′

g,X
′〉 .

(12.32)

225

Get-variable substitution on successful lookup is

fS-calculus.
Auxiliary functions (substitution):

T [xg ← V] = α(T, {xg} ∪ FV(T) ∪ FV(V))⌊xg ← V ⌋

[get [[ωg]] T]⌊xg ← V ⌋ = [get [[ωg]] T ⌊xg ← V ⌋)]

(/V)⌊xg ← V ⌋ = /(V ⌊xg ← V ⌋)
[receive wgD]⌊xg ← V ⌋ = [receive wg(D⌊xg ← V ⌋)]

if xg 6∈ wg

[receive wgxgw
′
gD]⌊xg ← V ⌋ = [receive wg/V]

if wg 6= φ
[receive xgwgD]⌊xg ← V ⌋ = V

P [
→

T]⌊xg ← V ⌋ = P [
∑

k

→

T (k)⌊xg ← V ⌋]
if P doesn’t involve any

get variable ;

(12.33)

while on failed lookup,

fS-calculus.
Auxiliary functions (substitution):

T [xg 6←] = α(T, {xg} ∪ FV(T))⌊xg 6←⌋

[get [[ωg]] T]⌊xg 6←⌋ = [get [[ωg]] T ⌊xg 6←⌋]

φ⌊xg 6←⌋ = φ

(x′gwg)⌊xg 6←⌋ =

{

wg if xg = x′g
x′g(wg⌊xg 6←⌋) otherwise

(/V)⌊xg 6←⌋ = /(V ⌊xg 6←⌋)
[receive wgD]⌊xg 6←⌋ = [receive (wg⌊xg 6←⌋)(D⌊xg 6←⌋)]

if wg⌊xg 6←⌋ 6= φ or D = φ
[receive xg/V]⌊xg 6←⌋ = V ⌊xg 6←⌋

P [
→

T]⌊xg 6←⌋ = P [
∑

k

→

T (k)⌊xg 6←⌋]
if P doesn’t involve any get variable .

(12.34)

Mutable-to-immutable coercion of an environment xs uses substitution 2[xs 6←],
already defined; but mutable-to-immutable coercion of a binding [xs, s]← V requires
a new kind of substitution, for which we use, naturally, notation 2[[xs, s]← V].

226

fS-calculus.
Auxiliary functions (substitution):

T [[xs, s]← V] = α(T, {xs} ∪ FV(V) ∪ FV(T))⌊[xs, s]← V ⌋

children(xs, φ) = φ

children([w′
i], [iwi]ws) =

{

[iwi]children([w′
i], ws) if wi = w′

i

children([w′
i], ws) otherwise

〈〈xs〉〉 · 〈〈ωp〉〉 = 〈〈xs ωp〉〉

〈〈xs ωp〉〉⌊[xs, s]← V ⌋ = 〈〈xs〉〉 · (〈〈ωp〉〉⌊[xs, s]← V ⌋ ·
〈〈s← V 〉〉)

[state [ws] T]⌊[xs, s]← V ⌋ = [state [ws]
[set [[

∑

k [w′
s(k), s]← V]]

T ⌊[xs, s]← V ⌋]]
where w′

s = children(xs, ws)

P [
→

T]⌊[xs, s]← V ⌋ = P [
∑

k

→

T (k)⌊[xs, s]← V ⌋]
if xs 6∈ FV(P) .

(12.35)

Correct use of substitution 2[[xs, s] ← V] is subject to some constraints not inher-
ent in its definition. The substitution could misbehave severely if xs occurs free as
the identity of a first-class environment (that is, 〈〈xs ωs〉〉) in V ; so any mutable-to-
immutable coercion schema must forbid coercion in that case. The substitution will
propagate correctly into children of xs only if it is initiated from outside the state
frames of all such children; so any coercion schema must require all possible children
of xs to be encompassed by the coerced binding.

12.3.4 Assignment

The computation schema for $define!, above in (12.22), is adapted for immutabil-
ity by refusing to proceed if an attempt is made to mutate an immutable structure.
Operationally, no computation that begins with a semantic term (as opposed to a
calculus term outside the semantics) will ever attempt to mutate an immutable, be-
cause immutables would only arise from mutable-to-immutable coercion, and coercion
would only be performed if there provably cannot be any attempt to mutate the co-
erced structure (§12.3.7). Hence, any positive behavior when attempting to mutate
an immutable serves no useful purpose — and we would also have to worry about
proving that the behavior doesn’t violate well-behavedness.

227

fS-calculus.
Schemata ($define!):

[combine $define! (V1 V2) 〈〈ωp〉〉]
−→ #inert

if definiend(V1, {}) = 〈C, 〈〈〉〉,X 〉 (12.36dp)

[combine $define! (V1 V2) 〈〈xs ωp〉〉]
−→ [combine C[[set (xs × ep) #inert]] V2 〈〈〉〉]

if definiend(V1, {}) = 〈C, ep,X 〉, and
ep doesn’t bind any symbol bound by ωp .

(12.36ds)

(12.36)

Two schemata are provided here for simplifying set frames: one to merge consec-
utive sets, the other to garbage-collect a set with an empty list of bindings.

fS-calculus.
Schemata (set simplification):

[set [[ωs]] [set [[ω′
s]] T]] −→ [set [[ω′

s]] · [[ωs]] T] (12.37!!)

[set [[]] T] −→ T . (12.37!0)

(12.37)

A set can bubble up through an evaluation context. As in the control calculus,
frames bubble upward by just one level of syntax per reduction step; we borrow the
definition of singular evaluation context from (11.8).

fS-calculus.
Schemata (set bubbling-up):

Es[[set [[ωs]] T]] −→ [set [[ωs]] E
s[T]] .

(12.38)

12.3.5 Lookup

Symbol evaluation has two cases, depending on whether the binding is immutable
(in which case evaluation is a local event), or mutable (in which case evaluation is a
side-effect-ful event).

fS-calculus.
Schemata (symbol evaluation):

[eval s 〈〈ws ωp〉〉] −→ lookup(s, 〈〈ωp〉〉)
if lookup(s, 〈〈ωp〉〉) is defined (12.39sp)

[eval s 〈〈xs ωp〉〉] −→ [get [[
∑

k(wg(k)← [ws(k), s])]] [receive wg]]
where ws = path(xs), ar(wg) = ar(ws),

and wg is in strictly increasing order
if lookup(s, 〈〈ωp〉〉) is undefined . (12.39ss)

(12.39)

228

Get resolution also has two cases, for success and failure.

fS-calculus.
Schemata (get resolution):

[set [[ωs]] [get [[xg ← [xs, s] ωg]] T]]
−→ [set [[ωs]] [get [[ωg]] T [xg ← V]]]

if lookup([xs, s], [[ωs]]) = V (12.40?⊤)

[state [ws] [get [[ωg xg ← [xs, s] ω
′
g]] T]]

−→ [state [ws] [get [[ωg ω′
g]] T [xg 6←]]]

if xs ∈ ws, and no state variable in ωg is
bound by ws . (12.40?⊥)

(12.40)

These two schemata are written so that the binding requests are always processed
in order from left to right — which has no effect on the equational theory (since
any request that can’t be resolved by a set will be able to bubble up through it,
exposing the next request for processing), but will simplify proof of well-behavedness
in Chapter 14.

Two consecutive gets can be merged; within a single get, two binding requests
with the same right-hand side can be merged; and a get with no binding requests can
be garbage-collected.

fS-calculus.
Schemata (get simplification):

[get [[ωg]] [get [[ω′
g]] T]]

−→ [get [[ωg]] · ([[ω
′
g]][w

′
g ← w′′

g]) T [w′
g ← w′′

g]]
where wg =

∑

k(xg such that ωg(k) = (xg ← [xs, s])),
w′

g =
∑

k(xg such that ω′
g(k) = (xg ← [xs, s])),

and rename(w′
g, wg ∪ FV([get [[ωg]] [get [[ω′

g]]T]]))
= 〈w′′

g ,X〉 (12.41??)

[get [[ωg]] · [[xg ← [xs, s]]] · [[x
′
g ← [xs, s]]] T]

−→ [get [[ωg]] · [[xg ← [xs, s]]] T [x′g ← xg]]
if xg < x′g are the leftmost such choices for this get

(12.41?2)

[get [[]] T]
−→ T . (12.41?0)

(12.41)

A get, like a set (§12.3.4), can bubble up through any singular evaluation context. A
get can also bubble up through a set that doesn’t resolve it — as illustrated above
in Example (12.27); and as implicitly expected by the get-failure schema in (12.40),
where the failing get must be immediately inside the state frame.

229

fS-calculus.
Schemata (get bubbling-up):

Es[[get [[ωg]] T]]
−→ [get [[ωg]][wg ← w′

g] E
s[T [wg ← w′

g]]]
where wg =

∑

k(xg such that ωg(k) = (xg ← [xs, s]))
and rename(wg,FV(Es[[get [[ωg]] T]])) = 〈w′

g,X〉
(12.42↑?)

[set [[ωs]] [get [[xg ← [xs, s] ωg]] T]]
−→ [get [[x′g ← [xs, s]]] [set [[ωs]] [get [[ωg]] T [xg ← x′g]]]]

if lookup([xs, s], [[ωs]]) is undefined, and
rename(xg,FV([set [[ωs]] [get [[ωg]] · [[xg ← [xs, s]]] T]]))
= 〈x′g,X〉 . (12.42↑!?)

(12.42)

The second schema, which splits the definiend of a get in order to bubble up a single
binding request, always chooses the first binding request, so as to preserve the overall
ordering of binding requests in the term. A slightly weaker constraint, bubbling up
the first binding request that can’t be resolved by the set (regardless of whether it is
actually the first binding request), would sometimes produce a single pattern (get
nested in set) that is reducible in two different ways (bubbling up and get resolution),
producing an unnecessary and inconvenient ambiguity. A still weaker constraint,
bubbling up any unresolvable binding request at all, could permute the order of
binding requests — which, besides further ambiguity, could potentially compromise
Church–Rosser-ness; to preserve Church–Rosser-ness would then require an additional
schema to permute a get definiend in situ, so that permutations caused by the second
get bubbling-up schema could always be undone later.

12.3.6 Environments

Auxiliary function vau, (12.21), is adapted for immutability by treating immutable
bindings of the static parent environment as initial mutable bindings for the local
child environment. (Local immutable bindings could be introduced later by coercion;
cf. §12.3.7.)

230

fS-semantics.
Auxiliary functions (definiend compilation):

vau((T1 #ignore T2), 〈〈ws ωp〉〉)
= C[[state [xs] [set xs × (ep · 〈〈ωp〉〉) [eval T2 〈〈xs〉〉]]]]

if definiend(T1,FV(T2) ∪ ws) = 〈C, ep,X〉,
xs 6∈ FV(T2), and either ws = φ and xs = [i],
or ws = [wi] and xs = [iwi] ∈ FV(ep)

vau((T1 s T2), 〈〈ws ωp〉〉)
= 〈ǫxp.C[[state [xs] [set xs × (ep · 〈〈s← xp〉〉 · 〈〈ωp〉〉)

[eval T2 〈〈[xs〉〉]]]]〉
if xp 6∈ FV(T2),

definiend(T1,FV(T2) ∪ {[wi]}) = 〈C, ep,X〉,
xs 6∈ FV(T2), and either ws = φ and xs = [i],
or ws = [wi] and xs = [iwi] ∈ FV(ep) .

(12.43)

Three schemata here simplify state frames: one merges consecutive state frames, one
deletes a state variable that is never used (as defined immediately before (12.23)),
and one garbage-collects a state frame with an empty definiend.

fS-calculus.
Schemata (state simplification):

[state [ws] [state [w′
s] T]]

−→ [state [ws] · [w
′′
s] T [w′

s ← w′′
s]]

where rename(w′
s, ws ∪ FV([state [w′

s] T])) = 〈w′′
s ,X 〉

(12.44σσ)

[state [wsxsw
′
s] T]

−→ [state [wsw
′
s] T][xs 6←] if xs is not used in T (12.44σg)

−→
[state [] T]

T . (12.44σ0)

(12.44)

State frames, like the catch frames of fC-calculus (§11.3), are essentially declara-
tive and therefore could in principle be allowed to bubble up through most contexts,
even regardless of evaluation order. Arguably, state frames are even purer than catch
frames, in that when a state frame bubbles up, the only substitution it performs is α-
renaming, in contrast to the imperative context-substitution performed when a catch
frame bubbles up. However, aggressive bubbling-up rules can become quite compli-
cated (for example, some have to be matched with sinking schemata that reverse the
bubbling-up in order to preserve Church–Rosser-ness); so, for simplicity, the only one
we provide here is state frame bubbling up through a set frame, which is required for
operational completeness since it is supported by fS-semantics (Schemata 12.19).

231

fS-calculus.
Syntax (contexts):

N s
state ::= Es | [set [[ωs]] 2] (Singular non-

state-blocking contexts)

Schemata (state bubbling-up):

N s
state[[state [ws] T]]

−→ [state [ws][ws ← wi] N
s
state[T [ws ← wi]]]

where rename(ws,FV(N s
state[[state [ws] T]])) = 〈wi,X 〉 .

(12.45)

12.3.7 Mutable-to-immutable coercion

The mitigations of bad hygiene discussed in Chapter 5 center on deducing that certain
mutable bindings or environments cannot, in fact, be mutated. This would appear in
fS-calculus as mutable-to-immutable coercion of structures in a term; and as a partial

exploration of the issues involved, we have provided substitution functions suitable
for the purpose (2[xs 6←] and 2[[xs, s]← V]).

However, in the current document we do not provide schemata for these coercions.
The necessary requirements on such schemata are (1) restriction to cases for which
we can prove there will never be an attempt to mutate the structure, and (2) inclu-
sion of reductions sufficient to prove Church–Rosser-ness. These are both essentially
proof-driven requirements, based on patterns of term evolution across extended re-
duction sequences (rather than on static patterns of term structure); and as such,
they are unsurprisingly complex, and stylistically contrasting with the other schema
specifications presented. It was judged that, in exchange for the significant added
complexity, treatment of these schemata here would do little to further illuminate the
thesis (beyond the fact that they are based on term evolution rather than static term
structure, which we have now already noted), and would do substantially nothing to
further illuminate the claim of well-behavedness of the f-calculi (which is the main
focus of Part II of the dissertation).

12.3.8 frS-calculus

The schema alterations to fi-calculus for fS-calculus are: $define!, (12.36); set sim-
plification, (12.37); set bubbling-up, (12.38); symbol evaluation, (12.39); get resolu-
tion, (12.40); get simplification, (12.41); get bubbling-up, (12.42); state simplification,
(12.44); and state bubbling-up, (12.45).

Whereas the regular control calculus, frC-calculus, retained bubbling-up sche-
mata because they involved (nontrivial) substitution, here the bubbling-up schemata
are not substitutive, so they can be omitted from the regular variant with impunity
(which would, if fully implemented, eliminate (12.38), (12.42), and (12.45)). All
of the impure-frame simplification schemata are omitted, for various reasons (elimi-
nating schemata (12.37), (12.41), and (12.44)): the merge schemata are all omitted

232

due to self-interference; the variable-collection schemata are omitted because their
constraints are inherently non-regular; and the empty-frame elimination schemata
are omitted because they interfere with get resolution and get bubbling-up. The
bubbling-up schemata for set and state do, in fact, interfere with get resolution, and
are omitted; but get bubbling-up does not interfere with any of the other schemata
being retained, so it stays in, lending a degree of nontriviality to the regular-variant
state calculus.

The remaining frS-calculus schemata beyond fr-calculus are $define!, (12.36);
symbol evaluation, (12.39); get resolution, (12.40); and get bubbling-up, (12.42).

233

Chapter 13

Substitutive reduction systems

13.0 Introduction

Ideally, we would prove for each f-calculus (specifics for f-calculi will be pursued in
Chapter 14) the well-behavedness properties called for by Plotkin’s paradigm (§8.3.2):

(1) Church–Rosser-ness of −→•: if T1 −→
∗
• T2 and T1 −→

∗
• T3, then there exists

T4 such that T2 −→
∗
• T4 and T3 −→

∗
• T4.

This is generally the first well-behavedness property proven, because so many
other results rely on it.

(2) Standardization of −→∗
•: there exists some standard order of reduction, such

that if T1 −→
∗
• T2, then there is a reduction from T1 to T2 that performs its

reduction steps in standard order.

This property is intended to mediate the relation between •-calculus and
•-semantics (specifically, Property (4), below); therefore, we want a standard
order consistent with the deterministic order of reduction by the semantics.
Imitating [Plo75], we will seek a standard order that first exercises redexes in
evaluation contexts (skipping any that won’t be exercised in this reduction),
and then recursively applies the same principle to subterms.1

(3) Operational completeness of −→∗
•: 7−→

∗
•⊆−→

∗
•.

Usually, and for all our f-calculi, this result follows straightforwardly from
the definitions.

1The reason Plotkin’s, and our, notion of standardization doesn’t uniquely determine order of
reduction is that when a standard reduction sequence shifts from evaluation to recursion, the recur-
sion is potentially on all subterms, rather than only on subterms in non-evaluation contexts — so
that evaluation steps that aren’t taken during the evaluation phase might still be taken during the
recursion phase. Cf. Lemma 13.89.

234

(4) Operational soundness of =•: =•⊆≃•.
2

In proving any of these properties, not least Church–Rosser-ness, substitution
causes most of the problems. Two alternative substitutive reductions of a term may
mangle each other’s redexes — either transforming a redex, by substituting something
else into it; or making multiple copies of a redex, by substituting it into something
else, after which the different copies could then be differently mangled during further
reduction. A particularly general solution to this problem was provided by Jan Willem
Klop’s 1980 dissertation, [Kl80]. Klop proved Church–Rosser-ness and standardiza-
tion for a broad class of λ-like calculi that he called regular combinatory reduction

systems (regular CRSs), which can have any number of reduction rule schemata, each
of which can perform λ-calculus-style substitution (what we are calling here partial-

evaluation substitution), provided the entire schemata set satisfies certain sufficient
conditions to guarantee that exercising any one redex cannot disable any alternative
redex.

The pure f-calculi are regular CRSs, so we could get Church–Rosser-ness and stan-
dardization for those calculi directly from Klop (though the standardization might
not be suitable to mediate operational soundness, as Klop’s notion of standardiza-
tion is descended from Curry and Feys’ rather than Plotkin’s). However, the impure
f-calculi are not CRSs, because they are not limited to partial-evaluation substitu-

tion. Moreover, Klop handles substitution, and hygiene (his sufficient conditions on
substitution), by hardwiring them directly into the syntactic infrastructure of his
meta-language — so that one literally can’t formulate any other notion of substitu-
tion/hygiene without first recasting his work in a different meta-language.3 Substi-
tution functions in the impure f-calculi are not plausibly hardwireable, because the
impure f-calculi treat substitution functions as a commodity; for the impure calculi,
we have defined nine different substitution functions (including partial-evaluation
substitution), each with its own distinct behavioral quirks.4

To treat the impure f-calculi, we develop a general class of regular substitutive

reduction systems (regular SRSs), which can have multiple schemata using multiple
substitution functions, provided certain sufficient conditions are met by the schemata
and the substitution functions. The substitution functions are explicit, hence sub-
ject to explicit analysis, rather than built into the meta-language. Regular SRSs are
similar to Klop’s regular CRSs, reformulated to allow more general forms of substi-

2Formal equality =• is sound because it implies operational equivalence ≃•, but would only be
complete if operational equivalence implied it, which we do not claim. Similarly, calculus reduction
−→∗

• is complete because semantics reduction 7−→∗
• implies it, but would only be sound if it implied

the semantics reduction, which would defeat the purpose of the calculus since the calculus would
then be identical to the semantics.

3The situation is reminiscent of quantum mechanics, which protects its basic metaphysical prin-
ciples from assault by requiring the physicist to express all questions in a form that presupposes
those principles.

4
2[xp ← T], 2[xc ← C], 2[xc ← x′

c], 2[ws ← wi], 2[xs 6←], 2[wg ← w′
g], 2[xg ← V], 2[xg 6←],

2[[xs, s]← V]. One of these, 2[[xs, s]← V], isn’t actually used here (§12.3.7).

235

tution. Church–Rosser-ness, standardization, and operational soundness theorems
are proven over the entire class of regular SRSs, and the pure f-calculi and “regular
variant” impure f-calculi (based on fr-calculus) are shown to belong to this class.
The remaining schemata of each impure f-calculus are separately shown to preserve
well-behavedness from its regular subset.

To formulate the criteria for regular SRSs, we will decompose terms into com-
positions of poly-contexts, and identify various roles that poly-contexts can play in
schemata and substitutions. Some significant roles amongst these are

• selective poly-contexts, which are always either entirely inside a redex, or en-
tirely outside it.

• decisively reducible poly-contexts, which guarantee that the matching term is a
redex. In a regular SRS, every minimal decisively reducible poly-context must
be selective.

• suspending poly-contexts, which can be involved in a minimal reducible context
above them in the syntax tree, but cannot be involved in a minimal reducible
context below them in the syntax tree. (In λ-calculus, the suspending contexts
are the ones of the form (λx.2).) Suspending poly-contexts don’t contribute to
determining regularity, and they aren’t involved in the proof of Church–Rosser-
ness, but they are central to defining standard order(s) of reduction.

13.1 Substitution

13.1.1 Poly-contexts

We’ll need some additional terminology and notation for working with poly-contexts.

Definition 13.1
Term T satisfies poly-context P if there exist

→

T such that T = P [
→

T].
Poly-context P2 satisfies poly-context P1 if every T satisfying P2 satisfies P1.
Poly-context P is trivial if P is a meta-variable.
Poly-context P is minimal nontrivial if P is nontrivial, and for every poly-

context P ′ satisfied by P , either P ′ is trivial or P ′ satisfies P .
Poly-context P is singular if P is nontrivial, ar(P) = 1, P [2] is a context, and

for every context C satisfied by P , either C is trivial, or C satisfies P .
Context C minimally satisfies poly-context P (or, is a minimal context satis-

fying P) if C satisfies P , and for every context C ′ satisfying P and satisfied by C,
C ′ = C.

A trivial poly-context is satisfied by every term. If some nontrivial poly-context P
were satisfied by every term, one could prove that there is only one term; but we will

236

assume that there is more than one term, therefore for every nontrivial poly-context
there exists a term that doesn’t satisfy it.

For every nontrivial poly-context P , there exist minimal nontrivial poly-contexts
satisfied by P ; and all minimal nontrivial poly-contexts satisfied by P satisfy each
other. In λ-calculus, the minimal nontrivial poly-contexts are those of the forms x,
c, (2j 2k) where j 6= k, and (λx.2k).

For every nontrivial context C, there exists one and only one singular poly-context
satisfied by C. In λ-calculus, the singular poly-contexts are those of arity one with
the forms (T 21), (21 T), and (λx.21).

For every poly-context P , the contexts C minimally satisfying P can be formed
from P by replacing one of the meta-variable occurrences of P with 2, and the rest
with terms. In λ-calculus, the contexts minimally satisfying P = (21 21) are those of
the forms (2T), (T 2); contexts of the form ((λx.2)T) satisfy P , but non-minimally.

Definition 13.2 Poly-context P is monic if each meta-variable of P occurs at
most once in P . P is epic if each meta-variable of P occurs at least once in P . P
is iso if it is both monic and epic.

These definitions of monic, epic, and iso view P as a way to decompose any term

T that satisfies P into a vector of subterms, T = P [
→

T]. Subterms of T appear
in P as meta-variable occurrences; and the position of each subterm of T in the

resulting vector
→

T is determined by the meta-variable index on the corresponding
meta-variable occurrence in P . If the mapping from meta-variable occurrences to in-
dices is a monomorphism (a.k.a. one-to-one, injective, meaning that no meta-variable
index occurs more than once), the poly-context is monic; if an epimorphism (onto,
surjective, meaning every allowed meta-variable index occurs at least once), the poly-
context is epic; if an isomorphism, the poly-context is iso.

For example, poly-context P = [combine 21 (22 22) e] isn’t monic, because index
2 occurs more than once; but P may be epic, depending on its arity: P has every
index up to 2, so if ar(P) = 2 then P is epic, while if ar(P) ≥ 3 then P is not epic.
On the other hand, P = [combine 21 (23 24) e] is monic, but cannot be epic because
its arity is at least 4 and index 2 doesn’t occur. Finally, P = [combine 21 (23 22) e]
is monic, and iff ar(P) = 3 then P is also epic, hence iso.

All minimal nontrivial poly-contexts are monic (because if some 2k occurs more
than once in P , then one can construct a strictly less constraining nontrivial P ′ by
re-indexing the meta-variable occurrences of P). For every poly-context P , there
exists an iso minimal nontrivial P ′ satisfied by P ; and for given P , all such P ′ differ
from each other only by permutation of their meta-variable indices.

Contexts may be coerced to poly-contexts of arity 1, by implicitly replacing the
context meta-variable 2 with 21; as an explicit conversion, P = C[21]. This provides
a simple way to specify that a poly-context is unary and iso. (Cf. singular poly-context,
Definition 13.1.)

237

Definition 13.3 A branch of a poly-context P1 is a poly-context P2 such that for

some poly-contexts P,
→

P , P1 = P [
→

P], P is epic, and P2 ∈
→

P . If P is nontrivial, P2

is a proper branch of P1.
A normal prime factorization of a poly-context P1 is an expression of P1 as a

composition of iso minimal nontrivial poly-contexts and trivial poly-contexts, such
that no such composition involves fewer instances of trivial poly-contexts. The iso
minimal nontrivial poly-contexts are the prime factors in that factorization.

In λ-calculus, poly-context (λx.21)22 has exactly four branches: (λx.21)22, λx.21,
21, and 22. It has exactly two normal prime factorizations: (2122)[(λx.21),22] and
(2221)[22, (λx.21)]. The stipulation “no composition involves fewer trivial poly-
contexts” guarantees that a normal prime factorization will never apply a trivial
poly-context (as in (λx.21) = 21[(λx.21)]), will never apply a nontrivial poly-context
to a vector of the form

∑n

k=1 2k (as in (λx.21) = (λx.21)[21]), and will never
unnecessarily use a vector of trivial poly-contexts to rearrange the meta-variable
indices of a prime factor (as in (2221) = (2122)[22,21]).

Every poly-context P has one or more normal prime factorizations; and the num-
ber of instances of trivial factors is fixed (by definition, it has to be the minimum
possible), while the instances of prime factors can only vary by permutation of the
meta-variable indices, so the number of normal prime factorizations of P is always
finite. Every branch of P satisfies some prime factor in each normal prime factoriza-
tion of P ; and each prime factor in each normal prime factorization of P is satisfied
by some branch of P .

For any objects
→

O ,O, and integer k with 1 ≤ k ≤ ar(
→

O), notation “
→

O \kO” signifies

the vector of objects formed from
→

O by replacing the kth element of the vector with
O. That is,

→

O \kO =
∑

j

{

O if j = k
→

O (j) otherwise .
(13.4)

Often,
→

O ,O are terms. The notation can also be used to convert an m-ary poly-
context P into a unary poly-context by replacing all but one of its meta-variables
with terms; then, the pre-existing vector elements are terms, but the kth element
spliced in is 21 (the expected name for the meta-variable of a unary poly-context).
For example,

(21 22 23)[〈T1, T2, T3〉\
2
21

] = (T1 21 T3)

(21 22 23)[〈T1, T2, T3〉\
2
21

][T4] = (T1 T4 T3)

= (21 22 23)[〈T1, T2, T3〉\
2
T4

] .

(13.5)

For any integer m ≥ 0,
→

2m is the vector of length m whose elements are meta-
variables with successive indices starting from 1; thus,

→

2m is the m-ary prefix of
infinite vector

∑

k 2k. (E.g.,
→

23 = 〈21,22,23〉.)

238

Definition 13.6 Suppose poly-context P , and semantic polynomial π.
P satisfies π if every term satisfying P satisfies π.
P minimally satisfies π if P satisfies π and, for all poly-contexts P ′, if P satisfies

P ′, and P ′ satisfies π, then P ′ satisfies P .

For later proofs, it will be desirable that for each T satisfying π, if P1 and P2 are
satisfied by T and minimally satisfy π, then P1 and P2 must satisfy each other. There
are some pathological reasons why this might not be so:

• if, when constructing a term, separate subterms are not independent of each
other.

• if, when constructing a term, a context uniquely determines the top-level struc-
ture of the subterms that can occur in it.

• if, when constructing an expression in the domain of quantification of a semantic
variable, separate subterms are not independent of each other.

Assumptions 13.7

(a) For every iso poly-context P and terms
→

T of like arity, if for each
→

T (k) there

exists some term satisfying P in which the occurrence of 2k is replaced by
→

T (k),

then P [
→

T] ∈ Terms.

(b) For every semantic polynomial π and contexts
→

C , if π is not a semantic

variable, then there exists T such that every (
→

C (k))[T] ∈ Terms, and T does not
satisfy π.

(c) For every semantic polynomial π, term T , and contexts
→

C , if no semantic

variable occurs more than once in π, T satisfies π and all the
→

C , and all the
→

C

satisfy π, then there exists an iso poly-context P satisfied by T and by all the
→

C
and satisfying π.

The second assumption, 13.7(b), is (as stated in the corresponding bulleted item
above) about contexts, not about semantic polynomials despite its use of one. It says

that no set of contexts
→

C can restrict the term that replaces the meta-variable in a
way that would require any particular fragment of concrete syntax — not even a frag-
ment that is less than a minimal nontrivial poly-context. The notion of a fragment
of concrete syntax is expressed by the semantic polynomial in the assumption, which
is required to be not a semantic variable, so that it must specify some fragment of
concrete syntax. (For example, semantic polynomial “(λx.T)” specifies the parenthe-
ses and the λ and the dot, but can be satisfied by infinitely many minimal nontrivial
poly-contexts that do not satisfy each other: (λx.21), (λy.21), (λz.21), etc.) By
the assumption, no matter how small the fragment of concrete syntax included in
semantic polynomial π, as long as some concrete syntax is included in it, there will

239

always exist a term that can be used in all the contexts of interest (
→

C) but that does
not satisfy π.

The third assumption, 13.7(c), is meant to constrain the domains over which
semantic variables are quantified. Suppose that a semantic variable is quantified over
some class of syntactic structures that may occur in terms — say, Structs . (The
structures don’t have to be terms in order to contain subterms; for example, in any
f-calculus except fx-calculus, a syntactic structure s ← V can occur in terms, and

contains a term, but is not itself a term.) The assumption says that whenever a
structure belongs to Structs , and each of several separate subterms of the structure is
individually unconstrained by conformance of the whole to Structs , then conformance
of the whole to Structs can’t require those subterms to somehow correlate with each
other. Violating this would be a a bizarre phenomenon, but is imaginable; one could,
for example, have three subterms and require that two out of three be identical, but
it doesn’t matter which two; so the subterms aren’t independent even though any
one of them can vary arbitrarily.

That assumption is expressed in terms of semantic polynomials rather than se-
mantic variables because, being built up from Definition 13.6, it is only relevant to a
semantic expression that signifies a term (i.e., only when there exists T satisfied by π)
— so that if it were restricted to semantic variables, there would be no constraint on
subterms of non-term semantic variables (e.g., ωs in §12.1.2). Since the assumption is
applied to polynomials, it constrains the syntactic domain of every semantic variable
that occurs within a polynomial signifying a term, even though the semantic variable
itself might never signify a term.

Lemma 13.8 If some term satisfies poly-context P , and P satisfies semantic
polynomial π, then each meta-variable occurrence in P occurs in some part of P
that matches a semantic variable occurrence in π.

For example, P satisfying π = (λx.T) can only have meta-variable occurrences within
those parts of P that match semantic variables x and T . (That’s assuming that x
and T are the semantic variables, while λ is not a semantic variable. In the particular
case of the syntax and notational conventions of λ-calculus, it happens that an ex-
pression matching semantic variable x cannot contain a general term, and therefore
has no place for a meta-variable occurrence within it; so for λ-calculus, meta-variable
occurrences in P would be restricted to the part of P that matches semantic variable
T . Evidently, poly-contexts minimally satisfying π would then be exactly those of
the form (λx.2k), such as (λx.21) or (λy.227).)

Proof. Suppose P [
→

T] ∈ Terms, P satisfies π, and P contains an occurrence of 2k

that is not contained within the part of P matching any semantic variable occurrence
of π. Let π′ be the part of π that matches that occurrence of 2k. π

′ is not a semantic
variable, because if it were then the occurrence of 2k would in fact be occurring

within the part of P matching an occurrence of that semantic variable. Let
→

C consist
of just those contexts formed from P by replacing one occurrence of 2k with 2,

240

and the rest of the meta-variable occurrences 2j with
→

T (j); thus, (
→

C (j))[
→

T (k)] = T .
By Assumption 13.7(b), let T ′ be a term that does not satisfy π′, such that each

(
→

C (j))[T ′] ∈ Terms. By Assumption 13.7(a), P [
→

T \kT ′] ∈ Terms; but since π′ matches

one of the 2k occurrences in P , and T ′ does not satisfy π, term P [
→

T \kT ′] does not
satisfy π. Therefore P does not satisfy π, a contradiction.

Lemma 13.9 If T satisfies semantic polynomial π, then there exists an epic poly-
context P satisfied by T and minimally satisfying π.

Proof. There are only finitely many epic poly-contexts satisfied by T , at least one
of which satisfies π (because T itself can be viewed as an epic poly-context with arity
zero). The satisfaction relation between poly-contexts is a preorder (i.e., reflexive
and transitive), since it is derived from the subset relation between sets of terms.
Therefore, there exists at least one epic poly-context satisfied by T and satisfying
π such that, if any epic poly-context P ′ is satisfied by P and satisfies π, then P ′

satisfies P . If there exists a non-epic P ′ satisfied by P and satisfying π, then by
re-indexing there exists an epic P ′′ satisfying and satisfied by P ′, and by transitivity
of satisfaction P ′′ satisfies P ; ergo, P minimally satisfies π.

Lemma 13.10 Suppose semantic polynomial π.
If T satisfies poly-contexts P1 and P2, and P1 and P2 satisfy π, then there exists

poly-context P satisfied by P1 and P2 and satisfying π.

Proof. Suppose T satisfies P1 and P2, and P1 and P2 satisfy π.
Case 1: No one semantic variable occurs more than once in π.
Let

→

C consist of every context that can be formed from P1 or P2 by replacing one
meta-variable occurrence with 2 and the rest with the subterms that replace them

in T . Then T satisfies all the
→

C , and since each
→

C (j) satisfies either P1 or P2, all the
→

C satisfy π. By Assumption 13.7(c), let P be an iso poly-context satisfied by T and

by all the
→

C and satisfying π.
Suppose k ∈ {1, 2}, and T ′ satisfies Pk. Then the subterm replacing 2j of Pk in

T ′ can also replace 2 in some
→

C (i) (by Assumption 13.7(a)). Since
→

C (i) satisfies P ,

any changes to the term caused by that replacement into
→

C (i) must occur entirely
within a meta-variable of P ; therefore, making simultaneous replacements for all the
meta-variables of Pk to produce T ′ only changes things within meta-variables of P ,
and since T ′ is a term, it satisfies P . So Pk satisfies P .

Case 2: At least one semantic variable occurs more than once in π.
Let π′ be formed from π by replacing duplicate semantic variables with distinct

semantic variables quantified over the same syntactic domains. By Lemma 13.9, let
poly-context P ′ be satisfied by T and minimally satisfy π′; and by Case 1, assume

241

without loss of generality that P ′ is iso. By Lemma 13.8, each meta-variable in P ′

occurs within a part of P ′ that matches a semantic variable in π′.
Let P be constructed from P ′ as follows: For each semantic variable in π, take

the part of P ′ that matches the first instance of that semantic variable, and copy
that part to all the other places in P ′ that match instances of the same semantic
variable. (If any of the copied parts of P ′ contains a meta-variable occurrence, the
modified poly-context will not be monic; and if any of the parts that were overwritten
contained a meta-variable occurrence, the modified poly-context will not be epic.)

Each time a part of P ′ was copied, since it was copied to a place that matched
the same semantic variable in π —and T satisfies π— both places match the same
subexpression in T , which is known to satisfy the copied part of P ′; therefore, T
satisfies P . The constraints introduced by copying exclude terms satisfying P ′ that
do not satisfy π; therefore, P satisfies π. Suppose k ∈ {1, 2}. By Lemma 13.8, Pk

and P can only differ from each other within the parts that match semantic variables
of π. If T ′ satisfies Pk, then T ′ satisfies P ′, and therefore the part of T ′ matching any
given meta-variable of π must satisfy whichever part of P ′ matches that meta-variable
throughout P ; therefore, T ′ satisfies P . So Pk satisfies P .

Theorem 13.11 Suppose semantic polynomial π.
If T satisfies π, then there exists poly-context P minimally satisfying π such

that, for all poly-contexts P ′, if P ′ is satisfied by T and satisfies π, then P ′ satisfies
P .

Proof. Follows immediately from Lemmata 13.9 and 13.10.

13.1.2 α-equivalence

What we have been calling “substitution functions” can be separated into two distinct
classes, depending on which binary relation they are used to support. Recall that each
of our calculi is founded on two distinct binary relations: an equivalence ≡α between
terms, and a reduction relation −→• between ≡α-classes of terms.5 This subsection
addresses the class of functions that support ≡α, which we call renaming functions.6

The class of functions that support −→•, which we call substitutive functions, will
be treated in §13.1.3.

5This two-relation strategy was (as related in §8.1.2) established by Church and Rosser’s proof of
the Church–Rosser property, where the two relations were induced by Postulates I and II of Church’s
1932 logic.

6In retrospect, it appears (to the author) that this treatment of renaming functions is much com-
plicated by its rather extreme aversion to concrete syntax. The subject is comparatively straightfor-
ward for λ-calculus exactly because variables are concrete syntactic atoms, and have consequently

242

As usual, we assume a syntactic domain Terms, equipped with a congruence (i.e.,
compatible equivalence) ≡α. Terms is not required to be freely generated over its
CFG; that is, for context C and term T , in general C[T] might not be a term. When
explicitly postulating the existence of a context+term or poly-context+term-vector
structure, postulation of its membership in Terms may be elided; thus, for example,

we may say simply “suppose P [
→

T]” rather than “suppose term P [
→

T]” or “suppose

P [
→

T] ∈ Terms”.

Definition 13.12 Suppose binary relation R on terms.
R is compatible if for all C, Tk,

if C[T1], C[T2] ∈ Terms and 〈T1, T2〉 ∈ R then 〈C[T1], C[T2]〉 ∈ R.
R is constructive if for all C, Tk,

if C[T1] ∈ Terms and 〈T1, T2〉 ∈ R then C[T2] ∈ Terms.

From further assumptions, it will follow that ≡α is constructive (Corollary 13.27).
We assume a countably infinite syntactic domain Vars of variables, over which we

quantify semantic variables x; and we assume that Vars is equipped with a partial
ordering ⊑, read “is descended from”. In any concrete calculus, Vars will be the
union of all particular classes of variables. For example, in fS-calculus, Vars =
PartialEvaluationVariables∪StateVariables∪GetVariables ; ⊑ extends trivially (i.e.,
reflexively) to the naturally flat classes of variables, PartialEvaluationVariables ∪
GetVariables. Each occurrence of a variable x is assumed to also be an occurrence
of every ancestor of x; but we make no assumption about how this is accomplished
(such as the concrete implementation of state variables in §12.1.1). Variables are not
required to be terms.

Definition 13.13 Suppose variable sets Xk ⊆ Vars.
X1 is orthogonal to X2, denoted X1 ⊥ X2, if for all x1 ∈ X1 and x2 ∈ X2, x1 6⊑ x2

and x2 6⊑ x1.

The family of renaming functions is denoted Fα. Formally, renaming functions act
on the union of Terms and Vars, mapping each variable to a variable, and each term
to a term. Fα is assumed to be closed under finite composition, and to include the
null composition, i.e., the identity function, which we denote fid. Renaming functions
in our f-calculi have the forms 2[xp ← x′p], 2[xc ← x′c], 2[ws ← wi], 2[wg ← w′

g],
and all compositions of finitely many thereof.

Each renaming function f has a unique complement, which is another renaming
function that attempts to undo what f does. Two renaming functions f, g may map

self-evident properties that, in the absence of this concrete grounding, must be tediously enumerated.
Extreme abstraction here was chosen as a precaution against unnecessary concrete assumptions when
entering unfamiliar territory; but, now that completion of this treatment has scouted the territory,
it seems one might find a more felicitous intermediate point between the extreme abstraction here,
and the mechanical intricacy of compound state variables in §12.1.1.

243

each input to the same output (i.e., for all T , f(T) = g(T), and for all x, f(x) =
g(x)), yet still have different complements — that is, Fα are intensional functions,
not necessarily uniquely defined by their input–output pairs. The complement of
a composition is always the reverse-order composition of the complements: if the
complement of f is f ′, and of g is g′, then the complement of f ◦ g is g′ ◦ f ′. The
complement of the complement of any f is f . fid is self-complementary.

For example, in λ-calculus let

f1 = 2[y← x]
f2 = 2[z← x]
f3 = f2 ◦ f1 = (2[y← x])[z← x]
f4 = f1 ◦ f2 = (2[z← x])[y← x] .

(13.14)

For all x, f3(x) = f4(x). However, f3 and f4 are distinguished by their complements;
the complements are

f ′
1 = 2[x← y]
f ′

2 = 2[x← z]
f ′

3 = f ′
1
◦ f ′

2 = (2[x← z])[x← y]
f ′

4 = f ′
2
◦ f ′

1 = (2[x← y])[x← z] ,

(13.15)

and f ′
3(x) = z, while f ′

4(x) = y. Also, for all x, f ′
1(x) = f ′

4(x) and f ′
2(x) = f ′

3(x), but
again these are distinguished by their complements: f1(z) = z while f4(z) = x, and
f2(y) = y while f3(y) = x.

As usual, each variable occurrence in any term is either free or bound, and each
poly-context binds a finite set of variables. Bindings are built up by induction from
iso minimal nontrivial poly-contexts: in general, P binds x iff some non-term branch
of P satisfies some iso minimal nontrivial poly-context that binds x. (From this it
follows, for example, that a term T does not bind any x.) For this chapter, the
finite set of variables that occur free in T is denoted Free(T), and the finite set of
variables bound by P is denoted Bind(P). The set of all ancestors of variables in a set
X ⊆ Vars is denoted Above(X) ⊇ X , of descendants, Below(X) ⊇ X ; any variable
x may be coerced to singleton set {x}. When an occurrence of x in T is free, all
of the variable occurrences it contains are free (these being occurrences of Above(x),
as just mentioned). Minimal nontrivial P contains at least one bound occurrence,
and no free occurrences, of each variable that it binds. Free occurrences in T of
x ∈ Bind(C) are bound in C[T]. For all T , the free set of T is closed under ancestry,
i.e., Free(T) = Above(Free(T)); hence, for all T satisfying minimal nontrivial P ,
Free(T) ∩ Below(Bind(P)) = {}.

For compound poly-contexts P , it will sometimes be necessary to distinguish
between variables bound at different meta-variables of P . The set of variables bound
by P at 2k, denoted Bind(P at 2k), is the set of variables whose free occurrences in

a subterm would be captured by P if the subterm replaced 2k. For any term P [
→

T],

Bind(P at 2k) = Bind(P [
→

T \k
2
]).

244

Lemma 13.16
For all C[T] ∈ Terms, Free(T) ∩ (Below(Bind(C))− Bind(C)) = {}.

Proof. Suppose C[T] ∈ Terms, x2 ⊑ x1, x2 ∈ Free(T), and x1 ∈ Bind(C).
x2 ∈ Free(T) means there is a free occurrence of x2 in T , which by assumption is
also a free occurrence of every ancestor of x2, including x1; but occurrences of x1 in
T are not free in C[T] because x1 ∈ Bind(C), and by assumption, when a variable
occurrence is free, all the variable occurrences it contains are also free; therefore, x2

must not be free in C[T], which is to say, x2 ∈ Bind(C).

This lemma is the only permitted restriction on construction of terms C[T] from
arbitrary C and T .

Assumptions 13.17
(a) For every finite X ⊂ Vars, there exists T such that Free(T) = Above(X).
(b) For every x, there exists minimal nontrivial P such that Bind(P) = x and

Free(P) = Above(x)− x.
(c) For all C and T , if Free(T) ∩ (Below(Bind(C)) − Bind(C)) = {}, then

C[T] ∈ Terms.

Lemma 13.18 If X ⊂ Vars is finite, then Above(X) is finite.

Proof. Suppose finite X ⊂ Vars. By Assumption 13.17(a), there exists T such
that Free(T) = Above(X). By assumption (in the prose, above), the free set of every
term is finite.

A renaming f ∈ Fα affects a term T only by changing the names of variable oc-
currences within T (i.e., by causing them to become occurrences of different variables
instead). This changing of variable occurrence names in T is determined up to ≡α by
the behavior of f on variables; and ≡α is determined, in turn, up to internal use of
renaming functions.

Assumptions 13.19 Suppose f ∈ Fα, variables x, xk, and terms T, Tk.
(a) f(T) differs from T only by the names of variable occurrences.

(b) Free occurrences of x in T become free occurrences of f(x) in f(T).
(c) Bound variable occurrences in T become bound variable occurrences in f(T).
(d) If T1 ≡α T2 then f(T1) ≡α f(T2).

(e) If x2 ⊑ x1 then f(x2) ⊑ f(x1).
(f) If x2 ⊑ x1 and f(x1) 6= x1 then f(x2) 6= x2.

245

Definition 13.20 Suppose f ∈ Fα with complement f ′, terms T, T ′, and variables
x, x′.

T ′ is an α-image through f of T , denoted T ≡>f T
′, if f(T) ≡α T

′ and f ′(T ′) ≡α

T .
x′ is an α-image through f of x, denoted x≡>f x

′, if f(x) = x′ and f ′(x′) = x.

Lemma 13.21 Suppose f, fk ∈ Fk, and terms Tk.
(a) If T1≡>f1

T2 and T2≡>f2
T3, then T1≡>f2 ◦ f1

T3.
(b) If T1≡>f T2 and f ′ is the complement of f , then T2≡>f ′ T1.
(c) If T1≡>f T2 and T3≡>f T4, then T1 ≡α T3 iff T2 ≡α T4.

Proof. (a) follows from Assumption 13.19(d).
(b) and (c) follow from Assumption 13.19(d) and the fact that the complement of

the complement of f is f .

Intuitively, O≡>f O
′ means that renaming f on object O is reversible. Com-

plementarity provides a unique determination of how f must be reversed, so that
T1≡>f T and T2≡>f T always imply T1 ≡α T2. Recalling Example (13.14), z≡>f3

x
and y≡>f4

x, but y 6≡>f3
x and z 6≡>f4

x; without complements, there would be no
distinguishing f3 from f4, and we would have y≡>f x and z≡>f x despite y 6≡α x.

Now that we’ve established Lemma 13.21(c), we mostly won’t need to mention
complementarity hereafter.

Definition 13.22 Suppose f ∈ Fα, and O ∈ Terms ∪ Vars.
O is hygienic to f , denoted O ‖ f , if O≡>f f(O).
O is orthogonal to f , denoted O ⊥ f , if O≡>f O.

We will routinely use notations ‖ f and ⊥ f with sets of objects, meaning that the
relation holds for all elements of the set. (For example, Vars ⊥ fid.)

Lemma 13.23 Suppose f ∈ Fα.
If x2 ⊑ x1 and x1 6⊥ f , then x2 6⊥ f .
If x2 ⊑ x1 and x1 6 ‖ f , then x2 6 ‖ f .

Proof. Suppose x2 ⊑ x1, and let f ′ be the complement of f . By Assump-
tion 13.19(f), if f(x1) 6= x1 then f(x2) 6= x2, and if f ′(x1) 6= x1 then f ′(x2) 6= x2,
which is to say, by definition, that if x1 6⊥ f then x2 6⊥ f ′. Since Fα is closed under
composition, f ′ ◦ f ∈ Fα; and by definition, xk ‖ f iff xk ⊥ f ′ ◦ f ; so the second result
follows from the first.7

7Assumption 13.19(f) is closely related to multi-parent environments, which (as noted at the
top of Chapter 12) are not supported by the fS-calculus presented there, but which we would
like the abstract treatment here to be capable of handling. If, instead of Assumption 13.19(f), we

246

Assumptions 13.24 Suppose f ∈ Fα, and term T .
(a) If Free(T) ‖ f , then T ‖ f .
(b) Free(T) ⊥ f iff T ⊥ f .

The converse of Assumption 13.24(a) doesn’t have to be assumed:

Lemma 13.25 Suppose f ∈ Fα, and term T .
If T ‖ f , then Free(T) ‖ f .

Proof. Suppose T ‖ f . Let f ′ be the complement of f . By Definition 13.22,
f ′(f(T)) ≡α T . Since the complement of a composition is the reversed composition
of the complements, f ′ ◦ f is self-complementary; therefore, since f ′(f(T)) ≡α T , by
Definition 13.22, T ⊥ (f ′ ◦ f). By Assumption 13.24(b), Free(T) ⊥ (f ′ ◦ f). By
Definition 13.22, for all x ∈ Free(T), f ′(f(x)) = x, so by Definition 13.22, x ‖ f .

Theorem 13.26 Suppose terms Tk.
T1 ≡α T2 iff T1≡>fid T2.

Proof. By Definitions 13.20 and 13.22, Free(T1) ⊥ fid. Therefore, by Assump-
tion 13.24(b), T1 ⊥ fid; and by Definition 13.22, T1≡>fid T1.

For implication left-to-right, suppose T1 ≡α T2. By Definition 13.20 and Assump-
tion 13.19(d), since ≡α is transitive, T1≡>fid T2.

For implication right-to-left, suppose T1≡>fid T2. By Definition 13.20, fid(T1) ≡α

T2; but fid(T1) ≡α T1, so by transitivity of ≡α, T1 ≡α T2.

Corollary 13.27 ≡α is constructive.

Proof. Suppose C[T1] ∈ Terms and T1 ≡α T2; we wish to show C[T2] ∈ Terms.
By the preceding theorem, T1≡>fid T2; by Definition 13.20, T1 ‖ fid; by Assump-
tion 13.24(a), Free(T1) ‖ fid; and by Assumptions 13.19(b) and 13.19(c), Free(T2) =
Free(T1). Therefore, by Assumption 13.17(c), C[T2] ∈ Terms.

While renaming f(T) affects directly only the free variables of T , for structural-
inductive treatment of α-renaming we want to transform an iso minimal nontrivial

assumed that for all x, Above(x) is linearly ordered —i.e., all environments are single-parented—
then Assumption 13.19(e) and the fact that ⊑ is a partial order would suffice for Lemma 13.23.
However, in the presence of multi-parented variables, we might have the anomaly of a variable x

whose parents xk are permuted by (f ′ ◦ f), yet the permutation does not affect the identity of x,
and thus x ‖ f despite xk 6 ‖ f . Recognizing that these variables would be the identities of Kernel
environments, the reason this anomaly can’t occur in Kernel is that the ordering of parents is
significant: if environment e has parents e1 and e2, then symbols not bound locally are looked up
in e1 first, while if the parents were permuted, they would be looked up in e2 first.

247

poly-context P by applying a renaming to its bound, as well as free, variable oc-
currences. We write this type of renaming f(P), and avoid notational confusion by
defining it only for iso minimal nontrivial P . (If we tried to define f(P) for arbitrary
P , it would collide with notation f(T), since terms are a special case of poly-contexts
(with no meta-variable occurrences).)

Definition 13.28 Suppose f ∈ Fα, and iso minimal nontrivial poly-context P .
f(P) denotes the poly-context produced from P by applying f to every variable

occurrence; that is, for all x, all occurrences of x become occurrences of f(x).

Definition 13.29 Suppose iso minimal nontrivial poly-contexts Pk.
P2 is an α-form of P1, denoted P1 ∼α P2, if there exists g ∈ Fα such that all of

the following conditions hold.

• For all P1[
→

T], if
→

T ‖ g then P1[
→

T] ≡α P2[
∑

k g(
→

T (k))].

• P2 = g(P1).

• Free(P1) ∪ Bind(P1) ‖ g.

The relation P1 ∼α P2 is then mediated by g.

In the first condition,
→

T ‖ g must imply P1[
→

T] ≡α P2[
∑

k g(
→

T (k))]; but the converse is
not required, not even given the other two conditions. This occurs because renaming
functions can be extensionally identical but have different complements, and a medi-
ating function of P1 ∼α P2 may be 6 ‖ to some variables that don’t occur in P1. For
example, in λ-calculus, let P1 = λx.21, P2 = λy.21, and g = (2[x ← y])[x ← z]. g
has complement g′ = (2[z← x])[y← x], and y, z 6 ‖ g. For all T , P1[T] ≡α P2[g(T)] iff
y 6∈ Free(T); so T ‖ g does imply P1[T] ≡α P2[g(T)]; and since P2 = g(P1) and x ‖ g,
g mediates P1 ∼α P2. Furthermore, g(z) = z, so free occurrences of z in T don’t pre-
clude P1[T] ≡α P2[g(T)]; but they do preclude T ‖ g. Most simply, P1[z] ≡α P2[g(z)]
despite x 6 ‖ g.

In our concrete calculi, it will always be possible to find a mediating g for which the
converse does hold; but we don’t need that for the abstract treatment, and even the
hygienic behavior of that g won’t be unique in general. For example, in fS-calculus,
consider P = [state [[i1][i2]] 21]; then P ∼α P mediated by fid, but also P ∼α P
mediated by any g that hygienically swaps [i1] with [i2], such as g = ((2[[i3] ←
i2])[[i2]← i1])[[i1]← i3].

Lemma 13.30 Suppose iso minimal nontrivial poly-contexts Pk.
If P1 ∼α P2 and Bind(P1) ∩ Bind(P2) = {}, then Bind(P1) ⊥ Bind(P2).

Proof. Suppose P1 ∼α P2 and Bind(P1) ∩ Bind(P2) = {}. Then Free(P1) =
Free(P2) (by Assumptions 13.19(b) and 13.19(c) and Theorem 13.26).

248

Suppose x1 ∈ Bind(P1), x2 ∈ Bind(P2), and x2 ⊏ x1. Then x1 must occur
in P2 (since any occurrence of x2 is an occurrence of all its ancestors); and since
Bind(P1) ∩ Bind(P2) = {}, x1 ∈ Free(P2). But since Free(P1) = Free(P2), x1 would
have to be both free and bound in P1, which is prohibited (by the paragraph preceding
Lemma 13.16).

The symmetric case of x1 ⊏ x2 follows by similar reasoning.

Just as ≡α generalizes to ≡>f , ∼α generalizes to ;f . For P1 ;f P2, P1 is α-
renamed to P ′

1 (i.e., P1 ∼α P ′
1), then f is applied naively as a homomorphism, and

the resulting P ′
2 is α-renamed to P2. In building the infrastructure for this, we start

with the naive homomorphism.

Definition 13.31 Suppose f ∈ Fα, and iso minimal nontrivial poly-context P .

P is weakly hygienic to f , denoted P | f , if for all terms P [
→

T],

f(P [
→

T]) ≡α (f(P))[
∑

k f(
→

T (k))].
P is strongly hygienic to f , denoted P ‖ f , if P | f and Free(P)∪Bind(P) ‖ f .

Notation P ‖ f is strictly disjoint from T ‖ f , since bound variables of P must be ‖ f ,
while bound variables of T may be 6 ‖ f . The only ambiguous case would be a syntactic
expression that is both a term and an iso minimal nontrivial poly-context; and in that
case, the expression would have no bound variables, so that the two notations would
mean the same thing.

Lemma 13.32 Suppose f ∈ Fα, iso minimal nontrivial P , and term P [
→

T].

If P ‖ f , then P [
→

T] ‖ f iff
→

T ‖ f .

Proof. Suppose P ‖ f . By the definition, Free(P) ∩ Bind(P) ‖ f . Therefore,

by Assumption 13.17(c), Free(P [
→

T]) ‖ f iff Free(
→

T) ‖ f . Therefore, by Assump-

tion 13.24(a) and Lemma 13.25, P [
→

T] ‖ f iff
→

T ‖ f .

Definition 13.33 Suppose f ∈ Fα, and iso minimal nontrivial poly-contexts Pk.
P2 is an α-image through f of P1, denoted P1 ;f P2, if there exists P ′

1 such that
P1 ∼α P ′

1, P
′
1 ‖ f , and f(P ′

1) ∼α P2. Further, if P1 ∼α P ′
1 is mediated by g1 and

f(P1) ∼α P2 is mediated by g′2, then P1 ;f P2 is mediated by g′2 ◦ f ◦ g1.

Definition 13.34 Suppose terms Tk and poly-contexts Pk.
T1≡>f T2 satisfies P1 ;f P2 mediated by g if the following conditions all hold.

• T1≡>f T2.

• P1 ;f P2 mediated by g.

249

• There exist
→

T1,
→

T2 such that T1 = P1[
→

T1], T2 = P2[
→

T2], and for all 1 ≤ k ≤

ar(P1),
→

T1(k)≡>g

→

T2(k).

T1≡>f T2 satisfies P1 ;f P2 if there exists g such that T1≡>f T2 satisfies P1 ;f P2

mediated by g.
T1 ≡α T2 satisfies P1 ∼α P2 mediated by g if the following conditions all hold.

• T1 ≡α T2.

• P1 ∼α P2 mediated by g.

• There exist
→

T1,
→

T2 such that T1 = P1[
→

T1], T2 = P2[
→

T2], and for all 1 ≤ k ≤

ar(P1),
→

T1(k)≡>g

→

T2(k).

T1 ≡α T2 satisfies P1 ∼α P2 if there exists g such that T1 ≡α T2 satisfies P1 ∼α P2

mediated by g.

Each f ∈ Fα has an associated set of variables called its active set, denoted
Act(f). The active variables are, conceptually, those directly involved by f , and
therefore potentially relevant to hygienic use of f . For example, in λ-calculus, f =
2[x← y] has Act(f) = {x, y}. Variables descended from Act(f), but not themselves
active, are modified indirectly by f ; for example, fS-calculus f = 2[[i1] ← i2] has
Act(f) = {[i1], [i2]}, so x = [i3i2] is not active under f , but x 6⊥ f (in fact, x 6 ‖ f).

The active set of a renaming f is always the same as the active set of its com-
plement. In simple renamings, such as f = 2[x ← y], the active variables are either
modified by f or modified by its complement; but Act(f) must also be closed under
f and its complement (so that if C doesn’t bind any active variable of f , and doesn’t
capture x, then it doesn’t capture f(x)) — and it is therefore possible that x ∈ Act(f)
even though x ⊥ f . For example, f = (2[x ← y])[y ← x] has Act(f) = {x, y}, but
x ⊥ f .

Variables active under f but not hygienic to f are called skew ; the skew set
of f is denoted Skew(f) = {x ∈ Act(f) | x 6 ‖ f}. The skew set of f is typically
different from the skew set of its complement, as, in λ-calculus, f = 2[x ← y] has
Skew(f) = {y}, while its complement f ′ = 2[y ← x] has Skew(f ′) = {x}. (Note,
however, that symmetry is possible, as with f = ((2[x ← z])[y ← x])[z ← y], for
which Act(f) = Act(f ′) = {x, y, z} and Skew(f) = Skew(f ′) = {z}.)

Assumptions 13.35 Suppose f ∈ Fα, and iso minimal nontrivial poly-context P .
(a) T ⊥ f iff Free(T) ∩Act(f) ⊥ f .
(b) T ‖ f iff Free(T) ∩ Skew(f) ‖ f .
(c) If Bind(P) ∩ Act(f) = {}, then P | f .

(d) If Free(P [
→

T]) ⊥ f and Bind(P) ‖ f , then P [
→

T] ≡α (f(P))[
∑

k f(
→

T (k))].

Since x ∈ Skew(f) implies by definition that x 6 ‖ f , Assumption 13.35(b) could have
been stated equivalently as

250

T ‖ f iff Free(T) ∩ Skew(f) = {}.
Assumption 13.35(a) cannot be restated this way since, as noted above, x ∈ Act(f)
does not necessarily imply x 6⊥ f .

Assumptions 13.36
(a) If T1 ≡α T2, then there exist iso minimal nontrivial P1, P2 such that T1 ≡α T2

satisfies P1 ∼α P2.
(b) If P1 is iso minimal nontrivial, X ⊂ Vars is finite, and X ⊥ Bind(P1), then

there exist P2 such that P1 ∼α P2 and Bind(P2) ⊥ X ∪ Bind(P1).
(c) If P1 ∼α P2 are iso minimal nontrivial, and Bind(P1) ⊥ Bind(P2), then

there exists g mediating P1 ∼α P2 such that Skew(g) = Bind(P2) and Act(g) =
Bind(P1) ∪ Bind(P2).

Assumption 13.36(a) guarantees that given T1 ≡α T2 can be decomposed into P1 ∼α

P2 and
→

T1(k)≡>g

→

T2(k). It wouldn’t be enough to provide P1 ∼α P2 with each Pk

satisfied by Tk; we need to know there is a mediating g that actually covers the

particular case of P1[
→

T1] ≡α P2[
→

T2], which is why we provided Definition 13.34.
Assumption 13.36(b) guarantees that it’s always possible to α-rename P1 to avoid

capturing any given variables. Assumption 13.36(c) then guarantees that this α-

renaming can be performed hygienically on any term P1[
→

T1] (provided we include in

the proscribed X any stray free variables of
→

T1). Together with Assumption 13.35(c),
this means that for every T1 ‖ f there exists a T2 ≡α T1 such that f can be applied
to T2 as a naive homomorphism.

Theorem 13.37
If T1≡>f T2, then there exist iso minimal nontrivial P1, P2 such that T1≡>f T2

satisfies P1 ;f P2.

Proof. Suppose T1≡>f T2. Let T1 = P1[
→

T1], where P1 is iso minimal nontriv-
ial. By Assumption 13.36(b), let P1 ∼α P ′

1 such that Bind(P ′
1) ⊥ Bind(P1) and

Bind(P ′
1) ∩ (Free(

→

T1) ∪ Act(f)) = {} (using X = {x ∈ (Free(
→

T1) ∪ Act(f)) | x ⊥
Bind(P1)}). By Assumption 13.36(c), let g1 mediate P1 ∼α P

′
1 such that Skew(g1) =

Bind(P ′
1). By Assumption 13.35(b),

→

T1 ‖ g1. Let
→

T ′
1 =

∑

k g1(
→

T1(k)); then by Def-

inition 13.29, P1[
→

T1]≡>f P
′
1[

→

T ′
1]. By Assumption 13.35(c), P ′

1 ‖ f . By Assump-

tion 13.24(a), Free(
→

T1) − Bind(P1) ‖ f ; and by Assumptions 13.19(b) and 13.19(c),

Free(P ′
1[

→

T ′
1]) ‖ f ; so, f(P ′

1[
→

T ′
1]) ≡>f (f(P ′

1))[
∑

k f(
→

T ′
1(k))]. By Assumption 13.19(d),

(f(P ′
1))[

∑

k f(
→

T ′
1(k))] ≡α T2. By Assumption 13.36(a), let P2 be iso minimal nontriv-

ial such that (f(P ′
1))[

∑

k f(
→

T ′
1(k))] ≡α T2 satisfies f(P ′

1) ∼α P2. By Definitions 13.33
and 13.34, T1≡>f T2 satisfies P1 ;f P2.

251

Theorem 13.38 ∼α is an equivalence relation.

Proof. Trivially, for any iso minimal nontrivial P , P ∼α P mediated by fid;
hence, reflexivity.

Suppose P1 ∼α P2 ∼α P3. By Assumptions 13.17(a) and 13.17(c), let T1 ≡α T3

such that T1 satisfies P1 and T3 satisfies P3. By Assumption 13.36(a), let iso minimal
nontrivial P ′

3 be satisfied by T3 such that P1 ∼α P
′
3. Then the only possible difference

between P3 and P ′
3 is permutation of the meta-variable indices; but by varying any one

of the subterms of T1 without varying the others (via Assumptions 13.17), and tracing
the results through to P3 and P ′

3 via their respective ∼α connections, corresponding
meta-variable occurrences must in fact have the same indices. So P1 ∼α P3.

Symmetry follows from Lemma 13.21(b) (reversing the direction of the mediating
function).

Theorem 13.39 Suppose poly-contexts Pk.
P1 ∼α P2 iff P1 ;fid P2.

Proof. Suppose P1 ∼α P2. To satisfy the definition of ;fid (Definition 13.33),
we want P ′

1 such that P1 ∼α P
′
1, P

′
1 ‖ fid, and fid(P ′

1) ∼α P2. Let P ′
1 = P2. P2 ‖ fid

(by definition of that relation, Definition 13.31), and P2 ∼α P2 (by Theorem 13.38);
therefore, P1 ;fid P2.

Suppose P1 ;fid P2. By definition of ;fid, there exists P ′
1 such that P1 ∼α P ′

1,
P ′

1 ‖ fid, and fid(P ′
1) ∼α P2. fid(P ′

1) = P ′
1; so P ′

1 ∼α P ′
2, and by transitivity of ∼α

(Theorem 13.38), P1 ∼α P2.

Lemma 13.40 Suppose iso minimal nontrivial poly-context P , and f ∈ Fα.

If Free(P [
→

T]) ∪ Bind(P) ‖ f , then P [
→

T]≡>f (f(P))[
∑

k f(
→

T (k))].

Proof. Suppose Free(P [
→

T])∪Bind(P) ‖ f . Proceed by induction on the number

of variables x ∈ Free(P [
→

T]) such that x 6⊥ f .

Base case: Free(P [
→

T]) ⊥ f . The result is just Assumption 13.35(d).

Inductive step: there are n free variables in P [
→

T] that are 6⊥ f , and the result holds
for all terms and renaming functions such that strictly fewer than n free variables of
the term are 6⊥ to the renaming function.

Let x1 ∈ Free(P [
→

T]) and x1 6⊥ f , such that (Above(x1) − x1) ⊥ f (by Lemma
13.18). (Incidentally, x1 ∈ Act(f), by Assumptions 13.35(a) and 13.17(a).)

We will show x1≡>f1
x2≡>f2

f(x1) and f = f2 ◦ g ◦ f1, such that g is subject to
the inductive hypothesis, and enough hygiene is maintained to complete the proof.

By Assumption 13.17(b), let P1 be a minimal nontrivial poly-context such that
Bind(P1) = x1 and Free(P1) = Above(x1) − x1; and by Assumption 13.17(a), let

252

→

T1 have the same arity as P1 and Free(
→

T1) = Above(x1). By Assumption 13.17(c),

P1[
→

T1] ∈ Terms. By Assumption 13.35(d), P1[
→

T1] ≡α (f(P1))[
∑

k f(
→

T1(k))]. By
Assumption 13.36(a) (and varying subterms via Assumptions 13.17), P1 ∼α f(P1).
Let P3 = f(P1) and x3 = Bind(P3) = f(x1).

We want P2 ∼α P1 such that Bind(P2) doesn’t occur at all in P [
→

T], nor in f(P),

nor in
∑

k f(
→

T (k)). Let X be the set of all of these variables that are ⊥ x1. By
Assumption 13.36(a), let P1 ∼α P2 such that Bind(P2) ⊥ X ∪ x1. Let x2 = Bind(P2);

then x2 doesn’t occur at all in P [
→

T], nor in f(P), nor in
∑

k f(
→

T (k)). By Theo-
rem 13.38, P2 ∼α P3. By Lemma 13.30, x3 ⊥ x2. By Assumption 13.36(c), let
f1 mediate P1 ∼α P2, and f2 mediate P2 ∼α P3, such that Act(f1) = {x1, x2},
Act(f2) = {x2, x3}, Skew(f1) = x2, and Skew(f2) = x3. Let f ′

1 be the complement of

f1, and f ′
2 of f2.

→

T ‖ f1, and (
∑

k f(
→

T (k))) ‖ f ′
2.

Let g = f ′
2
◦ f ◦ f ′

1. By Assumption 13.35(c) and Definition 13.31, P ‖ f1 and

f(P) ‖ f ′
2; therefore, also by Definition 13.31, f1(P [

→

T]) ≡α (f1(P))[
∑

k f1(
→

T (k))]

and f ′
2((f(P))[

∑

k f(
→

T (k))]) ≡α (f ′
2(f(P)))[

∑

k f
′
2(f(

→

T (k)))]. By definition, x2 ⊥ g.

For x free in f1(P [
→

T]) but not descended from x2, x ⊥ g iff x ⊥ f . Therefore, the

number of free variables in f1(P [
→

T]) that are 6⊥ g is strictly less than n; so by inductive

hypothesis, f1(P [
→

T])≡>g (g(f1(P)))[
∑

k g(f1(
→

T (k)))] ≡α (f ′
2(f(P)))[

∑

k f
′
2(f(

→

T (k)))].
Therefore, Q.E.D.

Because α-renaming can’t change the structure of a term (Assumption 13.19(a)),
induction using ; is always straightforward. For convenience we will now generalize
the terminology of α-form and α-image from minimal nontrivial poly-contexts to
arbitrary poly-contexts. However, because the details of the situation described by
this terminology can actually be quite complicated, we prefer not to hide these details
in proofs (whose purpose is, after all, to convince the reader that the conclusion really
follows from the premises). Therefore, we do not extend this generalization to the
symbolic notations, ∼α and ;; and when treating these compound relationships in
proofs, we view each relationship as a projection between prime factorizations via
;. If we were to attempt a generalization of ∼α and ;f , as such, to compound
poly-contexts, it would have to abandon the idea of a single mediating function. In
a compound P , each prime factor of P is transformed uniformly, but different prime
factors may be transformed differently from each other. For example, in λ-calculus,
P1 = ((λx.21) ((λx.22) 23)) could be α-renamed to P2 = ((λy.21) ((λz.22) 23));
the two occurrences of x in P1 are differently transformed, and each subterm 2k is
differently transformed. So one would have to view P1 ;fid P2 as being mediated by

a vector of renaming functions,
→

f = 〈2[x← y],2[x← z], fid〉.

253

Definition 13.41 Suppose f ∈ Fα, and poly-contexts Pk.

P2 is an α-image of P1 through f if for all P1[
→

T] ∈ Terms,

if Free(
→

T) = {} then P1[
→

T]≡>f P2[
→

T].
P2 is a α-form of P1 if P2 is an α-image of P1 through fid.

If P2 is an α-image of P1, then relation P1[
→

T1]≡>f P2[
→

T2] can always be decomposed
(by recursive application of Theorem 13.37) into a structure-preserving isomorphic
projection of a prime factorization of P1, via ; relations between prime factors,
onto a prime factorization of P2. Then the Pk differ only by the names of variable
occurrences (this follows for the syntax of the Pk by Assumption 13.19(a), and for

the meta-variable indices by varying the
→

T independently).

Theorem 13.42 Suppose f ∈ Fα.
If C[T] ∈ Terms and T ≡>f T

′, then there exists an α-image C ′[T ′] of C[T].

Proof. Suppose C[T] ∈ Terms and T ≡>f T
′. If the result holds for singular C,

the general result follows by induction; so suppose C is singular. Without loss of

generality, let C = P [2,
→

T] where P is iso minimal nontrivial.
Let n be the number of variables x ∈ Free(C[T]) ∪ Bind(P) such that x 6 ‖ f . If

n = 0, the result follows from Lemma 13.40. Suppose n ≥ 1, and the result holds
for all strictly smaller n. By Lemma 13.23, let x ∈ Free(C[T]) ∪ Bind(P) such
that x 6 ‖ f and (Above(x) − x) ‖ f . Then x 6∈ Free(T) (by Assumption 13.35(b)).
By Assumptions 13.17 and 13.36, let g ∈ Fα such that Free(C[T]) ∪ Bind(C) ‖ g,

g(x) ‖ f , and T ⊥ g. By Lemma 13.40, C[T]≡>g (g(P))[T,
∑

k g(
→

T (k))]; and by

inductive hypothesis, (g(P))[T,
∑

k g(
→

T (k))] has an α-image C ′[T ′].

Definition 13.43 Suppose poly-context P , set of poly-contexts P, and set of
variables X .

P is in general position8 if for all poly-contexts P ′,
→

P ′,

if P ′[
→

P ′] is satisfied by P , and x is bound by any
→

P ′(k),
then x does not occur in P ′.

P is in X -general position if P is in general position and for all poly-contexts
P ′ satisfied by P , Bind(P ′) ∩ X = {}.

P is in (X ∪ P)-general position if P is in X ∪ Free(P)-general position.

As usual, P may be a term, while P may include terms. Every minimal nontrivial
poly-context is in general position. Note that general position is not compositional,

8The terminology general position is borrowed from algebraic geometry, where it refers to an
arrangement of particular things that is an instance of the general case, free from pathologies such
as three points that happen to be collinear, four points that happen to be coplanar (when considering
more than 2 dimensions), two lines that happen to be parallel, and so on.

254

i.e., a composition of poly-contexts might not be in general position even though all
the parts are in general position; e.g., C1[C2] might not be in general position even
though C1 is in general position and C2 is in general position.

Theorem 13.44 Suppose poly-context P , and set of variables X .

If X is finite, then there exists an α-form P ′ of P such that P ′ is in X -general
position.

Proof. Descend recursively through the structure of P , α-renaming each prime
factor to avoid binding any proscribed variables, as allowed by Assumptions 13.36(b)
and 13.36(a) and Theorem 13.37.

Theorem 13.45

If C[T] ∈ Terms, and T is in general position, then there exists an α-image
C ′[T] of C[T] such that C ′[T] is in general position.

Proof. Suppose C[T] ∈ Terms. If the result holds for singular C, the general
result follows by induction; so suppose C is singular. Without loss of generality, let

C = P [2,
→

T] where P is iso minimal nontrivial. If any of the
→

T are not in P -general
position, they can be replaced by ≡α terms that are (by Theorem 13.44); suppose
they are already in P -general position. The only possible remaining violations of
general position are variables occurring in P that occur bound in T . These variables
do not occur free in T , since T is in general position; so they can be diverted, one by
one, as in the proof of Theorem 13.42 (where the variables to be diverted were those
6 ‖ f , which also could not occur free in T).

Theorem 13.46 Suppose poly-context P .

If P is in general position, then P is in P -general position.

That is, if P is in general position, and x occurs free in P , then x does not occur
bound in P .

Proof. Suppose P is in general position, P satisfies P ′, and x is bound by P ′.
Then there must be some prime factor of P that binds x, call it P ′′. Since P is in
general position, x cannot occur anywhere in P outside the scope of P ′′. Since P ′′

binds x, any occurrence of x in a subterm within the scope of P ′′ is bound in P , not
free in P . Finally, x cannot occur free within P ′′ itself, because a minimal nontrivial
poly-context doesn’t have free occurrences of variables that is binds (assumption
stated in prose before Lemma 13.16). Therefore, x does not occur free in P .

255

Lemma 13.47 Suppose f ∈ Fα, and iso minimal nontrivial poly-contexts Pk.

If P1 ;f P2 and P1[
→

T1] ∈ Terms, then there exists g ∈ Fα mediating P1 ;f P2

such that for each x ∈ Free(
→

T1), either x ‖ g, x 6 ‖ f , or f(x) ∈ Bind(P2).

Proof. Suppose P1 ;f P2 and P1[
→

T1] ∈ Terms.

Let
→

T ′
1 have the same arity but Free(

→

T ′
1) = Free(

→

T1) − Below(Skew(f)) (by As-

sumption 13.17(a)); then P1[
→

T ′
1] ∈ Terms (by Assumption 13.17(c)). For all x ∈

Free(
→

T1) − Free(
→

T ′
1), x 6 ‖ f (by Lemma 13.23). For all x ∈

→

T ′
1, x ‖ f (by Assump-

tions 13.17(a) and 13.35(b) and Lemma 13.25). Let X ′ be the co-image of Bind(P2)
under ≡>f ; that is, X ′ = {x | (x ‖ f)∧ (f(x) ∈ Bind(P2))}. X

′ is finite (since f must

be one-to-one on variables x ‖ f). Let X be the set of all x ∈ Free(
→

T ′
1) ∪X

′ ∪Act(f)
such that x ⊥ Bind(P1). By Assumption 13.36(b), let P1 ∼α P

′
1 such that Bind(P ′

1) ⊥

X ∪ Bind(P ′
1); hence, Bind(P ′

1) ∩ (Free(
→

T ′
1) ∪ X

′ ∪Act(f)) = {}.
By Assumption 13.35(c), P ′

1 | f . Since P1 ;f P2, Free(P1) ‖ f ; and therefore,
since Bind(P ′

1)∩Act(f) = {}, Bind(P ′
1) ‖ f (by Assumptions 13.17(a) and 13.35(b)).

So P ′
1 ‖ f . By Lemma 13.21(c) (and, primarily, Assumption 13.36(a)), f(P ′

1) ∼α P2.
Because Bind(P ′

1) ∩X
′ = {}, Bind(f(P ′

1)) ∩Bind(P2) = {}; hence, by Lemma 13.30,
Bind(f(P ′

1)) ⊥ Bind(P2).
By Assumption 13.36(c), let g1 mediate P1 ∼α P

′
1 such that Skew(g1) = Bind(P ′

1)
and Act(g1) = Bind(P1) ∪ Bind(P ′

1), and let g2 mediate f(P ′
1) ∼α P2 such that

Skew(g2) = Bind(P2) and Act(g2) = Bind(f(P ′
1)) ∪ Bind(P2). Let g = g2 ◦ f ◦ g1;

then g mediates P1 ;f P2.

Suppose x ∈ Free(
→

T1), x ‖ f , and f(x) 6∈ Bind(P2). x either is or is not bound by
P1. If x is bound by P1, then x ‖ g1, g1(x) ‖ f , and f(g1(x)) ‖ g2, so x ‖ g. If x is not
bound by P1, then x ⊥ g1, we’re already supposing x ‖ f , and since f(g1(x)) = f(x)
isn’t bound by P2, it is ‖ g2, so again x ‖ g.

Theorem 13.48 Suppose poly-contexts Pk.
Suppose P2 is an α-image of P1, P1 is iso, and P2 is in general position. If T1

satisfies P1, then there exists an α-image of T1 that satisfies P2.

Note that the theorem doesn’t mention renaming functions. If P2 is an α-image of
P1 through f , etc., and T1 satisfies P1, then there must exist some g such that T1 has
an α-image through g satisfying P2; but in general g might not = f .

The iso precondition guarantees that each meta-variable occurrence can be con-
sidered in its own context, without any required correlations with other meta-variable
occurrences.

Proof. Suppose P2 is an α-image of P1, P1 is iso, P2 is in general position, and

P1[
→

T1] ∈ Terms. If P1 and P2 are trivial, the result follows immediately; so suppose

256

they are nontrivial. Let f ∈ Fα such that P1[
→

T ′
1]≡>f P2[

→

T ′
2]. Then P1[

→

T ′
1]≡>f P2[

→

T ′
2]

projects a prime factorization of P1 via ; onto a prime factorization of P2. This

projection ultimately transforms each
→

T ′
1(k) through some renaming

→

f (k) that me-
diates the projection via ; of the closest prime factor within which 2k occurs in
P1 (this prime factor being a leaf in the prime factorization of P1). We would like

to map P1[
→

T1] through the same projection; and this will be possible iff for each k,

Free(
→

T1(k)) ‖
→

f (k), which is to say, Free(
→

T1(k)) ∩ Skew(
→

f (k)) = {}.

Consider any x ∈ Free(
→

T1(k)). The occurrence of 2k in P1 falls within the scope
of a column of prime factors. Consider the prime factors in this column, in ascending
order (that is, starting from the factor at the bottom of the column, which is within
the scopes of all the others, and proceeding upward to the factor at the top of column,
which is not within the scopes of any of the rest of the column, and which is satisfied
by P1). At each step, call the current factor P ′

1. P ′
1 is projected to corresponding

prime factor P ′
2 of P2 by ;f ′′ mediated by f ′. When P ′

1 is at the bottom of the

column, f ′ =
→

f (k), the renaming applied to
→

T ′
1(k); when P ′

1 is at the top of the

column, f ′′ = f , the renaming applied to P1[
→

T ′
1] as a whole. Assume without loss of

generality, by Lemma 13.47, that either x ‖ f ′, or x 6 ‖ f ′′, or f ′′(x) ∈ Bind(P ′
2).

If x ‖ f ′, the projection treats free occurrences of x hygienically; it doesn’t matter
then how x is handled by factors further up the column, since that handling is known
to result in hygiene at f ′. Suppose x 6 ‖ f ′. Then x does not occur in P ′

1, because
if it did that would imply x ‖ f ′ (by definition of mediating function of ;; cf.
Definitions 13.29, 13.33, and 13.31).

Suppose x ‖ f ′′; then, by our assumption without loss of generality, f ′′(x) ∈
Bind(P ′

2). But then, by Lemma 13.46, f ′′(x) 6∈ Free(P2). Therefore, x ‖ f ′′ is not the
result of a binding further up the column, and the behavior of f ′′ on x is inherited
from f , i.e., x ‖ f and f(x) = f ′′(x). So x 6∈ Free(P1). That being the case, we can
devise a renaming function (via Assumptions 13.17(b), 13.36(b), and 13.36(c)) that

will transform x to some other variable that doesn’t occur at all in P1[
→

T1] and isn’t the
co-image of any variable that occurs in P2; applying this devised renaming function

to P1[
→

T1] eliminates x from
→

Tk(k), and any internal α-renamings involved remain
reversible — so this case can always be eliminated, and we assume x 6 ‖ f ′′. Proceeding
up the column, at each level we have x 6 ‖ f ′ and either x 6 ‖ f ′′ or f ′′(x) ∈ Bind(P ′

2), and
we can eliminate the latter in the same way as above, until the only case unaccounted
for is that x 6 ‖ f , at the top of the column. But since x 6 ‖ f and P1 ;f P2, it must be
that x 6∈ Free(P1), and we can again eliminate x by deriving an applying a renaming
function to the term as a whole.

13.1.3 Substitutive functions

The class of term-transformations that facilitate the reduction relation −→•, we call

257

substitutive functions. These are the substitutions invoked for substantive transfor-
mations by reduction rule schemata (i.e., they are used to make things happen, in
contrast to renaming functions that are used to prevent unintended things from hap-
pening).

Both classes of functions, renaming and substitutive, behave as naive homomor-
phisms on a term if the term is first suitably prepared by means of α-renaming (to
avoid bad hygiene). Klop assumed that this α-renaming would always have been
performed before substitution, which was credible because he was using a simple and
already well-understood class of variables, so that α-renaming itself could be taken
as given. For our treatment of renaming functions in §13.1.2, we used an explicit,
fine-grained approach, steering warily well clear of circularity (as the functions be-
ing treated there were themselves responsible for the α-renaming) by orchestrating
hygienic renaming behavior one syntactic induction step at a time, and by formally
deriving our primary notion of hygiene from reversibility (Definitions 13.22 and 13.20);
but now that we have the machinery of renaming to draw on, we will invoke it whole-
sale (though still explicitly, in difference from Klop) to provide suitable hygienic
α-renaming for substitutive functions — and, notwithstanding hygiene provisions,
our substitutive functions will not be reversible in general.9

A substitutive function takes two or more inputs: in order, a variable (conceptu-
ally, to be substituted for), a term (to be substituted into), and a monic poly-context
and some fixed number of additional terms (to be substituted). The output is a

term. The third and later inputs are (up to a point) treated as a unit, P [2,
→

T],
which is either a context or a term depending on whether or not 21 occurs in P .
The third input P might be constrained idiosyncratically by the function, and might
not be copied verbatim during substitution; it serves as a constraint on the subterms

and on free/bound variables. Later inputs
→

T are copied verbatim when substituted,
and are constrained only by what subterms are syntactically admissible in P (cf.
Lemma 13.16). In the traditional λ-calculus β-rule, P = (21 22) supports traditional
call-by-name substitution 2[xp ← T], where P itself entirely disappears during sub-
stitution (and its disappearance creates no danger of upward variable capture since
P binds no variables). More complex P , possibly including binding branches, can
limit the substituted structure to a proper subset of terms (as in 2[xg ← V], where
binding branches of P are part of the copied structure V , and copying them prevents
upward capture of variables in non-P subterms of V).

Given some explicit preconditions which, in the event, will have been guaranteed

by preparatory α-renaming, substitutive f(x, T, P,
→

T) naively descends through the

structure of T , determining where copies of the
→

T are to be placed. That is, it
maps T homomorphically to a poly-context P ′ = (f(x, P))T , and then replaces the

meta-variables of P ′ by
→

T : f(x, T, P,
→

T) = ((f(x, P))T)[
→

T].
Associated with each substitutive f is also a variable transformation, called fv,

9This is a natural consequence of the fact that ≡α is symmetric, while −→• generally is not.

258

which acts on variables in the second input (the term substituted into) to produce
their analogs in the output. This transformation is used to describe hygiene condi-
tions, notably including hygiene when the variable substituted for (first input to f)
is eliminated from the term substituted into (second input to f) — as happens in
λ-calculus substitutions, get resolutions (2[xg ← V], 2[xg 6←]) and state deletions
(2[xs 6←]).

Definition 13.49 Suppose n ≥ 0; f is a partial function that maps a variable, a
term, a monic poly-context of arity n + 1, and a term vector of arity n to a term,
f : Vars×Terms×PolyContextsn+1×Termsn

p→Terms; and fv is a partial function
that maps two variables to a variable, fv: Vars × Vars p→Vars.

f is substitutive with variable transformation fv if all of the following conditions
hold.

(a) If any of the following conditions holds, then f(x, T, P,
→

T) is undefined.

• P [2,
→

T] is not a context.

• x occurs in P [2,
→

T].

• Any of Bind(P [2,
→

T]) occur in T .

• T is not in (Above(x) ∪ P [2,
→

T])-general position.

• x1 and x2 occur in T , x1 6= x2, and fv(x, x1) = fv(x, x2).

If x′ 6= x, then fv(x, x
′) is defined.

(b) If f(x, T, P,
→

T) is defined, x 6∈ Free(T ′), ar(
→

T ′) = n, and f(x, T ′, P,
→

T ′) is not

prohibited by Condition (a), then f(x, T ′, P,
→

T ′) ≡α T
′.

If x′ 6⊑ x, then fv(x, x
′) = x′.

(c) If f(x, T1, P1,
→

T1) and f(x, T2, P2,
→

T2) are defined and P1[T1,
→

T1] ≡α P2[T2,
→

T2],

then f(x, T1, P1,
→

T1) ≡α f(x, T2, P2,
→

T2).

If x1 ⊑ x2, and fv(x, x1) and fv(x, x2) are defined, then fv(x, x1) ⊑ fv(x, x2).

If fv(x, x1) ⊑ fv(x, x2), and x 6∈ fv(x, x1) ∪ fv(x, x2), then x1 ⊑ x2.

(d) For all g ∈ Fα, if f(x1, T1, P1,
→

T1) is defined, x1, T1,
→

T1 ‖ g, and every prime

factor of P1 is ‖ g, then there exist x2, T2, P2,
→

T2 such that x1≡>g x2; T1≡>g T2;

for all k ≤ n,
→

T1(k)≡>g

→

T2(k); P2 results from applying g to all the prime

factors of P ; and f(x1, T1, P1,
→

T1)≡>g f(x2, T2, P2,
→

T2).

For all g ∈ Fα, if fv(x, x
′) is defined and x, x′ ‖ g, then

fv(x, x
′)≡>g fv(g(x), g(x

′)).

(e) If f(x, T, P,
→

T) is defined, then there exists poly-context P1 such that for all
→

T ′, if f(x, T, P,
→

T ′) is defined then f(x, T, P,
→

T ′) = P1[
→

T ′]. For given x T and
P , this P1 if it exists may be denoted f(x, T, P); f(x, T, P) is undefined iff no

f(x, T, P,
→

T) is defined.

259

(f) If f(x, P1[
→

T1], P) is defined, then there exists poly-context P ′
1 such that for

all
→

T2, if f(x, P1[
→

T2], P) is defined then

f(x, P1[
→

T2], P) = P ′
1[

→

2n,
∑

ar(P1)
k=1 f(x,

→

T2(k), P)].

For given x P1 and P , this P ′
1 if it exists may be denoted f(x, P1, P); f(x, P1, P)

is undefined iff no f(x, P1[
→

T1], P) is defined. For given x, the partial function
from poly-contexts P1 to poly-contexts f(x, P1, P) may be denoted f(x, P).

(g) If f(x, P1, P) is defined, and 2k occurs j times in P1, then 2k+n occurs ≤ j
times in f(x, P1, P).

(h) If f(x, T, P) is defined, (f(x, T, P))[
→

T] ∈ Terms, and f(x, T, P,
→

T) is not

prohibited by Condition (a), then f(x, T, P,
→

T) is defined.

(i) If x′1 ∈ Free((f(x, P))P1), then
either x ∈ Free(P1) and x′1 ∈ Free(P),
or there exists x1 ∈ Free(P1) with x′1 = fv(x, x1).

If x′1 ∈ Bind((f(x, P))P1 at 2k) for 1 ≤ k ≤ n, then
either x′1 ∈ Bind(P at 2k+1)
or there exists x1 ∈ Bind(P1) with x′1 = fv(x, x1).

If x′1 ∈ Bind((f(x, P))P1 at 2k+n) for 1 ≤ k ≤ ar(P1), then
there exists x1 ∈ Bind(P1 at 2k) with x′1 = fv(x, x1).

For 1 ≤ k ≤ n, and C satisfying ((f(x, P))P1)[
→

T \k
21

],
Bind(P at 2k+1) ⊆ Bind(C).

For 1 ≤ k ≤ ar(P1), and C satisfying ((f(x, P))P1)[
→

T \k+n
21

],
{fv(x, x1) | x1 ∈ Bind(P1 at 2k)} ⊆ Bind(C).

(j) For every x, there exists a P such that f(x, P) is defined.

Then f is substitutive. The family of substitutive functions is denoted Fβ.
Substitutive f is trivial if for all f(x, P) and T1 such that Condition 13.49(a)

does not prohibit (f(x, P))T1, (f(x, P))T1 ≡α T1.

Condition 13.49(a) forbids f from being defined in a broad set of cases where naive
substitution might cause variable capture; such cases will be reabsorbed into the treat-
ment later, mainly by positing invariance under unspecified preliminary α-renaming.
Conditions 13.49(c) and 13.49(d) guarantee that the behavior of f will be, for its part,
invariant under different choices of preliminary α-renaming. Conditions 13.49(e) and
13.49(f) break down f into its two naive phases — naive homomorphism (f(x, P))T ,

and naive polynomial substitution ((f(x, P))T)[
→

T]. Condition 13.49(i) prohibits
(f(x, P))T from introducing new free variables into T , or exposing previously bound

variables of T or
→

T to possible capture by surrounding contexts.
The definition does not require the variable transformation to be unique; a given

f might be substitutive with variable transformation hv for multiple distinct variable

260

transformations hv. This is harmless, because we only need to know that such a trans-
formation exists. However, the behavior of every substitutive function considered here
will, in fact, uniquely determine its variable transformation (via Condition 13.49(i)).

It may happen, and in the impure f-calculi it does happen, that a substitutive
function f is meant to substitute for one of several kinds of variables — substitution
2[x ← T] is only performed with a partial-evaluation variable x, 2[x ← C] only
with a control variable x, etc. Restricting the domain of the first input of f would
needlessly further complicate the definition. Such specialized substitutions f are
reconcilable with the definition by giving f trivial behavior when its first input does
not belong to the intended class — thus, T1[xc ← T2] ≡α T1, T [xp ← C] ≡α T ,
etc. The well-behavedness requirements of the definition allow this tactic, because
renaming a variable of one class cannot produce a variable of a different class, so
that f can behave in entirely different ways on different classes of variables while
remaining invariant under renaming.

Definition 13.50 Suppose substitutive f .
Poly-context P1 is hygienic at (x, P) to f , denoted P1 | f(x, P), if (f(x, P))P1

is defined.
Poly-context P1 is hygienic at x to f , denoted P1 | f(x), if there exists P such

that P1 | f(x, P).

In characterizing the behavior of an arbitrary poly-context P1 under a substitutive
function f , we will want the notion of an f(x)-hygienic image of P1, which is any poly-
context that P1 may be transformed into when a term containing P1 is α-renamed
for naive treatment under f(x). Precisely,

Definition 13.51 Suppose substitutive f , and poly-contexts Pk.
P2 is an f(x)-hygienic form of P1 if P2 | f(x) and P1 ∼α P2.
P2 is an f(x)-hygienic image of P1 if there exist C1, C2 such that C2 is an f(x)-

hygienic form of C1, and C2[P2] is an f(x)-hygienic form of C1[P1].

P2 is an f(x)-hygienic image of P1 under P3 if there exist C1, C2, C3, C
′
3,

→

T3, and

k such that C1 = C3[P3[
→

T3\
k
C′

3

]], C2 is an f(x)-hygienic form of C1, and C2[P2] is

an f(x)-hygienic form of C1[P1]. Further, P2 is then an f(x)-hygienic image of P1

under P3 at k.
P2 is an f(x, P)-hygienic form of P1 if P2 | f(x, P) and P1 ∼α P2; and so on.

Every f(· · ·)-hygienic form of a poly-context P is an f(· · ·)-hygienic image of P (using
C = C ′ = 2 in the definition).

Lemma 13.52 Suppose f is substitutive, and k ∈ N.

For given f(x, P), there exists
→

T with arity k such that Free(
→

T) = {}, each

(f(x, P))
→

T (j) exists, and no two terms in
→

T have the same syntactic depth.

There exists
→

T with arity k such that Free(
→

T) = {},
→

T | f(x), and no two terms

in
→

T have the same syntactic depth.

261

The significance of different syntactic depths is that when any two terms have different
shapes, no combination of renamings can possibly make them ≡α to each other.

Proof. It suffices to show the first half of the lemma, as the second half follows
form it by Condition 13.49(j).

Suppose f(x, P) exists. Let x′ ⊥ Above(x), and ⊥ all variables occurring in
P (by Lemma 13.18 and Assumptions 13.17(b) and 13.36(b)). Further, since ⊑
is a partial order and has (again by Lemma 13.18) no infinite ascending chains,
assume without loss of generality that x′ is an orphan, i.e., Above(x′) = x′. By
Assumption 13.17(b) and Condition 13.49(b), let P ′ be minimal nontrivial such that

Bind(P ′) = x′, Free(P ′) = {}, and there exist T ′,
→

T ′ such that T ′ satisfies P ′ and

f(x, T ′, P,
→

T ′) is defined. Then Bind(P ′) ⊥ x, and Free(P ′) = {}.
By Assumption 13.17(a) and Condition 13.49(b), let Free(T) = {} such that for

some
→

T ′, f(x, T, P,
→

T ′) exists. By Assumption 13.36(b), let poly-contexts
→

P ′ be n
α-forms of P ′ that all involve variables ⊥ to each other and to x and all variables in
P ; by Condition 13.49(d), each f(x,

→

P ′(k), P) is defined. By Assumption 13.17(c), let

→

T =
∑k

j=1

{

T if j = 1

(
→

P ′(j))[
∑

ar(P ′)
i=1

→

T (j − 1)] otherwise .

Lemma 13.53 Suppose substitutive f , and poly-contexts Pk.
If P1 ∼α P2 are both | f(x, P), then f(x, P1, P) ∼α f(x, P2, P).
If P1 ∼α P2 are both | f(x), then there exists P such that both are | f(x, P).
If P1 ∼α P2 are both | f(x), then there exists P such that f(x, P1, P) ∼α

f(x, P2, P).

Proof. The third part of the lemma follows immediately from the first two.
For the second part of the lemma, suppose P1 ∼α P2 are both | f(x). Let P be

such that (f(x, P))P1 is defined (per the definition of | f(x)). By taking a suitable
α-image of P (via Assumption 13.36(b) and Condition 13.49(c)), let P be such that
(f(x, P))P1 and (f(x, P))P2 are both defined.

For the first part of the lemma, suppose P1 ∼α P2 are |f(x, P). Let Free(
→

T0) = {}

with ar(
→

T0) = ar(f)− 3. By Lemma 13.52 and Condition 13.49(b), there exist terms
→

T1 | f(x, P) such that P1[
→

T1] ≡α P2[
→

T1] and for each
→

T1(k), f(x,
→

T1(k), P) ≡α

→

T1(k).
By Conditions 13.49(f) and 13.49(h),

f(x, P1[
→

T1], P,
→

T0) ≡α f(x, P1, P)[
→

T0,
→

T1]

f(x, P2[
→

T1], P,
→

T0) ≡α f(x, P2, P)[
→

T0,
→

T1] ,
(13.54)

and by Condition 13.49(c),

f(x, P1, P)[
→

T0,
→

T1] ≡α f(x, P2, P)[
→

T0,
→

T1] . (13.55)

262

Again by Lemma 13.52, we can choose structurally distinct alternatives to
→

T1 that

also satisfy the above. Likewise, we can choose structurally distinct alternatives to
→

T0

that satisfy the above. Since f(x, P1, P) and f(x, P2, P) continue to correspond as all
these parameters change, their meta-variable occurrences must match up one-to-one,
and by Assumption 13.36(a), f(x, P1, P) ∼α f(x, P2, P).

Definition 13.56 Suppose substitutive functions fk with variable transformations
fkv.

f1 distributes over f2 if, for all x1 6⊑ x2 and T, P1, P2,
→

T1,
→

T2 such that f1(x1, T, P1,
→

T1), f2(x2, T, P2,
→

T2), and f1(x1, P2[T
′,

→

T2], P1,
→

T1) (for some T ′) are defined, there

exist P3,
→

T3 such that

P3[21,
→

T3] = (f1(x1, P2[21,
→

T2], P1))[
→

T1,21] (13.57)

and

f1(x1, f2(x2, T, P2,
→

T2), P1,
→

T1) =

f2(f1v(x1, x2), f1(x1, T, P1,
→

T1), P3,
→

T3) .
(13.58)

13.2 Reduction

Previous chapters have blithely followed the convention, from §8.2, that binary re-
duction relations are understood to be relations between equivalence classes under
α-renaming. Since we now need to work explicitly with the internal mechanics of
α-renaming, we refine that convention to a precise property of binary relations.

Definition 13.59 Suppose R,Q are binary relations on terms.
Infix operator −→R denotes R.
The concatenation of R with Q, denoted R ·Q, is

R ·Q = {〈T1, T3〉 | ∃T2 such that T1 −→
R T2 −→

Q T3}.

R is a reduction relation if for all T1, T2, T
′
1, T

′
2, if T1 −→

R T2, T1 ≡α T ′
1, and

T2 ≡α T
′
2, then T ′

1 −→
R T ′

2.

Infix operator −→R denotes the least reduction relation containing the compat-
ible closure of R.

Infix operator −→+
R denotes the transitive closure of −→R.

Infix operator −→?
R denotes the union of ≡α with −→R.

Infix operator −→∗
R denotes the transitive closure of −→?

R.

So −→∗
R = (≡α ∪ −→

+
R).

Lemma 13.60 Suppose f ∈ Fα.
≡>f is a reduction relation.

263

Proof. Suppose T1≡>f T2, T1 ≡α T
′
1, and T2 ≡α T

′
2. By Theorem 13.26, T1≡>fid

T ′
1; therefore, by Assumptions 13.19(b) and 13.19(c), Free(T ′

1) = Free(T1), and by
Assumption 13.24(a), T ′

1 ‖ f . By Assumption 13.19(d), f(T ′
1) ≡α f(T1); so since ≡α

is transitive, by Definition 13.20, T ′
1≡>f T

′
2.

Theorem 13.61 Suppose R is a binary relation on terms.
−→R is compatible.

Proof. Suppose C[T1], C[T2] ∈ Terms, and T1 −→R T2. By definition of −→R,
let C ′[T ′

1], C
′[T ′

2] ∈ Terms such that T1 ≡α C ′[T ′
1], T2 ≡α C ′[T ′

2], and T ′
1 −→

R T ′
2.

Since ≡α is constructive (Corollary 13.27), C[C ′[T ′
1]], C[C ′[T ′

2]] ∈ Terms. Since
C[C ′[T ′

1]], C[C ′[T ′
2]] ∈ Terms and T ′

1 −→
R T ′

2, by definition of −→R, C[C ′[T ′
1]] −→R

C[C ′[T ′
2]]. Since ≡α is compatible, C[T1] ≡α C[C ′[T ′

1]] and C[T2] ≡α C[C ′[T ′
2]]; there-

fore, by definition of −→R, C[T1] −→R C[T2].

Theorem 13.62

(a) If R is a set of reduction relations, then
⋃

R is a reduction relation.

(b) If R,Q are reduction relations, then R ·Q is a reduction relation.

(c) If R is a binary relation on terms, then −→+
R, −→?

R, and −→∗
R are reduction

relations.

Proof. For (a), suppose R is a set of reduction relations, 〈T1, T2〉 ∈
⋃

R, T1 ≡α

T ′
1, and T2 ≡α T ′

2. Since 〈T1, T2〉 ∈
⋃

R, let R ∈ R such that T1 −→
R T2. Since

R ∈ R, R is a reduction relation, so T ′
1 −→

R T ′
2, and 〈T ′

1, T
′
2〉 ∈

⋃

R.
For (b), suppose R,Q are reduction relations, T1 −→

R·Q T2, T1 ≡α T ′
1, and

T2 ≡α T ′
2. Since T1 −→

R·Q T2, let T ∈ Terms such that T1 −→
R T −→Q T2. Since

R,Q are reduction relations, T ′
1 −→

R T −→Q T ′
2. By definition of R·Q, T ′

1 −→
R·Q T ′

2.
By Lemma 13.60 and Theorem 13.26, ≡α is a reduction relation; and by the

definition of −→R, −→R is a reduction relation. (c) then follows immediately from
(a) and (b).

Definition 13.63 Suppose R,Q are binary relations on terms.
R and Q cooperate if for all T1, T2, T3, if T1 −→

R T2 and T1 −→
Q T3 then there

exists T4 such that T2 −→
Q T4 and T3 −→

R T4.
R has the diamond property if R cooperates with itself.
R is Church–Rosser if −→∗

R has the diamond property.

264

Lemma 13.64 Suppose R is a binary relation on terms.
If −→R has the diamond property, then −→+

R and −→∗
R have the diamond

property.

Proof. The result for −→+
R is simply by induction: if T1 −→

+
R T2 in k1 steps,

and T1 −→
+
R T3 in k2 steps, then the requisite T4 has T3 −→

+
R T4 in k1 steps and

T2 −→
+
R T4 in k2 steps. For −→∗

R, the zero-step case using ≡α is provided by the fact
that −→R is, by definition, a reduction relation.

Definition 13.65 Suppose R is a binary relation on terms, and f is substitutive.

f strictly distributes over R if, for all x, T1, P,
→

T , if T1 −→
R T2 and f(x, T1, P,

→

T)

is defined, then for some T3 ≡α T2, f(x, T1, P,
→

T) −→R f(x, T3, P,
→

T).
f distributes over R if f strictly distributes over R ∪ ≡α.

Non-strict distributivity allows for the possibility that f(x, P) washes out the differ-

ence between T1 and T2, i.e., f(x, T1, P,
→

T) ≡α f(x, T3, P,
→

T).

Definition 13.66 Suppose R is a binary relation on terms.
R is α-closed if R is a reduction relation and, for all f ∈ Fα and terms T1, T2, if

T1 −→
R T2 and T1≡>f f(T1), then f(T1) −→

R f(T2) and T2≡>f f(T2).
The set of all α-closed binary relations is denoted Rα.

Free variables in a term T are, in general, both obstacles to term construction (limit-
ing what contexts T can occur in) and opportunities for nontrivial term transforma-
tion (subjecting T to alteration by substitutive functions that target that variable).
Consequently, while constructive R might eliminate some free variables, it presum-
ably will not introduce new ones as this would tend to sabotage constructivity; and
while Church–Rosser R might eliminate some free variables, it presumably will not
introduce new ones as this would tend to sabotage Church–Rosser-ness.10 Therefore,
for typical well-behaved step T1 −→

R T2, T1≡>f f(T1) will imply T2≡>f f(T2), but
T2≡>f f(T2) will not necessarily imply T1≡>f f(T1).

Theorem 13.67 Suppose R is a binary relation on terms.
R is α-closed iff R is a reduction relation and for all f ∈ Fα, R cooperates with

≡>f .

10Suppose R is compatible and includes λ-calculus reduction, and T1 −→
R T2 introduces a new

free variable x. Consider term (λx.T1)T3.

(λx.T1)T3 −→R T1 −→R T2

(λx.T1)T3 −→R (λx.T2)T3 −→R T2[x← T3] ,

but since T2 contains a free x, in general T2[x← T3] 6=R T2 (i.e., they won’t have a common reduct).

265

Proof. Suppose R is α-closed, T1 −→
R T2, and T1≡>f T3. By the definition

of ≡>f (Definition 13.20), T3 ≡α f(T1) and T1≡>f f(T1). By the definition of α-
closed (Definition 13.66), f(T1) −→

R f(T2) and T2≡>f f(T2). By the definition
of reduction relation (Definition 13.59), T3 −→

R f(T2). So by the definition of
cooperation (Definition 13.63), R cooperates with ≡>f .

Suppose R is a reduction relation, T1 −→
R T2, T1≡>f f(T1), and for all g ∈ Fα,

R cooperates with ≡>g. By the definition of cooperation, let T2≡>f T4 such that
f(T1) −→

R T4. By the definition of ≡>f , T4 ≡α f(T2) and T2≡>f f(T2). By the
definition of reduction relation, f(T1) −→

R f(T2). So by definition, R is α-closed.

Theorem 13.68 Suppose R is a binary relation on terms.
If R is α-closed, then −→R is α-closed.

Proof. Suppose R ∈ Rα.
Suppose T1 −→R T2 and T1≡>f f(T1); we will show that f(T1) −→R f(T2) and

T2≡>f f(T2). Since T1 −→R T2, by Definition 13.59, let C ′[T ′
1], C

′[T ′
2] ∈ Terms such

that T1 ≡α C
′[T ′

1], T2 ≡α C
′[T ′

2], and T ′
1 −→

R T ′
2. C

′[T ′
1]≡>f f(T1); so, by Assump-

tion 13.36(a), let f(T1) = C ′′[T ′′
1] and g ∈ Fα such that C ′[T ′

1]≡>f f(T1) satisfies
C ′

;f C
′′ mediated by g. So T ′

1≡>g T
′′
1 . Let T ′′

2 = g(T ′
2). By definition of α-closed,

T ′′
1 −→

R T ′′
2 and T ′

2≡>g T
′′
2 . Since g mediates C ′

;f C
′′, C ′[T ′

2]≡>f C
′′[T ′′

2]. Because
−→R contains the compatible closure of R, C ′′[T ′′

1] −→R C ′′[T ′′
2].

Theorem 13.69

(a) If R is a set of α-closed relations, then
⋃

R is α-closed.

(b) If R,Q are α-closed relations, then R ·Q is α-closed.

(c) If R is an α-closed relation, then −→+
R, −→?

R, and −→∗
R are α-closed.

Proof. For (a), suppose R is a set of α-closed relations. By Theorem 13.62(a),
⋃

R is a reduction relation. Suppose 〈T1, T2〉 ∈
⋃

R and T1≡>f f(T1). Since
〈T1, T2〉 ∈

⋃

R, let R ∈ R such that T1 −→
R T2. Since R ∈ R, R is α-closed,

so T2≡>f f(T2) and f(T1) −→
R f(T2); so 〈f(T1), f(T2)〉 ∈

⋃

R.
For (b), suppose R,Q are α-closed relations. By Theorem 13.62(b), R · Q is a

reduction relation. Suppose T1 −→
R·Q T2 and T1≡>f f(T1). Since T1 −→

R·Q T2, let
T ∈ Terms such that T1 −→

R T −→Q T2. Since R,Q are α-closed, T2≡>f f(T2) and
f(T1) −→

R f(T) −→Q f(T2). By definition of R ·Q, f(T1) −→
R·Q f(T2).

By Theorem 13.62(c) and Assumption 13.19(d), ≡α is α-closed; and by Theo-
rem 13.68, for any α-closed relation R, −→R is α-closed. (c) then follows immediately
from (a) and (b).

266

Definition 13.70 Suppose R is a binary relation on terms.

Poly-context P is selective in R if, for all terms
→

T1, T2,

if P [
→

T1] −→R T2 but P [
→

T1] 6−→
R T2,

then for some term T3 and integer k,
→

T1(k) −→R T3 and T2 ≡α P [
→

T1\
k
T3

].

Selectivity of P in R simplifies structural-inductive reasoning, by allowing P to be

treated as an indivisible unit: if P [
→

T1] −→R T2, then the redex is either P [
→

T1] it-

self, or a subterm of some
→

T1(k) (possibly the trivial subterm,
→

T1(k) itself). As a
counterexample, take the λ-calculus η- and β-rules,

λx.(Tx) −→ T if x 6∈ FV(T) (η)

(λx.T1)T2 −→ T1[x← T2] , (β)
(13.71)

treating the left-hand sides of the rules as poly-contexts. The left-hand side of the
β-rule, (λx.21)22, isn’t selective in η, because λx.21 might be an η-redex. Thus,
η-reducing a proper subterm of a β-redex could result in a term that isn’t a β-redex
(such as

(λx.(yx))T −→η yT). (13.72)

Similarly, the left-hand side of the η-rule, λx.(21x), isn’t selective in β, because (21x)
might be a β-redex, so that β-reducing a proper subterm of an η-redex could result
in a term that isn’t an η-redex (such as

λx.((λy.y)x) −→β λx.x). (13.73)

For every binary term relation R, every minimal nontrivial P is selective in R,
and every trivial P is selective in R (because in either of these cases, every proper

subterm of P [
→

T1] is a subterm of one of the
→

T1).

Definition 13.74 Suppose R is a binary relation on terms, and P is a poly-context.
T is reducible in R if T is an R-redex (that is, if ∃ T ′ such that T −→R T ′).
P is decisively reducible in R if every term satisfying P is reducible in R.
P is decisively irreducible in R if no term satisfying P is reducible in R.
P is decisive in R if it is decisively either reducible in R or irreducible in R.

In λ-calculus, a term is reducible in −→β iff it satisfies ((λx.21)22) for some x. So
P = (λx.21) is decisively irreducible in −→β. On the other hand, suppose P =
(21 22); then P [T1, T2] might or might not be a redex, depending on T1, so P is not
decisive in −→β. Finally, suppose P = ((λx.21)22). Then P is decisively reducible
in −→β, and all C[P] are decisively reducible in −→β.

In λv-calculus, P = ((λx.21)22) is not decisive, because whether or not P [T1, T2]
is a βv-redex depends on whether or not T2 is a value. ((λx1.21)(λx2.22)) is decisive
in −→v, though, since all matching terms are redexes.

267

Definition 13.75 Suppose R is a binary relation on terms.

−→
‖?
R is the smallest binary relation on terms such that for all nontrivial poly-

contexts P and terms
→

T1,
→

T2, T3, if

• P [
→

T1] ∈ Terms,

• for all 1 ≤ k ≤ ar(P),
→

T1(k) −→
‖?
R

→

T2(k), and

• either P [
→

T2] ≡α T3, or P is decisively reducible in R and there exists T4 such

that P [
→

T2] −→
R T4 ≡α T3,

then P [
→

T1] −→
‖?
R T3.

−→
‖∗
R denotes the transitive closure of −→

‖?
R .

Relation −→
‖?
R is a straightforward generalization of the “parallel reduction” relation

that was central to Plotkin’s ([Plo75]) proofs of Church–Rosser-ness and standardiza-
tion for λv-calculus. Its generalized form will be used here for the analogous results on
SRSs, in proofs approximately generalizing Plotkin’s. Its use for Church–Rosser-ness
is commonly attributed to Martin-Löf using some ideas of W. Tait.11

Lemma 13.76 Suppose R is a binary relation on terms.

If R is α-closed, then −→R⊆−→
‖?
R ⊆−→

∗
R =−→

‖∗
R .

Proof. Suppose R is α-closed, and T1 −→R T2. By definition of −→R, let T1 ≡α

C ′[T ′
1] and T2 ≡α C ′[T ′

2] such that T ′
1 −→

R T ′
2. Let C ′[T ′

1] ≡α T1 satisfy C ′ ∼α C
mediated by f ; then T ′

1 ‖ f . Since R is α-closed, T ′
2 ‖ f and f(T ′

1) −→
R f(T ′

2).

Since f mediates C ′ ∼α C, C[f(T ′
2)] ≡α T2. So T1 −→

‖?
R T2.

On the other hand, suppose T1 −→
‖?
R T2. Assume inductively that the result holds

for proper subterms of T1; then by definition of −→
‖?
R , any subterm reductions can

be performed first, by compatibility, and then the top-level reduction, if any, can be
performed last. So T1 −→

∗
R T2.

Since −→R⊆−→
‖?
R , the transitive closures are similarly related, −→+

R⊆−→
‖∗
R . By

the definition of −→
‖?
R , ≡α⊆−→

‖?
R ; and −→∗

R = (−→+
R ∪ ≡α), so −→∗

R⊆−→
‖∗
R .

Lemma 13.77 Suppose R is a binary relation on terms.

If R is α-closed, and −→
‖?
R has the diamond property, then −→R is Church–

Rosser.

11Before this technique emerged in the early 1970s, proofs of the Church–Rosser theorem for λ-
calculus were much messier. It takes advantage of the fact that λ-calculus terms have tree structure,
a property on which earlier techniques had failed to capitalize. See [Ros82, §4], [Bare84, §3.2].

268

Proof. Suppose R is α-closed, and −→
‖?
R has the diamond property. Since −→

‖?
R

has the diamond property, so does its transitive closure −→
‖∗
R ; and by Lemma 13.76,

−→
‖∗
R =−→∗

R. So −→∗
R has the diamond property, which is to say that −→R is

Church–Rosser.

For a standardization theorem, showing the existence of some standard order of
reduction would not suit our purpose: we mean the theorem to mediate a proof of
operational soundness of =•, for which (as mentioned at the top of the chapter) the
standard order of reduction should first exercise redexes in evaluation contexts, and
then recursively apply the same principles to subterms. Moreover, evaluation contexts
are simply a way of specifying the deterministic order of 7−→•, which is specific to some
•-semantics and which, therefore, we do not wish to fix in our abstract treatment.
Consequently, even if we meant to stop our abstract treatment at standardization,
leaving all the rest of operational soundness to the treatments of individual calculi, we
would still need to generalize the notion of evaluation context for use in our abstract
treatment. (In fact, we are going to push the abstract treatment beyond standardiza-
tion into operational-soundness territory.) Our generalization of evaluation context
will build on two notions, evaluation order and suspending poly-context.

Evaluation order is just a consistent way of ordering the subterms of any term; it
will be used to decide which subterms get reduced first, regardless of what reduction
relation will actually be used on them. Recall that if two iso minimal nontrivial
poly-contexts satisfy each other, then they differ only by permutation of their meta-
variable indices. We simply choose one of these permutations to be the order of
subterm evaluation, and require that this choice be invariant under α-renaming.

Definition 13.78 An evaluation order is a set E of iso minimal nontrivial poly-
contexts such that

• for every T , there exists P ∈ E that satisfies T , and

• if T1≡>f T2, and each Tk satisfies Pk ∈ E , then T1≡>f T2 satisfies P1 ;f P2.

For example, in ordinary λ-calculus, (21 22) ∈ E would cause left-to-right evaluation,
while (22 21) ∈ E would cause right-to-left. The definition would not allow both of
these to occur in E :

Lemma 13.79 Suppose evaluation order E .
If T satisfies P1 ∈ E , and T satisfies P2 ∈ E , then P1 = P2.

Proof. Suppose T satisfies P1, P2 ∈ E . Since P1, P2 are iso minimal nontrivial,
they can only differ by permutation of their meta-variable indices. Since T ≡>fid T
(Theorem 13.26), P1 ;fid P2. By varying individual subterms one can show that
each meta-variable occurrence in P2 must have the same index as the occurrence in
the same position in P1; therefore, P1 and P2 are identical.

269

A suspending poly-context is one that prevents 7−→• from applying to subterms,
effectively suspending computation. That is, if C is suspending, then any composition
of contexts involving C (in general, C1[C[C2]]) cannot be an evaluation context.
In λv-calculus, the minimal suspending contexts are those of the form (λx.2). In
f-calculi, the minimal suspending contexts are those that construct operatives or

environments (as evident in the definition of value, which is a term T such that every
active subterm of T occurs within an operative or environment (cf. (10.1))). For the
abstract treatment, suspending contexts will be derived from the reduction relation
independent of evaluation order.

Definition 13.80 Suppose R is a binary relation on terms, and P is a poly-context.

P is suspending in R if all of the following conditions hold.

• P is minimal nontrivial;

• all poly-contexts C[P] are decisive in R; and

• there exists context C such that C[P] is decisively reducible in R, but C is not
decisive in R.

In λ-calculus, suppose P = (λx.21). P is minimal nontrivial, and decisively irre-
ducible in −→β; for nontrivial C, whether or not any C[P [T]] is a β-redex is indepen-
dent of T ; and C = (2x′) is not decisively reducible in −→β, but C[P] = ((λx.21) x

′)
is; therefore, P is suspending in −→β. On the other hand, suppose P = (21 22); then
P [T1, T2] might or might not be a β-redex, depending on T1, so P is not decisive in
−→β, therefore not suspending in −→β. Finally, suppose P = ((λx.21)22). Then P
is decisively reducible in −→β, and all C[P] are decisive in −→β; but P isn’t minimal
nontrivial, so it can’t be suspending.

In λv-calculus, the suspending poly-contexts are, again, those of the form P =
(λx.2k) — although the choices of C for which C[P] is decisively reducible in −→v

are a proper subset of those for which it is decisively reducible in −→β.

Definition 13.81 Suppose R is a binary relation on terms.

An R-evaluation normal form is a term N such that every R-reducible subterm
of N occurs within a poly-context that is suspending in R.

That is, for all C and T , if N = C[T] and T is reducible in R, then there exist contexts
Ck such that C = C1[C2[C3]] and C2 satisfies some poly-context that is suspending
in R. Note that an R-evaluation normal form is not necessarily a value, in the usual
sense, because not every “active term” is a redex; e.g., fp-calculus term [eval () x] is
an evaluation normal form.

Lemma 13.82 Suppose binary term relation R.

If T1 −→R T2, and T1 is an R-evaluation normal form, then so is T2.

270

Proof. Suppose T1 −→R T2, and T1 is an R-evaluation normal form. By definition
of R-evaluation normal form (Definition 13.81), every R-redex in T1 is within an R-
suspending context; and T1 −→

R T2 can only modify one of these redexes, so that by
definition of R-suspending poly-context (Definition 13.80), any new redex introduced
into T2 is also within an R-suspending poly-context.

Definition 13.83 Suppose binary term relation R, and evaluation order E .
An R, E-evaluation context is a context E, not decisively reducible in R, such

that either E = 2, or E = P [
→

P] such that P ∈ E is not suspending in R and, for
some 1 ≤ k ≤ ar(P) and all 1 ≤ j ≤ ar(P),

if j < k then
→

P (j) is an R-evaluation normal form;

if j = k then
→

P (j) is an R, E-evaluation context; and

if j > k then
→

P (j) is a term.

Lemma 13.84 Suppose binary term relation R, and poly-context P1.
If R is α-closed and constructive, and P1 is iso and in general position, then

(a) if P1 is selective in R, then so are all its α-images.

(b) if P1 is decisively reducible in R, then so are all its α-images.

(c) if P1 is decisively irreducible in R, then so are all its α-images.

(d) if P1 is decisive in R, then so are all its α-images.

Proof. Suppose R is α-closed and constructive, P1 is iso and in general position,
and P2 is an α-image of P1. Since P1 is iso, its α-image P2 is iso; so by Theorem 13.48,
every term satisfying P2 has an α-image satisfying P1.

For (a), suppose P1 is selective in R, P2[
→

T2] −→R T2, and P2[
→

T2] 6−→
R T2. By the

above, let P2[
→

T2]≡>f P1[
→

T1]. Since R is α-closed, T2≡>f T1 such that P1[
→

T1] −→R T1

and P1[
→

T1] 6−→
R T1. Since P1 is selective, let

→

T1(k) −→R T3 and T1 ≡α P1[
→

T1\
k
T3

]. In

a projection of prime factors of P2[
→

T2]≡>f P1[
→

T1], let g mediate the projection at 2k

in P2, so that
→

T2(k)≡>g

→

T1(k). Since R is α-closed, let
→

T2(k) −→R T4≡>g T3. Since

R is constructive, P2[
→

T2] −→R P2[
→

T2\
k
T4

]≡>f P1[
→

T1\
k
T3

] ≡α T1. By Lemma 13.21(c),

P2[
→

T2\
k
T4

] ≡α T2. Therefore, P2 is selective.
For (b), (c), and (d): since every term satisfying P2 has an α-image satisfying P1,

and R is α-closed, if every term satisfying P1 is (ir)reducible in R, then so is every
term satisfying P2.

Lemma 13.85 Suppose binary term relation R, evaluation order E , and poly-
context P1.

If R is α-closed and constructive, then

271

(a) if P1 is iso and suspending in R, then so are all its α-images.

(b) if T1 is an R-evaluation normal form, then so are all its α-images.

(c) if C1 is an R, E-evaluation context, then so are all its general-position α-
images.

Proof. Suppose R is α-closed and constructive.

For (a), suppose P1 is iso minimal nontrivial; all poly-contexts C[P1] are decisive
in R; and C ′

1[P1] is a poly-context decisively reducible in R, but C ′
1 is not decisive in

R. Suppose P2 is an α-image of P1; then P2 is iso minimal nontrivial. Since P1 and
P2 are minimal nontrivial, they are in general position. We need to show that P2 also
has the other two properties.

Suppose poly-context C2[P2]. By Theorems 13.42 and 13.45, there exists an α-
image C1[P1] of C2[P2] such that C1[P1] is in general position. Since P1 is suspending,
C1[P1] is decisive in R; therefore, by Lemma 13.84(d), C2[P2] is decisive in R.

Let C ′′
1 [P1] be an α-image of C ′

1[P1] in general position (by Theorem 13.45). Since
P1 is suspending, C ′′

1 [P1] is decisive in R. Since C ′′
1 [P1] is a general-position α-image of

a poly-context decisively reducible in R, and R is α-closed, C ′′
1 [P1] cannot be decisively

irreducible in R (by Lemma 13.84(c)); so C ′′
1 [P1] is decisively reducible in R. Since

C ′′
1 is a general-position α-image of C ′

1, and C ′
1 is not decisive in R, C ′′

1 cannot be
decisive in R (by Lemma 13.84(b)).

By Theorem 13.42, there exists a general-position α-image C ′′
2 [P2] of C ′′

1 [P1].
Since C ′′

1 [P1] is in general position, C ′′
2 [P2] must be decisively reducible in R (by

Lemma 13.84(b)); and since C ′′
2 is in general position, it must not be decisive in R

(by Lemma 13.84(d)).

(b) follows immediately from (a) and α-closure of R.

For (c), suppose C2 is an α-image of C1 in general position, and proceed by
induction on the depth of 2 within C1, i.e., the number of singular contexts whose

composition is C1. When C1 = 2, C2 = C1. Suppose C1 = P [
→

P] such that P ∈ E ,
and let k have the properties enumerated in the definition (Definition 13.83). C2

is not decisively reducible in R, by Lemma 13.84(b). The image of P in C2 is not
suspending, by (a). Suppose 1 ≤ j ≤ ar(P). The case of j < k carries over to C2 by
(b); j = k carries over by the inductive hypothesis; and j > k carries over trivially.

(c) covers only α-images in general position because, for some R, a context C1 that
is not decisively reducible might have an α-image that is decisively reducible (just
not one in general position, by Lemma 13.84(b)). This would happen if, for example,
terms of a certain form are redexes only if some variable, bound at the top level of the
term, does not occur free in some subterm — say, λx.(T1T2) is a redex iff x 6∈ Free(T2);
then λx.(21(λy.22)), is not decisively reducible, but its α-image λx.(21(λx.22)) is.

272

This general pattern of behavior, in which a term is reducible only if some variable
is bound but not used, is not pathological; rather, it is typical of garbage-collection
schemata.

Definition 13.86 Suppose binary term relation R, and evaluation order E .
The R, E-evaluation relation, denoted 7−→E

R, is the least reduction relation such
that if E is an R, E-evaluation context, T1 −→

R T2, and E[T1], E[T2] ∈ Terms, then
E[T1] 7−→

E
R E[T2].

Theorem 13.87 Suppose binary term relation R, and evaluation order E .
If R is α-closed, then 7−→E

R is α-closed.

Proof. Suppose R is α-closed, T1 7−→
E
R T2, and T1≡>f f(T1); we will show that

f(T1) 7−→
E
R f(T2) and T2≡>f f(T2). Since 7−→E

R⊆−→R (by definition), f(T1) −→R

f(T2) and T2≡>f f(T2) (by Theorem 13.68).
Let E be an R, E-evaluation context such that T1 ≡α E[T ′

1], T2 ≡α E[T ′
2], and

T ′
1 −→

R T ′
2 (by Definition 13.86). Let C be an α-image of E, T ′′

1 of T ′
1, and T ′′

2 of T ′
2,

such that f(T1) ≡α C[T ′′
1], f(T2) ≡α C[T ′′

2], and T ′′
1 −→

R T ′′
2 (following the proof of

Theorem 13.68). Assume C[T ′′
k] are in general position (by Theorem 13.44); then C

is an R, E-evaluation context (by Lemma 13.85(c)), therefore f(T1) 7−→
E
R f(T2) (by

definition).

Definition 13.88 Suppose binary term relation R, and evaluation order E .
→

T with arity n ≥ 1 is an R-reduction sequence if for all 1 ≤ k < n,
→

T (k) −→R

→

T (k + 1).

Two R-reduction sequences
→

T1 and
→

T2 are concatenable if
→

T1(ar(
→

T1)) =
→

T2(1).

Their concatenation, denoted
→

T1·
→

T2, is then
∑

k

{

→

T1(k) if k ≤ ar(
→

T1)
→

T2(k + 1− ar(
→

T1)) otherwise.

A vector of terms
→

T is an R, E-standard reduction sequence if any of the following
conditions holds.

(a) P ∈ E with arity zero, and
→

T = 〈P 〉.

(b)
→

T1 with arity ≥ 2 is an 7−→E
R -reduction sequence,

→

T2 is an R, E-standard reduction sequence, and
→

T =
→

T1 ·
→

T2.

(c) P ∈ E with arity n ≥ 1;

for all 1 ≤ k ≤ n,
→

Tk is an R, E-standard reduction sequence with arity mk;

273

for all 1 ≤ k ≤ n, Ck = P

∑

j

→

Tj(mj) if j < k
2 if j = k
→

Tj(1) if j > k

is a context;

for all 1 ≤ k ≤ n,
→

T ′
k =

∑

j Ck[
→

Tk(j)] is a vector of terms; and
→

T is the concatenation of all the
→

T ′
k,

→

T =
→

T ′
1 · . . . ·

→

T ′
n.

(d)
→

T ′ is an R, E-standard reduction sequence with arity m;

ar(
→

T) = m; and

for all 1 ≤ j ≤ m,
→

T (j) ≡α

→

T ′(j).

An R, E-standard reduction sequence (or R-reduction sequence)
→

T is from T1 to T2

if
→

T (1) = T1 and
→

T (ar(
→

T)) ≡α T2.

An R, E-standard reduction sequence is not necessarily an R-reduction sequence (be-
cause in general R might not be compatible), but is necessarily an −→R -reduction
sequence. Every 7−→E

R-reduction sequence is an R, E-standard reduction sequence.
Note that the set of R, E-standard reduction sequences is not closed under concatena-

tion; sequences
→

T ′
k in Criterion 13.88(c) have to be concatenated in order of increasing

k.
The shorthand terminology of a reduction sequence “from T1 to T2” means that

the first element is = to T1, but only that the last element is ≡α to T2, because the
weaker constraint on the last element avoids having to make special provisions for a

degenerate case. If R, E-standard reduction sequence
→

T is from T1 to T2, and ar(
→

T) ≥

2, then we could always replace the last element of
→

T with T2 (by Criterion 13.88(d));

but when ar(
→

T) = 1, we can’t simultaneously have the first element = T1 and the
last element = T2 unless T1 = T2 — whereas usually this will be the reflexive case of
T1 −→

∗
R T2, which is T1 ≡α T2 (not T1 = T2).

Even when R, E-evaluation is deterministic (which is not necessary for arbitrary
R and E , so that it will have to proven for regular SRSs in Theorem 13.105), the
order in which redexes are exercised in an R, E-standard reduction sequence is not
always unique. The non-uniqueness stems from the fact that while Criterion 13.88(b)
requires its prefixed subsequence to contain only evaluation steps, Criterion 13.88(c)
does not forbid its subsequences to contain evaluation steps. For example, consider a
right-to-left fp-calculus standard reduction sequence starting with term [eval T e]. A
prefix of the sequence, via Criterion 13.88(b), contains only evaluation steps; suppose
none of these are top-level. Then they must all be reductions of subterm T ; and
subsequently, Criterion 13.88(c) allows subsequences to standardly reduce first e, and
then T . Since e is already a value, hence an evaluation normal form, any reductions
of e are certainly not evaluation steps. However, if the subsequent standard reduction
of subterm T involves any evaluation steps (which it might, if T is not already an
evaluation normal form by then), these steps will also be evaluation steps for the

274

whole term [eval T e] — so that the whole standard reduction sequence may contain
evaluation steps (reducing subterm T) that follow non-evaluation steps (reducing
subterm e). This mild ambiguity of order makes the definition both easier to state,
and easier to satisfy; and it entails no fundamental disadvantage, because given a
standard reduction sequence, it will always be possible to find one in which all the
evaluation steps are done first.

Lemma 13.89 Suppose binary term relation R, and evaluation order E .

If
→

T is an R, E-standard reduction sequence from T1 to T2, then there exists an

R, E-standard reduction sequence
→

T ′ from T1 to T2, with ar(
→

T ′) = ar(
→

T), such that

all the R, E-evaluation steps in
→

T ′ occur consecutively at the start of the sequence.

Proof. Suppose
→

T is an R, E-standard reduction sequence from T1 to T2, and

ar(
→

T) = m. Proceed by induction on m, and within consideration of given m, by
induction on the size of T .

If m = 1 or m = 2, the result is trivial; so suppose m ≥ 3 and the result holds

for all smaller m. If the first step of
→

T is an R, E-evaluation step, then the result

follows immediately by applying the inductive hypothesis to the rest of
→

T (from
→

T (2)

to
→

T (m) with arity m−1); so suppose that the first step of
→

T is not an R, E-evaluation

step. If no later step of
→

T is an R, E-evaluation step, then
→

T already has the desired

property; so suppose some later step of
→

T is an R, E-evaluation step.

Since the first step of
→

T is not an R, E-evaluation step,
→

T must be an R, E-standard

reduction sequence via Criterion 13.88(c). Let P , n,
→

Tk, and mk be as in the criterion.

The inductive hypothesis applies to each
→

Tk (since it is no longer than
→

T and its first

term is a subterm of T), so assume without loss of generality that in each
→

Tk, all
R, E-evaluation steps occur consecutively at the start. Let k be the smallest integer

such that
→

Tk(1) is not an R-evaluation normal form; then the first R, E-evaluation

step in
→

T must be due to the first step in
→

Tk (because without some evaluation step

in
→

Tk, no reduction of any other subterm could be an evaluation step; by supposition
there is an evaluation step somewhere; and if there is an evaluation step anywhere,

the first step of
→

Tk must be one). Adjust sequence
→

T by moving that one step to the

front of the sequence (while still performing the rest of the steps of
→

Tk in their former

place in the sequence); then the resulting sequence
→

T is R, E-standard, has the same

length as
→

T , and is from T1 to T2, but starts with an R, E-evaluation step, reducing
it to a previously solved case (which was handled by induction on m).

Definition 13.90 Suppose binary term relation R, and evaluation order E .
T is R-observable if T is a minimal nontrivial R-evaluation normal form.

275

T is R, E-normalizable if there exists an R-evaluation normal form N such that
T 7−→E∗

R N .

T1 and T2 are R, E-operationally equivalent, denoted T1 ≃
E
R T2, if, for every C

such that C[T1], C[T2] ∈ Terms and Free(C[T1], C[T2]) = {}, both of the following
conditions hold.

(a) C[T1] is R, E-normalizable iff C[T2] is R, E-normalizable.

(b) For all R-observable T3, C[T1] 7−→
E∗
R T3 iff C[T2] 7−→

E∗
R T3.

In general, the precondition that Free(C[T1], C[T2]) = {} makes operational equiva-
lence easier to prove, by allowing the proof to ignore terms with non-eliminable free
variables; but none of the proofs in this chapter will need it.

13.3 Substitutive reduction systems

Definition 13.91 An SRS concrete schema, κ, is a structure of the form

P0[P1[
∑n1

k=1 2k+n0−1],
∑n0

k=2 2k−1] −→
P ′[

∑n1

k=1 f(x,2k+n0−1, P0),
∑n0

k=2 2k−1] ,
(13.92)

where

(a) P0 and P1 are iso.

(b) n0 = ar(P0) and n1 = ar(P1).

(c) f is substitutive with variable transformation fv.

(d) κ is satisfiable. A pair of terms 〈T1, T2〉 satisfies κ if there exists a vector of

terms
→

T with arity n0 + n1 − 1 such that replacing each 2k of κ with
→

T (k) —
except within the occurrences of P0 on the right-hand side, as the third input
to f— defines T1 on the left-hand side and T2 on the right-hand side. κ is
satisfiable if there exists a pair of terms that satisfies it.

(e) If f is nontrivial, then Bind(P0 at 21) = {}.

Below(x) ∩ Bind(P0) = {}.

If 1 ≤ k ≤ n1, then x ∈ Bind(P1 at 2k) iff f is not trivial.

If 2k occurs in P ′, and k ≤ n1, then
Bind(P ′ at 2k) = {fv(x, x

′) | x′ ∈ Bind(P1 at 2k)} ∪ Bind(P0 at 21).

If 2k occurs in P ′, and k > n1, then
Bind(P ′ at 2k)− Bind(P1) = Bind(P0 at 2k+1−n1

).

(f) Free(P ′) ⊆ Free(P0[
→

2n0
\1P1

]).

276

For example, in λ-calculus, let f be the substitutive function with f(x, T1, (21 22), T2)
= T1⌊x ← T2⌋, suitably restricted per Condition 13.49(a); fv(x, x

′) = x′, restricted
to x′ 6= x; and P0 = (21 22). Then

(λx.22)21 −→ f(x,22, P0,21) (13.93)

is an SRS concrete schema. P1 = λx.21; P ′ = 21; no variables are bound by
P0; x ∈ Bind(P1 at 21) and f is nontrivial; Bind(P ′ at 21) = {fv(x, x

′) | x′ ∈
Bind(P1 at 21)} = {} since fv(x, x) is undefined; and 22 doesn’t occur in P ′. Note
that the definition of SRS concrete schema uses behavior of f to dictate whether P1

binds x, and behavior of fv to dictate whether P ′ binds x.
By itself, this one concrete schema apparently doesn’t cover the entire β-rule,

(λx.T2)T1 −→ T2[x← T1] , (13.94)

not only because the β-rule allows any variable x to be bound, but also because,
even for x = x, Condition 13.49(a) requires f to be undefined whenever T2 is not
in (x ∪ T1)-general position. However, if one starts with the binary relation naively
induced by the concrete schema (pairs of terms that satisfy the concrete schema),
and then takes the α-closure of that induced relation —the smallest α-closed relation
containing it— one gets exactly the enumerated reduction relation of the β-rule.

Bad hygiene in a concrete schema involves a variable and (usually) a binding —
either a binding that ceases to bind the variable when the schema is applied, freeing
it so that it can be captured by surrounding scope (as an “upward funarg”; a variant
of this being that the variable is simply introduced where it didn’t exist before, with
no matching binding); or a binding that starts to bind the variable when the schema
is applied, locally capturing it (as a “downward funarg”). There are three cases,
depending on where the variable and the binding are: the variable is within one of
the subterms (i.e., not in the top-level poly-contexts, P0 P1 and P ′), and the binding is
also within a subterm; or the variable is within one of the subterms, and the binding is
in the top-level schema poly-contexts; or the variable itself is in the top-level schema
poly-contexts.

Bad hygiene due to bindings within subterms is prevented by provisions of the
definition of substitutive function, especially Conditions 13.49(a) and 13.49(i), while
gaps in coverage caused by Condition 13.49(a) are smoothed over when the α-closure
is taken. Bad hygiene due to variables within the top-level schema poly-contexts is
prevented, or at least bounded, by Condition 13.91(f) in the definition of concrete
schema. Bad hygiene due to variables within the second input to f (that is substituted
into) interacting with bindings in the top-level schema poly-contexts, is prevented by
Conditions 13.49(i), 13.49(b), and 13.91(e) (noting that variables descended from x,
the first input to f , must be bound either by P1 or internally by the second input
to f). There only remains bad hygiene due to variables within the later inputs to f ,
or within subterms copied without passing through f , interacting with bindings in
the top-level schema poly-contexts; the above example isn’t subject to this, because

277

Bind(P ′) = {}, but in general this last form of bad hygiene must be provided for
by some other means. The means used is to define an induced hygienic relation that
excludes that type of hygiene violation (similarly to Condition 13.49(a)).

Definition 13.95 Suppose SRS concrete schema κ satisfying (13.92).
The induced hygienic relation of κ is the set of all pairs of terms

〈P0[P1[
→

T1],
→

T0], P
′[
∑

k f(x,
→

T1(k), P0,
→

T0),
→

T0]〉 such that for all j < n0 and k ≤ n1,
Bind(P ′ at 2k) ∩ Free(P0[

→

2n0
\j+1

→

T0(j)
]) = {} and

Bind(P ′ at 2n1+j) ∩ Free(P0[
→

2n0
\j+1

→

T0(j)
]) = {}.

In other words, when some
→

T0(j) is copied from outside the scope of P1 to inside the

scope of P ′, the copying must not capture any free variables of
→

T0(j).

Definition 13.96 Suppose SRS concrete schema κ satisfying (13.92).
The α-closure of κ, denoted −→κ, is the smallest α-closed relation containing

the induced hygienic relation of κ.
A concrete SRS, K, is a set of SRS concrete schemata. The α-closure of K,

denoted −→K, is the union of the α-closures of the elements of K. K is α-normal if
no term is reducible in the α-closures of more than one element of K; that is, there
do not exist T, T1, T2 and κ1 6= κ2 ∈ K such that T −→κ1 T1 and T −→κ2 T2. An
α-normal form of K is an α-normal concrete SRS K′ such that −→K =−→K′

. K is
α-normalizable if it has an α-normal form.

An SRS schema, σ, is a reduction rule schema such that, for some α-normalizable
concrete SRS K, −→K =−→σ and the left-hand side of each element of K minimally
satisfies the left-hand side of σ. K is then a concrete form of σ.

An SRS, S, is a set of SRS schemata. Its enumerated reduction relation, −→S ,
is the union of the enumerated relations of its schemata. A concrete form of S is
the union of any set of concrete forms of each of its schemata.

Evidently, if K is a concrete form of SRS S, then −→S =−→K.
Recalling the previous example, the α-closure of Concrete Schema (13.93) is ex-

actly −→β, the enumerated relation of the λ-calculus β-rule.

Lemma 13.97 Suppose SRS S.
If there does not exist any term T that satisfies the left-hand sides of two different

schemata in S, then S has an α-normal concrete form.

Proof. Suppose S does not have an α-normal concrete form. By the definition
of SRS schema, for every σ ∈ S, let Kσ be an α-normal concrete form of σ. Let
K =

⋃

σ∈S Kσ. K is a concrete form of S; therefore, by supposition, K is not α-
normal. By definition of α-normal, let κ1 6= κ2 ∈ K and T ∈ Terms such that T is
reducible in both −→κ1 and −→κ2. Let σ1, σ2 ∈ S be the schemata in whose concrete

278

forms κ1 and κ2 occur; thus, κ1 ∈ Kσ1
and κ2 ∈ Kσ2

. Because T is reducible in both
−→κ1 and −→κ2, any concrete SRS containing both κ1 and κ2 is not α-normal; and
we chose each of the Kσ to be α-normal; therefore, σ1 6= σ2. For k ∈ {1, 2}, since
−→κk ⊆−→σk , T is reducible in −→σk , hence T must satisfy the left-hand side of σk.

The converse (if S has an α-normal concrete form, then no term satisfies the left-
hand sides of two different schemata in S) isn’t theoretically necessary. The trouble
is that there really isn’t any formal definition of what an SRS schema σ can look like:
it can use arbitrary semantic notations, i.e., anything we expect a human audience to
understand, as long as its left-hand side is a semantic polynomial, and its enumerated
relation −→σ =−→K for some α-normal K matching the polynomial. This is exactly
why we defined concrete schemata in the first place, to give us something precisely
defined that we could prove theorems about. In particular, notations elsewhere in an
SRS schema (other than on the left-hand side) could place rather arbitrary restrictions
on reducible terms, so that two different SRS schemata in a single α-normalizable
SRS might even have identical left-hand sides, as long as no term is reducible in the
enumerated relations of both.

Lemma 13.98 If S is an SRS, and T −→S T ′, then Free(T ′) ⊆ Free(T).

Proof. Suppose S is an SRS, and T −→S T ′. Let κ belong to a concrete form
of S such that T −→κ T ′. Then for some f ∈ Fα, T, T ′ ‖ f and 〈f(T), f(T ′)〉 is
in the induced hygienic relation of κ; and by Assumptions 13.19(b) and 13.19(c),
Free(f(T ′)) ⊆ Free(f(T)) iff Free(T ′) ⊆ Free(T). So it suffices to show Free(T ′) ⊆
Free(T) when 〈T, T ′〉 is in the induced hygienic relation of κ; suppose 〈T, T ′〉 is in the
induced hygienic relation of κ.

Let κ = (P0[P1[
∑n1

k=1 2k+n0−1],
∑n0

k=2 2k−1] −→
P ′[

∑n1

k=1 f(x,2k+n0−1, P0),
∑n0

k=2 2k−1]),

T = P0[P1[
→

T1],
→

T0], and T ′ = P ′[
→

T ′
1,

→

T0].
Consider a free occurrence of x′ in T ′; we will show that x′ occurs free in T .
Case 1: the free occurrence of x′ is in P ′. By Condition 13.91(f), Free(P ′) ⊆

Free(P0[
→

2n0
\1P1

]); so x′ ∈ Free(T).

Case 2: the free occurrence of x′ is in
→

T0(k) (as it appears directly under P ′). Since
x′ is not bound by P ′ at 2k+n1

(else the occurrence would not be free in T ′), it cannot
be bound by P0 at 2k+1 either (by Condition 13.91(e)). Therefore x′ ∈ Free(T).

Case 3: the free occurrence of x′ is in
→

T ′
1(k). x

′ is not bound by P ′ at 2k, since
its occurrence at that position is free. By Condition 13.49(e), either the occurrence

is in f(x,
→

T1(k), P0), or the occurrence is in a copy of some
→

T0(j).

Case 3a: the free occurrence of x′ is in f(x,
→

T1(k), P0). Either x′ ∈ Free(P0), or

there exists x′′ ∈ Free(
→

T (k)) such that x′ = fv(x, x
′′) (by Condition 13.49(i)). If

279

x′ ∈ Free(P0) then x′ ∈ Free(T); so assume the latter. Since x′ is not bound by P ′ at
2k, x

′′ is not bound by P1 at 2k or P0 at 21 (by Condition 13.91(e)). If x′′ ⊑ x, then
x is not bound by P1 (by Lemma 13.16), so f is trivial (by Condition 13.91(e)); and
since f is trivial, fv must be the identity function on Vars (by Condition 13.49(i));

so
→

T1(k) ≡α

→

T ′
1(k), and since x′ isn’t bound by P ′ at 2k, it isn’t bound by P1 at 2k or

P0 at 21 (by Condition 13.91(e)), and x′ ∈ Free(T). Suppose x′′ 6⊑ x. Then x′′ = x
(by Condition 13.49(b)), and again, since x′ isn’t bound by P ′ at 2k, it isn’t bound
by P1 at 2k or P0 at 21, and x′ ∈ Free(T).

Case 3b: the free occurrence of x′, within
→

T ′
1(k), is in a copy of

→

T0(j). Since x′ isn’t

bound by f(x,
→

T1(k), P0) at 2j , it isn’t bound by P0 at 2j+1 (by Condition 13.49(i)),
so x′ ∈ Free(T).

Theorem 13.99 If S is an SRS, then −→∗
S is constructive.

Proof. Follows from Assumption 13.17(c) and Lemma 13.98.

Theorem 13.100 If S is an SRS, then −→S is α-closed.

Proof. Suppose S is an SRS, f ∈ Fα, T1 −→
S T2, and T1≡>f f(T1). By the

definition of SRS, let σ ∈ S such that T1 −→
σ T2, let K be a concrete form of σ,

and let κ ∈ K such that T1 −→
κ T2. Since −→κ is, by definition, the smallest α-

closed relation containing the induced hygienic relation of κ, f(T1) −→
κ f(T2) and

T2≡>f f(T2). Since κ ∈ K and σ ∈ S, f(T1) −→
S f(T2). So −→S is α-closed.

13.4 Regularity

Definition 13.101 Suppose SRS S, and evaluation order E .
K is a regular concrete form of S if all of the following conditions hold.

(a) K is a concrete form of S.

(b) K is α-normal.

(c) The left-hand side of every κ ∈ K is in general position and selective in −→S .

(d) Every f ∈ Fβ used in K distributes over −→S , and strictly distributes over
−→S .

(e) For every f ∈ Fβ used in K, and every x, P , and P0, if f(x, P, P0) is defined
and P satisfies the left-hand side of some σ ∈ S, then f(x, P, P0) satisfies the
left-hand side of some σ′ ∈ S.

S is regular if both of the following conditions hold.

280

(f) S has a regular concrete form.

(g) For every σ ∈ S and T ∈ Terms, if T satisfies the left-hand side of σ, then
T is reducible in −→σ.

Given strict distributivity over −→S , distributivity over −→S simply means that

f(x, P [
→

T]) never makes more than once copy of f(x,
→

T (k)).

Condition 13.101(e) supports distributivity over −→
‖?
S : while selectivity of left-

hand sides (Condition 13.101(c)) guarantees that a top-level reduction P1[
→

T1] −→
S T2

will not interfere with subterm reductions
→

T1(k) −→
‖?
S

→

T2(k), Condition 13.101(e)

preserves this property through f so that f(x, P1[
→

T1],
→

T) −→S f(x, T2,
→

T) will not

interfere with f(x,
→

T1(k),
→

T) −→
‖?
S f(x,

→

T2(k),
→

T).
Condition 13.101(g) allows suspending contexts (Definition 13.80) to be deter-

mined by examining just the left-hand sides of the schemata. (Garbage collection
schemata are apt to violate this condition.) This also implies that the set of poly-
contexts satisfying the left-hand side of each schema is closed under α-images (by
Definition 13.96).

Lemma 13.102 Suppose regular SRS S.
If κ is an element of a regular concrete form of S, then the left-hand side of κ is

decisively reducible in −→κ.

Proof. Suppose K is a regular concrete form of S, κ ∈ K, P is the left-hand

side of κ, and P [
→

T] ∈ Terms. By definition of concrete form of an SRS, let σ ∈ S
such that κ is in a concrete form of σ. Let π be the left-hand side of σ. Since S is
regular, every term satisfying π is reducible in −→σ; and since κ is in a concrete form

of σ, P minimally satisfies π; so P [
→

T] is reducible in −→σ. Therefore, let κ′ ∈ K such

that P [
→

T] is reducible in −→κ′

. Let P ′ be the left-hand side of κ′; then P ′ minimally

satisfies π. By definition of −→κ′

, let P ′[
→

T ′] be an α-image of P [
→

T ′] such that P ′[
→

T ′]
is reducible in the induced hygienic relation of κ′.

Since P ′[
→

T ′] is an α-image of P [
→

T], let P ′
0 be an α-image of P satisfied by P ′[

→

T ′]
(by Theorem 13.37). P is iso (by Condition 13.91(a)), so P ′

0 is iso (because it’s an
α-image of P); and P is in general position (because K is a regular concrete form
of S); therefore, every term satisfying P ′

0 is an α-image of a term satisfying P (by
Theorem 13.48). Further, every term satisfying P satisfies π, and every term satisfying
π is reducible in −→σ (because S is regular); and since −→σ is α-closed, every term
satisfying P ′

0 is reducible in−→σ. But−→σ is, by definition, the enumerated reduction
relation of σ, so every term reducible in −→σ must satisfy π. Therefore, every term

satisfying P ′
0 must satisfy π; and since P ′[

→

T ′] satisfies P ′
0 and P ′ minimally satisfies

π, P ′
0 satisfies P ′.

Let P [
→

T0] ∈ Terms with Free(
→

T0) = {} (by Condition 13.49(b) and Assump-

tion 13.17(a)). Then P [
→

T0] is reducible in both −→κ and −→κ′

(by Conditions

281

13.91(d) and 13.49(b)); therefore, since K is α-normal (part of regularity), κ = κ′. So

P [
→

T] is reducible in −→κ.

Lemma 13.103 Suppose regular SRS S, and substitutive f .

If f is used in a regular concrete form of S, then f distributes over −→
‖?
S .

Proof. Suppose T1 −→
‖?
S T2, and proceed by induction on the size of T1. Suppose

f(x, T1, P0,
→

T) is defined. By the definition of −→
‖?
S (Definition 13.75), let T1 = P1[

→

T1]

for nontrivial P1, and P1[
→

T2] ∈ Terms, such that each
→

T1(k) −→
‖?
S

→

T2(k) and either

P1[
→

T2] ≡α T2 or P1[
→

T2] −→
S T2.

Case 1: P1[
→

T2] ≡α T2. The conclusion follows immediately from the inductive
hypothesis, the homomorphic behavior of substitutive functions (Condition 13.49(f)),
and α-closure (Theorem 13.100).

Case 2: P1[
→

T2] −→
S T2. Let σ ∈ S such that P1[

→

T2] −→
σ T2. Let K be a regular

concrete form of S (Condition 13.101(f)), and κ ∈ K such that P1[
→

T2] −→
κ T2.

−→κ⊆−→σ (by Condition 13.101(b)). Let P be the left-hand side of κ, and P ′
1 the α-

image of P satisfied by P1[
→

T2]. Since P is iso, in general position, and selective in −→S

(Conditions 13.91(a) and 13.101(c)), P ′
1 is selective in −→S (by Lemma 13.84(a));

therefore, assume without loss of generality that P1 satisfies P ′
1. P is decisively

reducible in −→κ (by Lemma 13.102), therefore P1 is decisively reducible in −→κ

(by Lemma 13.84(b)).

From the previous case, f(x, P1[
→

T1], P0,
→

T) −→
‖?
S f(x, P1[

→

T2], P0,
→

T). By the homo-

morphic behavior of substitutive functions, f(x, P1[
→

T1], P0) is composed from f(x, P1,

P0) and the f(x,
→

T1(k), P0), while f(x, P1[
→

T1], P0) is composed from f(x, P1, P0) and

the f(x,
→

T2(k), P0). By regularity Condition 13.101(e), f(x, P1, P0) satisfies the left-

hand side of some σ′ ∈ S. Because f distributes over −→S , f(x, P1[
→

T2], P0,
→

T) −→S?

f(x, T2, P0,
→

T). Therefore, by definition of −→
‖?
S (Definition 13.75), f(x, P1[

→

T1], P0,
→

T) −→S f(x, T2, P0,
→

T).

Theorem 13.104 (Church–Rosser-ness)
Suppose regular SRS S.
−→S is Church–Rosser.

Proof. We will show that −→
‖?
S has the diamond property; therefore, by Theo-

rem 13.100 and Lemma 13.77, −→S is Church–Rosser.
Suppose T1 −→

‖?
S T2 and T1 −→

‖?
S T3. Assume, inductively, that the result holds

for all proper subterms of T1. (Eventually this induction comes down to T1 with no
proper subterms, in which case the result does hold for all proper subterms of T1.)

282

Case 1: neither T1 −→
‖?
S T2 nor T1 −→

‖?
S T3 involves a top-level S-reduction.

Let P be iso minimal nontrivial such that T1 = P [
→

T1], T2 ≡α P [
→

T2], and T3 ≡α P [
→

T3].

Then for all 1 ≤ k ≤ ar(P),
→

T1(k) −→
‖?
S

→

T2(k) and
→

T1(k) −→
‖?
S

→

T3(k). By the

inductive assumption, for each k let
→

T4(k) ∈ Terms such that
→

T2(k) −→
‖?
S

→

T4(k)

and
→

T3(k) −→
‖?
S

→

T4(k). Let T4 = P [
→

T4] (by Theorem 13.99). By the definition of

−→
‖?
S , P [

→

T2] −→
‖?
S T4 and P [

→

T3] −→
‖?
S T4; therefore, since −→S is α-closed (by

Theorem 13.100), T2 −→
‖?
S T4 and T3 −→

‖?
S T4, neither involving a top-level −→S-

reduction.

Case 2: T1 −→
‖?
S T2 does not involve a top-level S-reduction, and T1 −→

‖?
S T3

involves only a top-level S-reduction (i.e., T1 −→
S T3). Let σ ∈ S such that T1 −→

σ

T3; let K be an α-normal concrete form of σ; let κ ∈ K such that T1 −→
κ T3;

and let κ be as given in Schema 13.92. Let P be the left-hand side of κ. Since

T1 is reducible in −→κ, let T1 ≡α P [
→

T1] such that P [
→

T1] is reducible in the induced

hygienic relation of κ to P ′[
→

T3]. Since K is α-normal, P ′[
→

T3] ≡α T3. Since −→S

is α-closed (by Theorem 13.100), −→
‖?
S is α-closed; and since S is regular, P is

selective (Condition 13.101(c)); so let T2 ≡α P [
→

T2] such that for all 1 ≤ k ≤ ar(P),
→

T1(k) −→
‖?
S

→

T2(k).

By the internal structure of κ, for 2 ≤ k ≤ n0,
→

T3(k − 1) =
→

T1(k − 1); and

for 1 ≤ k ≤ n1,
→

T3(k + n0 − 1) = f(x,
→

T1(k + n0 − 1), P0,
∑n0

j=2

→

T1(j − 1)). Since

S is regular, f distributes over −→
‖?
S (Lemma 13.103); so f(x,

→

T1(k + n0 − 1), P0,
∑n0

j=2

→

T1(j−1)) −→
‖?
S f(x,

→

T2(k+n0−1), P0,
∑n0

j=2

→

T1(j−1)) (for suitable choice of
→

T2).

By Condition 13.49(e), (f(x,
→

T1(k + n0 − 1), P0))[
∑n0

j=2

→

T1(j − 1)] −→
‖?
S (f(x,

→

T2(k +

n0 − 1), P0))[
∑n0

j=2

→

T1(j − 1)]. By Condition 13.101(e), the schema left-hand sides

exercised by this relation are all independent of the
∑n0

j=2

→

T1(j − 1); therefore, by

definition of −→
‖?
S , f(x,

→

T1(k + n0 − 1), P0,
∑n0

j=2

→

T1(j − 1)) −→
‖?
S f(x,

→

T2(k + n0 −

1), P0,
∑n0

j=2

→

T2(j − 1)).

Let
→

T4 =
∑

k

{

→

T2(k) if k < n0

f(x,
→

T2(k), P0,
∑n0

j=2

→

T2(j − 1)) otherwise
. Let T4 = P ′[

→

T4] ∈

Terms (by Theorem 13.99). Since each
→

T3(k) −→
‖?
S

→

T4(k), by definition of −→
‖?
S ,

P ′[
→

T3] −→
‖?
S P ′[

→

T4]; and by the structure of κ, P [
→

T2] −→
S P ′[

→

T4]. Therefore, since

−→S is α-closed, T3 −→
‖?
S T4 and T2 −→

S T4.

Case 3: T1 −→
‖?
S T2 does not involve a top-level S-reduction, and T1 −→

‖?
S T3

does involve a top-level S-reduction. By definition of −→
‖?
S , let T1 −→

‖?
S T ′

3 −→
S T3

such that T1 −→
‖?
S T ′

3 does not involve a top-level S-reduction. By Case 1, let

T2 −→
‖?
S T ′

4 and T ′
3 −→

‖?
S T ′

4 such that neither of these relations involves a top-level

283

−→S-reduction. By Case 2, let T ′
4 −→

S T4 and T3 −→
‖?
S T4. By definition of −→

‖?
S ,

since T2 −→
‖?
S T ′

4 −→
S T4, the former doesn’t involve a top-level −→S-reduction, and

the left-hand sides of all concrete schemata are selective in −→S , T2 −→
‖?
S T4.

Case 4: T1 −→
‖?
S T2 and T1 −→

‖?
S T3 both involve top-level S-reductions. By

definition of −→
‖?
S , let T1 −→

‖?
S T ′

2 −→
S T2 and T1 −→

‖?
S T ′

3 −→
S T3 such that each

T1 −→
‖?
S T ′

k does not involve a top-level −→S-reduction. By Case 1, let T ′
2 −→

‖?
S

T ′
4 and T ′

3 −→
‖?
S T ′

4 such that neither of these relations involves a top-level −→S-

reduction. By Case 2, for k ∈ {2, 3} let Tk −→
‖?
S Tk,4 and T ′

4 −→
S Tk,4. Since S is

regular, let K be an α-normal concrete form of S; then there is at most one κ ∈ K
such that T ′

4 is −→κ-reducible, so T2,4 ≡α T3,4. So T2 −→
‖?
S Tk,4 and T3 −→

‖?
S Tk,4.

Theorem 13.105 Suppose regular SRS S, and evaluation order E .

7−→E
S is deterministic up to ≡α.

Proof. Suppose T1 7−→
E
S T2 and T1 7−→

E
S T3; we will show T2 ≡α T3. Let E2, E3

be evaluation contexts, T1 ≡α E2[T
′
1] ≡α E3[T

′′
1], T2 ≡α E2[T

′
2], and T3 ≡α E3[T

′′
3],

such that T ′
1 −→

S T ′
2 and T ′′

1 −→
S T ′′

3 , and E2[T
′
1], E2[T

′
2], E3[T

′′
1], and E3[T

′′
3] are in

general position (by Theorems 13.100, 13.87, and 13.44, and Lemma 13.85(c)).

Suppose E2 = 2. Then E3[T
′′
1] ≡α T

′
1, so E3[T

′′
1] is reducible in −→S . Since S is

an SRS, let P satisfied by E3[T
′′
1] be the left-hand side of some κ in a concrete form of

S; by the definition of regular SRS, P is selective in −→S , and by Lemma 13.102, P
is decisively reducible in −→S . Therefore, E3 = 2, and T ′

1 ≡α T
′′
1 . Since S is regular,

it has an α-normal concrete form, in which T ′
1 −→

S T ′
2 and T ′

1 −→
S T ′′

3 must use the
same concrete schema. So T ′

2 ≡α T
′′
3 .

On the other hand, suppose E2 = (P2[
→

P2])[2] such that P2 ∈ E (possible by defi-
nition of evaluation order, Definition 13.78), and let k have the properties enumerated
in the definition of R, E-evaluation context (Definition 13.83). If E3 = 2 then, reason-

ing symmetrically to the above, E2 = 2; so E3 6= 2. Let E3 = (P3[
→

P3])[2] such that

P3 ∈ E . For all j < k,
→

P2(j) is an S-evaluation normal form; therefore, in term E3[T
′′
1],

the α-image of
→

P2(j) is also an S-evaluation normal form (by Lemma 13.85(b)); and

an S-evaluation normal form can’t be reducible in 7−→E
S , so the α-image of

→

P2(j)

doesn’t contain the meta-variable occurrence, and the α-image of
→

P2(j) is
→

P3(j). So
→

P3(j) is an S-evaluation normal form. Similarly, since the subterm of E3[T
′′
1] at 2k in

P3 is reducible in 7−→E
S , it isn’t an S-evaluation normal form; so since E3 is an S, E-

evaluation context, so is (
→

P3(k))[2]. Since (
→

P2(k))[2] is an R, E-evaluation context
in general position in which the meta-variable has strictly lesser depth than in E2,

and (
→

P3(k))[2] is its α-image in general position, by induction on the depth of the
meta-variable, Q.E.D.

284

Plotkin’s development of a standardization theorem for λv-calculus ([Plo75]) de-
pended on starting with an arbitrary sequence of “parallel reduction” steps —general-
ized into our treatment as −→

‖?
S steps— and then unpacking these parallel steps, one

at a time from right to left, into a standard reduction sequence.
The parallel reduction, in essence, chooses a subset of the possible β-redexes in

the term, and exercises all the selected redexes at once, from the bottom up. Exer-
cising the lower redexes doesn’t sabotage those above them because of the selectivity
condition in the definition of regular SRS (Condition 13.101(c)). Standard reduction
order contrasts with this bottom-up order by consistently exercising high-level redexes
before those below them, a rearrangement of ordering that is possible because of the
homomorphic and copying behaviors of substitutive functions, and the distributivity
condition in the definition of regular SRS. During the rearrangement, though, the
number of individual redexes to be exercised may increase dramatically, because ex-
ercising a high-level redex may make many copies of some of its subterms, so that
if the parallel reduction step exercised a redex in any of those copied subterms, the
corresponding redexes in all the copies must be exercised separately by an equivalent
standard reduction sequence. Plotkin’s technique uses induction on the number of
these redexes, for which purpose he defines a “reduction size” for each parallel re-
duction step that provides an upper bound on the number of redexes that will be
exercised after the rearrangement; and central to this size metric is the number of
times a subterm is copied during the exercise of a redex above it. In λv-calculus re-
duction (λx.T)V −→v T [x← V], redexes in T are copied exactly once, while redexes
in V are copied once for each free occurrence of x in T . For our abstract treatment
of SRSs, the number of copies is more involved, depending on the structure of the
schema and the homomorphic part of the behavior of its substitutive function.

Definition 13.106 Suppose poly-context P .
#(2k, P) is the number of occurrences of 2k in P .

In substitutive function application f(x, T, P0,
→

T), the number of copies of each
→

T (k)
is just #(2k, f(x, T, P0)).

Definition 13.107 Suppose SRS concrete schema κ is as given in Schema 13.92,

P is the left-hand side of κ, and term P [
→

T] is reducible in the induced hygienic
relation of κ.

For n0 ≤ h ≤ ar(P), #(h, κ, P,
→

T) = #(2h, P
′).

For 1 ≤ h < n0,

#(h, κ, P,
→

T) = #(2h, P
′

[

∑

k

{

2k if k < n0

(f(x,
→

T (k), P0))[
∑n0

j=2 2j−1] otherwise

]

).

Suppose further poly-context P2 and term P2[
→

T2] are α-images of, respectively,

P and P [
→

T] (so that P2[
→

T2] is reducible in the α-closure of κ). For 1 ≤ i ≤ ar(P2),

#(h, κ, P2,
→

T2) = #(h, κ, P,
→

T).

285

The generalization to P2 is unambiguous since the behavior of f is continuous under
α-renaming (Conditions 13.49(c) and 13.49(d)).

If P1[
→

T1] −→
S T2 and T is a subterm of

→

T1(k), the number of images of T in
T2 —that is, the number of distinct subterms of T2 that could be altered if the

occurrence of T in
→

T1(k) were replaced by some T ′— is #(k, κ, P1,
→

T1) (by the behavior
of substitutive functions, specifically Conditions 13.49(e) and 13.49(g)).

Definition 13.108 Suppose SRS S.
T1 −→

‖?
S T2 with reduction size n if T1 −→

‖?
S T2 and any of the following condi-

tions holds.

(a) T1 = P [
→

T1] for nontrivial P ;

for all 1 ≤ k ≤ ar(P),
→

T1(k) −→
‖?
S

→

T2(k) with reduction size nk;

P [
→

T2] ≡α T2; and

n =
∑

ar(P)
k=1 (nk ×#(2k, P)).

(b) T1 = P [
→

T1] for nontrivial P ;

for all 1 ≤ k ≤ ar(P),
→

T1(k) −→
‖?
S

→

T2(k) with reduction size nk;

P [
→

T2] −→
S T2 via SRS concrete schema κ in a regular concrete form of S;

for all 1 ≤ k ≤ ar(P), #(k, κ, P,
→

T2) is defined; and

n = 1 +
∑

ar(P)
k=1 (nk ×#(k, κ, P,

→

T2)).

Reduction size of a given step is not required to be unique: T1 −→
‖?
S T2 with reduction

size n and with reduction size m doesn’t necessarily imply n = m.

Lemma 13.109 Suppose regular SRS S.
If T1 −→

‖?
S T2, then there exists n such that T1 −→

‖?
S T2 with reduction size n.

Proof. Suppose the proposition holds for all proper subterms of T1. Suppose
T1 −→

‖?
S T2. Following the definition of −→

‖?
S (Definition 13.75), there are two cases,

depending on whether T1 −→
‖?
S T2 involves a top-level −→S-reduction.

Case 1: no top-level −→S-reduction. Follows from the definition of reduction size
without a top-level reduction (Criterion 13.108(a)), and the inductive hypothesis.

Case 2: top-level −→S-reduction. Follows from the definition of reduction size
with a top-level reduction (Criterion 13.108(b)), and the inductive hypothesis.

When T1 −→
‖?
S T2 with reduction size n, one can always choose the nontrivial P in

the definition to be iso (because when there isn’t a top-level reduction, the subterm
occurrences are just added together, and when there is a top-level reduction, the

definition of #(k, κ, P,
→

T2) requires P to be an α-image of the left-hand side from
Scheme 13.92, which is iso by Condition 13.91(a)).

286

Lemma 13.110 Suppose regular SRS S, and substitutive f .
If T1 −→

‖?
S T2 with reduction size n, f is used in a regular concrete form of

S, and f(x, T1, P0,
→

T) and f(x, T2, P0,
→

T) are defined, then f(x, T1, P0,
→

T) −→
‖?
S

f(x, T2, P0,
→

T) with reduction size ≤ n.

Proof. Suppose T1 −→
‖?
S T2 with reduction size n, f is used in a regular concrete

form of S, and f(x, T1, P0,
→

T) and f(x, T2, P0,
→

T) are defined. Proceed by induction

on n. There are two cases, depending on whether or not T1 −→
‖?
S T2 with reduction

size n involves a top-level −→S-reduction (Criterion 13.108(a) or 13.108(b)).

Case 1: no top-level −→S-reduction. Let T1 = P1[
→

T1] for P1 ∈ E ; for 1 ≤ k ≤

ar(P1),
→

T1(k) −→
‖?
S

→

T2(k) with reduction size nk; P1[
→

T2] ≡α T2; and n =
∑

ar(P1)
k=1 nk.

There are three sub-cases, depending on how many of the nk are non-zero.
Case 1a: all of the nk are zero. Then n = 0, T1 ≡α T2, and the proposition is just

invariance of f over ≡α (Condition 13.49(c)).
Case 1b: at least two of the nk are non-zero. Then the proposition follows imme-

diately from the inductive hypothesis.
Case 1c: exactly one of the nk is non-zero. Then n = nk, and we can consider

just
→

T1(k) −→
‖?
S

→

T2(k) with reduction size n, which involves a smaller term on the
left-hand side. By doing this repeatedly, we can reduce the problem either to Case 1b
above, or to Case 2 below.

Case 2: top-level −→S-reduction. Let T1 = P1[
→

T1] for nontrivial P1; for 1 ≤ k ≤

ar(P1),
→

T1(k) −→
‖?
S

→

T2(k) with reduction size nk; P1[
→

T2] −→
S T2 via SRS concrete

schema κ in a regular concrete form of S; for 1 ≤ k ≤ ar(P1), #(k, κ, P1,
→

T2) be

defined; and n = 1 +
∑

ar(P1)
k=1 (nk × #(k, κ, P1,

→

T2)). For the #(k, κ, P1,
→

T2) to be
defined, P1 must be an α-image of the left-hand side of κ; so P1 is iso.

Consider the structure of the reduction f(x, T1, P0,
→

T) −→
‖?
S f(x, T2, P0,

→

T), which

parallels that of T1 −→
‖?
S T2. For suitable

→

T3 element-wise ≡α to the
→

T2, we have

f(x, P1[
→

T1], P0,
→

T) −→
‖?
S f(x, P1[

→

T3], P0,
→

T) −→S f(x, T2, P0,
→

T), via subterm reduc-

tions f(x,
→

T1(k), P0,
→

T) −→
‖?
S f(x,

→

T2(k), P0,
→

T) with reduction size ≤ nk (by inductive
hypothesis). Let κf be the SRS concrete schema used, in the same regular concrete

form of S as κ, for the top-level step f(x, P1[
→

T3], P0,
→

T) −→S f(x, T2, P0,
→

T). The left-
hand side of κf is selective (by Condition 13.101(c)), therefore so are its α-images

(by Lemma 13.84(a)), and one such α-image must occur in f(x, T1, P0,
→

T). The actual

redexes within the
→

T1 must map to actual redexes within f(x, T1, P0,
→

T), which are en-

tirely independent of this selective part of T1. The reduction size from f(x, T1, P0,
→

T)

to f(x, T2, P0,
→

T) is then, by definition, one plus the reduction size for each actual
redex times the number of images of that redex projected by κf . But the number of

images of any one of these actual redexes in f(x, T2, P0,
→

T) cannot be larger than the

287

number of its images in T2, because f(x,2, P0,
→

T) is guaranteed not to make multiple
copies of any subterm of 2 (by Condition 13.49(g)). Therefore, Q.E.D.

Lemma 13.111 Suppose regular SRS S, and evaluation order E .
If T1 −→

‖?
S T2 with reduction size n via Criterion 13.108(b), then there exists T3

such that T1 −→
S T3 and T3 −→

‖?
S T2 with reduction size ≤ n− 1.

Proof. Suppose the proposition holds for all smaller n, and T1 −→
‖?
S T2 with

reduction size n via Criterion 13.108(b). Let T1 = P [
→

T1] for nontrivial P ; for 1 ≤ k ≤

ar(P),
→

T1(k) −→
‖?
S

→

T2(k) with reduction size nk; P [
→

T2] −→
S T2 via SRS concrete

schema κ in a regular concrete form of S; and n = 1 +
∑

ar(P)
k=1 (nk ×#(k, κ, P,

→

T2)).
Let f be the substitutive function used by κ; and let P0, P1, and P ′ be the

poly-contexts on the left- and right-hand sides of κ as in Schema 13.92. For the

#(k, κ, P,
→

T2) to be defined, P must be an α-image of the left-hand side of κ. Since

all the reduction relations involved are α-closed, and the definition of #(k, κ, P,
→

T2) is
invariant across α-images, assume without loss of generality that P is the left-hand
side of κ.

If any of the #(k, κ, P,
→

T2) is zero, then that subterm reduction makes no contri-
bution to n, and it suffices to prove the proposition when no reduction is performed
on that subterm, i.e., when nk = 0; so assume without loss of generality that for all

k, if #(k, κ, P,
→

T2) = 0 then nk = 0.

Proceed by considering what would happen if parallel step P [
→

T1] −→
‖?
S T2 were

modified by not reducing some one of the subterms,
→

T1(k). This modification of the
parallel step is possible for all k, because every α-image of the left-hand side of κ is
selective in −→S (by Condition 13.101(c) and Lemma 13.84(a)) and decisively −→S-
reducible (by Lemma 13.102); and if nk > 0, then the resulting parallel step with have

strictly lesser reduction size (because then also #(k, κ, P,
→

T2) 6= 0), so the inductive
hypothesis will apply to that resulting parallel step. Moreover, by this selectivity, the
top-level reduction in the parallel step will be via κ.

Case 1: all of the nk are zero. Then P [
→

T1] ≡α P [
→

T2]; T1 −→
S T2; and T2 −→

‖?
S T2

with reduction size 0.

Case 2: for some k < ar(P0), nk ≥ 1. Let
→

T ′
2 =

→

T2\
k
→

T1(k)
. Let P [

→

T ′
2] −→

S T ′
2;

then P [
→

T1] −→
‖?
S T ′

2 with reduction size n − (nk × #(k, κ, P,
→

T2)). By the inductive

hypothesis, let P [
→

T1] −→
S T3 via κ, and T3 −→

‖?
S T ′

2 with reduction size ≤ n − 1 −

(nk ×#(k, κ, P,
→

T ′
2)). Since the terms being substituted into by κ are the same in

→

T ′
2

as in
→

T2 (namely,
→

T2(j) for j ≥ ar(P0)), by definition #(k, κ, P,
→

T ′
2) = #(k, κ, P,

→

T2)

(Definition 13.107). So the only difference between T ′
2 and T2 is that #(k, κ, P,

→

T2)

288

verbatim copies of
→

T1(k) in T ′
2 are replaced by

→

T2(k) in T2; and each of these verbatim

copies is an image through T3 −→
‖?
S T ′

2 of a verbatim copy in T3. Let T3 −→
‖?
S T ′

3

by reducing all these verbatim copies of
→

T1(k) to
→

T2(k). As these verbatim copies are

projected through T3 −→
‖?
S T ′

2, they are invariant (by the hygiene constraint imposed
by the definition of induced hygienic relation, Definition 13.95); and the same is true

of the copies of
→

T2(k) in T ′
3 (by Lemma 13.98), so T ′

3 −→
‖?
S T2, with the same reduction

size as T3 −→
‖?
S T ′

2. As they do not interfere with each other, the two parallel steps

T3 −→
‖?
S T ′

3 −→
‖?
S T2 can be merged into one, increasing the reduction size of the

second step by exactly nk for each image of
→

T2 that reaches T2; so T3 −→
‖?
S T3 with

reduction size ≤ n− 1.

Case 3: for all i < ar(P0), ni = 0, but for some k ≥ ar(P0), nk ≥ 1. Let

T1 = P [
→

T1] −→
S P ′[

→

T ′
1] and P [

→

T2] −→
S P ′[

→

T ′
2] ≡α T2. From the structure of κ,

for i < ar(P0),
→

T ′
1(i) ≡α

→

T1(i) and
→

T ′
2(i) ≡α

→

T2(i), while for i ≥ ar(P0),
→

T ′
1(i) ≡α

f(x,
→

T1(i), P0,
∑

j<ar(P0)

→

T1(j)) and
→

T ′
2(i) ≡α f(x,

→

T2(i), P0,
∑

j<ar(P0)

→

T2(j)) (assum-

ing, without loss of generality, that
→

T1(i) and
→

T2(i) have the correct form for f to be

defined on them per Condition 13.49(a)). For i < ar(P0),
→

T ′
1(i) ≡α

→

T2(i) =
→

T ′
2(i) (be-

cause, by supposition, ni = 0). For i ≥ ar(P0), f(x,
→

T1(i), P0,
∑

j<ar(P0)

→

T1(j)) −→
‖?
S

f(x,
→

T2(i), P0

∑

j<ar(P0)

→

T1(j)) with reduction size ≤ nk (by Lemma 13.110). There-

fore, P ′[
→

T ′
1] −→

‖?
S P ′[

→

T ′
2] with reduction size n− 1.

Lemma 13.112 Suppose regular SRS S, and evaluation order E .

If T1 −→
‖?
S T2 with reduction size n, then there exists an S, E-standard reduction

sequence
→

T from T1 to T2 with arity ≤ n+ 1.

That is, the reduction size is an upper bound on the number of reduction steps needed
for a standard reduction sequence (the number of terms in the sequence being one
more than the number of reduction steps).

Proof. Proceed by induction on n.

Suppose the proposition holds for all smaller n, and T1 −→
‖?
S T2 with reduction

size n. Following the definition of reduction size, there are two cases, depending on
whether T1 −→

‖?
S T2 with reduction size n involves a top-level −→S-reduction.

Case 1: no top-level −→S-reduction. Let T1 = P1[
→

T1] for P1 ∈ E ; for 1 ≤ k ≤

ar(P1),
→

T1(k) −→
‖?
S

→

T2(k) with reduction size nk; P1[
→

T2] ≡α T2; and n =
∑

ar(P1)
k=1 nk.

There are three sub-cases, depending on how many of the nk are non-zero.

Case 1a: all of the nk are zero. Then n = 0, T1 ≡α T2, and a reduction sequence
with arity 1 suffices.

289

Case 1b: at least two of the nk are non-zero. Then all of the nk are less than

n, so by the inductive hypothesis, for each
→

T1(k) −→
‖?
S

→

T2(k) there exists an S, E-

standard reduction sequence from
→

T1(k) to
→

T2(k) with arity ≤ nk + 1. Since −→
‖?
S

is constructive (by Theorem 13.99), we can perform these sequences of reductions on

the subterms of T1 = P1[
→

T1], reducing each subterm
→

T1(k) to
→

T2(k) before beginning

to reduce
→

T1(k + 1); call this sequence
→

T .
→

T starts with T1, ends with P1[
→

T2] ≡α T2,
has arity ≤ n+1, and is an S, E-standard reduction sequence (by Criterion 13.88(c)).

Case 1c: exactly one of the nk is non-zero. Then n = nk, and we can consider

just
→

T1(k) −→
‖?
S

→

T2(k) with reduction size n, which involves a smaller term on the
left-hand side. By doing this repeatedly, we can reduce the problem either to Case 1b
above, or to Case 2 below.

Case 2: top-level −→S-reduction. Follows immediately from Lemma 13.111, the
inductive step, and Criterion 13.88(b).

Lemma 13.113 Suppose regular SRS S, and evaluation order E .
If T1 −→

‖?
S T2 with reduction size n, and T2 is an S-evaluation normal form,

then there exists T3 such that T1 7−→
E∗
S T3, T3 is an S-evaluation normal form, and

T3 −→
‖?
S T2 with reduction size ≤ n.

Proof. Suppose T1 −→
‖?
S T2 with reduction size n, and T2 is an S-evaluation

normal form. If n = 0, the result is trivial; so suppose n ≥ 1, and the proposition
holds for all smaller n.

If T1 is an S-evaluation normal form, then the result follows immediately from
reflexivity of 7−→E∗

S . Suppose T1 is not an S-evaluation normal form.

If T1 −→
‖?
S T2 with reduction size n involves a top-level −→S-reduction, the result

follows immediately from Lemma 13.111 and the inductive step. Suppose T1 −→
‖?
S T2

with reduction size n does not involve a top-level −→S-reduction.

Following Criterion 13.108(a), let T1 = P1[
→

T1] for P1 ∈ E ; for all 1 ≤ k ≤ ar(P1),
→

T1(k) −→
‖?
S

→

T2(k) with reduction size nk; P1[
→

T2] ≡α T2; and n =
∑

ar(P1)
k=1 nk.

If P1 were suspending in −→S , then T1 would be an S-evaluation normal form (per

Definition 13.81); so P1 is not suspending. Therefore, all of the
→

T2 are S-evaluation

normal forms, and at least one of the
→

T1 is not an S-evaluation normal form. Let k

be the smallest integer such that
→

T1(k) is not an S-evaluation normal form.
It suffices to show that there exists an S-evaluation normal form T3 such that

→

T1(k) 7−→
E∗
S T3, and T3 −→

‖?
S

→

T2(k) with reduction size ≤ nk. For then, because all

the
→

T1 with indices less than k are S-evaluation normal forms, P1[
→

T1] 7−→
E∗
S P1[

→

T1\
k
T3

];

and P1[
→

T1\
k
T3

] −→
‖?
S P1[

→

T2] with reduction size ≤ n. So we have the same n and
P1, but fewer non-normal subterms, and by induction on the number of non-normal
subterms, we’re done.

290

If nk < n, the sufficient condition follows from the inductive hypothesis. Oth-
erwise, we have the same reduction size with a smaller left-hand term T1, and by
induction on the size of T1 we can reduce the problem to some other case already
solved.

Definition 13.114 Suppose regular SRS S, and evaluation order E .
A poly-context P is locally S, E-irregular if there exist

poly-contexts P1,
→

P1 with P1 ∈ E and P = P1[
→

P1],
term T that is not an S-evaluation normal form,
and integers j, k

such that T satisfies
→

P1(j), j < k, and
→

P1(k) is nontrivial.
A poly-context P is S, E-regular if none of its branches are locally S, E-irregular.
E is S-regular if for every σ ∈ S, every poly-context P minimally satisfying the

left-hand side of σ is S, E-regular.

Without S-regularity (or something similar to it), there would be no standardization
theorem for regular SRSs. To see why, consider a combination of S and E for which
the standardization theorem is false: ordinary call-by-name λ-calculus with right-
to-left evaluation. Here, S is the singleton set {((λx.T1)T2) −→ T1[x ← T2]}, and
(22 21) ∈ E . The difficulty is that a standard reduction sequence, as we have defined
it (Definition 13.88), is always a concatenation of an evaluation sequence (via 7−→E∗

S)
followed by standard reductions of subterms. Once the sequence has left its evaluation
phase, it cannot decide later to do a top-level reduction after all. For this S and E ,
when reducing a term of the form (T2 T1), if we want to do a top-level reduction,
and the operator T2 is not yet of the form (λx.2), we have to first get it into that
form by using 7−→E∗

S on the whole term (T2 T1). Unfortunately, because we are using
right-to-left evaluation order E , 7−→E∗

S can’t reduce the left-hand subterm until and
unless it first succeeds in reducing the right-hand subterm to an S-evaluation normal
form (such as a value). So a term such as

(((λz.(λy.z)) x) ((λx.(xx))(λx.(xx)))) (13.115)

is reducible to x by means of −→∗
S , but not by means of any standard reduction —

because the right-hand subterm is non-normalizable (it reduces to itself via 7−→E
S),

while the top-level reduction requires a preliminary reduction of the left-hand subterm
(which reduces via 7−→E

S to (λy.x)).12 To couch this in general terms, standardization
fails because the poly-context on the left-hand side of a concrete schema, ((λx.22)21),
is ordered so that a potentially non-normalizable subterm (here, 21) is followed by
a subterm that is nontrivial and therefore might only be obtainable via reduction

12As a corollary, since Term (13.115) can’t be normalized (reduced to x) via a standard reduction,
it can’t be normalized via S, E-evaluation 7−→E∗

S
, either, so that when call-by-name λ-calculus with

right-to-left evaluation fails standardization, it also fails operational soundness.

291

(here, λx.22). This is the pathological extreme of the situation defined above as local

S, E-irregularity : in the definition, a non-normal subterm T precedes a non-trivial
→

P1(k). (The definition is more inclusive in that it doesn’t require T to be non-
normalizable, merely non-normal — a simplification made because non-normality is
usually decidable while non-normalizability is not.)

In contrast, when S is the call-by-value λv-calculus (with a suitably straightfor-
ward choice of SRS schemata), all possible evaluation orders are S-regular.

Lemma 13.116 Suppose regular SRS S, and S-regular evaluation order E .

If T1 −→
‖?
S T2 7−→

E
S T3, then there exists T4 such that T1 7−→

E+
S T4 −→

‖?
S T3.

Proof. Suppose T1 −→
‖?
S T2 with reduction size n, and T2 7−→

E
S T3. Assume

without loss of generality that T2 = E[T ′
2], T3 = E[T ′

3], E is an S, E-evaluation
context, and T ′

2 −→
S T ′

3. Proceed by induction on n; and within consideration of
given n, proceed by induction on the size of T1.

If n = 0, the result is immediate with T4 = T3; suppose n ≥ 1, and the proposition
holds for all smaller n.

Case 1: T1 −→
‖?
S T2 involves a top-level reduction. Then it can be factored out to

the left (via Lemma 13.111), giving T1 −→
S T ′

1 −→
‖?
S T2 7−→

E
S T3 where the parallel

step has reduction size < n. The result follows from the inductive hypothesis.

Case 2: T1 −→
‖?
S T2 does not involve a top-level reduction.

Case 2a: E = 2. Then T2 7−→
S T3.

If T1 is−→S-reducible then, since T1 −→
‖?
S T2 doesn’t involve a top-level reduction,

T1 −→
‖?
S T3 (by Definition 13.75 and Conditions 13.101(c) and 13.101(g)), and we’re

done. Suppose T1 is not −→S-reducible.

Let poly-context P , satisfied by T2, minimally satisfy the left-hand side of some
σ ∈ S. Assume without loss of generality that T2 is chosen (via α-renaming) to
maximize how much of P is shared by T1. One or more branches of P are not
complete in T1, since T1 is not −→S-reducible; of these branches, one of them is
earliest according to ordering E ; and this earliest branch must be exercised by the
parallel step, T1 −→

‖?
S T2. Since the parallel step doesn’t involve a top-level reduction,

the −→S-reduction of this earliest branch can be factored out to the left, producing
T1 −→S T

′
1 −→

‖?
S T2 7−→

E
S T3 where the parallel step has reduction size < n. Because

E is S-regular, T1 −→S T ′
1 is an S, E-evaluation step, T1 7−→

E
S T ′

1; and the result
follows from the inductive hypothesis.

Case 2b: E = P [
→

P] such that P ∈ E and, for some 1 ≤ k ≤ ar(P) and all
1 ≤ j ≤ ar(P),

if j < k then
→

P (j) is an S-evaluation normal form,

if j = k then
→

P (j) is an S, E-evaluation context, and

if j > k then
→

P (j) is a term.

292

Since T1 −→
‖?
S T2 doesn’t involve a top-level reduction, assume without loss of gen-

erality that T1 = P [
→

T1], T2 = P [
→

T2], for each 1 ≤ j ≤ ar(P),
→

T1(j) −→
‖?
S

→

T2(j) with

reduction size nj , and n =
∑

ar(P)
j=1 nj. Suppose inductively that the proposition holds

for all subterms of T1, particularly the
→

T1.

For each j < k,
→

T2(j) =
→

P (j) is an S-evaluation normal form; so, by Lemma

13.113,
→

T1(j) −→
‖?
S

→

T2(j) with reduction size nj can be factored into
→

T1(j) 7−→
E∗
S

→

T ′
1(j) −→

‖?
S

→

T2(j) with reduction size ≤ nj . Let
→

T ′
1 be these intermediate terms for

j < k,
→

T ′
1(j) =

→

T1(j) for j ≥ k; then T1 = P [
→

T1] 7−→
E∗
S P [

→

T ′
1] −→

‖?
S P [

→

T2] = T2 with

reduction size ≤ n. We have
→

T ′
1(k) =

→

T1(k) −→
‖?
S

→

T2(k) = T ′
2 7−→

E
S T ′

3 where the
parallel step has reduction size nk ≤ n; so, by either inductive hypothesis (the one

on n, or within that the one on subterms of T1),
→

T1(k) 7−→
E+
S T ′′

2 −→
‖?
S T ′

3, and the
result follows immediately.

Lemma 13.117 Suppose regular SRS S, and S-regular evaluation order E .
If T1 −→

‖?
S T2, and there exists an S, E-standard reduction sequence from T2 to

T3, then there exists an S, E-standard reduction sequence from T1 to T3.

Proof. Suppose T1 −→
‖?
S T2 with reduction size n;

→

T is an S, E-standard reduc-

tion sequence from T2 to T3; and m = ar(
→

T). Proceed by induction on m; within
consideration of given m, proceed by induction on n; and within consideration of
given m and n, proceed by induction on the size of T1.

If m = 1, then
→

T = 〈T2〉, and the result follows immediately (by Lemma 13.112).
Suppose m ≥ 2, and the result holds for all smaller m.

If n = 0, then
→

T \1T1
is an S, E-standard reduction sequence from T1 to T3 (by

Criterion 13.88(d)). Suppose n ≥ 1, and the result holds for this m for all smaller n.
Suppose the result holds for this m and n for all proper subterms of T1 (which

is trivially true if T1 has no proper subterms). There are two cases, depending on

whether T1 −→
‖?
S T2 with reduction size n involves a top-level −→S-reduction.

Case 1: no top-level −→S-reduction. There are two subcases, depending on

whether the first step of
→

T is an evaluation step (i.e., whether
→

T (1) 7−→E
S

→

T (2)).

Case 1a:
→

T (1) 7−→E
S

→

T (2). The result follows from Lemma 13.116, and the
inductive hypothesis on m.

Case 1b:
→

T (1) 67−→E
S

→

T (2). Then the status of
→

T as a standard reduction sequence
is not deducible from Criterion 13.88(b) (neither directly, nor indirectly through
Criterion 13.88(d) since 7−→E

S is α-closed by Theorem 13.87); therefore, it must be
deducible, directly or indirectly, from Criterion 13.88(c). Assume without loss gener-

ality that P ∈ E , T1 = P [
→

T1], T2 = P [
→

T2], T3 = P [
→

T3], and for each 1 ≤ k ≤ ar(P),
→

T1(k) −→
‖?
S

→

T2(k) with reduction size ≤ n and there is an S, E-standard reduction

293

sequence from
→

T2(k) to
→

T3(k) with arity ≤ m. The inductive hypothesis (on m,
n, and the size of T1) applies to each of these subterms, and an S, E-standard re-
duction sequence from T1 to T3 can be spliced together from the subsequences via
Criterion 13.88(c).

Case 2: top-level −→S-reduction. The top-level −→S-reduction can be factored
out to the left (via Lemma 13.111), giving T1 −→

S T ′
1 −→

‖?
S T2 with reduction size

< n. The result then follows from the inductive hypothesis.

Theorem 13.118 (Standardization)
Suppose regular SRS S, and S-regular evaluation order E .
T1 −→

∗
S T2 iff there exists an S, E-standard reduction sequence from T1 to T2.

Proof. For right-to-left implication, suppose
→

T is an S, E-standard reduction

sequence from T1 to T2. By definition of this,
→

T (1) = T1 and
→

T (ar(
→

T)) ≡α T2.
Since every R, E-standard reduction sequence is necessarily an R-reduction sequence,

T1 −→
∗
S

→

T (ar(
→

T)); therefore, since −→S is a reduction relation and ≡α⊆−→
∗
S ,

T1 −→
∗
S T2.

For left-to-right implication, suppose T1 −→
∗
S T2. Proceed by induction on the

number of −→S-steps in T1 −→
∗
S T2. If T1 ≡α T2, the result follows immediately.

Suppose T1 −→S T3 −→
∗
S T2, and the proposition holds for T3 −→

∗
S T2. Then since

−→S ⊆−→
‖?
S , the result follows from Lemma 13.117.

Lemma 13.119 Suppose regular SRS S, and evaluation order E .
If T1 −→S T2, T1 67−→

E
S T2, and T1 is not an S-evaluation normal form, then T2

isn’t either.

Proof. Suppose T1 −→S T2, T1 67−→
E
S T2, and T1 is not an S-evaluation normal

form. Because T1 is not an S-evaluation normal form, let T1 7−→
E
S T . Whatever

−→S-redex in T1 is exercised by T1 7−→
E
S T , that redex is not the one exercised by

T1 −→S T2. Each of these two redexes satisfies the left-hand side of some schema
in S; let the poly-contexts minimally satisfying these schema left-hand sides be P
and P2, respectively. (That is, P is satisfied by the redex leading to T , and P2

by the redex leading to T2.) Both P and P2 are selective in −→S and decisively
−→S-reducible (by Conditions 13.101(c) and 13.101(g)). By the definition of 7−→E

S

(Definition 13.86), the redex satisfying P does not occur within the redex satisfying
P2 (because P2 is decisively −→S-reducible); and even if P2 occurs within the redex
satisfying P , exercising it cannot disrupt that redex’s satisfaction of P (because P
is selective in −→S). So T2 necessarily contains a subterm satisfying P that is not
within any poly-context suspending in −→S , and T2 is not an S-evaluation normal
form.

294

Theorem 13.120 (Operational soundness)
Suppose regular SRS S, and S-regular evaluation order E .
If T1 =S T2 then T1 ≃

E
S T2.

Proof. Suppose T1 =S T2, C[T1], C[T2] ∈ Terms, and Free(C[T1], C[T2]) = {}.
Since −→S is compatible, C[T1] =S C[T2].

For Condition 13.90(a), it suffices to show that if C[T1] is S, E-normalizable,
then so is C[T2]; implication in the other direction follows by symmetry. Suppose
C[T1] 7−→

E∗
S T ′

1, and T ′
1 is an S-evaluation normal form.

By the Church–Rosser theorem (Theorem 13.104), since T1 =S T2, let T ′
1 −→

∗
S T

and T2 −→
∗
S T . Since T ′

1 is an S-evaluation normal form, T must be also (by
Lemma 13.82). By the standardization theorem (Theorem 13.118), since T2 −→

∗
S T ,

let
→

T2 be an S, E-standard reduction sequence from T2 to T . By Lemma 13.89, assume

without loss of generality that all S, E-evaluation steps in
→

T2 occur consecutively at
the start of the sequence.

If
→

T2 is an 7−→E
S-reduction sequence, then by definition C[T2] is S, E-evaluation

normalizable. Otherwise, let j be the smallest integer such that
→

T2(j) 67−→
E
S

→

T2(j + 1).

If
→

T2(j) were not an S-evaluation normal form, then
→

T2(ar(
→

T2)) ≡α T wouldn’t be an
S-evaluation normal form either (by Lemma 13.119), contradicting the supposition;

so
→

T2(j) must be an S-evaluation normal form. By choice of j, C[T2] 7−→
E∗
S

→

T2(j); so
again by definition, C[T2] is S, E-evaluation normalizable.

For Condition 13.90(b), it suffices to show implication left-to-right; implication
right-to-left follows by symmetry. Suppose T3 is a minimal nontrivial S-evaluation
normal form, and T1 −→

E∗
S T3. Because T3 is minimal nontrivial, any −→S-reduction

of T3 is necessarily a top-level reduction (an −→S-reduction), hence an 7−→E
S-reduc-

tion; therefore, since T3 is an S-evaluation normal form, it is not −→S-reducible. By
Condition 13.90(b) (proven above), T2 7−→

E
S T ′

2 for some S-evaluation normal form
T ′

2; and by the Church–Rosser theorem, T ′
2 −→

∗
S T3. Let P be a minimal nontrivial

poly-context satisfied by T ′
2. Since T ′

2 is an S-evaluation normal form, it is not −→S-
reducible (since −→S ⊆ 7−→E

S), nor is any term to which it −→S-reduces; so T3 satisfies
some α-form of P , which is to say (since T3 is itself minimal nontrivial) that T3 itself
is an α-form of P ; and T3 has arity zero, so P has arity zero, and P = T ′

2. So T ′
2 must

reduce to T3 in zero steps; so T2 7−→
E
S T3.

295

Chapter 14

Well-behavedness of vau calculi

14.0 Introduction

Preceding chapters have defined three principal f-calculi: fp-calculus (§9.4), fC-
calculus (§11.3), and fS-calculus (§12.3). Along the way there were also six other
f-calculi: two pure calculi preliminary to the primary pure calculus, fe-calculus (§9.1)

and fx-calculus (§9.3); two pure calculi preliminary to the impure calculi, fi-calculus
(§10.6) and fr-calculus (§10.7); and the regular variants of the impure calculi, frC-
calculus (§11.3) and frS-calculus (§12.3.8).

This chapter explores the extent to which f-calculi are well-behaved, in the sense
conservatively called for by Plotkin’s paradigm (§13.0): Church–Rosser-ness of −→•,
operational completeness of −→∗

•, and operational soundness of =•. Standardization
of −→∗

•, being a means to an end, is not universally sought; and operational complete-
ness/soundness are only meaningful for calculi that have an associated semantics.

14.1 Conformance of f-calculi

This section checks all the f-calculi against the criteria for SRSs and regular SRSs.
Except for a technicality concerning fe-calculus, all the f-calculi are SRSs, and all
but the two principal impure calculi, fC-calculus and fS-calculus, are regular.

14.1.1 Terms and renaming functions

Most abstract constraints are imposed within numbered Assumptions; the exception
is a miscellany of (mostly rather mundane) assumptions stated in prose in roughly the
first two pages of §13.1.2 (prior to Lemma 13.16), and a few more concerning active
and skew sets stated following Definition 13.34. Notably, among the unnumbered
assumptions, ≡α is compatible; there is a countably infinite syntactic domain of vari-
ables, partially ordered by ancestry relation ⊑; Fα is closed under finite composition

296

and includes fid; complement is unique, complement of a composition is the reverse-
order composition of complements, and complement of complement is identity; the
free set of a term is closed under ancestry; and the active set of a renaming f is closed
under both f and its complement.

Numbered Assumptions about terms and renaming functions (Terms and Fα) are
13.7, 13.17, 13.19, 13.24, 13.35, and 13.36.

Of the nine f-calculi, four (fi-, fr-, frC-, and frS-calculus) share the term syntax
and renaming functions of one or another of the three principal calculi; so there are
five f-calculus syntaxes.

Various assumptions, both unnumbered and numbered, require the existence of
variables, which on the face of it excludes fe-calculus. To circumvent this technicality,1

we simply add pro forma into fe-calculus the usual domain of partial-evaluation vari-
ables (i.e., λ-calculus variables), associated renaming functions, and self-evaluating
terms x and 〈 fx.T 〉. These additions have no impact on well-behavedness of the
reduction relations of the calculus (such as Church–Rosser-ness), since, while intro-
ducing terms 〈 fx.T 〉, we have not introduced any schema that uses these structures;
thus, terms x and 〈 fx.T 〉 remain, in the augmented fe-calculus, merely somewhat
eccentric passive data structures.

Of the unnumbered assumptions, most hold straightforwardly for all five syntaxes
(with the additions to fe-calculus). The choices of ⊑ and complements are discussed
where those assumptions are introduced early in §13.1.2.

Assumption 13.7(a), though presented in §13.1.1, does not require separate veri-
fication since it is implied in §13.1.2 by Assumption 13.17(c).

Assumption 13.7(b) isn’t implied by later assumptions, but is closely related to
Assumption 13.17(c), and is readily seen to hold for all five syntaxes.

For Assumption 13.7(c), if the structures in the domain of a semantic variable
don’t contain any terms, the assumption holds trivially. If the structures in the
domain are described using a context-free grammar, the assumption holds straight-
forwardly. The domain of values V in each calculus is described by prose but has
context-free structure. Context-sensitive syntax constraints are listed explicitly after
each syntax block to which they apply: (9.1), (9.13), (9.27), (10.1), (12.8), (12.28),
(12.29). As observed following (9.1), of all the context-sensitive constraints, only one
restricts which terms can be used in which contexts — that being the one that is
also built into the abstract treatment (essentially, Lemma 13.16). The other context-
sensitive constraints are all about keeping the bindings of an environment in sorted
order by lookup key; and that doesn’t create any mutual dependence between sub-
terms, because the keys aren’t in subterms. In, say, 〈〈s1 ← T1 s2 ← T2〉〉, the sort
keys sk are part of minimal nontrivial poly-context 〈〈s1 ← 21 s2 ← 22〉〉, into which
arbitrary subterms Tk can be freely placed. So all the f-calculi satisfy the assumption.

1The technicality could, and presumably in the long run should, be repaired by rephrasing the
assumptions, but was not a priority for the current document.

297

Assumptions 13.17, 13.19, 13.24, 13.35(a), 13.35(b), and 13.36 hold straightfor-
wardly. Assumption 13.35(c) (if Bind(P) ∩ Act(f) = {} then P | f) is straight-
forward if one keeps in mind that proper descendants of Bind(P) cannot occur free

in subterms
→

T of P [
→

T] (due to Lemma 13.16). Assumption 13.35(d), delineating
sufficient conditions for α-renaming, is also straightforward.

Hence all five syntaxes (as amended) satisfy all the term and renaming assump-
tions of the abstract treatment.

14.1.2 Substitutive functions

Of the nine kinds of substitution defined for the f-calculi, four are used for renaming
(Fα, supporting ≡α), and six are used substitutively (Fβ, supporting −→•). Only
in partial-evaluation substitution —λ-calculus-style substitution— do the two uses
coincide: substitutive 2[xp ← T] doubles as a renaming function when T is restricted
to partial-evaluation variables, 2[xp ← x′p]. The substitutive kinds of substitution are
2[xp ← T], 2[xc ← C], 2[xs 6←], 2[xg ← V], 2[xg 6←], and 2[[xs, s] ← V]. These
are not substitutive functions per se, because they don’t conform to Definition 13.49;
they have α-renaming built into them, and various constraints required by the defini-
tion could be imposed in more than one way. This subsection shows how to perform
these six modes of substitution using technically substitutive functions.

For 2[xp ← T], for each n ∈ N, let

fp(x, T1, P1[21, P2[
∑n

k=1 2k+1]],
→

T2)

=

{

T1⌊x← P2[
→

T2]⌋ if x ∈ PartialEvaluationVariables

T1 otherwise ,

(14.1)

restricted to cases, allowed under Condition 13.49(a), where Bind(P1) = {}; and let
fv(x, x

′) = x′, restricted to x′ 6∈ (x ∩ PartialEvaluationVariables). (Defining fv(xp,
xp) would not prevent substitutiveness, but would disallow a β-rule using this f
from eliminating the binding of the parameter, by Condition 13.91(e).) Then fp is
substitutive with variable transformation fv; for Condition 13.49(e), fp(x, T, P1[21,
P2[

∑n
k=1 2k+1]]) is constructed from T by replacing all free occurrences of x with P2.

For 2[xc ← C], (11.3), let C = (P [21,
→

P])[2,
→

T] and

fc(x, T, P [21,
→

P],
→

T)

=

{

T ⌊x← (P [21,
→

P])[2,
→

T]⌋ if x ∈ ControlVariables

T otherwise ,

(14.2)

restricted to cases, allowed under Condition 13.49(a), where P is iso minimal nontriv-

ial, P [21,
→

P] is iso, and P binds no variables; and let fv(x, x
′) = x′. (C non-binding

is mentioned in §11.1; cf. Condition 13.91(e).) Then fc is substitutive with variable
transformation fv.

298

For 2[xs 6←], (12.17), let

f6s(x, T, P) =

{

T ⌊x 6←⌋ if x ∈ StateVariables

T otherwise ,
(14.3)

restricted to cases, allowed under Condition 13.49(a), where P has arity one and
doesn’t bind any variables; if x = [wi] is a state variable, then T ⌊x 6←⌋ is defined; and
for each child [iwi] of x occurring in T , either all occurrences of [iwi] are free in T , or
all are bound at a single point in T .

α-renaming an arbitrary term T cannot always guarantee definition of T ⌊x 6←⌋,
because T ⌊x 6←⌋ may be undefined due to free variables in T , which cannot be α-
renamed. However, when T occurs within a redex of a schema that uses 2[xs 6←], the
binding of xs will be within the redex, so that α-renaming of the entire redex can
always satisfy that restriction, and also the final restriction on redundantly named
children of x (and function α does both).

Let

fv(x, x
′) =

x′ if x 6∈ StateVariables

x′⌊x 6←⌋ if x ∈ StateVariables and x′ 6= x
undefined if x ∈ StateVariables and x′ = x .

(14.4)

Then f6s is substitutive with variable transformation fv; note that Conditions 13.49(e)
and 13.49(h) are trivial for f6s.

For 2[xg ← V], (12.33), for each n ∈ N, let

fg(x, T, P0,
→

T) =

{

T ⌊x← P [
→

T]⌋ if x ∈ GetVariables

T otherwise ,
(14.5)

restricted to cases, allowed under Condition 13.49(a), where P is an iso poly-context
with arity n that minimally satisfies semantic polynomial “V ” (the iso condition
can be satisfied for any particular value V due to Assumption 13.7(c)); P0 is an
iso poly-context with arity n + 1, with subexpression P [

∑n

k=1 2k+1] (noting that
this is a subexpression but not necessarily a subterm, the specific relevance of the
distinction being that the value in a stateful binding x ← V is not a subterm),
with Bind(P0 at 21) = {}, and with each Bind(P0 at 2k+1) = Bind(P at 2k); and

P [
→

T] is a term (hence, by choice of P , a value). Let fv(x, x
′) = x′, restricted to

x′ 6∈ (x ∩GetVariables). Then fg is substitutive with variable transformation fv.
For 2[xg 6←], (12.34), let

f6g(x, T, P) =

{

T ⌊x 6←⌋ if x ∈ GetVariables

T otherwise ,
(14.6)

restricted to cases, allowed under Condition 13.49(a), where P has arity one and
doesn’t bind any variables; and let fv(x, x

′) = x′, restricted to x′ 6∈ (x∩GetVariables).
Then f6g is substitutive with variable transformation fv.

299

For 2[[xs, s]← V], (12.35), for each n ∈ N and s ∈ Symbols , let

fs(x, T, P0,
→

T) =

{

T ⌊[x, s]← P [
→

T]⌋ if x ∈ StateVariables

T otherwise ,
(14.7)

restricted to cases, allowed under Condition 13.49(a), where P is an iso poly-context
with arity n that minimally satisfies semantic polynomial “V ” (the iso condition
can be satisfied for any particular value V due to Assumption 13.7(c)); P0 is an
iso poly-context with arity n + 1, with subexpression P [

∑n

k=1 2k+1] (noting that
this is a subexpression but not necessarily a subterm, the specific relevance of the
distinction being that the value in a stateful binding x← V is not a subterm), with

Bind(P0 at 21) = {}, and with each Bind(P0 at 2k+1) = Bind(P at 2k); and P [
→

T]
is a term (hence, by choice of P , a value). Let fv(x, x

′) = x′. Then fs is substitutive
with variable transformation fv.

14.1.3 Calculus schemata

The schemata for the calculi are:
fe-calculus (§9.1): Schemata 9.7, and for δ-rules, Schema 9.13.
fx-calculus (§9.3): Schemata 9.25.
fp-calculus (§9.4): Schemata 9.32.
fi-calculus (§10.6): Schemata 10.6, amending fp-calculus.
fr-calculus (§10.7): Schemata 10.7, amending fi-calculus.
fC-calculus (§11.3): Schemata 11.12 and 11.13, amending fi-calculus.
frC-calculus (§11.3): Schemata 11.14 and 11.13, amending fr-calculus.
fS-calculus (§12.3): $define! Schemata 12.36, set simplification Schemata 12.37,

set bubbling-up Schema 12.38, symbol evaluation Schemata 12.39, get resolution Sche-
mata 12.40, get simplification Schemata 12.41, get bubbling-up Schemata 12.42, state
simplification Schemata 12.44, and state bubbling-up Schema 12.45.

frS-calculus (§12.3.8): $define! Schemata 12.36, symbol evaluation Schemata
12.39, and get resolution Schemata 12.40.

Note that singular evaluation contexts are defined by (11.8).

Just as the substitutions 2[xp ← V] etc. had to be cast into the form required by
the definition of substitutive function, so the calculi schemata have to be cast into
the form required by the definition of SRS schema (Definition 13.96). This primarily
means associating each schema with an α-normal set of SRS concrete schemata. For
SRS concrete schemata (Definition 13.91), the most complex provisions to verify are
those for hygiene, Conditions 13.91(e) and 13.91(f).

Additional properties of interest for individual schemata are:

• the left-hand side of each concrete schema is in general position (part of calculus
regularity Condition 13.101(c)), and

300

• every term satisfying the left-hand side of each schema σ is reducible in −→σ

(calculus regularity Condition 13.101(g)).

fe-calculus

Schemata 9.7 are relatively straightforwardly processed, since they contain no syn-
tactic variables. Consider any one of these schemata, σ. Consider the set of all iso
poly-contexts that minimally satisfy the left-hand side of σ. Each term satisfying the
left-hand side of σ satisfies some such poly-context; and if it satisfies more then one
such, then the poly-contexts satisfy each other (cf. Theorem 13.11) and differ only
by permutation of their meta-variable indices. Restrict the set to one representative
of each of these equivalence classes of poly-contexts (such as by sorting the meta-
variable indices by an evaluation order); then each term satisfying the left-hand side
of σ satisfies exactly one poly-context in the restricted set.

For three of the six schemata —9.7S, 9.7p, and 9.7a— the left-hand side is a
semantic polynomial, and every term satisfying that polynomial is reducible in −→σ,
and the choice of left-hand poly-context uniquely determines the right-hand side.
Letting this left-hand poly-context be P0 and P1 = 21 in (13.92), for those schemata
we’re done. The left-hand side of Schema 9.7γ isn’t actually a semantic polynomial
—it’s a template for a countably infinite set of semantic polynomials, one for each
possible number of operands m— but, by setting up one schema for each possible
m, these schemata also have the properties of the first three, and we’re done with
them, too. Each term satisfying the left-hand side of any of these schemata satisfies
exactly one of the concrete schemata, and there are no variables involved; therefore,
the described concrete forms of the schemata are α-normal.

The last two schemata —9.7s and 9.7β— have additional constraints on them that
preclude some terms that satisfy their respective left-hand sides. However, each left-
hand poly-context determines unambiguously whether or not the additional constraint
is satisfied (i.e., whether the lookup is defined for 9.7s, or whether the match is defined
for 9.7β). So by converting every successful case from an SRS concrete schema back
into an SRS schema —by replacing the meta-variables with semantic term-variables—
we can convert each of these two constrained schemata into a countably infinite set
of unconstrained schemata, each of which has an α-normal concrete form consisting
of a single SRS concrete schema.

δ-rule Schema 9.13 is another technically multiple schema — one schema for each
δ-form in each δ(o). Each of these schemata has the same properties as the first
three schemata discussed above; the left-hand side is monic by Conditions 9.10(3)
and 9.10(4), and the left-hand side determines the right-hand side by Condition
9.10(5).

fx-calculus

Of the eight schemata in (9.25), six have no variables, so that the above reasoning

301

for fe-calculus schemata applies, including the treatment of the γ-rule as a countably
infinite set of schemata. The remaining schemata are (9.25β) and (9.25δ).

For the β-rule —the only schema in this calculus that does nontrivial substitu-
tion— use variants of concrete Schema 13.93, with poly-contexts PV minimally sat-
isfying semantic variable V :

[combine 〈 fx.PV [22]〉 21] −→ fp(x,22, P0,21) , (14.8)

where P0 = [combine 21 PV [22]] etc.; conformance to the definition of SRS concrete
schema is mostly as outlined for (13.93). The left-hand side of the concrete schema
is in general position, and every term satisfying the left-hand side of the schema is
reducible.

The δ-rule for each δ-form in each δ(o) matches (13.92) with, again, trivial sub-
stitution and P1 = 21. The technicality that (13.92) requires an explicit variable
that is trivially substituted for, which must then be avoided for variable hygiene con-
cerns, is washed out by α-closure. The remaining bound-variable provisions of Condi-
tion 13.91(e) are satisfied by Condition 9.22(6), and free-variable Condition 13.91(f)
by Conditions 9.22(6) and 9.22(7). The free-variable condition guarantees that every
term satisfying the left-hand side of the schema is reducible in −→σ. General position
is guaranteed possible by Condition 9.22(9), and α-normality is guaranteed possible
by general position.

fp-, fi-, and fr-calculus

Schema 9.32v can be split into an infinite set of schemata, one for each choice
of minimal poly-context satisfying the left-hand side, similarly to symbol-lookup
Schema 9.7s. All the other fp-, fi-, and fr-calculus schemata are either minor modi-
fications of fe- or fx-calculus schemata, or trivial transformations (or both).

fC- and frC-calculus

Of Schemata 11.12, the last three are trivial (noting that the throw bubbling-up
rule should be treated as a set of schemata, one for each α-closure class of singular
evaluation contexts Es).

If all we wanted was an SRS (not a regular one), the catch garbage-collection
schema, (11.12g), could be treated as an infinite set of SRS schemata, one for each
α-closure class of terms T that satisfy the constraint (by having no free occurrences of
xc). In fact, each schema would have just one corresponding concrete schema which
can be chosen for general position, and evidently every term satisfying the schema
left-hand side is reducible in −→σ. The point on which regularity fails under that
arrangement is that the left-hand side is not selective in −→S .

The catch-catch simplification, (11.12cc), cannot be cast as an SRS schema (nor
schemata) at all, because it violates the first clause of Condition 13.49(i), in the

302

definition of substitutive function: it may introduce free variable xc into T [x′c ← xc]
when xc didn’t occur free in any structure drawn from the left-hand side.2

The catch bubbling-up schema, (11.12c), can be treated as a set of schemata,
one for each α-closure class of singular evaluation contexts Es. Each schema has an
α-normal form consisting of a single SRS concrete schema, matching (13.92) with
minimal nontrivial P0 satisfied by Es (as in (14.2)), and P1 = [catch xc 21]. Gen-
eral position can be arranged, and the hygienic α-renaming T [xc ← x′c] is obviated
by Condition 13.49(a). All terms satisfying the left-hand side of each schema are
reducible in −→σ.

frC-calculus uses a subset of the same schemata, notably excluding non-SRS
catch-catch simplification and non-regular garbage-collection.

fS- and frS-calculus

For $define! Schemata 12.36, the additional constraints —via function definiend—
can be handled by splitting the rule into an infinite set of schemata, similarly to fp-
calculus symbol lookup (or the definiend constraint on the fp-calculus vau rule), since
any poly-context minimally satisfying the left-hand side determines unambiguously
whether or not the constraints are satisfied. Symbol evaluation Schemata 12.39 is
similar, as are get resolution Schemata 12.40 (noting that the substitutions in get
resolution eliminate xg, allowing it to be unbound by the right-hand side).

Set simplification Schemata 12.37 and set bubbling-up Schema 12.38 are trivial,
since set is no a binding construct.

Of the three get simplification Schemata 12.41, empty-frame elimination (12.41?0)
is trivial; get consolidation (12.41?2) is non-SRS because it violates substitutivity,
similarly to catch-catch simplification and get-get concatenation (12.41??) is —despite
the elaborate conditions placed on it— also trivial, as the conditions are only hygiene.

Of the two get bubbling-up Schemata 12.42, (12.42↑?) is trivial, its conditions
being (like those of get-get concatenation) only hygiene. (12.42↑!?) also has a lookup

constraint, which can be handled by splitting it into an infinite set of schemata,
similarly to symbol evaluation schemata (noting, again, that the set construct is non-
binding). An additional constraint on the second schema requires it to choose the
leftmost binding request to bubble up through the set — which actually simplifies

the situation for α-normalization, since without that additional constraint, some left-
hand sides would be reducible by multiple choices of binding request, forcing a further
multiplication of schemata to achieve SRS-hood of each schema, and precluding reg-
ularity (which requires the entire calculus to be α-normalizable).

Of the three state simplification Schemata 12.44, the first (state-state concate-
nation, 12.44σσ) is trivial as its conditions are only hygiene; the second (garbage-

2This is a hygiene violation only when the substitution is considered separately from the schema
in which it occurs, suggesting that some of the complexity of the abstract treatment may be an
artifact of where the line is drawn between function and schema.

303

collection, 12.44σg) is SRS-able but inherently non-regular; and the third (empty-
frame elimination, 12.44σ0) is trivial.

State bubbling-up Schema 12.45 is trivial, as its conditions are only hygiene,
similarly to get bubbling-up.

frS-calculus uses a subset of the same schemata, notably excluding non-SRS get
consolidation and non-regular garbage-collection.

14.1.4 Regularity

Only the two full impure f-calculi are expected to be irregular (fC- and fS-calculus);
the other seven should be regular. This subsection confirms the latter expectations.

In addition to the constraints on individual schemata considered in §14.1.3, regu-
larity requires a calculus to have an α-normal concrete form (Condition 13.101(b)) in
which every left-hand side is both general-position and selective (Condition 13.101(c)),
each substitutive function distributes over −→S and strictly over −→S (Condition
13.101(d)), and each substitutive function transforms each −→S-redex to an −→S-
redex (Condition 13.101(e)).

α-normality and selectivity

These constraints compare schemata to each other.

Since each schema in our candidate regular calculi has an α-normal form, and
every term satisfying the left-hand side of each schema σ is reducible in −→σ, for
α-normality we only need to verify that no term can satisfy the left-hand sides of
more than one SRS schema in a given calculus. As presented in Chapters 9–12, the
schemata of the regular calculi are, in fact, mutually exclusive: no term can satisfy the
left-hand side of more than one of them; however, when casting those schemata into
SRS form, some of them were converted into infinite sets of SRS schemata, requiring
a double-check that the schemata in each set are mutually exclusive. The double-
check is straightforward, because in each case the split into multiple SRS schemata
was based on mutually exclusive structures — α-closed classes of minimal satisfying
poly-contexts for symbol lookup and similar ($vau (9.32v), $define! (12.36), get
resolution (12.40), and get-through-set bubbling-up (12.42↑!?)); α-closed classes of
singular evaluation contexts for catch and throw bubbling-up; number of operands
for γ-rules; primitive operator and δ-form for δ-rules. Non-α-normalizable alternatives
were mentioned for the get-through-set bubbling-up schema (12.42↑!?), and alluded to
for the get resolution schemata of (12.40), but were not implemented (and similarly,
without remark, for get simplification Schema 12.41?2).

For selectivity, it suffices that each left-hand poly-contextual pattern cannot over-
lap with itself or any other in the calculus; checking this is greatly facilitated by the
convention that all redex patterns require active terms.

304

Redex-invariance and distributivity

These constraints compare substitutive functions to schemata, and to each other.
In each redex pattern of each candidate regular calculus, a free variable cannot

occur anywhere that would prevent substitution for that variable from commuting
with reduction by the schema. Partial-evaluation variables can only be substituted
for by values, which may alter which minimal satisfying poly-context is used to match
the left-hand side of an SRS schema —and thereby alter which SRS concrete schema is
used within the α-normal concrete form of that SRS schema— but will not alter which
SRS schema can be used. Variable deletions don’t happen in the candidate regular
calculi. Control variables and get variables can only alter active subterms —throws
and receives— which consequently don’t overlap with value-subterm constraints (as
noted above re selectivity); and receives do not occur in the redex patterns in any other
capacity either, while throws occur only in the bubbling-up schema where substitution
will neither affect nor be affected by their participation in the redex pattern. Besides
establishing that substitution preserves reducibility in −→S (Condition 13.101(e)),
this also means that distributivity of each substitutive f over the reduction relations
(Condition 13.101(d), per Definition 13.65) is implied by distributivity of f over all
the substitution functions (including itself; per Definition 13.56).

What remains is to verify that in each candidate regular calculus, each of the
substitutive functions used distributes over all of the substitutive functions used (in-
cluding itself). Of the six substitutive functions defined for the calculi, the deletions
aren’t used in the candidate regular calculi, and the mutable-to-immutable binding
coercion isn’t used at all, leaving only three substitutions actually used in the can-
didates: 2[xp ← T], 2[xc ← C], and 2[xg ← V].3 Pairwise distributivity between
these three functions is straightforward.

14.2 Well-behavedness of f-calculi

The three results we want are Church–Rosser-ness of −→S , operational completeness
of −→∗

S , and operational soundness of =S . As remarked at the top of the chap-
ter, completeness/soundness isn’t meaningful for any calculus that doesn’t have an
associated semantics; and we are primarily concerned with the most general calcu-
lus associated with each f-semantics: fp-, fC-, and fS-calculus. Seven out of nine
f-calculi are regular SRSs, which implies Church–Rosser-ness for those seven (Theo-

rem 13.104); but the completeness and soundness properties that come with regularity
aren’t what we had in mind even for fi-calculus, because we wanted those correspon-
dence results with respect to the declared •-semantics. That is, we wanted 7−→∗

•⊆−→
∗
S

3Thus, no substitution in the regular calculi uses the domain of state variables — whose structural
complexity contributes to the overall size of the abstract treatment; and no substitution in the regular
calculi performs variable deletion — whose interaction with state variables motivates the provisions
for variable transformations in the definition of substitutive functions.

305

and =S ⊆≃•, where instead we have correspondences with an S, E-evaluation rela-
tion 7−→E∗

S provided E is S-regular: 7−→E∗
S ⊆−→

∗
S and =S ⊆≃

E
S (respectively, Defini-

tion 13.86 and Theorem 13.120).

In this section we obtain the intended soundness results. To do so, we assess
in depth the extent of the mismatch between obtained S, E-evaluation results and
intended •-semantics results, and provide supplementary proofs to bridge the gap
where necessary. In particular we consider whether (or not) right-to-left evaluation
order E is S-regular for each of the seven regular f-calculi S, and —independently—
whether each 7−→E∗

R is a subset of the associated 7−→∗
•, and whether each ≃E

R is a subset
of the associated ≃•, for each of the seven f-calculi that share common syntax with
•-semantics (i.e., all but fe- and fx-calculus — noting that R, E-evaluation doesn’t
require R to be an SRS at all, let alone regular).

In the supplementary results, we work with calculi that may violate selectivity
—so that a term may be decomposed into R, E-evaluation context and R-redex in
more than one way— or α-normality — so that an R-redex may be reducible by
more than one schema. These violations, in turn, cause difficulties for the abstract
definitions of both R, E-evaluation (Definition 13.86) and R, E-standard reduction se-
quence (Definition 13.88). The immediate difficulty is that R, E-evaluation produces a
nondeterministic relation, trivially precluding useful correspondence with 7−→•. On a
case-by-case basis, we customize that abstract definition by prioritizing the schemata,
and requiring that an evaluation step exercise a schema of the highest priority possi-
ble, and the largest redex (thus, the shallowest possible evaluation context) possible
within that priority. This, however, produces an anomaly in the abstract definition
of R, E-standard reduction sequence. According to that abstract definition, once the
sequence stops performing evaluation steps (Criterion 13.88(b)), it has to descend
recursively into proper subterms (Criterion 13.88(c)); but with the additional con-
straints on evaluation, it becomes possible for a non-evaluation reduction step to be
on the term as a whole, rather than on a subterm. For this case, we extend the def-
inition of R, E-standard reduction sequence to allow top-level non-evaluation steps,
in order of priority, just before descending recursively into the subterms; technically,
this is another criterion added to the definition:4

Criterion 14.9 (Extending Definition 13.88)
→

T1 is a sequence of non-R, E-evaluation−→R steps in descending order of priority

(using the priorities assigned to customize R, E-evaluation),
→

T2 is an R, E-standard
reduction sequence that does not include any R, E-evaluation steps and does not

include any −→R steps, and
→

T =
→

T1 ·
→

T2.

4In principle, these extensions could be incorporated directly into the abstract definitions of R, E-
evaluation and R, E-standard reduction sequence in Chapter 13, Definitions 13.86 and 13.88, without
changing any of the results in that chapter. However, the proofs in that chapter would have to take
account of the extensions, and we prefer not to further complicate the abstract treatment there to
handle a problem that only arises here.

306

Note that this extension does not invalidate Lemma 13.89, because it prepends top-
level non-evaluations based on the absence of later evaluation steps rather than based
on recursion via Criterion 13.88(c). The proof of the lemma blithely assumes that
evaluation steps in the recursive phase can be shifted leftward to the end of the
evaluation phase, which is true only because all intervening reductions are to other
subterms; the new criterion violates this assumption, and must therefore assure that
in its newly introduced case, the assumption isn’t needed.

The intended completeness results, at least for the full calculi, 7−→∗
•⊆−→

∗
•, are

generally straightforward and are not systematically pursued.
We assume that operational equivalence ≃• (defined following (8.14) in §8.3.2)

uses the same notion of R-observable as does ≃E
R — which, until and unless stated

otherwise, is the notion in Definition 13.90.

The schemata for the semantics are:
fi-semantics (§10.3): Schemata 10.3. Evaluation contexts Syntax 10.2.
fC-semantics (§11.2): Schemata 11.6 and 11.7.
fS-semantics (§12.2): bubbling-up Schemata 12.19; symbol-evaluation Schema

12.20, amending fi-semantics; $define! and lifting Schemata 12.22; and garbage-
collection Schemata 12.23.

14.2.1 S-regular evaluation order

It will emerge that strict right-to-left order works for four of the seven regular calculi,
but fails S-regularity for the other three (fe-, fp-, and fi-calculus). Slightly adjusted
evaluation orders are S-regular for the other three calculi — but the adjustments
are entirely unproblematic only for fe-calculus, because we aren’t trying to synch
that calculus with a declared •-semantics. Intended results for fi-calculus, especially,
should use the same evaluation order as fC- and fS-semantics, which conflicts with
the adjustments for S-regularity.

For S-regularity of E (Definition 13.114), the left-hand side of each concrete
schema must not contain any local irregularity, i.e., any unconstrained subterm with
a constrained later sibling (“sibling” meaning another subterm of the same minimal
nontrivial poly-context). No local irregularities can occur within a semantic variable
based on V (which must match a value), which accounts for a large fraction of all
degrees of freedom in the schemata. Note that some occurrences of V are themselves
constraints on subterms, as in [combine 〈 fx.T 〉 V e], where the V constrains a posi-
tion where the term syntax would allow an arbitrary term; while other occurrences
of V merely reflect constraints of the term syntax, as in [xs, s] ← V , where the V is
not an allowable position for a meta-variable (but does represent a possible series of
unconstrained subterms, contained within a poly-context minimally satisfying the V).
In a related phenomenon, δ-rules are immune to local irregularities by way of Condi-
tions 9.10(1)–9.10(2). Variables e, ωs, and ωp (environment, list of stateful bindings,

307

list of stateless bindings) also cannot have internal local irregularities, noting that e
always occurs where the syntax would allow an arbitrary term, while ωs and ωp never
do.

The fe-calculus β-rule, (9.7β), constrains the first, second, and fourth subterms
of the operative, but not the third (the body). Because it constrains any subterms of
the operative frame, an operative frame in fe-calculus is not a suspending context (as
it fails the second clause in the definition of suspending context, Definition 13.80: a
context surrounding an operative frame is not always decisive). Therefore, according
to the definition of local irregularity (Definition 13.114), any S-regular evaluation
order must put the body last, after all the other subterms of an operative. The defi-
nition of S-regular appears to provide an exception if the term (here, the operative)
is an evaluation normal form — but this exception is illusory, because the presence
of constraints on some of the subterms is exactly what makes the operative frame
non-suspending and thereby prevents the term from being evaluation-normal. A de-
viation from right-to-left evaluation order just for this particular frame (which doesn’t
occur in the term syntax of any of the declared semantics anyway) does suffice for
S-regularity.

The fp-calculus ǫ-rule, (9.32ǫ), constrains the first and third subterms of a combine
frame, but not the second. This can be handled by another deviation from uniform
right-to-left evaluation, observing that none of the other schemata leave any of the
subterms of a combine unconstrained. However, in the impure calculi we will not have
this option because, in order to avoid permuting side-effects during pair evaluation
((9.32p)), we will need the second subterm to precede the first. Consequently, our
generic operational soundness result for regular SRSs, Theorem 13.120, isn’t always
useful to us for fi- or fp-calculus (depending on the intended use — though it is always
useful for fr-calculus).

fS-calculus set frames are unproblematic for right-to-left evaluation order, because
the only subterm of a set that is ever constrained by a schema is the rightmost. (The
unconstrained subterms of a set frame occur within the values on the right-hand sides
of its stateful bindings.) fS-semantics doesn’t specify ordering of the subterms of a
set, because it doesn’t need to: top-level sets are treated by the semantics as a special
case, and subterm sets are either part of a redex or contained within an evaluation
normal form.

14.2.2 R, E-evaluation contexts

Three factors determine R, E-evaluation contexts (Definition 13.83): the evaluation
order E , which determines which subterms of an R, E-evaluation context are required
to be R-evaluation normal forms; the−→R-suspending poly-contexts (specifically, the
compound ones, i.e., those that contain meta-variables), which cannot occur above the
meta-variable in an R, E-evaluation context, and which determine the R-evaluation
normal forms (Definition 13.81); and the decisively −→R-reducible contexts, which

308

are excluded from being R, E-evaluation contexts.

The evaluation order is strictly right-to-left, as discussed in the preceding subsec-
tion, §14.2.1.

In each calculus, each decisively −→R-reducible context satisfies the left-hand side
of some calculus schema. In order for these not to include any evaluation contexts of
the declared semantics (Syntax 10.2), it is sufficient that the enumerated reduction
relation −→R be constrained such that whenever a term E[T] satisfies nontrivial
evaluation context E, if T is not an −→R-evaluation normal form then E[T] is not
an −→R-redex. For that, in turn, it is sufficient that each −→R-redex pattern be a
poly-context each of whose meta-variables occurs in a subpattern constrained only to
be a value (cf. δ-form Condition 9.10(2); in fact, this is more than sufficient, since
an evaluation normal form only needs redexes to be contained within suspending
contexts, whereas a value requires active terms to be contained even if they don’t
give rise to redexes). This sufficient condition is met by fr-, frC-, and frS-calculus,
but not by the other calculi that share the syntax needed for semantics evaluation
contexts (i.e., not by fp-, fi-, fC-, or fS-calculus), as they do not impose the subterm-
value constraints of Schemata 10.7.

It remains to identify the compound suspending poly-contexts, Definition 13.80.

To do this, one simply considers all compound minimal nontrivial poly-contexts
(modulo α-closure and meta-variable indices), checking each such poly-context P
against the left-hand side of each schema in the calculus to verify that (1) no schema
left-hand side constrains subterms of P , since if one did that would prevent some
C[P] from being decisive, and (2) some schema left-hand side uses P , since that has
to happen in order for C[P] to be decisive when C isn’t. Whenever a semantic variable
based on V occurs in a subterm position on a left-hand side, the minimally satisfying
poly-contexts will include some that constrain subterms of every kind of —inactive—
poly-context that isn’t specifically treated as if it were suspending by the definition of
value; and this happens in the β-rule of every f-calculus; therefore, in each f-calculus,
the only kinds of inactive compound poly-contexts that can possibly be suspending
are operative frames and environment frames.

The garbage-collection schemata of the full impure f-calculi (fC- and fS-) con-
strain subterms of every compound minimal nontrivial poly-context whatsoever, so
that in those two calculi there are no suspending contexts.

δ-rules do not constrain proper subterms of either operative frames or environment
frames, by Condition 9.10(2). In all the f-calculi, excepting the garbage collection
schemata, only fe-calculus Schema 9.7β constrains any subterm of an operative frame;
so operative frames are suspending in all the regular f-calculi except that one (and
would be in the full impure f-calculi except for garbage-collection). No non-garbage-
collection schema in any f-calculus constrains subterms of an environment frame
(though parts of the environment frame itself are often constrained), so environment
frames are suspending in all the non-garbage-collecting f-calculi that have them (the
only one that doesn’t have them being fx-calculus).

309

Accordingly, the right-to-left fr, E-evaluation contexts are just the evaluation con-
texts of (10.2), and the singular fr, E-evaluation contexts are just the singular evalu-
ation contexts of (11.8). The syntax of the impure f-calculi has additional compound
minimal nontrivial poly-contexts, which are not included in Syntax 11.8: the fC-
calculi have catch and throw frames, while the fS-calculi have state, set, get, and
receive frames. Note that catch, throw, state, and get frames always have exactly
one proper subterm, while set and receive frames may have embedded value subex-
pressions,5 so that set and receive frames may have any number of subterms. Catch
and throw frames occur on schema left-hand sides in (11.14), and their subterms are
unconstrained; so catch and throw frames are suspending contexts in frC-calculus,
although, even aside from garbage collection, catch frames are not suspending in
fC-calculus since they do occur with constrained subterms in the catch-catch simpli-

fication Schema 11.12cc. State and set frames are non-suspending even in frS-calculus
because they have constrained subterms in (12.40); get frames are suspending in frS-
calculus but not in the full fS-calculus, because they have constrained subterms in
(12.41); and receive frames are non-suspending in both state calculi because they
never occur on any schema left-hand side. So the right-to-left frC, E-evaluation con-
texts are also just the evaluation contexts of (10.2), while the right-to-left fC-, frS, E-,
and fS, E-evaluation contexts are proper supersets thereof.

14.2.3 Pure f-calculi

Since fr-calculus shares its set of evaluation contexts with fi-semantics, and the enu-
merated relation −→ fr is exactly the base case of of 7−→ fi (the case where E = 2),
by compatibility 7−→ fi = 7−→

E
fr. Since right-to-left evaluation order is fr-regular, fr-

calculus is subject to Theorem 13.120, and = fr⊆≃ fi (recalling ≃E
S Definition 13.90,

and the definition of ≃• following (8.14) in §8.3.2).

fi- and fp-calculus also share their evaluation contexts with fi-semantics.

Lemma 14.10 Suppose fp-calculus terms T, Tk, e.

If T is not −→∗
fr-reducible to a value, then [eval T e] isn’t −→∗

fp-reducible to
a value. If T1 or T2 is not −→∗

fr-reducible to a value, then [combine T1 T2 e] isn’t
−→∗

fp-reducible to a value.

5These are subexpressions but not subterms, because the uppermost part of their syntax is em-
bedded within the minimal nontrivial set or receive frame — including all the syntax elements that
make it a value: operative and environment frames that would be suspending if they weren’t embed-
ded within another minimal nontrivial frame, but that in embedded form cannot be independently
suspending even though other frames cannot bubble up through them. This seems to suggest that
suspension may not be naturally a property of the minimal nontrivial poly-contexts themselves,
as has been defined here (Definition 13.80); instead, suspension may be more naturally a property
of particular meta-variable positions within a minimal nontrivial poly-context. The approach here
attempted to generalize concepts from λ-calculus, where this distinction is not apparent since the
only suspending poly-contexts have arity 1.

310

Proof. Both results simultaneously, by induction on number of reduction steps,
with each step divided into cases by schema.

Theorem 14.11 (Operational soundness)
If T1 = fp T2 then T1 ≃ fi T2.

Proof. When broadening Schemata 10.7 and 10.6 to their fp-calculus forms, Sche-
mata 9.32, if the relaxed subterms (those required to be values by schema left-hand
sides in fr-calculus but unconstrained in fp-calculus) can be reduced to values, then
by Church–Rosser-ness, exercising these schemata before the subterms have actually
been reduced to values cannot affect reduction of the whole term to a value. Suppos-
ing that no substitution is imposed from outside (which would uniformly affect the
entire potential redex that we’re considering), if any of the relaxed subterms cannot
be reduced to values, then by Lemma 14.10, exercising these schemata still cannot
affect reduction of the whole term to a value. Substitution affecting the entire poten-
tial redex is not affected by reductions of subterms of the potential redex (as might
happen in an impure calculus if a subterm emitted a side-effect), so the interaction
with external context is one-way (incoming); and this incoming external influence
preserves the property that either the subterms are reducible to values or the whole
isn’t — especially, external substitution cannot disable reduction of any subterm to
a value (verifiable by cases). So again, early exercise of the potential redex cannot
result in a value unless waiting for value-subterms would have been possible. So,
letting Ep be the identified fp-regular evaluation order, ≃

Ep

fp =≃
Ep

fr . Also, letting Er

be strictly right-to-left, ≃
Ep

fr =≃Er

fr ; as already established, ≃Er

fr =≃ fi; and since Ep is

fp-regular, = fp⊆≃
Ep

fp . In all, = fp⊆≃ fi.

14.2.4 Control f-calculi

Since frC-calculus shares its set of evaluation contexts with fC-semantics, the only
frC, E-evaluation steps not already part of fr, E-evaluation are the bubblings up. Re-

peated calculus catch bubbling-up evaluation steps, via (11.12c), are necessarily equiv-
alent to a single fC-semantics catch bubbling-up step via (11.6c); frC, E-evaluation
stops once a single catch reaches the top level, since catch is a suspending context in
frC-calculus. Throw bubbling-up evaluation steps in frC, E-evaluation are unsound

in the sense of 7−→E
frc 6⊆ 7−→ fc, because fC-semantics doesn’t have any corresponding

schema for bubbling up a throw with no matching catch (Schemata 11.6) — but not
unsound in the sense of ≃E

frc 6⊆≃ fc, because terms with an unmatched top-level throw
cannot have any effect on R, E-operational equivalence, due to the precondition ex-
cluding free variables in Definition 13.90 (which is why fC-semantics doesn’t bother
to provide a schema for this case).

311

While frC, E-evaluation is semantically unsound (as opposed to operationally un-
sound), frC, E-operational equivalence has a triviality problem. Because frC-calculus
lacks garbage collection (Schema 11.12g), once a term T emits a side-effect, all further
reducts are compound. (That is, if T has a top-level catch or throw, and T −→∗

frc T
′,

then T ′ has a top-level catch or throw.) Since R-observables are atomic (i.e., minimal
nontrivial) under Definition 13.90, any frC, E-evaluation step that involves a catch
or throw schema can only affect ≃E

frc through normalizability (Condition 13.90(a));
there is no observational difference (via Condition 13.90(b)) between ≃E

frc and ≃E
fr.

The same applies to any subset of fC-calculus that omits garbage collection, up to
and including full fC-calculus minus garbage collection. On the other hand, includ-

ing garbage-collection renders the R, E-evaluation relation 7−→S
R uninteresting since

there are no suspending contexts. When treating non-garbage-collecting extensions
of frC-calculus, we therefore amend Definition 13.90 by broadening the sense of R-
observable to allow a single surrounding catch frame provided it doesn’t capture any
variable in the (necessarily atomic) subterm.

Let fC ′-calculus modify full fC-calculus by omitting garbage-collection Schema
11.12g, and let frC

′-calculus modify fC ′-calculus by imposing the value-subterm re-
strictions of fr-calculus (Schemata 10.7). We are interested in the relationship be-
tween ≃E

fc′ and ≃ fc. We work up to fC ′-calculus by increments.

In order for R, E-evaluation to simulate fC-semantics bubblings up, R needs catch-
catch and catch-throw simplifications ((11.12cc) and (11.12ct)). We therefore take,
as the first increment, fr-calculus plus bubbling-up Schemata 11.14 and catch-catch
and catch-throw simplifications. For determinism, we prioritize bubbling up before
simplification. Since catch frames are now non-suspending, R, E-evaluation contexts
can have a top-level catch frame — and R, E-evaluation contexts change in no other
way, since a catch surrounded by any singular R, E-evaluation context would be de-
cisively reducible (via either catch-catch simplification or catch bubbling-up). Other
than lifting pure semantic steps (Schema 11.7), the only new S, E-evaluation steps
simulate, using sequences of steps, the catch-catch and catch-throw semantics steps
((11.6cc) and (11.6ct)), so that ≃E

R⊆≃ fc.

For the second increment, we add throw-throw simplification, (11.12tt), producing
frC

′-calculus. This has no effect on R, E-operational equivalence, because if the outer
throw has no matching catch, then the term has a free variable (and is therefore
irrelevant to ≃E

R), while if the outer throw does have a matching catch, the reduction
order enforced by R, E-evaluation will always cause the outer throw to bubble up and
then be eliminated without ever applying the throw-throw simplification.

For the third and final increment, we remove the value-subterm constraints that
distinguish fr-calculus from fi-calculus (cf. Schemata 10.7), producing fC ′-calculus.

Lemma 14.12 Suppose R is the enumerated relation of the catch-catch, throw-
throw, and catch-throw simplifications ((11.12cc), (11.12tt), and (11.12ct)).

312

(a) If T1 −→R T2 −→
∗
frc T3, then there exists T ′

2 such that T1 −→
∗
frc T

′
2 −→

∗
R T3.

(b) If T ′
2 −→R T2, T

′
3 −→R T3, T

′
2 −→

∗
frc T

′
4, and T ′

3 −→
∗
frc T

′
4, then there exist

T ′′
2 , T ′′

3 , and T ′′
4 such that

T ′
4 −→

∗
frc T

′′
4 ,

T2 −→
∗
frc T

′′
2 and T ′′

4 −→
∗
R T ′′

2 , and
T3 −→

∗
frc T

′′
3 and T ′′

4 −→
∗
R T ′′

3 .
(See Figure 14.1.)

Proof. For (a), suppose T1 −→R T2 −→
∗
frc T3. Simplification T1 −→R T2 elimi-

nates one of two adjacent catch/throw frames. Decorate the syntax of T1 and T2 by
marking those two frames in T1, and the one of them that remains in T2. When taking
a −→ frc step, mark each frame in the result that is a copy of a marked frame. Let
→

T2 be a −→ frc-reduction sequence from T2 to T3. Each term in
→

T2 has one or more
marked frames; the number of marked frames may be increased by any reduction

step that involves substitution. Construct a −→ frc-reduction sequence
→

T1 from T1 as

follows. Most of the terms in
→

T1 have the same structure as those in
→

T2 except that

wherever a marked frame occurs in a term in
→

T2, the corresponding term in
→

T1 has

two adjacent marked frames. When
→

T2 performs a reduction step other than bub-

bling up a marked frame,
→

T1 performs the same structural term transformation, which
leaves each pair of marked frames intact (thought possibly copied multiple times by
the transformation); marked pairs of frames remain adjacent since each such pair is
either entire below or entirely outside the exercised redex pattern, so that the result

of the
→

T1 step corresponds to the result of the
→

T2 step. When
→

T2 bubbles up a marked

frame,
→

T1 performs two steps, bubbling up first the outer and then the inner of the
two marked frames at the corresponding point in its term’s structure; the result of the

second bubbling up in
→

T2 is a term corresponding to the result of the single bubbling

up in
→

T2. Let T ′
2 be the last term in

→

T1; T
′
2 differs from T3 (the last term in

→

T2) only
by having a pair of marked frames at each point where T3 has a single marked frame.
Simplifying the marked pairs of frames in T ′

2 yields T ′
2 −→

∗
R T3.

The strategy for (b) is illustrated by Figure 14.1. Terms T ′
2, T

′
3, T

′
4, T2, and T3 and

the reductions between them are given; the other terms and reductions are deduced
— first the reduction to T ′′

4 , then the reductions from T ′′
4 to T ′′

2 and T ′′
3 , and finally

the reductions from T2 and T3 to T ′′
2 and T ′′

3 .
Suppose T ′

2 −→R T2, T
′
3 −→R T3, T

′
2 −→

∗
frc T

′
4, and T ′

3 −→
∗
frc T

′
4. Simplification

T ′
2 −→R T2 collapses entire consecutive blocks of frames in T ′

2 (frames nested each in

the next with nothing between) each to an individual frame in T2. Let
→

T ′
2 be a −→ frc-

reduction sequence from T ′
2 to T ′

4. By decorating the syntax of T ′
2, and propagating

these decorations through each step of
→

T ′
2, we can identify which groups of frames in

T ′
4 correspond to each collapsed frame in T2. At each step of the sequence, a matched

group of frames might be multiplied by copying, changing the number of matched
groups in the term (if the group occurs within the V of a substitution 2[xp ← V],

313

T2

T ′
2 T ′

4

T ′
3 T3

T ′′
2

T ′′
4 T ′′

3∗R

∗

frc

∗frc

∗

R

∗
frc

∗R

∗

R

∗

frc

∗frc

Figure 14.1: Elements of Lemma 14.12(b)

or within the E of a substitution 2[xc ← E]), and an evaluation context might be
inserted between frames in any matched group (either because a frame in the group
(not the innermost of the group) is a catch that bubbles up, or because a frame in
the group (not the innermost) is a throw whose binding catch bubbles up). However,
each matched group remains intact in that

• any copying must copy all the frames in the group, or none of them, and

• no suspending context or redex pattern can be inserted between any two frames
of the group.

(Both of these rely on the subterm-value constraints of fr Schemata 10.7). So through-
out the sequence, it is always still possible for all the non-outermost frames of any
one matched group to be bubbled up until the entire group is consecutive again; and
particularly, this is still true in T ′

4. We wish to show that, in a finite number of
steps, one can bubble up all of the non-outermost frames of all these matched groups,
producing a term in which every matched group of frames is consecutive. This can
be done in two phases.

Call a frame outstanding if it belongs to a matched group, and it isn’t the outer-
most frame in its group, and the frame immediately outside it isn’t part of its group.
(Per the above observations, every outstanding frame is immediately surrounded by
a singular evaluation context.)

In the first phase, do all required catch bubblings up, in bottom-up order. As
long as there is any outstanding catch in the term, choose any outstanding catch such
that no other outstanding catch occurs within the nearest catch surrounding this one;
and perform a single bubbling up of this outstanding catch. This single bubbling up
makes copies of the singular evaluation context that is bubbled up through — but

314

all but one of these copies is inserted just inside a matching throw, and therefore
does not increase the total number of outstanding catches. One copy of the singular
evaluation context is inserted just below the outstanding catch that bubbles up —
and it’s possible that that outstanding catch was consecutive with another catch
below it in the same group, so that the catch below it becomes outstanding; but in
that case, we can then bubble up that next catch down, and so on until we have
exhausted all consecutive catches further down in this group. The entire operation
has reduced, by exactly one, the total number of singular evaluation contexts stacked
above outstanding catches; so by induction, this first phase will terminate after a
finite number of such operations, leaving a term with no outstanding catches.

In the second phase, repeatedly choose any outstanding throw, and bubble it
up. Since throw bubbling-up merely deletes the singular evaluation context directly
above it, each such step decreases the size of the term, and does not introduce any
outstanding catches; so this phase terminates after a finite number of steps, leaving
a term in which every matched group of frames is consecutive.

Moreover, by using the same techniques for reasoning about T ′
3 −→

∗
R T3 and

T ′
3 −→

∗
frc T

′
4, we can also identify matched groups of frames in T ′

4 that correspond to
collapsed frames in T3; call these T3-groups, as opposed to the T2-groups corresponding
to collapsed frames in T2. Using the same techniques as above for bubbling up from
T ′

4, but taking into account T3-groups as well as T2-groups, we can derive a term by
bubbling up from T ′

4 such that every T2-group is consecutive and every T3-group is
consecutive. Call this term T ′′

4 .
Each T2-group in T ′′

4 can be reduced via −→∗
R to a single collapsed frame (in a

unique way, up to ≡α, since −→R evidently —by cases— has the diamond property,
Definition 13.63). Call the result of doing all these reductions T ′′

2 . Similarly, call the
result of reducing all T ′′

4 ’s T3-groups T ′′
3 .

It only remains to show that T2 −→
∗
frc T

′′
2 (from which T3 −→

∗
frc T

′′
3 follows by

symmetry). Let
→

T ′′
2 be a −→ frc-sequence from T ′

2 to T ′′
4 . We would like this sequence

to have the twin properties that

• if
→

T ′′
2 (k) contains a T2-outstanding catch (that is, a catch outstanding relative to

a T2-group), then
→

T ′′
2 (k) −→ frc

→

T ′′
2 (k + 1) is a bubbling up of a T2-outstanding

catch; and

• if
→

T ′′
2 (k) does not contain a T2-outstanding catch, but does contain a T2-out-

standing throw, then
→

T ′′
2 (k) −→ frc

→

T ′′
2 (k+1) is a bubbling up of a T2-outstand-

ing throw.

Suppose
→

T ′′
2 has these two properties. We can straightforwardly construct a −→ frc-

sequence
→

T2 from T2 to T ′′
2 , as follows. For each term that has nothing T2-outstanding,

construct a corresponding term for
→

T2 by collapsing all the T2-groups. The terms of
→

T2

are just these corresponding terms; the first and last terms of
→

T2 are T2 corresponding

315

to T ′
2, and T ′′

2 corresponding to T ′′
4 . Suppose

→

T2(k) corresponds to
→

T ′′
2 (j), and

→

T2(k+1)

corresponds to
→

T ′′
2 (i) (the next term in

→

T ′′
2 after

→

T ′′
2 (j) that doesn’t have anything T2-

outstanding). Then, straightforwardly (by cases),
→

T2(k) −→ frc

→

T2(k + 1). So
→

T2 is a
−→ frc-sequence from T2 to T ′′

2 , and we’re done.

Finally, suppose
→

T ′′
2 does not have these two properties. Then we describe how to

repeatedly modify it until it does.

Suppose
→

T ′′
2 (k) contains at least one T2-outstanding catch, but

→

T ′′
2 (k) −→ frc

→

T ′′
2 (k + 1) is not a bubbling up of a T2-outstanding catch; and suppose

→

T ′′
2 (k) is the

last term in the sequence that has both of these properties. Choose a T2-outstanding

catch in
→

T ′′
2 (k) such that no other outstanding catch occurs within the nearest catch

surrounding this one; and modify the sequence by inserting immediately after
→

T ′′
2 (k)

a bubbling up of this T2-outstanding catch. Modify each subsequent term of the se-
quence by this same bubbling up, until the point where that T2-outstanding frame
was already being bubbled up (after which, later terms in the sequence don’t have to
be modified; and there must come a point in the sequence where this happens, since
the sequence eventually arrives at T ′′

4 that has no T2-outstanding frames). Some pairs
of consecutive terms later in the sequence are no longer related by a single −→ frc

step, because the single step that used to relate those two terms (before at least one
of the terms was modified) has been copied multiple times by the modification, so
that to get from the left-hand of these terms to the right-hand one, one needs to
perform that original step on each of the subterm copies. If the original step was a
bubbling up of a T2-outstanding frame, or if the original step did not introduce any
new T2-outstanding catch, then simply insert, at that point in the sequence, however
many intermediate steps are necessary to perform the original step on all the copies;
in either of these cases, the added steps do not violate the ordering that we’re trying
to introduce into the sequence. Suppose the original step was not a bubbling up of a
T2-outstanding frame, and it did introduce a new T2-outstanding catch. (In this case,
the original step must have been a bubbling up of the outermost catch in a T2-group.)
Then the original step, that we now need to do on multiple copies, must have been
immediately followed by consecutive steps that eliminated all T2-outstanding catches
— because we chose T ′′

2 (k) to be the last term in the sequence that failed to imme-
diately address a T2-outstanding catch. Treat this entire subsequence —the original
step followed by the consecutively following elimination of T2-outstanding catches—
as a unit, and introduce copies of the entire subsequence, one copy of the subsequence
after another.

After these revisions, we have another −→ frc-sequence from T ′
2 to T ′′

4 , which we

again call
→

T ′′
2 .

→

T ′′
2 (k) is the same as it was in the previous version, and

→

T ′′
2 (k) −→ frc

→

T ′′
2 (k + 1) is a bubbling up of a T2-outstanding catch. The step after this one,

→

T ′′
2 (k + 1) −→ frc

→

T ′′
2 (k + 2), is the only step from

→

T ′′
2 (k) on that might possibly fail

to immediately address a T2-outstanding catch; and another revision such as we just

316

did will push it out further, until eventually, when we have bubbled up all the T2-
outstanding catches in the term (a finite process, as observed earlier), we will have a

revised sequence
→

T ′′
2 in which we have decremented the number of steps that fail to

immediately address a T2-outstanding catch. By induction, we can revise
→

T ′′
2 so that

T2-outstanding catches are always immediately addressed, satisfying the first of the

two properties we want of
→

T ′′
2 .

Suppose
→

T ′′
2 always immediately addresses T2-outstanding catches. Suppose

→

T ′′
2 (k)

contains at least one T2-outstanding throw, but
→

T ′′
2 (k) −→ frc

→

T ′′
2 (k+1) is not a bub-

bling up of a T2-outstanding throw; and suppose
→

T ′′
2 (k) is the last term in the sequence

that has both of these properties. Modify the sequence by inserting immediately after
→

T ′′
2 (k) a bubbling up of some T2-outstanding throw. Modify each subsequent term

of the sequence by this same bubbling up, until the point where that T2-outstanding
frame was already being bubbled up. Some pairs of consecutive terms later in the
sequence are now identical, because the step from one to the next was exercising a
redex in part of the term that has been deleted by the throw bubbling up; simply
delete the second term of any such consecutive pair, decrementing the length of the

sequence. We again have a −→ frc-reduction sequence from T ′
2 to T ′′

4 ; again call it
→

T ′′
2 .

No new T2-outstanding catches have been introduced, so the revised sequence always

addresses T2-outstanding catches immediately.
→

T ′′
2 (k) is the same as it was in the pre-

vious version, and
→

T ′′
2 (k) −→ frc

→

T ′′
2 (k+1) is a bubbling up of a T2-outstanding throw.

The step after this one,
→

T ′′
2 (k + 1) −→ frc

→

T ′′
2 (k + 2), is the only step from

→

T ′′
2 (k) on

that might possibly fail to immediately address a T2-outstanding frame; and as before
we can continue to insert bubblings up of T2-outstanding throws, pushing the failing
step further and further to the right, until we have eliminated all the T2-outstanding

throws before it, and we have a revised sequence
→

T ′′
2 with a decremented number of

steps that violate the intended properties. By induction, we can revise
→

T ′′
2 until it al-

ways immediately addresses T2-outstanding catches and then T2-outstanding throws,

allowing us to construct
→

T2 and establish T2 −→
∗
frc T

′′
2 .

Theorem 14.13 (Church–Rosser-ness)
−→ frc′ is Church–Rosser.
−→ fc′ is Church–Rosser.
−→ fc is Church–Rosser.

Proof. Let R be as in Lemmata 14.12. R is evidently Church–Rosser (as al-
ready remarked: by cases, −→R has the diamond property, Definition 13.63); and
since frC-calculus is a regular SRS, −→ frc is Church–Rosser. Suppose T1 −→

∗
frc′ T2

and T1 −→
∗
frc′ T3. By Lemma 14.12(a), let T1 −→

∗
frc T

′
2 −→

∗
R T2 and T1 −→

∗
frc

T ′
3 −→

∗
R T3. Since −→ frc is Church-Rosser, let T ′

2 −→
∗
frc T

′
4 and T ′

3 −→
∗
frc T

′
4. By

317

Lemma 14.12(b), let T2 −→
∗
frc T

′′
2 , T3 −→

∗
frc T

′′
3 , T ′′

4 −→
∗
R T ′′

2 , and T ′′
4 −→

∗
R T ′′

3 .
Since R is Church–Rosser, let T ′′

2 −→
∗
R T4 and T ′′

3 −→
∗
R T4. Then T2 −→

∗
frc T

′′
2 −→

∗
R

T4 and T3 −→
∗
frc T

′′
3 −→

∗
R T4; so −→ frc′= (−→ frc ∪R) is Church-Rosser.

−→ fc′ differs from −→ frc′ only by relaxing the value-subterm constraints of (10.7).
Given a term containing a potential redex due to this relaxation, there are three kinds
of reductions alternative to exercising that redex; in each of these three cases, we
verify that the result of exercising the potential redex before the alternative can also
be obtained if the alternative is exercised first.

(1) The alternative is a reduction within a subterm (of the potential redex) —
which manifestly cooperates (Definition 13.63) with exercise of the potential redex.

(2) The alternative is exercise of a containing redex — which could impose a
substitutive transformation on the potential redex, or could make multiple copies
of the potential redex (when substituting it into something else), either of which
cooperates with (possibly multiple, parallel) exercise of the potential redex.

(3) The alternative is bubbling up of a frame emitted by a subterm, moving into the
potential redex pattern (and possibly through the pattern in a single step, depending
on which of the four relaxed schemata is involved) — in which case, the frame can
always be bubbled up further, as necessary, so that it passes entirely through the
potential redex pattern, either making copies of the pattern (if the frame is a catch),
each of which can be exercised later, or deleting the pattern so that it no longer
matters whether the pattern was exercised beforehand.
−→ fc differs from −→ fc′ only by the addition of garbage collection. Let Q be

the enumerated relation of garbage-collection Schema 11.12g; then −→∗
Q cooperates

(Definition 13.63) with −→?
fc (by cases). Church–Rosser-ness of −→ fc follows by

induction.

Definition 14.14 A side-effect-ful value (over fC-calculus) is a term of the form
C[V], where C is a (possibly trivial) composition of catch frames and throw frames.

Lemma 14.15 Suppose fC-calculus terms T, Tk, e.
If T is not −→∗

frc-reducible to a side-effect-ful value, then [eval T e] isn’t −→∗
fc′-

reducible to a side-effect-ful value.
If T2 is not −→∗

frc-reducible to a side-effect-ful value,
or

T1 is not −→∗
frc-reducible to a side-effect-ful value, and T2 is not reducible to a

side-effect-ful value with a free throw (i.e., a throw outside the value whose variable
is free in the term),

then
[combine T1 T2 e] isn’t −→∗

fc′-reducible to a side-effect-ful value.

318

Proof. As for Lemma 14.10.

Theorem 14.16 (Standard normalization)
Let E be the strictly right-to-left evaluation order of Fc.
If there exists a frC

′-evaluation normal form N such that T −→∗
frc′ N , then

there exists a frC
′-evaluation normal form N ′ such that T 7−→E∗

frc′ N
′.

Proof. By regularity (and Theorem 13.118), T1 −→
∗
frc T2 iff there exists a frC, E-

standard reduction sequence from T1 to T2. If the definition of frC, E-standard re-
duction sequence were changed by not treating catch frames as suspending contexts,
this would not perturb the standard reduction sequences at all, because the fact that
a catch frame is suspending only matters to the definition of frC, E-evaluation when
the catch frame occurs at the top level of the term (similarly to Schemata 11.6cc
and 11.6ct) — and a standard reduction sequence would then simply descend recur-
sively into the sole subterm of the catch anyway. The definition of frC

′, E-standard re-
duction sequence further differs from this by the fact that simplification redex patterns
become decisively reducible; however, because frC

′, E-evaluation prefers bubbling up
to simplification, this too does not perturb the standard reduction sequences: once
the simplifiable pattern occurs at the top level, where evaluation would be able to
simplify it, standard order can simply recurse into the sole subterm.

Given any −→ frc′-reduction sequence from T to N , we can find another from T to
N in which all the simplifications are done last (by Lemma 14.12(a)). By the above
reasoning, we can then put the non-simplifying prefix of this sequence into standard

order, without introducing any simplifications to do so; call this standard prefix
→

T

Assume without loss of generality that
→

T puts all evaluation steps consecutively at
its start, and that all the recursive subterm standard-reduction sequences do likewise

(by Lemma 13.89). Consider the earliest point in
→

T where evaluation would permit a

simplification (catch-catch or catch-throw). Modify
→

T1 by inserting the simplification

at this point; the rest of
→

T1 remains the same (other than the simplification having

been made), the rest of
→

T1 is still a standard reduction sequence, it still puts all

evaluation steps before all non-evaluation steps, and the rest of
→

T1 is no longer than
it was before. Repeat this with the next point where a simplification could occur as

an evaluation step, and continue to repeat it until every such point in
→

T is simplified;
this is a finite process, since any given term can only be simplified finitely many

times. In the final revision of
→

T , let N ′ be the result of the last evaluation step, and
suppose N ′ isn’t an evaluation normal form. Since it isn’t an evaluation normal form,
there is some evaluation step possible from N ′. The evaluation step from N ′ can’t be
a simplification, because if it were, the above construction would have inserted the
simplification, so that the next step would be an evaluation step (contradicting the
assumption); and the evaluation step from N ′ can’t be a −→ frc step, because if it

319

were, the original, non-simplifying version of
→

T would have exercised it next, and by
the above construction it would still be exercised next. So, by reductio ad absurdum,
N ′ is an evaluation normal form.

Theorem 14.17 (Operational soundness)

If T1 = fc T2 then T1 ≃ fc T2.

Proof. Let E be the strictly right-to-left evaluation order of Fc.

≃E
frc′ ⊆≃ fc was established in the discussion at the top of this subsection (§14.2.4,

preceding Lemmata 14.12); so for soundness, we want to show that = frc′ ⊆≃
E
frc′.

Suppose T1 = frc′ T2.

Suppose T1 7−→
E∗
frc′ N , and N is a frC

′-evaluation normal form. By Church–
Rosser-ness (Theorem 14.13), let T ′ such that N −→∗

frc′ T
′ and T2 −→

∗
frc′ T

′. Since
N −→∗

frc′ T
′ and N is a frC

′-evaluation normal form, T ′ is a frC
′-evaluation normal

form (by Lemma 13.82). Since T2 −→
∗
frc′ T

′ and T ′ is a frC
′-evaluation normal

form, there exists a frC
′-evaluation normal form T ′′ such that T2 7−→

E∗
frc′ T

′′ (by
Theorem 14.16).

Further, if N is an observable, then T ′′ = N (by Church–Rosser-ness, Theo-
rem 14.13).

The extension of the result by relaxing the value-subterm constraints of Sche-
mata 10.7 is similar to the proof of Theorem 14.11. Note that as the subterms of a
−→ fi-redex are reduced to side-effect-ful values, from right to left, their side-effect
frames can be bubbled up out of the redex — which either deletes the −→ fi-redex
(if one of the side-effect-ful values has a free throw frame), or leaves a −→ fr-redex
surrounded by side-effect frames. A difference from that proof is that here, a substi-
tution 2[xc ← C] imposed from outside can transform a side-effect-ful value into a
term that cannot be reduced to a side-effect-ful value; however, this requires a free
throw surrounding the value, since the matching catch frame has to be outside the
−→ fi-redex, and this case is not unsound because bubbling up the free throw would
delete the −→ fi-redex.

Finally, addition of garbage collection matters toR, E-operational equivalence only
in that it obviates the need to allow a garbage-collectable catch frame in the defini-
tion of R-observable; otherwise, garbage collection perturbs neither normalizability
(Condition 13.90(a)) nor observation (Condition 13.90(b)). So = fc⊆≃ fc.

14.2.5 State f-calculi

frS, E-evaluation contexts are a proper superset of those of fS-semantics, because in
frS-calculus, state, set, and receive frames are non-suspending.

320

Most of the anomalies associated with this supersetting will be self-correcting,
for various reasons explained below; but one requires some intervention to redress it.
A set frame is a minimal nontrivial poly-context that may have an arbitrarily large
arity — with only one subterm that we actually want to be able to reduce via R, E-
evaluation, but possibly any number of others that we nevertheless can reduce via
R, E-evaluation, according to the definition of that relation (Definition 13.86). For
example, frame P = [state [[xs, s] ← 〈 f0.22〉] 21] would belong to the usual right-
to-left E , being a minimal nontrivial poly-context with its meta-variable indexed
right-to-left; and R, E-evaluation would reduce first the subterm at 21, then the one
at 22; but fS-semantics would only reduce the subterm at 21. The 〈 f0.22〉 here is
not a suspending poly-context because in this case it isn’t a poly-context at all —
it’s just a syntax fragment embedded within non-suspending minimal nontrivial P .

The straightforward fix is to further adjust the definitions of R, E-evaluation rela-
tion and R-evaluation normal form, for all state calculi (including frS-calculus, which
will have to be done carefully to avoid invalidating the general theorems for regular
SRSs from Chapter 13). The R, E-evaluation relation is simply forbidden to descend
into any but the first subterm of a set frame, which causes evaluation of the set term
to stop when evaluation of its first (i.e., rightmost) subterm stops. An R-evaluation
normal form is then a term such that all R-redexes occur either within a suspending
poly-context or within a later subterm of a set frame, which causes a term to be R, E-
evaluable iff it isn’t an R-evaluation normal form (if, that is, E is a regular evaluation
order).6 These adjustments don’t invalidate the major theorems from Chapter 13,
because from state calculus S with regular evaluation order E , we could construct
a new calculus S ′ on an extended term syntax, replacing each set frame of S with
a compound poly-context that actually puts the subterms of each S set frame into
specially introduced S ′ poly-contexts so that all but the first subterm are suspended.
The schemata of S ′ then treat these compound set structures as units (bubbling up
the whole structure, etc.); so S ′ is regular, and the theorems applied to S ′ under the
old definitions give the theorems applied to S under the new definitions.

Because frS-calculus lacks state and set bubbling-up schemata, a state or set
frame occurring in a singular evaluation context is not a decisively −→ frs-reducible
pattern, and consequently such nestings (and compositions involving them) are frS, E-
evaluation contexts; however, addition of state and set bubbling-up schemata elimi-
nates these anomalies by making the pattern decisively reducible, leaving state and
set frames in frS, E-evaluation contexts only in certain top-level arrangements (for
example, [state [ws] [set [[ωs]] E[2]]], but not [state [ws] [set [[ωs]] [state [w′

s] E[2]]]]
since the latter contains a decisively reducible pattern). fS-semantics provides for all
of these arrangements that don’t involve get and could potentially affect operational
equivalence; get is omitted from the term syntax of fS-semantics, and some top-level

6This is an ad hoc deployment of the idea that suspension should be a property of positions
in poly-contexts, rather than a property of the poly-contexts themselves, as raised earlier in this
chapter in Footnote 5.

321

arrangements are omitted since they guarantee free variables, thereby rendering them
irrelevant to operational equivalence (for example, [set [[ωs]] E[2]]).

Get frames are suspending in frS-calculus. If concatenations and empty-frame
eliminations are added (particularly, get-get concatenation, (12.41??); state-state
concatenation, (12.44σσ); and empty get elimination, (12.41?0)), get frames become
non-suspending; but due to get resolution and get bubbling-up (both included in frS-
calculus) and the new schemata, there will still be no difficulty with R, E-evaluation
contexts involving get frames. An empty get frame is decisively reducible. If a non-
empty get frame occurs at the top level of a term, it presents a free get variable,
and thereby renders the term irrelevant to operational equivalence. If a nonempty
get frame occurs in a nontrivial R, E-evaluation context, then either it participates
in a decisively reducible pattern (via either get bubbling-up or get elimination), or
it presents a free state variable (because state-state concatenation assures that only
a free state variable would prevent the get from resolving) and thereby renders the
term irrelevant to operational equivalence.

Receive frames don’t occur on the left-hand side of any fS-calculus schema short
of garbage collection (which, as noted before, is pathological because all possible
poly-contexts occur on the left-hand sides of garbage-collection concrete schemata).
Consequently, receive frames can occur freely in R, E-evaluation contexts for all state
f-calculi variants. However, this does not impact operational equivalence, because a

receive frame occurring in an R, E-evaluation context would guarantee a free variable
(since either it would not occur within a matching get frame, or the matching get
frame would not occur within a matching state frame; a get frame within a matching
state frame would always present a redex pattern, so that the receive could not occur
in an R, E-evaluation context).

Let fS ′-calculus modify full fS-calculus by omitting garbage-collection, (12.44σg);
and frS

′-calculus modify fS ′-calculus by imposing the value-subterm restrictions of
fr-calculus, (10.7).

For state calculi without garbage collection, the definition of R-observable is
broadened to allow a state frame, and within it a set frame, provided they don’t
capture any variable in the atomic subterm (similarly to the allowance of a catch
frame in observables in non-garbage-collecting control calculi, §14.2.4).

For deterministic R, E-evaluation for calculi intermediate between frS-calculus
and fS-calculus, give priority first to empty-frame elimination and get consolidation,
then set bubbling-up, then state bubbling-up, then all −→ frs schemata (which in-
cludes get resolution and get bubbling-up), and lastly concatenation (set-set, get-get,
and state-state). (Garbage collection will be introduced last, and by that time we
won’t be bothering with R, E-evaluation anymore.)

Theorem 14.18 (Church–Rosser-ness)
−→∗

frs′ is Church–Rosser.
−→∗

fs′ is Church–Rosser.
−→∗

fs is Church–Rosser.

322

Proof. frS-calculus is regular, so −→ frs is Church–Rosser.
Let R1 be the enumerated relation of the concatenation, consolidation, and empty-

frame elimination schemata — (12.37), (12.41), and (12.44) except (12.44σg). R1 is
Church–Rosser (by cases). Any T1 −→ frs T2 will not be disabled by an −→R1

-
reduction of T1 (though it might make multiple copies of the R1-redex, so that repli-
cating the single −→R1

-reduction of T1 may require multiple −→R1
-reductions of T2;

also by cases). The only case where T1 −→R1
T2 might be significantly interfered

with by a −→ frs-reduction of T1 is when the −→R1
step is a get consolidation, and

the −→ frs is a get resolution that eliminates the first of the two binding requests that
the R1 consolidates; but if the get resolution is failure, then additional get resolutions
would eventually eliminate the second request as well, while if the get resolution is
success, further requests can be resolved or bubbled up through the set until the
second request is disposed of. So −→ frs∪R1 is Church–Rosser.

Let R2 be the enumerated relation of the state and set bubbling-up schemata —
(12.45) and (12.38). R2 itself is Church–Rosser (by cases). If T1 −→ frs∪R1

T2, then
any state/set bubbling-up that could be done to T1 either wouldn’t disable that step,
or could be followed by additional state/set/get bubbling-up to re-enable the step (by
cases for the schemata of −→ frs∪R1); so by induction, −→∗

R2
and −→∗

frs∪R1
cooperate

(Definition 13.63), and again by induction, −→ frs∪R1 ∪R2 is Church–Rosser.
−→ frs∪R1 ∪R2 is −→ frs′, differing from −→ fs′ only by relaxation of value-subterm

constraints of fr-calculus Schemata 10.7. This relaxation can be handled substantially
as in Theorem 14.13, noting that bubbling up is simpler here than in the control
calculi, because it always occurs without disruption of the potential redex pattern
that it passed through (whereas in the control calculi, a throw bubbling-up destroyed
everything in its path). Addition of garbage collection for full fS-calculus is also
handled as in Theorem 14.13.

Definition 14.19 A side-effect-ful value (over fS-calculus) is a term of the form
C[V], where C is a (possibly trivial) composition of state, set, and get frames.

Lemma 14.20
If T is not −→∗

frs′-reducible to a side-effect-ful value, then [eval T e] isn’t −→∗
fs′-

reducible to a side-effect-ful value.

Proof. Where Lemmata 14.10 and 14.15 included the corresponding condition on
combine frames, here it is sufficiently complex that we have deferred it to the proof: In
order for [combine T1 T2 e] to be reducible to a side-effect-ful value, it is necessary that
T2 be reducible to a side-effect-ful value, and that T1 be reducible to a side-effect-ful
value given the side-effects of T2; that is, T2 reduces to C2[V2], C2 bubbles up through
the combine frame to C ′

2 ([combine T2 C2[V2] e] −→
∗
rs′ C

′
2[[combine T2 V2 e]]), and

C ′
2[T1] reduces to a side-effect-ful value. This dovetails neatly into the result for

323

[eval T e] since, in Schema 9.32p, reduction of T = (T1 . T2) to a side-effect-ful value
includes possible propagation of side-effects from T2 to T1.

The proof proceeds similarly to the earlier lemmata.

Lemma 14.21 Let E be the strictly right-to-left evaluation order of Fs.
If T1 −→ frs′ T2, T1 67−→

E
frs′ T2, and T1 is not a frS

′-evaluation normal form, then
T2 isn’t either.

Proof. Let T , P , and P2 be as in the proof of Lemma 13.119. If P and P2

are both frS-redex patterns, they are mutually selective, and the proof completes as
before. Otherwise, at least one of them is not a frS-redex pattern (hence, is either a
state/set bubbling-up, state/set/get concatenation or consolidation, or empty-frame
elimination).

In order for a frS- and a non- frS-redex pattern to overlap, the frS-redex pattern
has to be for get bubbling-up or get resolution. Empty-frame resolution would have to
be P (the evaluation-step redex), since that would have higher priority; and an empty
frame can’t participate in get resolution, so the overlapping frS-redex would have to
be a bubbling up of the empty frame — which would leave the empty frame still an
evaluation-step redex. Get consolidation would also have to be P ; bubbling up the
consolidatable get frame leaves it still an evaluation redex, while resolving one of the
requests in the previous consolidatable get might leave it no longer consolidatable but
would still leave either some sort of evaluation redex (at least, some get bubbling-up or
get resolution would be possible). A state/set bubbling-up would also be P , and then
P1 would have to be get resolution — in which case, if the state/set bubbling-up didn’t
produce some other evaluation redex further out (such as a further bubbling up of
the same frame), there would certainly be a get bubbling-up of the inner frame of the
disrupted get resolution. A get concatenation would have lower priority that bubbling
up or resolution, so the concatenation would be P2, and after the concatenation there
would still be a bubbling up or resolution possible.

Finally, suppose P and P2 are both non- frS-redex patterns. An empty state/set
frame P could bubble up via P2 but would still be an evaluation redex pattern; and
when a empty-frame elimination redex P overlaps with a concatenation redex P2,
exercising P2 is actually indistinguishable from exercising P (up to α-renaming), so
that we can simply assume the evaluation step was the one taken. Get consolidation
P could overlap with get concatenation P2, but after concatenation there will still be a
consolidation possible. Two concatenations could overlap —three consecutive frames,
where P is the outer two and P2 is the inner two— but after the inner concatenation,
there will still be a concatenable pair of frames.

Lemma 14.22 Let E be the strictly right-to-left evaluation order of Fs.
T1 −→

∗
frs T2 iff there exists a frS

′, E-standard −→ frs-reduction sequence from
T1 to T2.

324

Proof. By regularity (and Theorem 13.118), T1 −→
∗
frs T2 iff there exists a frS, E-

standard reduction sequence from T1 to T2.
Suppose the definition of frS, E-standard reduction sequence were changed by not

treating get frames as suspending contexts. A standard reduction might be perturbed
by this, because a get subterm, which would have been skipped over during initial
R, E-evaluation, is now included in that phase of standard reduction. No reduction
of this subterm can have any effect on reduction of the rest of the term (which is
why get frames were suspending in the first place); and reductions to the rest of the
term can only affect the subterm by making copies of it (during β-reduction) and by
substituting into it, all of which must occur, by construction of R, E-evaluation, before

the subterm would be reduced even if the get frame weren’t suspending. In a standard
reduction sequence from before de-suspending the get frame, the (possibly trivial)
subsequence reducing that subterm must have consisted of a (possibly trivial) R, E-
evaluation subsequence followed by standard reductions of subterms; and when de-
suspending the get frame, this R, E-evaluation subsequence can be moved to an earlier
point in the overall sequence — which is trivially easy since the subsequence doesn’t
interact with anything that was done between where it moves from and where it moves
to, and doesn’t increase the length of the overall sequence. Also, this evaluation
subsequence of the subterm standard reduction is moved to a point somewhere in the
evaluation prefix of the standard reduction of the overall term — and if the evaluation
subsequence of the subterm failed to reduce the subterm to an evaluation normal
form, then moving this subsequence into the overall-evaluation prefix means that any
overall-evaluation steps that used to follow that point are now no longer evaluation
steps (because they reside in contexts that are no longer evaluation contexts; for
example, in a term

[combine T1 [get [[ωg]] T2] e] , (14.23)

evaluation steps can reduce T1 if the get is suspending, but when the get isn’t sus-
pending, no evaluation step can reduce T1 unless T2 is first reduced to an evaluation
normal form). However, these now-disqualified evaluation steps are all contained
within subterms (such as T1 in the example) that cannot have any effect on reduction
of their context (because as long as T2 isn’t a value, side-effects can’t bubble up from
T1); therefore, the evaluation prefix of each of these subterms can be moved rightward

to the appropriate non-evaluation position in the standard reduction sequence, just
as smoothly as the evaluation prefix of the get subterm was moved leftward.

So T1 −→
∗
frs T2 iff there exists an R, E-standard −→ frs-reduction sequence from

T1 to T2 under the modified definition with non-suspending get frames.
Given an R, E-standard reduction sequence under this modified definition, further

perturbation can produce a frS
′, E-standard reduction sequence: the further change

of definition is that additional redex patterns will prevent any subsequent reductions
from qualifying as evaluation steps for the term as a whole. However, since the
sequence still uses only −→ frs-reduction steps, these subsequent reductions can only

325

be subterm reductions, which can be shifted rightward into the recursion phase of the
standard sequence.

Lemma 14.24 Let E be the strictly right-to-left evaluation order of Fs.
If there exists a frS

′-evaluation normal form N such that T1 −→ frs T2 7−→
E∗
frs′ N ,

then there exists a frS
′-evaluation normal form N ′ such that T1 7−→

E∗
frs′ N

′.

Proof. Suppose N is a frS
′-evaluation normal form, T1 −→

∗
frs T2, and

→

T2 is a
frS

′, E-evaluation sequence from T2 to N . Let n be the number of non-−→ frs steps

in
→

T2. We will show that there exists a frS
′, E-evaluation sequence from T1 to some

frS
′-evaluation normal form with at most n non-−→ frs steps. Proceed by induction

on n.
Suppose n = 0. Then T1 −→

∗
frs N ; so let

→

T be a frS
′-standard reduction sequence

from T1 to N , by Lemma 14.22. Assume without loss of generality that
→

T has all of
its evaluation steps at its start, by Lemma 13.89. Let N ′ be the result of the last

evaluation step in
→

T ; thenN ′ must be a frS
′-evaluation normal form, by Lemma 14.21.

Suppose n ≥ 1, and the proposition holds for all smaller n. If T1 −→ frs T2 is
a frS

′, E-evaluation step, the result follows immediately by Lemma 13.89 and Crite-
rion 13.88(b); so assume T1 67−→

E
frs′ T2. It suffices to consider the case where the first

step of
→

T2 is a non-−→ frs step, by Lemma 14.22; so assume that. The first step of
→

T2

is, in order of priority, either an empty-frame elimination or get consolidation, a set
bubbling-up, a state bubbling-up, or a state/set/get concatenation.

There are two cases, depending on whether or not the evaluation-step redex pat-
tern exercised at T2 already exists at T1.

Case 1: the evaluation-step redex pattern exercised at T2 does not exist at T1.
This requires that the T2 evaluation redex pattern be created, in whole or in part,
by the non-evaluation step T1 −→ frs T2. A β-rule step could only create the whole
of an evaluation redex pattern, or the inner frame of a bubbling-up or concatena-
tion evaluation redex pattern, if the β-rule step were itself an evaluation step. A
get bubbling-up could only create a concatenation evaluation redex pattern if the get
bubbling-up were itself an evaluation step. So T1 −→ frs T2 must be either a get
bubbling-up or a get resolution. A non-evaluation get bubbling-up could bubble up a
get frame that is itself an empty-frame elimination or get consolidation redex pattern;

the two actions could then be done in the opposite order, T1 7−→
E
frs′ T

′
1 −→ frs

→

T2(2),
and by the inductive hypothesis on n, we’d be done. A get resolution could create

an empty get frame, by eliminating the last binding request in the frame; but if the
get resolution isn’t an evaluation step, then the empty-frame elimination wouldn’t
be an evaluation step either (because any redex pattern that would prevent the get
resolution from being an evaluation step would be decisively reducible and strictly
above the empty frame, so that the high priority of empty-frame elimination would

326

never come into play). Similarly, a get bubbling-up could create a get concatenation
redex pattern, but if the get bubbling-up isn’t an evaluation step, then the get con-
catenation (which has lowest priority) wouldn’t be either. There is no way that a
state/set bubbling-up evaluation step could have been enabled by a non-evaluation
get bubbling-up or get resolution.

Case 2: the evaluation-step redex pattern exercised at T2 already exists at T1. This
doesn’t require that the two redex patterns be non-overlapping; but if they do overlap,
exercising the non-evaluation redex doesn’t perturb the evaluation redex pattern. If
they don’t overlap, then exercising the evaluation redex first will neither eliminate
nor multiply the other redex (considering the possibilities for a non-−→ frs redex);

so T1 7−→
E
frs′ T

′
1 −→ frs

→

T2(2), and by the inductive hypothesis on n, we’re done.
Suppose the redex patterns do overlap. Then the evaluation redex pattern of T2 is an
evaluation redex in T1 (by cases). If the non-evaluation step were a get bubbling-up,
it would have perturbed the evaluation redex pattern; this possibility was covered in
Case 1. Suppose the non-evaluation step is a get resolution. The evaluation step isn’t
a concatenation (of the two frames immediately above the get, in this case), because
then the get resolution would have been an evaluation step, having higher priority
than concatenation. The evaluation step isn’t an empty-frame elimination, because
a get can’t be resolved by an empty state/set frame. The only possibility is that the

evaluation step is a state/set bubbling-up; suppose this.
→

T2 must eventually dispose
of the get frame involved in resolution T1 −→ frs T2, either by eliminating it (if it is
empty in T2), or by bubbling it up until it meets the frame above it. Let T1 7−→

E
frs′ T

′
1.

We describe how to construct, by modifying
→

T2, a −→ frs′-reduction sequence
→

T ′
1 from

T ′
1 to N with at most n − 1 non-−→ frs steps, in which all the non-−→ frs steps are

evaluation steps; the result then follows from the inductive hypothesis on n. As the
first two steps from T ′

1, bubble up the get frame and then resolve it once; since the

surrounding state/set frame is then in the position achieved by the first step of
→

T2,
and the get resolution has performed its substitution as in T1 −→ frs T2, these two

steps from T ′
1 result in a term that differs from

→

T2(2) only by the fact that the get

frame has been bubbled up. At some point later in
→

T2, this get frame must be bubbled
up to this position, or eliminated (if empty). Adjust each term in the sequence up
to that point by shifting the get frame to its bubbled-up position. The only sort of
−→ frs′ steps that might be spoiled by this shift are get concatenations with a frame

below the shifted frame; but these cannot actually happen in
→

T2, because it consists
only of evaluation steps, and concatenation would not be the evaluation step since it
has lower priority than either empty-frame elimination or get bubbling-up.

Lemma 14.25 Let E be the strictly right-to-left evaluation order of Fs, and R =
(−→ frs′ − −→ frs).

If there exists a frS
′-evaluation normal form N such that T1 −→R T2 7−→

E
frs′ N ,

327

then there exists a frS
′-evaluation normal form N ′ such that T1 7−→

E
frs′ N

′.

Proof. Suppose N is a frS
′-reduction normal form, T1 −→R T2, and

→

T is a frS
′, E-

evaluation sequence from T2 to N . Let S be the enumerated relation of bubbling-
up Schema 12.42↑? (get bubbling-up through a singular evaluation context (Syn-
tax 11.8)). Let Q be the set difference of −→ fr minus S. Let q be the number of

−→Q steps in
→

T , r the number of −→R steps in
→

T , and s the number of −→S steps

in
→

T . We will show that there exists a frS
′, E-evaluation sequence from T1 to some

frS
′-evaluation normal form with at most q −→Q steps. Suppose this proposition

holds for all smaller q (which is vacuously true when q = 0); holds for this q for all
smaller r; and holds for this q and r for all smaller s.

If T1 ≡α N , the result is immediate; so suppose T1 is not a frS
′-evaluation normal

form. If T1 7−→R T2 is a frS
′, E-evaluation step, again the result is immediate (with

sequence 〈T1, T2〉 ·
→

T); so suppose it isn’t. Then T2 isn’t a frS
′-evaluation normal

form either (by Lemma 14.21); so ar(
→

T) ≥ 2. Let P1 be the redex pattern exercised

in T1 −→R T2, and P2 the redex pattern exercised in the first step of
→

T .

Case 1: P1 and P2 are independent of each other (i.e., both already occur non-
overlapping in T1). Then exercising P2 in T1 is still an evaluation step; call it T1 7−→

E
frs′

T ′
1. This step makes some number of copies of the subterm containing P1. If zero

copies are made, T ′
1 ≡α

→

T (2), and we’re done; suppose at least one copy is made. If

exactly one copy is made, T ′
1 −→R

→

T (2), and by the inductive hypothesis (on q, r,

or s) we’re done; suppose at least two copies are made. Then the first step of
→

T is
a −→Q step (since all the schemata that can multiply subterms are in Q); and from

T ′
1, one can exercise all the copies of P2, T

′
1 −→

+
R

→

T (2). The result then follows from
the inductive hypothesis on q.

Case 2: P1 and P2 are not independent, and T1 −→R T2 is an empty-frame elimi-

nation. The first step of
→

T can’t be an empty-frame elimination or get consolidation,
because the Pk would be independent; and it can’t be any other kind of −→ frs′ step,
because for any of those redex patterns P2 to be non-independent of the empty-frame
redex pattern P1, T1 −→R T2 would have to be an evaluation step (since it has higher
priority). So this can’t happen.

Case 3: P1 and P2 are not independent, and T1 −→R T2 is a get consolidation. The

first step of
→

T can’t be an empty-frame elimination, state/set bubbling up, state/set
concatenation, or −→ fr step, because the Pk would be independent. If the first

step of
→

T were a get consolidation, then to be non-independent it would have to be
on the same get frame as T1 −→R T2; and by the determinism built into the get
consolidation Schema 12.41?2, T1 −→R T2 would be an evaluation step. The only

remaining possibilities are that the first step of
→

T is a get bubbling-up, get resolution,

328

or get concatenation; but a non-independent get consolidation T1 −→R T2 would
have to be on the get frame of the following evaluation step, in which case T1 −→R T2

would be an evaluation step.

Case 4: P1 and P2 are not independent, and T1 −→R T2 is a state/set bubbling-

up. In order for the Pk to be non-independent, the first step of
→

T cannot be a
get empty-frame elimination, get consolidation, get bubbling-up, −→ fr step, or get

concatenation. If the first step of
→

T were a state/set bubbling-up or state/set con-
catenation, then T1 −→R T2 would be an evaluation step. The remaining possibility

is that the first step of
→

T is an empty-frame elimination; but then it must be elimi-
nating the same frame that was bubbled up in T1 −→R T2, so that simply eliminating

the frame at T1 would be an evaluation step T1 −→R

→

T (2), and we’re done.

Case 5: P1 and P2 are not independent, and T1 −→R T2 is a state/set/get con-
catenation. Neither of the frames in P1 is an empty frame, because if either of them
were, then T1 −→R T2 would be an empty-frame elimination step, and therefore an

evaluation step. Consider subcases depending on the form of the first step of
→

T .

Case 5a: the first step of
→

T is a concatenation. Then, for the Pk to be non-
independent, one of the two frames in P2 must be the concatenation of the two frames
in P1; and this cannot be the outer frame of P2, because if it were, T1 −→R T2 would
have to be an evaluation step. So there are three consecutive frames in T1, of which

P1 is made up of the inner two, and T1 −→
2
R

→

T (2) concatenates these three frames
into one. Let T1 7−→

E
frs′ T

′
1; this evaluation step must be concatenating the outer two

of the three frames. Then concatenating the inner two frames gives T ′
1 −→R

→

T (2);
and the result follows from the inductive hypothesis on q.

Case 5b: the first step of
→

T is a −→ fr step. Then the Pk would have to be
independent.

Case 5c: the first step of
→

T is a get resolution. Then, for the Pk to be non-
independent, one of the two frames in P2 must be the concatenation of the frames in
P1; and if that were the outer frame of P2, then T1 −→R T2 would be an evaluation
step. So the inner, get frame of P2 is the concatenation of the frames in P1. Because
the get resolution Schemata 12.40 always resolve the leftmost binding request, and get
concatenation Schema 12.41?? preserves the ordering of binding requests, and both
frames of P1 are nonempty (as noted earlier), it must be that the binding request
resolved from T2 is in the outer frame of P1, and therefore that binding request can
be resolved from T1. Furthermore, that resolution must be an evaluation step from

T1, after which the concatenation could still be done. T1 7−→
E
frs′ T

′
1 −→R

→

T (2), and
the result follows from the inductive hypothesis on q.

Case 5d: the first step of
→

T is a get bubbling up through a set. Then, for the Pk

to be non-independent, the get frame in P2 must be the concatenation of the frames
in P1. Because of the form of the get-through-set bubbling-up Schema 12.42↑!?, only

329

the leftmost binding request of P2 bubbles up in the evaluation step from T2; and
as already noted, the outer frame of P1 is not empty, so that an evaluation step
from T1 would bubble up this same binding request through the surrounding set. Let
T1 7−→

E
frs′ T

′
1. In T ′

1, the two get frames just inside the set are almost P1, except that
the outer get frame is missing the one binding request that was bubbled up; so the

only difference between T ′
1 and

→

T (2) is the concatenation of those two get frames.

Therefore, T ′
1 −→R

→

T (2), and the result follows from the inductive hypothesis on q.

Case 5e: the first step of
→

T is an −→S step (a get bubbling up through a singular
evaluation context (Syntax 11.8)). Then, for the Pk to be non-independent, the get
frame in P2 must be the concatenation of the frames in P1. An evaluation step from
T1 must bubble up the outer of the two get frames of P1; and subsequent evaluation
steps will continue to bubble up that frame as long as there are singular evaluation
contexts directly above it. Let T1 −→

+
S T ′

1 bubble up this frame through as many
singular evaluation contexts as are available. T1 7−→

E+
frs′ T

′
1. In T ′

1, the bubbled-up get
frame has either reached the top level of the term, or it is immediately inside a state,
set, or get frame.

Case 5e(1): in T ′
1, the outer frame of P1 has reached the top level. Then further

evaluation steps from T ′
1 will bubble up the inner frame of P1 until it is again adjacent

to the outer frame. Call this term T ′′
1 ; T ′

1 −→
+
S T ′′

1 , and T ′
1 7−→

E+
frs′ T

′′
1 . The evaluation

step from T ′′
1 must concatenate the two frames, T ′′

1 7−→
E
frs′ T

′
2. Sequence

→

T must
similarly bubble up the concatenated get frame of P2 until it reaches the top level,

producing a term
→

T (k) ≡α T
′
2, and we have T1 7−→

E+ N .

Case 5e(2): in T ′
1, the outer frame of P1 is immediately inside a state frame. Either

those two frames admit a get resolution (failure), or they don’t. If they don’t, the
scenario proceeds as in 5e(1). Suppose they do admit a get resolution, T ′

1 7−→
E
frs′ T

′′
1 .

Sequence
→

T must similarly bubble up the concatenated get frame in P2 until it reaches

that state frame, and then resolve the same binding request; let
→

T (k) be the term
achieved by these steps. Then the same term (up to ≡α) can be reached from T ′′

1 by
bubbling up the inner frame of P1 and concatenating it with (what remains of) the

outer frame of P1, T
′′
1 −→

+
S · −→R T ′

2 ≡α

→

T (k). The result follows from the inductive

hypothesis on q (because the step from
→

T (k− 1) to
→

T (k) is a get resolution, which is
a −→Q step).

Case 5e(3): in T ′
1, the outer frame of P1 is immediately inside a set frame. Since

the outer frame of P1 is not empty, the evaluation step from T ′
1 will be either a get

resolution or a get-through-set bubbling-up, either of which is a −→Q. The scenario
proceeds as in 5e(2).

Case 5e(4): in T ′
1, the outer frame of P1 is immediately inside a get frame. This

will be similar to 5e(1), with parallel evaluation sequences being traced through until
they reconverge, except that here the parallel sequences will be more complex.

The evaluation step from T ′
1 is concatenation of the outer frame of P1 with the get

330

frame above it (call that frame P0), and if their concatenation creates any new oppor-
tunities for get consolidation, subsequent evaluation steps are those consolidations
until the concatenated frame has been consolidated as far as possible. The newly
concatenated and consolidated get frame is now either at the top level or just below a
state frame (because otherwise the get frame that was already in this position would
have been able to bubble up, and would therefore have prevented all the evaluation
steps we’ve already taken to this point). From this point, some number of the newly
arrived binding requests (that came originally from the outer frame of P1) might be
resolved by evaluation steps (only if there is a state frame just above the get frame),
and then further evaluation steps will begin to bubble up the inner frame of P1. Once
it reaches the get frame above it, another evaluation step will concatenate the get
frames; if the concatenation crease any new opportunities for consolidations, those
consolidations are performed as further evaluation steps; and if any of the binding
requests after consolidation can be resolved against a surrounding state frame, those
resolutions are evaluation steps and should be done as well. Call the result of this
entire sequence of evaluations T ′′

1 . T ′
1 7−→

E+
frs′ T

′
2.

Sequence
→

T necessarily bubbles up the concatenated get frame of P2 until it reaches
P0; concatenates it with P0; consolidates the concatenated frame as much as possible;
and then resolves and binding requests that can be resolved against a state frame
(if there is one) surrounding the concatenated consolidated frame. This produced a

term
→

T (k) ≡α T
′
2, and we’re done.

Case 5f: the first step of
→

T is a state/set bubbling-up. This is similar to 5e(1).
For the Pk to be non-independent, the inner frame of P2 must be the concatenation
of the frames in P1. An evaluation step from T1 must bubble up the outer of the two
frames of P1; and subsequent evaluation steps will continue to bubble up that frame
as long as they can. Then, if its bubbling up was stopped by another frame of the
same type, the next evaluation step will concatenate them. Subsequent evaluation
steps will bubble up the inner frame of P1 until it meets with the outer frame (or
the concatenation of the outer frame with the like frame that it encountered), and
another evaluation step will concatenate them. The resulting term is ≡α to a term

that must occur in
→

T , and we’re done.

Case 5g: the first step of
→

T is a get consolidation. Then, for the Pk to be non-
independent, the single frame in P2 must be the concatenation of the frames in P1.
If either of the two frames in P1 were empty, then concatenation T1 −→R T2 would
also be an empty-frame elimination step, and therefore an evaluation step; so neither
frame in P1 is empty. If any get consolidation is possible on either one of the two
separate frames in P1, evaluation steps from T1 would do that first. Allowing for any

get consolidation evaluation steps from T1, and any further consolidation of P2 in
→

T ,
this case proceeds substantially as 5e (including subcases for interaction of the get
frame(s) with whatever they encounter after possibly bubbling up.

Case 5h: the first step of
→

T is an empty-frame elimination. Then, for the Pk to be

331

non-independent, P2 must be the empty concatenation of the frames in P1; so both
frames in P1 are empty, and two evaluation steps from T1 will eliminate them both,

T1 7−→
E2
frs′

→

T (2).

Theorem 14.26 (Standard normalization)

Let E be the strictly right-to-left evaluation order of Fs.

If there exists a frS
′-evaluation normal form N such that T −→∗

frs′ N , then

there exists a frS
′-evaluation normal form N ′ such that T 7−→E∗

frs′ N
′.

Proof. Follows from Lemmata 14.24 and 14.25, by induction on the length of a
frS

′-evaluation sequence from T to N .

Theorem 14.27 (Operational soundness)

If T1, T2 ∈ Fss and T1 = fs T2, then T1 ≃ fs T2.

Proof. Let E be the strictly right-to-left evaluation order of Fs.

It was established in the discussion at the top of the subsection (§14.2.5, preceding
Theorem 14.18) that, although some frS

′, E-evaluation contexts are not allowed for
in the frS-semantics schemata, those not allowed for cannot have any impact on
operational equivalence. Suppose T ∈ Fss, FV(T) = {}, N is a frS

′-evaluation
normal form, and T 7−→E

frs′ N . We claim that N ∈ Fss and there exists a term
N ′, differing from N only by the possible presence of some empty frames that are
eliminable by 7−→E

frs′ but not 7−→ fs, such that T 7−→∗
fs N

′.

The syntax extensions of Fs beyond Fss are get/receive Syntax 12.28 and environ-
ment Syntax 12.29. The extended forms of environment terms cannot be introduced
by reduction if they were not already present in the term. The only way get/receive
syntax could be introduced is through symbol evaluation Schema 12.39ss; and since
this would have to happen in an evaluation context, and here the term has no free
variables, the get will necessarily be resolved and the receive eliminated by evaluation
steps, so that N ∈ Fss.

For T 7−→∗
fs N

′, it suffices that any frS
′, E-evaluation step taken from T will be

the start of a sequence of frS
′, E-evaluation steps that simulates a sequence of fS-

semantics steps, up to elimination of empty frames. The fact that the fS-semantics
steps do not eliminate the empty frames causes no difficulty, as they are bubbled
up out of the way of any calculus step they could otherwise interfere with; note
also that if the term reduces to an observable (rather than merely to an evaluation
normal form), fS-semantics will eventually remove any empty frames via (12.23g0)
and (12.23g0!). Any frS

′, E-evaluation step from T is straightforwardly the start of
simulating a single 7−→ fs step, up to elimination of empty frames.

332

= frs′ ⊆≃
E
frs′ is obtained as in the proof of fC operational soundness (Theo-

rem 14.17), from Church–Rosser-ness (Theorem 14.18), standard normalization (The-
orem 14.26), and Lemma 13.82. The extension of this result by relaxing the value-
subterm constraints of Schemata 10.7 is similar to the proof of Theorem 14.11.

The relationship between 7−→∗
fs′ and 7−→E∗

fs′ is at this point still only up to empty-
frame eliminations, which makes no difference to the normalizability condition of
operational equivalence (Condition 13.90(a)), but does create some discrepancies in
which observables are reduced to. Adding garbage collection, (12.44σg), doesn’t alter
normalizability (although it would do so if we hadn’t adjusted the definitions to
suppress evaluation of later subterms of a set), and does allow 7−→E∗

fs to arrive at
the same observables as 7−→∗

fs (i.e., the definition of observable no longer has to be
extended to allow state and set frames around the atomic term).

333

Chapter 15

The theory of fexprs is (and isn’t)
trivial

15.0 Introduction

Likely the most well-known modern paper to prominently address fexprs is Mitchell
Wand’s 1998 “The Theory of Fexprs is Trivial” ([Wa98]). Not only did that paper
demonstrate the trivialization of theory that, in the vocabulary of this dissertation,
can result from the introduction of fexprs into an implicit-evaluation calculus, but it
also presented a compellingly plausible intuitive argument that this trivialization of
theory is an inherent consequence of the introduction of fexprs into λ-calculus.

Despite the rather alarming appearance of contradiction between the central the-
sis of [Wa98] and the major well-behavedness results on f-calculi developed in this
dissertation, there is no actual contradiction. Instead, there are major discrepancies
of terminology and technical approach that create an illusion of contradiction where
none exists. The “fexprs” investigated by [Wa98] are a dramatically different facility
than the “fexprs” investigated by this dissertation; and, partly entangled with that
difference of terminology, [Wa98] assumes an isomorphism between source expressions
and computational states, while this dissertation does not.

This chapter explores the depth and consequences of these discrepancies.

15.1 Encapsulation and computation

The difference between fexprs in [Wa98] and fexprs in this dissertation lies in what
kinds of operands they are able to deconstruct. Parameterizing the central result of
[Wa98] for this difference, we have the semi-formal proposition

Proposition 15.1 Let S be the set of all objects that can be deconstructed by
passing them as operands to fexprs in object language L. Then the theory of L-
operational equivalence of objects in S is trivial.

334

What we mean by deconstruction is that when the object (i.e., object-language ex-
pression) is passed as an operand to the fexpr, the fexpr can then completely analyze
all the salient features of the object. If there is any salient difference between two
objects S1, S2 ∈ S, then a fexpr in L can distinguish between them, and therefore
they are not L-operationally equivalent — which is all the proposition says. To the
credit of [Wa98], this statement is obvious once understood.1

Based on the role of such deconstructible objects in Kernel, and their tradi-
tional role in Lisps, we call them S-expressions (S either for Source, Syntax, or
—traditionally— Symbolic).

In [Wa98], the fexprs considered are capable of deconstructing all possible compu-
tational entities in the formal system (a modified λ-calculus); therefore, all operational
equivalences between any computational entities whatsoever in the formal system are
trivial. One might reasonably call this property of the formal system —that all terms
are S-expressions— full reflection. Were this terminology introduced into the paper
—a minor and non-structural change; for example, the word fexpr doesn’t even occur
in the paper’s abstract— the paper might defensibly have been titled “The Theory of
Reflection is Trivial”, and its overall import would have been so changed that there
might have been no serious seeming of contradiction between that document and this
one.

In this dissertation, the fexprs considered are only able to deconstruct certain
kinds of entities (only certain kinds of entities are S-expressions). Fexprs here are
unable to deconstruct either encapsulated objects —i.e., environments or compound
operatives— or computational states —i.e., active terms, as in (9.27), (11.1), (12.8),
(12.28).

From the point of view of the object language L, active terms are an artifact of
the auxiliary language we are using to model the semantics of L. Programs in L can
only access objects, which is why reflection requires a means of reification (cf. §1.2.4):
in order for programs to access computational state, the state has to be manifested in
the form of an object. If the object language itself has no encapsulated objects —that
is, if all objects are S-expressions— then all operational equivalences between objects
are trivial. Since traditional semantics has focused exclusively on operational equiva-
lences between objects (to put it another way, semantic equivalences between syntax
expressions), this would mean that all operational equivalences whatsoever are trivial.
This situation may be suggestive of the observation, in the conclusion of [Wa98], that
“To get non-trivial theories, one needs to find weaker reflection principles” — but
whether that observation applies here depends on whether one views encapsulated
objects as a withholding of the power of fexprs from those objects (making fexprs

1Heuristically, the profundity of a truth is proportional to how difficult it was to discover the
first time, divided by how obvious it is once successfully explained. While some truths only have to
be uncovered to become obvious, others may have a lucid explanation that is even more difficult to
find that the truth itself was. If there exists a lucid explanation, the difficulty of finding it should
be counted in the numerator of the heuristic.

335

weaker), or as an extension of the object-language to data structures beyond the
purview of fexprs (making the language stronger).

By a straightforward understanding of object language, when the object language
is Kernel, or any typical Lisp, all expressions in the object language are unencap-
sulated. That is, encapsulated objects cannot be read from a Lisp source file: they
only arise when those source objects are evaluated. Following a denotational ap-
proach to programming language semantics, in which syntax values are mapped to
semantic values, syntax structure is exactly what fexprs are able to deconstruct, and
all encapsulated objects are semantic values that are not syntax. Therefore, if the
denotational mapping is to be described by a term-rewriting calculus, the term set
of the calculus must be a proper superset of the term set of the object language (the
“syntax”). The term-rewriting approach is more natural for a Lisp, since Lisp char-
acteristically equates the domains of data (denoted values) and program (denoting
values) — so that the denotational model itself is no longer useful, but its dichotomy
between semantics and syntax lingers in the distinction between objects that fexprs
can and cannot deconstruct.

The possibility of active terms in the calculus —that is, terms that are neither
language input (denoting) nor language output (denoted)— does not occur in [Wa98].
The conclusion of [Wa98] brushes close to this possibility when acknowledging that the
semantics of fexprs will ultimately require something beyond the purview of fexprs:
“we care not only when two terms have the same behavior, but we may also care just
what that behavior is!”. The bridge from that sentiment to active terms is that the
missing behavioral element can be incorporated into the term syntax of the modeling
calculus. For this dissertation, that bridge was arrived at through the implicit/explicit
evaluation distinction discussed in §1.2.3.

Once active terms are included in the toolkit of available modeling techniques,
even a fully reflective formal system can be modeled by a calculus with a nontrivial
formal equational theory.

15.2 Nontrivial models of full reflection

What we intend by fully reflective is not merely that all objects are S-expressions,
which would in itself guarantee that all operational equivalences between objects are
trivial, but that the object language is a small-step term-rewriting system in which all
terms are S-expressions. This is the situation in [Wa98], and the situation of which
we observe that the semantics of the object language can be modeled by a calculus
with a nontrivial formal equational theory.

To illuminate the principles involved, we develop a nontrivial modeling calculus for
the fully reflective formal system of [Wa98], then a second variant modeling calculus,
and consider the prospects for (but do not try to construct) a third variant. The fully
reflective system to be modeled is presented here under the name W-semantics.

336

The first modeling calculus tries to make the smallest possible modification to
W-semantics that will afford a technically nontrivial theory. We call this W-calculus.
W-calculus demonstrates in pure form the fundamental enabling principle for non-
triviality in calculi modeling full reflection, unadorned by any attempt to localize
rewriting or strengthen the theory.

The second modeling calculus, W-calculus, relents from the stark minimalism
of W-calculus by eliminating unbounded-depth evaluation contexts from its redex
patterns.

The third natural step in upgrading the modeling calculus would be to allow
lazy subterm reduction, analogous to the removal of value-subterm constraints when
upgrading from fr-calculus to fi-calculus (§10.7). In particular, we would like to
allow a β-reduction to be performed without first reducing the body of the operator
to a calculus normal form. Unfortunately, there are significant technical challenges
in arranging this, which will be described and briefly discussed in §15.2.4.

15.2.1 W-semantics

The fully reflective formal system, W-semantics, is now the object language. All the
terms of W-semantics are S-expressions. The syntax of S-expressions is

W-semantics.

Syntax (S-expressions):
x ∈ Variables

S ::= x | (λx.S) | (S S) | (fexpr S) | (eval S) (Sexprs)

V ::= (λx.S) | (fexpr V) (Values) .

(15.2)

Relation 7−→W is a deterministic non-compatible binary relation on S-expressions.
Besides the usual substitution borrowed from λ-calculus, [Wa98] uses a Mogensen–
Scott encoding on an arbitrary S-expression S when it occurs as an operand to a
fexpr, to “reify” it homomorphically into an irreducible S-expression ⌈S⌉ that can be
queried to analyze the structure of the original S.

337

W-semantics.

Syntax (evaluation contexts):
E ::= 2 | (E T) | ((λx.T)E) | (fexpr E) | (eval E)

(Evaluation
contexts)

Auxiliary functions:
⌈x0⌉ = (λx1.(λx2.(λx3.(λx4.(λx5.(x1 x0))))))

⌈(S1 S2)⌉ = (λx1.(λx2.(λx3.(λx4.(λx5.((x2 ⌈S1⌉) ⌈S2⌉))))))
⌈(λx0.S)⌉ = (λx1.(λx2.(λx3.(λx4.(λx5.(x3 (λx0.⌈S⌉)))))))

⌈(fexpr S)⌉ = (λx1.(λx2.(λx3.(λx4.(λx5.(x4 ⌈S⌉))))))
⌈(eval S)⌉ = (λx1.(λx2.(λx3.(λx4.(λx5.(x5 ⌈S⌉))))))

Schemata:
E[((λx.S)V)] 7−→ E[S[x← V]] (β-reduction)

E[((fexpr V)S)] 7−→ E[(V ⌈S⌉)] (reification)
E[(eval ⌈S⌉)] 7−→ E[S] (reflection) .

(15.3)

Definition 15.4 S1, S2 are W-contextually equivalent, denoted S1 ≃W S2, if for
every context C such that C[S1], C[S2] ∈ Sexprs,

there exists V1 such that C[S1] 7−→
∗
W V1

iff there exists V2 such that C[S2] 7−→
∗
W V2.

The paper’s main result is

Theorem 15.5 (Triviality)

S1 ≃W S2 iff S1 ≡α S2.

Proof. Straightforward; see [Wa98].

15.2.2 W-calculus

In the modeling calculi, which practice explicit evaluation, no reductions S1 7−→W S2

will be admitted, since they are all reductions of inactive terms. Instead, we introduce
an active frame [E 2], and all of our reduction schemata require an active redex. The
E frame is a declaration of intent to reduce the framed term to a value. Since W-
contextual equivalence, the relation of primary interest, is defined using values in the
sense of (15.2), the modeling calculi keep its exact definition intact, including the
requirement that a value cannot contain any active subterms. In W-semantics, ⌈S⌉
is irreducible; in the calculi, [E ⌈S⌉] −→∗

• ⌈S⌉.

338

The entire point of W-calculus is that, for technical nontriviality, all we have to
do is lift 7−→W to active terms.

W-calculus.

Syntax (terms, extending W-semantics):
I ::= x | (λx.T) | (T T) | (fexpr T) | (eval T) (Inactive)
A ::= [E T] (Active)
T ::= A | I (Terms)

Schemata:
[E S1] −→ [E S2] if S1 7−→W S2 (⊥)
[E V] −→ V (V) .

(15.6)

Keep in mind that we are primarily interested in compatible relation −→W (the
compatible closure of −→W).

Theorem 15.7 (Correspondence)

S1 7−→
∗
W S2 iff [E S1] −→

∗
W [E S2].

S 7−→∗
W V iff [E S] −→+

W V .

Proof. Immediate.

Theorem 15.8 (Church–Rosser-ness)
−→W is Church–Rosser.

Proof. Straightforward, by induction on the number of active frames [E 2] in the
term (which is non-increasing across −→W steps). The case of a single active frame is
immediate from the fact that 7−→W is deterministic. For nested E frames, all inner E
frames have to be reduced to an S-expression before the outer frame can be reduced
(because Schema (⊥) requires its redex subterm to be an S-expression).

Definition 15.9 W-calculus terms T1, T2 are W-contextually equivalent, denoted
T1 ≃W T2, if for every context C,

there exists V1 such that C[T1] −→
∗
W V1

iff there exists V2 such that C[T2] −→
∗
W V2.

There is no need to use some different notation for this relation than for the W-
semantics contextual equivalence of Definition 15.4, because they agree on the domain
of the more restricted relation (by Theorem 15.7).

Theorem 15.10 (Nontriviality)
There exist T1 6≃W T2.

Proof. Let S 7−→W V . Then [E S] −→2
W V . [E S] 6≡α V . By Church–Rosser-

ness, for all C ′ and V ′, C ′[[E S]] −→∗
W V ′ iff C ′[V] −→∗

W V ′.

339

15.2.3 W-calculus

We prefer not to embed unbounded-depth evaluation contexts into the redex patterns
on the left-hand sides of our calculus schemata (cf. §11.3). To avoid this, inW-calculus
we instead propagate E frames downward through evaluation contexts until they reach
the local redex. The term syntax is unchanged from W-calculus.

W-calculus.

Schemata:
[E [E T]] −→ [E T] (E)

[E (λx.T)] −→ (λx.T) (λ)

[E (T1 T2)] −→ [E ([E T1]T2)] (p)
[E ((λx.T1)T2)] −→ [E ((λx.T1) [E T2])] (pλ)

[E (fexpr T)] −→ (fexpr [E T]) (f)
[E (eval T)] −→ [E (eval [E T])] (e)

[E ((λx.S)V)] −→ [E S[x← V]] (β-reduction)
[E ((fexpr V)S)] −→ [E (V ⌈S⌉)] (reification)

[E (eval ⌈S⌉)] −→ [E S] (reflection) .

(15.11)

The three schemata of W-semantics are adapted intact, only replacing the evaluation
contexts with active frames. The other six schemata serve only to redistribute E labels
across the term; call them E-distribution schemata. Let −→Wd be the enumerated
relation of the E-distribution schemata, and −→Wc= (−→W − −→Wd). Let d(T) be
the term that results from reducing T via −→Wd so that there are E labels on all,
and only, those subterms where the labels might be useful.

d(x) = x
d((λx.T)) = (λx.d(T))
d((T1 T2)) = (d(T1) d(T2))

d((fexpr T)) = (fexpr d(T))
d((eval T)) = (eval d(T))

d([E x]) = [E x]
d([E (λx.T)]) = (λx.d(T))

d([E (T1 T2)]) =

{

[E (d(T1) d([E T2]))] if d(T1) has the form (λx.T)
[E (d([E T1]) d(T2))] otherwise

d([E (fexpr T)]) = (fexpr d([E T]))
d([E (eval T)]) = [E (eval d([E T]))]

d([E [E T]]) = d([E T]) .

(15.12)

Lemma 15.13

T −→∗
Wd d(T).

340

If T1 −→Wd T2, then d(T1) ≡α d(T2).

−→Wd is Church–Rosser.

Proof. Straightforward.

Not only does d collapse the term set of W-calculus into a set of equivalence classes
closed under −→Wd, but −→Wc respects those classes. Let T1 −→W ′ T2 iff d(T1)
−→Wc · −→

∗
Wd d(T2); then

Lemma 15.14

If T1 −→Wc T2, then d(T1) −→W ′ d(T2).

If T1 −→
∗
W T2, then T1 −→

∗
W ′ T2.

If T1 −→
∗
W ′ T2, then there exists T ′

2 such that T1 −→
∗
W T ′

2 and T ′
2 =Wd T2.

Proof. By cases.

Theorem 15.15 (Correspondence)

S1 7−→
∗
W S2 iff [E S1] −→

∗
W ′ [E S2].

S 7−→∗
W V iff [E S] −→+

W V .

Proof. Lemma 15.14 and Theorem 15.7.

Theorem 15.16 (Church–Rosser-ness)
−→W is Church–Rosser.

Proof. Lemma 15.14 and Theorem 15.8.

Definition 15.17 W-calculus terms T1, T2 areW-contextually equivalent, denoted
T1 ≃W T2, if for every context C,

there exists V1 such that C[T1] −→
∗
W V1

iff there exists V2 such that C[T2] −→
∗
W V2.

Theorem 15.18 (Nontriviality)

T1 ≃W T2 iff T1 ≃W T2.

There exist T1 6≃W T2.

Proof. Lemma 15.14 and Theorem 15.10.

341

15.2.4 Lazy subterm reduction

W-calculus puts eager constraints on redex subterms in five positions:
• the β-reduction operator must be an S-expression;
• the β-reduction operand must be a value;
• the reification operator must be a value;
• the reification operand must be an S-expression; and
• the reflection body must be a Mogensen–Scott encoded S-expression.

β-reduction, being the most complex case, is both most difficult and of most interest.
The β-reduction operand constraint cannot safely be tampered with.

The reification/reflection constraints can be relaxed without serious difficulty. The
reification operator can simply replace V with T . Reification operand and reflec-
tion body require additional machinery, because if we don’t insist on having an S-
expression at the time of reification/reflection, we need an active frame to tell us what
do with an S-expression when we (hopefully) derive it later. Suppose two new active
frames: [M2] declaring intent to encode the framed term, and [O2] declaring intent
to decode the framed term. We could replace the reification and reflection schemata
with

[E ((fexpr T1)T2)] −→ [E (T1 [M T2])] (reification)
[E (eval T)] −→ [E [O T]] (reflection)

[O [M T]] −→ T (cancel)
[MS] −→ ⌈S⌉ (M)

[O ⌈S⌉] −→ S (O) .

(15.19)

With some additional tedium, we could also break up the monolithic (M) and (O)
schemata so that they descend by increments into the syntactic structure of the term,
according to the five cases in the definition of the encoding (in (15.3)). We won’t
pursue that option, though; lazy β-operators are a much bigger prize, if we could
manage them.

There is a serious problem with lazy reduction of β-reduction operators. The
Mogensen–Scott encoding doesn’t commute with substitution for free variables in the
term being encoded: encoding a free variable and then substituting for it will produce
a different result, in general, than substituting for the free variable and then encoding.
The question of which to do first only matters when an active term, whose reduction
would entail encoding a subterm with a free variable x, occurs within a β-reduction
redex whose operator binds x. This type of situation cannot occur when reducing a
term of the form [E S], so it cannot affect the correspondence between S 7−→∗

W V
and [E S] −→∗

• V ; but such situations matter for Church–Rosser-ness. For example,
in a lazy-β calculus,

342

[E ((λx.[E ((fexpr (λy.y)) x)])V)] −→+
• [E ((λx.⌈x⌉)V)]

−→+
• (⌈x⌉)[x← V]

[E ((λx.[E ((fexpr (λy.y)) x)])V)] −→+
• [E ((fexpr (λy.y))V)]

−→+
• ⌈V ⌉ .

(15.20)

For Church–Rosser-ness, one or the other of these orders must be disallowed. W-
calculus disallows substitution before encoding, by requiring the operator of a β-
reduction to have no remaining active subterms (note the role of bottom-up elimina-
tion of E frames in the inductive proof of Theorem 15.8).

With some rather baroque provisions in the calculus, one could allow lazy-operator
β-reduction while still putting encoding before substitution. When a substitution
is applied to any active frame, the active frame could intercept and suspend the
substitution as a binding, until such time as the framed term becomes an S-expression
— something like this:

[E ((λx.[E ((fexpr (λy.y)) x)])V)] −→•

[E [[x← V]] ((fexpr (λy.y)) x)] −→+
• [E [[x← V]] ⌈x⌉]

−→• (⌈x⌉)[x← V] .
(15.21)

The complexity of this approach corresponds to its undermining of the uniformity of
λ-style substitution.

A much simpler approach, with a possibly-surmountable deficiency in operational
completeness, is to refuse to encode an S-expression as long as it has any free variables.
This favors the substitution-before-encoding order; but it also refuses to complete
some mundane reductions. For example, terms

[E ((fexpr (λy.y)) x)]
(λx.[E ((fexpr (λy.y)) x)])

(15.22)

cannot be reduced to values, because the x that occurs free in the reification operand
will never be substituted for, and therefore its encoding will never be allowed to
proceed. Since the first term has the form [E S], by failing to reduce it to a value, the
calculus fails operational completeness. It might be possible to devise an alternative
concept to serve in place of the usual notion of operational completeness, involving
suitable surrounding contexts akin to those used in operational equivalence.

Both these approaches have evident drawbacks. An entirely different approach to
the problem is to reassess the use of a Mogensen–Scott encoding. It is unclear (at
the current time and to the current author) how much of the problem is due to the
essential nature of full reflection, and how much of it is due to particular properties
of the encoding. One might gain insight into this balance by replacing, or modifying,
the encoding.

15.3 Abstraction contexts

Besides [Wa98], another modern paper that touches on the misbehavior of fexprs is

343

John C. Mitchell’s 1993 “On Abstraction and the Expressive Power of Programming
Languages” ([Mi93]). Unlike [Wa98], which is centrally concerned with fully reflective
fexprs (though not fexprs in general), [Mi93] only brings in fexprs to make a peripheral
point about the main topic of interest, which is abstraction-preserving transformations
between languages.2 The peripheral point being made is that there exist languages
that have no abstraction, so that they cannot be the codomain of any abstraction-
preserving transformation unless the domain doesn’t have any abstraction either;
Lisp with fexprs is the paper’s recommended canonical example of a language with
no abstraction.

Here too is an appearance of contradiction with the current work. The starting
point of of this dissertation was that fexprs should provide increased abstractive power
(§1.1); and the thesis claims that fexprs can subsume traditional abstractions (§1.3).
Again, however, there is no actual contradiction, only a seeming that results from
differences in terminology and technical approach. As is typical of traditional treat-
ments of programming language semantics, [Mi93] focuses on compiled programming
languages — and consequently, as was noted earlier of the denotational approach,
the only objects considered are S-expressions in the sense defined here in §15.1. The
non-abstractiveness result in [Mi93] is therefore technically a statement only about S-
expressions in the presence of fexprs, and is technically very close to Proposition 15.1.

The key definition in [Mi93] is that of an abstraction context.

Definition 15.23 Suppose language L with big-step semantic relation 7−→L.

T1 and T2 are observationally equivalent in L, denoted T1 ≃L T2, if for every
context C and observable O,

C[T1] 7−→L O
iff C[T2] 7−→L O.

C hides the difference between T1 and T2 in L if T1 6≃L T2 and C[T1] ≃L C[T2].

C is an abstraction context in L if C hides the difference between some terms
T1 and T2 in L.

C hiding the difference between T1 and T2 implies that for all C ′ and O′, C ′[C[T1]]
7−→L O

′ iff C ′[C[T2]] 7−→L O
′. An abstraction-preserving transformation θ:L → L′ is

a homomorphism from L programs to L′ programs that preserves both observational
equivalence and observational inequivalence (T1 ≃L T2 iff θ(T1) ≃L′ θ(T2)). θ is
“abstraction-preserving” in that whenever C hides the difference between T1 and T2

in L, preserving both ≃L and 6≃L across the homomorphism guarantees that θ(C)
hides the difference between θ(T1) and θ(T2). Fexprs come into the situation because,
owing to the fact that all programs considered by the paper are S-expressions, Lisp
with fexprs has no abstraction contexts. Hence the point made by the paper, that

2The actual terminology in the paper is “abstraction-preserving reduction”, which we avoid since
we’re heavily invested in a different use of the word reduction.

344

if θ is abstraction-preserving, and L′ is Lisp with fexprs, then L doesn’t have any
abstraction contexts (because all L contexts map into non-abstraction L′ contexts).

Abstraction in Kernel is an interpretation-time phenomenon, involving objects
that cannot be deconstructed by fexprs. Recall from Chapter 5 that encapsulation of
operatives and environments were key to supporting Kernel hygiene. Formally, in fp-
calculus the minimal abstraction contexts are operative frames, environment frames,
eval frames, and combine frames.

15.4 λ-calculus as a theory of fexprs

One other point that may further illuminate the situation concerns the way calculi
are used to model the semantics of Lisp.

Traditionally, λ-calculus expressions are taken as directly modeling Lisp programs
— which is to say, Lisp S-expressions. This is essentially a compiled approach: a Lisp
source expression

(($lambda (x) (* x x)) (+ 2 3)) (15.24)

would be mapped directly to a λ-calculus expression

((λx.((∗ x) x)) ((+ 2) 3)) . (15.25)

The mapping presumes that the operand will be evaluated. If we wanted to ex-
tend the modeling technique to support fexprs, a mechanically minimal change to
the calculus might somehow suppress evaluation of the otherwise evaluable subterm
((+ 2) 3), an essentially implicit-evaluation impulse (§1.2.3) whose consequences have
been considered both via quotation (§8.4.1) and via full reflection (§15.1), which are
complementary views of the same effect.

A naive mapping from Lisp to fp-calculus would map (15.24) to something like

[eval (($lambda (x) (* x x)) (+ 2 3)) e0] . (15.26)

Note that most of this term is an S-expression in the technical sense of this chapter:
an expression that can be completely deconstructed if it is passed as an operand
to a fexpr. Under favorable conditions (stable bindings, §5.3)), though, the same
degree of deduction might be possible here as in the non-fexpr case of (15.25); and
in that case, there is a part of fp-calculus available whose term-reduction properties
—in cases where we can ignore dynamic environments— are exactly like those of the
unadulterated λ-calculus:

[combine 〈 fx.[combine [combine * x 〈〈〉〉] x 〈〈〉〉]〉
[combine [combine + 2 〈〈〉〉] 3 〈〈〉〉]

〈〈〉〉] .
(15.27)

None of the subterms here are S-expressions: they belong to a part of fp-calculus
that is fully encapsulated, and therefore has no obstacle to a nontrivial theory. A

345

key insight here is that this particular corner of fp-calculus is, in fact, isomorphic
to unadulterated λ-calculus, complete with the same reduction schemata —namely,
the β-rule and nothing else— and with the same equational theory. (This may be
more obvious for fx-calculus, §9.3, which has no environments at all; but since we are
considering a subset of terms that doesn’t involve symbols, there would be no way
to access the contents of dynamic environments anyway, and we can simply ignore
them.) So all the equational strength that we expected of our modeling λ-calculus
before we added fexprs is still available in the modeling fp-calculus after, to be used in
those cases where we can prove it is safe to do so. fp-calculus conservatively extends
this λ-isomorphic subcalculus. The isomorphism is

θ(x) = x
θ(c) = c

θ((T1 T2)) = [combine θ(T1) θ(T2) 〈〈〉〉]
θ((λx.T)) = 〈 fx.θ(T)〉 .

(15.28)

There is an insight here into the way both calculi (λ and fp) function when model-
ing Lisp, in the fact that a λ-expression —which conventionally one would think of as
modeling an applicative— is mapped isomorphically to a f-expression that evidently
models an operative. As noted, the image of this isomorphism is still used exactly
as the co-image used to be, but not as often: it only comes into play when we can
compile away all of the trappings of evaluation. The evaluation machinery occupies
the whole rest of fp-calculus beyond the pale of the isomorphic image, and the ab-

sence of that machinery from λ-calculus is the reason we had trouble using λ-calculus
as a model of fexpr-based situations that are intrinsically concerned with evaluation.
Since we can only do without that machinery in fp-calculus when working with pure
fexprs — and we are using the isomorphic image in the same way that we had used its
co-image (i.e., λ-calculus) — a reasonable view of the situation is that the combiners
of λ-calculus always were, essentially, fexprs: they don’t do anything special to bring
about evaluation of their operands, after all (because they can’t, as that machinery
is outside the purview of λ-calculus), and as soon as it becomes necessary to consider
the distinction between operatives and applicatives, λ-expressions take the operative
part. The association simply wasn’t apparent when distinction never had to be con-
sidered, and the predominant object-language combiners with the same name were
applicatives.

Overall, fp-calculus has three parts: a set of terms representing S-expressions
(pairs, symbols, and constants), with a trivial equational theory; a subcalculus rep-
resenting pure fexpr-call structure, which has isomorphically the equational theory of
λ-calculus; and machinery for evaluation, connecting the first two components and
determining what mixture of the weak and strong theories of those components will
bear on a given situation.

346

Chapter 16

Conclusion

16.0 Introduction

Fexprs can form the basis for a simple, well-behaved Scheme-like language, subsuming
traditional abstractions without a multi-phase model of evaluation.

This chapter offers a Big Picture view of the dissertation’s support for the thesis.

16.1 Well-behavedness

The most notorious criticism of fexprs, in recent years, has been the assertion by
[Wa98] that “The Theory of Fexprs is Trivial”; Chapter 15 addressed this directly,
clarifying that the theoretical scenario investigated by that paper uses fully reflective
fexprs, whereas the fexprs in Kernel are not fully reflective in the relevant technical
sense.1 While removing the absolute condemnation of trivialization, however, this
does not in itself remove the broader concern of ill-behavior, of which trivialization
is only the most extreme theoretical form. Practical ill-behavior was central to the
deprecation of fexprs circa 1980 ([Pi80]). The most extreme form of practical ill-
behavior of fexprs occurs in dynamically scoped Lisps, which dominated mainstream
Lisp at the time of the deprecation, but (ironically) began to be phased out of the
mainstream a few years later. The historical evolution of Lisp combiner constructors,
including dynamic versus static scope, was reviewed in §3.3. Practical measures
to minimize and mitigate the ill-behavior of fexprs were discussed in Chapter 5, and
their deployment was described in Chapter 7. On the theoretical side, the feasibility of
well-behaved modeling calculi for Lisp with fexprs, with Church–Rosser and Plotkin’s
Correspondence Theorems, was established by Chapters 9–14.

1This is the refutation in Chapter 15 that matters directly to the thesis. It was also demonstrated,
in §15.2, that a well-behaved modeling calculus can exist even when the object language itself is
fully reflective and therefore as badly behaved as possible; but that demonstration was offered to
further illuminate the principles involved. The fact that the object language isn’t as badly behaved
as possible is rather more to the point.

347

16.2 Simplicity

The strategy used here to achieve simplicity is to put fexprs at the center of the
evaluation model, as the primary driving mechanism of all Lisp function application.
The core element of all combiner construction is therefore the operative construc-
tor, $vau . Peripheral derivation of applicatives from these underlying operatives is
managed via wrap and unwrap, whose orthogonality to $vau and to the operative
function-call mechanism (theoretically, the β-rule) facilitates deductions about sepa-
ration of evaluation concerns from operative calls. The basic combiner treatment is
described in Chapter 4. Purely subjective aspects of its simplicity are demonstrated
through use in Part I, especially Chapter 7; a relatively concrete practical manifesta-
tion of its simplicity, through the relative size of its meta-circular evaluator, is studied
in Chapter 6. The significance of cleanly separating argument evaluation concerns
from operative calls is, as brought out by §15.4, that the weaknesses of the equational
theory occur in the parts of it that deal with evaluation, while the part of the theory
that deals with operative calls alone is isomorphic to the theory of λ-calculus.

The thesis claims simplicity of the programming language — not simplicity of
some associated modeling calculus, let alone simplicity of some particular proof of
well-behavedness of some associated modeling calculus. It therefore has no direct

bearing on the thesis that the well-behavedness of f-calculi is established here by
an exceedingly un-simple theoretical treatment (most especially Chapter 13). Given
that simplicity remains a subjective property, though, it may be of some value for
the thesis to note that the first proof of a result is likely to be complicated because

it is the first proof, regardless of whether a simpler proof is eventually formulated.
A topical example is that, while Church and Rosser published their proof of what is
now called the Church–Rosser Theorem in 1936 ([ChuRo36]), a simple proof of the
theorem, due to Martin-Löf, only appeared three and a half decades later.2

Simplicity of the calculi themselves is of somewhat greater indirect relevance since
it is only one stage removed from the object language (while simplicity of the proofs
for the calculi is two stages removed). The impure calculi’s use of multiple classes of
variables, with multiple distinct forms of substitution, is an unfamiliar complication
from the pure λ-calculus; however, the multiplicity of substitution functions is rec-
ommended here as a means of simplifying the treatment of impurity. It is suggested
that Felleisen’s impure calculi were complicated by their attempt to fit impure cal-
culus behaviors into the mold of the β-reduction of λ-calculus (see primarily §8.3.3);
the alternative forms of substitution in the impure f-calculi allow them to bubble
up side-effect frames without the characteristic structural churning that occurs in
Felleisen’s calculi.3 A possible target for future work (as the general principles in-

2Cf. Footnote 11 of Chapter 13.
3Felleisen had the enviable disadvantage of being first, making the alternative approach to bub-

bling up in f-calculi another example (to whatever extent it has merit) of time delay from a first
treatment to the development of a simpler approach.

348

volved become better understood) is the development of some unified treatment of the
different classes of variables, though it isn’t clear at this time whether that unification
would actually simplify the situation, or just clarify it.4

16.3 Subsuming traditional abstractions

The fact that fexprs can do what macros can do is not very deep, although it is key to
the underlying motivation for pursuing fexprs — abstractive power (§1.1). Practical
replacement of macros by fexprs was addressed in Chapter 7.

16.4 A closing thought

Fexprs can form the basis for a simple, well-behaved Scheme-like language, subsuming
traditional abstractions without a multi-phase model of evaluation.

4There are some bemusing similarities between the problem of unifying the classes of variables
in f-calculi, and the problem of developing a TOE in physics. Traditionally there are four forces
in physics, versus four classes of variables (though this is somewhat historically selective, given the
unification of the electroweak force around the time of Klop’s dissertation). More suggestively, one
of the forces is clearly not like the others (gravity), in ways that seem to give it a peculiarly central
role in the overall structure of the universe; while one of the classes of variables is clearly not like
the others (λ-calculus variables, a.k.a. partial-evaluation variables), and plays a peculiarly central
role in the overall structure of computation.

349

350

Appendices

351

Appendix A

Complete source code for the
meta-circular evaluators

This appendix provides complete source code for the six meta-circular evaluators of
Chapter 6. In comments, the six are referred to shortly as vanilla (vanilla Scheme),
template (naive template macros), procedural (naive procedural macros), hygienic
(hygienic macros), single (single-phase macros), and kernel.

In their executable form, the source definitions for the evaluators are distributed
amongst 26 source files, such that no definition occurs in more than one file, and for
each evaluator a master file selects just the definitions it needs by load ing a subset
of the 26. This appendix simplifies the organization somewhat for human readers, re-
peating or regrouping some definitions to present a small number of logically coherent
sets of alternatives.

The high-level code, all of which appeared in Chapter 6, is conservative in its
use of Kernel features that differ behaviorally from Scheme; no first-class operatives
are used, and compound definiends are used only as the parameter trees of $lambda -
expressions. The low-level code observes no such restrictions; first-class operatives and
compound definiends are used at convenience, and the encapsulated object-language
types are implemented using Kernel’s make-encapsulation-type device ([Shu09,
§8 (Encapsulations)]).

352

A.1 Top-level code

;;

; one-phase algorithms (vanilla, single, kernel) ;

;;

($define! interpreter

($lambda () (rep-loop (make-initial-env))))

($define! rep-loop

($lambda (env)

(display ">>> ")

(write (mceval (read) env))

(newline)

(rep-loop env)))

;;;

; two-phase algorithms (template, procedural, hygienic) ;

;;;

($define! interpreter

($lambda () (rep-loop (make-initial-macro-env) (make-initial-env))))

($define! rep-loop

($lambda (macro-env env)

(display ">>> ")

(write (mceval (preprocess (read) macro-env) env))

(newline)

(rep-loop macro-env env)))

A.2 mceval

;;

; non-gensym scheme algorithms (vanilla, template) ;

;;

($define! mceval

($lambda (expr env)

($cond ((symbol? expr) (lookup expr env))

((pair? expr) (mceval-combination expr env))

(#t expr))))

353

;;;

; gensym scheme algorithms (procedural, hygienic) ;

;;;

($define! mceval

($lambda (expr env)

($cond ((mc-symbol? expr) (lookup expr env))

((pair? expr) (mceval-combination expr env))

(#t expr))))

;;

; non-scheme algorithms (single, kernel) ;

;;

($define! mceval

($lambda (expr env)

($cond ((mc-symbol? expr) (lookup expr env))

((pair? expr) (combine (mceval (car expr) env)

(cdr expr)

env))

(#t expr))))

A.3 Combination evaluation (high-level)

;

; Most of each algorithm is presented in a single block, except for

; a block common to all algorithms (presented at the end), and a

; small block that is only added for the "procedural" algorithm.

;

;;

; scheme algorithms (single, template, procedural, hygienic) ;

;;

($define! mceval-combination

($lambda ((operator . operands) env)

($cond ((if-operator? operator) (mceval-if operands env))

((define-operator? operator) (mceval-define operands env))

((lambda-operator? operator) (mceval-lambda operands env))

(#t (mc-apply (mceval operator env)

(map-mceval operands env))))))

354

($define! if-operator? ($make-tag-predicate $if))

($define! define-operator? ($make-tag-predicate $define!))

($define! lambda-operator? ($make-tag-predicate $lambda))

($define! mceval-if

($lambda ((test consequent alternative) env)

($if (mceval test env)

(mceval consequent env)

(mceval alternative env))))

($define! mceval-define

($lambda ((definiend definition) env)

(match! env definiend (mceval definition env))))

($define! mceval-lambda

($lambda ((ptree body) env)

(make-applicative

($lambda arguments

($let ((env (make-mc-environment env)))

(match! env ptree arguments)

(mceval body env))))))

($mc-define! apply (make-applicative mc-apply))

;;;

; naive procedural macro algorithm (procedural) ;

;;;

($mc-define! gensym (make-applicative gensym))

;;;

; single-phase macro algorithm (single) ;

;;;

($define! combine

($lambda (combiner operands env)

($if (mc-operative? combiner)

(mc-operate combiner operands env)

(mc-apply combiner (map-mceval operands env)))))

355

($mc-define! $if

(make-operative

($lambda ((test consequent alternative) env)

($if (mceval test env)

(mceval consequent env)

(mceval alternative env)))))

($mc-define! $define!

(make-operative

($lambda ((definiend definition) env)

(match! env definiend (mceval definition env)))))

($mc-define! $lambda

(make-operative

($lambda ((ptree body) env)

(make-applicative

($lambda arguments

($let ((env (make-mc-environment env)))

(match! env ptree arguments)

(mceval body env)))))))

($mc-define! $macro

(make-operative

($lambda ((parameters names body) static-env)

(make-operative

($lambda (operands dynamic-env)

(mceval

($let ((local-env (make-mc-environment static-env)))

(match! local-env parameters operands)

(gensyms! local-env names)

(transcribe body local-env))

dynamic-env))))))

($define! gensyms!

($lambda (env names)

($cond ((mc-symbol? names) (match! env names (gensym)))

((pair? names)

(gensyms! env (car names))

(gensyms! env (cdr names))))))

356

($define! transcribe

($lambda (body env)

($cond ((mc-symbol? body) (lookup body env))

((pair? body)

(cons (transcribe (car body) env)

(transcribe (cdr body) env)))

(#t body))))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

; kernel algorithm (kernel) ;

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

($define! combine

($lambda (combiner operands env)

($if (mc-operative? combiner)

(mc-operate combiner operands env)

(combine (mc-unwrap combiner) (map-mceval operands env) env))))

($mc-define! wrap (make-applicative mc-wrap))

($mc-define! unwrap (make-applicative mc-unwrap))

($mc-define! eval (make-applicative mceval))

;

; make-applicative must precede the common block (presented below).

;

($define! make-applicative

($lambda (meta-appv)

(mc-wrap

(make-operative

($lambda (operands #ignore)

(apply meta-appv operands))))))

;

; the rest of this block must follow the common block (presented below).

;

($mc-define! $if

(make-operative

($lambda ((test consequent alternative) env)

($if (mceval test env)

(mceval consequent env)

(mceval alternative env)))))

357

($mc-define! $define!

(make-operative

($lambda ((definiend definition) env)

(match! env definiend (mceval definition env)))))

($mc-define! $vau

(make-operative

($lambda ((ptree eparam body) static-env)

(make-operative

($lambda (operands dynamic-env)

($let ((local-env (make-mc-environment static-env)))

(match! local-env ptree operands)

(match! local-env eparam dynamic-env)

(mceval body local-env)))))))

;;;;;;;;;;;;;;;;;;

; all algorithms ;

;;;;;;;;;;;;;;;;;;

;

; This block must precede all (other) calls to $mc-define!,

; since they add to ground-environment.

;

($define! ground-environment (make-mc-environment))

($define! make-initial-env

($lambda ()

(make-mc-environment ground-environment)))

($define! map-mceval

($lambda (operands env)

(map ($lambda (expr) (mceval expr env))

operands)))

($mc-define! <? (make-applicative <?))

($mc-define! <=? (make-applicative <=?))

($mc-define! =? (make-applicative =?))

($mc-define! >=? (make-applicative >=?))

($mc-define! >? (make-applicative >?))

($mc-define! + (make-applicative +))

($mc-define! - (make-applicative -))

($mc-define! * (make-applicative *))

($mc-define! / (make-applicative /))

($mc-define! cons (make-applicative cons))

358

A.4 Preprocessing (high-level)

;;;

; all two-phase algorithms (template, procedural, hygienic) ;

;;;

($define! preprocess

($lambda (expr macro-env)

($if ($and? (pair? expr)

(define-macro-operator? (car expr)))

(preprocess-define-macro! (cdr expr) macro-env)

(expand expr macro-env))))

($define! define-macro-operator?

($make-tag-predicate $define-macro))

;;;

; naive macro algorithms (template, procedural) ;

;;;

($define! make-initial-macro-env

($lambda ()

(make-empty-macro-env ($lambda (x) x))))

($define! expand

($lambda (expr macro-env)

($if (pair? expr)

(check-for-macro-call

(map ($lambda (expr) (expand expr macro-env))

expr)

macro-env)

expr)))

($define! check-for-macro-call

($lambda (expr macro-env)

($if (symbol? (car expr))

($let ((x (macro-lookup (car expr) macro-env)))

($if (symbol? x)

expr

(expand (apply-macro x (cdr expr))

macro-env)))

expr)))

359

;;;

; naive template macro algorithm (template) ;

;;;

($define! preprocess-define-macro!

($lambda (((name . parameters) #ignore template)

macro-env)

(macro-match! macro-env name (make-macro parameters template))))

($define! make-macro

($lambda (parameters template)

($lambda operands

($let ((macro-env (make-empty-macro-env ($lambda (x) x))))

(macro-match! macro-env parameters operands)

(transcribe template macro-env)))))

($define! transcribe

($lambda (template macro-env)

($cond ((symbol? template)

(macro-lookup template macro-env))

((pair? template)

(cons (transcribe (car template) macro-env)

(transcribe (cdr template) macro-env)))

(#t template))))

($define! apply-macro apply)

;;;

; naive procedural macro algorithm (procedural) ;

;;;

($define! preprocess-define-macro!

($lambda ((name definition) macro-env)

(macro-match! macro-env name

(mceval definition (make-initial-env)))))

($define! apply-macro mc-apply)

360

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

; hygienic macro algorithm (hygienic) ;

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

($define! preprocess-define-macro!

($lambda (((name . parameters) #ignore template)

macro-env)

(macro-match! macro-env name

(make-macro parameters template macro-env))))

($define! macro? applicative?)

($define! apply-macro

($lambda (macro operands macro-env)

(macro operands macro-env)))

($define! expand

($lambda (expr macro-env)

($cond ((pair? expr)

($let ((x (macro-lookup (car expr) macro-env)))

($if (macro? x)

(apply-macro x (cdr expr) macro-env)

(map ($lambda (x) (expand x macro-env))

expr))))

((mc-symbol? expr)

(macro-lookup expr macro-env))

(#t expr))))

($define! ground-macro-env (make-empty-macro-env ($lambda (x) x)))

($define! make-initial-macro-env

($lambda ()

(make-child-macro-env ground-macro-env)))

($define! make-lambda ($make-tag-prefixer $lambda))

($define! make-let-macro ($make-tag-prefixer $let-macro))

361

($mc-macro-define! $let-macro

($lambda ((((name . ptree) #ignore template) body) macro-env)

($let ((macro (make-macro ptree template macro-env))

(macro-env (make-child-macro-env macro-env)))

(macro-match! macro-env name macro)

(expand body macro-env))))

($mc-macro-define! $lambda

($lambda ((ptree body) macro-env)

($let ((macro-env (make-child-macro-env macro-env)))

($let ((ptree (rename-ptree! ptree macro-env)))

(make-lambda ptree (expand body macro-env))))))

($define! rename-ptree!

($lambda (ptree macro-env)

($cond ((mc-symbol? ptree)

($let ((gs (gensym)))

(macro-match! macro-env ptree gs)

gs))

((pair? ptree)

(cons (rename-ptree! (car ptree) macro-env)

(rename-ptree! (cdr ptree) macro-env)))

(#t ptree))))

($define! make-macro

($lambda (parameters template static-menv)

($lambda (operands dynamic-menv)

($define! new-menv (make-child-macro-env dynamic-menv))

($define! subst-menv

(make-empty-macro-env

($lambda (s)

($let ((gs (gensym)))

(macro-match! subst-menv s gs)

(macro-match! new-menv

gs (macro-lookup s static-menv))

gs))))

(macro-match! subst-menv parameters operands)

($let ((expr (transcribe template subst-menv)))

(expand expr new-menv)))))

362

($define! transcribe

($lambda (template subst-menv)

($cond ((mc-symbol? template)

(macro-lookup template subst-menv))

((pair? template)

(cons (transcribe (car template) subst-menv)

(transcribe (cdr template) subst-menv)))

(#t template))))

A.5 Evaluation (low-level)

;;;;;;;;;;;;;;;;;;

; all algorithms ;

;;;;;;;;;;;;;;;;;;

($define! $mc-define!

($vau (ptree expr) env

($let ((expr (eval expr env)))

(match! ground-environment ptree expr))))

;

; environments

;

($provide! (make-mc-environment lookup match!)

($define! (encapsulate

#ignore

decapsulate) (make-encapsulation-type))

;

; The encapsulated value is a pair whose car is a list of local

; bindings, and whose cdr is a list of the contents of the parents.

;

($define! make-mc-environment

($lambda x

(encapsulate (cons ()

(map decapsulate x)))))

363

($define! lookup

($lambda (symbol env)

($define! get-binding

($lambda (tree)

($let ((binding (assoc symbol (car tree))))

($if (pair? binding)

binding

($let ((bindings (filter pair?

(map get-binding

(cdr tree)))))

($if (pair? bindings)

(car bindings)

()))))))

($let ((binding (get-binding (decapsulate env))))

($if (null? binding)

($sequence

(display "Dying horribly due to unbound symbol ")

(display symbol)

(newline))

#inert)

(cdr binding))))

($define! bind!

($lambda (tree symbol value)

($let ((binding (assoc symbol (car tree))))

($if (pair? binding)

(set-cdr! binding value)

(set-car! tree (cons (cons symbol value)

(car tree)))))))

364

($define! tree-match!

($lambda (binding-tree parameter-tree operand-tree)

($cond ((mc-symbol? parameter-tree)

(bind! binding-tree parameter-tree operand-tree))

((pair? parameter-tree)

(tree-match! binding-tree

(car parameter-tree)

(car operand-tree))

(tree-match! binding-tree

(cdr parameter-tree)

(cdr operand-tree))))))

; no error-handling,

; so no other cases needed

($define! match!

($lambda (env parameter-tree operand-tree)

(tree-match! (decapsulate env)

parameter-tree

operand-tree))))

;;

; primitive-lambda algorithms (all but kernel) ;

;;

;

; applicatives

;

($provide! (make-applicative mc-apply)

($define! (encapsulate

#ignore

decapsulate) (make-encapsulation-type))

;

; The encapsulated value is a meta-language applicative

; that expects to be applied to the argument list.

;

($define! make-applicative

($lambda (action)

(encapsulate action)))

($define! mc-apply

($lambda (appv args)

(apply (decapsulate appv) args))))

365

;;

; non-scheme algorithms (single, kernel) ;

;;

;

; operatives

;

($provide! (mc-operative? make-operative mc-operate)

($define! (encapsulate

mc-operative?

decapsulate) (make-encapsulation-type))

;

; The encapsulated value is a meta-language applicative whose

; arguments should be the operand list and the dynamic environment.

;

($define! make-operative

($lambda (action)

(encapsulate action)))

($define! mc-operate

($lambda (appv args env)

((decapsulate appv) args env))))

;;

; gensym algorithms (procedural, hygienic, single) ;

;;

;

; gensyms

;

($provide! (gensym mc-symbol?)

($define! (encapsulate

gensym?

decapsulate) (make-encapsulation-type))

($define! get-unique-ticket

($letrec ((self (get-current-environment))

(counter 0))

($lambda ()

($set! self counter (+ counter 1))

counter)))

366

($define! gensym

($lambda ()

(encapsulate (get-unique-ticket))))

($define! mc-symbol?

($lambda (x)

($or? (symbol? x) (gensym? x)))))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

; vanilla algorithm (vanilla) ;

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

($define! mc-symbol? symbol?)

($define! $make-tag-predicate

($vau (tag) #ignore

($lambda (x) (eq? x tag))))

;;;

; naive template macro algorithm (template) ;

;;;

($define! mc-symbol? symbol?)

($define! $make-tag-predicate

($vau (tag) #ignore

($lambda (x) (eq? x tag))))

;;;

; naive procedural macro algorithm (procedural) ;

;;;

($define! $make-tag-predicate

($vau (tag) #ignore

($lambda (x) (eq? x tag))))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

; hygienic macro algorithm (hygienic) ;

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

($define! $make-tag-predicate

($vau (tag) #ignore

($lambda (x) (eq? x tag))))

367

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

; kernel algorithm (kernel) ;

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;

; applicatives

;

($define! (mc-wrap #ignore mc-unwrap) (make-encapsulation-type))

A.6 Preprocessing (low-level)

;;;

; two-phase algorithms (template, procedural, hygienic) ;

;;;

;

; macro environments

;

($provide! (make-empty-macro-env

make-child-macro-env

macro-match!

macro-lookup)

($define! (encapsulate

#ignore

decapsulate) (make-encapsulation-type))

;

; The encapsulated value is a pair, whose car is a list of bindings,

; and whose cdr is either a default-behavior applicative, or the

; value encapsulated by the parent.

;

($define! make-empty-macro-env

($lambda (default-behavior)

(encapsulate (cons () default-behavior))))

($define! make-child-macro-env ; for hygienic macros

($lambda (parent)

(encapsulate (cons () (decapsulate parent)))))

368

($define! bind!

($lambda (lss symbol value)

(set-car! lss (cons (cons symbol value)

(car lss)))))

($define! match!

($lambda (lss parameter-tree operand-tree)

($cond ((mc-symbol? parameter-tree)

(bind! lss parameter-tree operand-tree))

((pair? parameter-tree)

(match! lss

(car parameter-tree)

(car operand-tree))

(match! lss

(cdr parameter-tree)

(cdr operand-tree))))))

($define! macro-match!

($lambda (macro-env parameter-tree operand-tree)

(match! (decapsulate macro-env)

parameter-tree

operand-tree)))

($define! macro-lookup

($lambda (symbol macro-env)

($define! aux

($lambda (lss)

($let ((binding (assoc symbol (car lss))))

($cond ((pair? binding) (cdr binding))

((pair? (cdr lss)) (aux (cdr lss)))

(#t ((cdr lss) symbol))))))

(aux (decapsulate macro-env)))))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

; hygienic macro algorithm (hygienic) ;

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

($define! $make-tag-prefixer

($vau (tag) #ignore

($lambda x (cons tag x))))

369

($define! $mc-macro-define!

($vau (name expr) env

($let ((expr (eval expr env)))

(macro-match! ground-macro-env name expr))))

370

Appendix B

Compilation of Kernel programs

This appendix comments briefly on how Kernel programs might be compiled for fast
execution.

The thesis makes no direct claim about fast execution. If Kernel were inherently
unoptimizable, that would cast doubt on the well-behavedness claim of the thesis; but
the existence and promotion of stable special cases, which are therefore optimizable,
was addressed in Chapter 5. Nevertheless, fast execution was an important factor in
the historical debate between macros and fexprs, and so a serious discussion of fexprs
begs the question of how execution speed using fexprs compares to that using macros.

Expansion of preprocessed macros takes zero execution time, exactly because pre-
processing is, by definition, strictly prior to execution. It does not necessarily follow
that preprocessing a macro will cause the program that uses it to execute faster than
if the macro were handled lazily, during execution; on the contrary, macro expansion
to a larger executable image may actually penalize execution time, due to caching.
However, one would still like to know that fexprs can be inlined (the usual term
for preprocessing-time replacement of a compound-combiner call with a customized
transcription of the body of the combiner), so that a compiler has the freedom to
choose whether inlining is appropriate; and, moreover, macro “expansion” may be
Turing-powerful, and so does not necessarily result in a larger executable image than
would a fexpr-based solution.

Inlining a hygienic applicative call is a well-understood technique, and inlining a
hygienic operative call should be comparable. The principal outstanding question,
then, is to what extent one can inline calls to an unhygienic fexpr.

Fexprs that subsume the purposes of macros (and that are therefore central to our
comparison) are typically unhygienic just to the extent that each such fexpr, after
some bounded internal computation to derive suitable expressions from its operands,
uses its dynamic environment to evaluate the derived expressions. (The conversion of
macros into fexprs of this kind was described in §7.3.) This is a very well-behaved sort
of bad hygiene, in that symbols in the captured operands are ultimately evaluated

371

in the static environment of the source-code region from which they were captured.1

Assuming that the fexpr’s own static and local environments are stable, an optimizing
compiler can then readily inline the fexpr, using embedded combiners and gensyms to
maintain hygiene. For example, given the derivation of hygienic binary $or? (from
§5.1),

($define! $or?

($vau (x y) env

($let ((temp (eval x env)))

($if temp temp (eval y env))))) ,

(B.1)

a combination ($or? 〈x〉 〈y〉) could be rewritten as

($sequence

($define! 〈g〉 〈x〉)
($if 〈g〉 〈g〉 〈y〉)) ,

(B.2)

where 〈g〉 is a unique symbol generated for the particular instance of combination-
inlining.

One cannot casually use a $let in the inlined code, because that would change
the properties of the dynamic environment of 〈y〉 for purposes of mutation. If the
body of the fexpr to be inlined is sufficiently tame in its use of local variables —if, for
example, it doesn’t capture its own local variable-names and doesn’t perform exotic
environment-mutations— then one can safely store the local variables in the dynamic
environment, as in the above example (B.2). Local variables that cannot safely be
handled this way would be more troublesome, though in principle one might still
perform inlining by maintaining a variable in the dynamic environment whose value
is itself an explicitly simulated local environment of the fexpr.

An advanced, but still manageable, inlining transformation may be possible if
the macro/fexpr is tail-recursive. A tail-recursive combiner calls itself only through
a tail call, that is, a call whose result will immediately become the result of the
caller. The advantage of a tail call is that it does not require storage of any deferred
actions by the caller: the continuation provided for the result of the caller is provided
by the caller for the result of the tail call. Deep tail-recursion only requires a single
continuation, rather than a deep stack of continuations; and it is possible, in principle,
for a language implementation to support unbounded depths of tail recursion, even

1It appears that, with some effort, one might formulate a weaker hygiene condition that this case
would satisfy (something about the relationship between the source-code position of a symbol and
the environment through which its value is actually observed). The effort of formulation was not
compellingly justified for this dissertation, since after it one would still have a hygiene condition that
cannot be guaranteed in general. Formulation of a similar, but more sophisticated, hygiene condition
would be integral to the development of an environment-guarding facility, which was discussed in
Footnote 9 of §5.2.3.

372

though it has only finite memory space. Such an implementation is said to be properly

tail-recursive.
In a strictly hygienic Lisp, continuations are the only obstacle to properly tail-

recursive implementation. However, if first-class combiners can capture their dynamic
environments, it is possible that arbitrarily deep tail recursion, while requiring only a
bounded continuation stack, may require an arbitrarily deep chaining of environments,
as the local environment of each recursive call might contain a link back to the local
environment of the preceding recursive call. This is why traditional, dynamically
scoped Lisps weren’t properly tail recursive; part of why modern Lisps (following
the precedent of Scheme) are statically scoped; and why Kernel pointedly allows
compound combiners to not capture their dynamic environments, via atom #ignore,
and then encourages its use by building it into $lambda .

However, when a fexpr captures its dynamic environment, and then calls itself re-
cursively, it will most likely make the recursive call in its dynamic environment. This
is because the likely reason for capturing its dynamic environment in the first place
is so that the operands, perhaps somewhat transformed, can be evaluated therein;
and in a recursive call, the intended environment for operand evaluation is the same
as was intended by the recursing caller. Here, for example, is a derivation of variadic
$or? :

($define! $or?

($vau x e

($cond ((null? x) #f)

((null? (cdr x)) (eval (car x) e))

((eval (car x) e) #t)

(#t (apply (wrap $or?) (cdr x)

e))))) .

(B.3)

The only remaining difficulty in recognizing that a call to $or? can be inlined is then
recognizing that its recursion follows the syntactic structure of the operand. Once
this is determined, the entire recursive sequence of calls can be inlined; for example,
a combination ($or? 〈x〉 〈y〉) would be inlined (with the obvious optimization of
eliminating needless tests) as

($cond (〈x〉 #t)

(#t ($cond (〈y〉 #t)

(#t #f)))) .
(B.4)

Commonly, any local variables within the fexpr will disappear during inlining, because
they usually refer to parts of the operand tree, and operand manipulations will be
handled during inlining.

It isn’t even necessary, for inlining of a recursive-fexpr call, that the operand list
of the call be acyclic. Given a fexpr that recursively traverses a cyclic operand list,

373

one can splice the inline expansion into the cyclic structure. For example (using the
cyclic-structure notation from SRFI-38, [Dil03]), an expression

($or? . #0=(〈x〉 〈y〉 . #0#)) , (B.5)

which is a cyclic list of three pairs with a cycle length of 2, would be inlined as

#0=($cond (〈x〉 #t)

(#t ($cond (〈y〉 #t)

(#t #0#)))) .
(B.6)

Splicing the expansion into the structure of the operand list avoids an infinite loop at
expansion time (though the code might still cause an infinite loop at execution time,
if neither evaluation of 〈x〉 nor evaluation of 〈y〉 produces a time-dependent result).

374

Appendix C

The letter vau

In choosing a name and glyphs (lower- and upper-case, per §8.2) for the constructor
of operatives, practical and aesthetic criteria were used (aesthetics here being, in part,
a means to the practical goal of mnemonic utility):

• The name should provide continuity with the traditional name lambda of the
constructor of applicatives. Therefore the name of a letter was to be chosen,
also conveniently providing glyphs.

• Its upper- and lower-case glyphs should be immediately distinguishable from
other common mathematical characters (mainly, Greek Roman and English
letters); while, at the same time, they should fit stylistically with the Greek
alphabet as usually typeset in mathematics (respectively upper- and lower-
case), so that their intended roles in the notional conventions —which require
case associations— are immediately recognized without cognitive dissonance.

Combiner constructors with call syntax similar to $lambda (or λ) are often given
names that are variants of lambda — as Interlisp nlambda for operative construction,
or Felleisen’s λv for call-by-value applicative construction ([Fe91]). However, using
a variant of lambda would imply a central role for $lambda that it doesn’t have in
the current work. The possibility was considered of using the letter corresponding
to λ in another (by preference, even older) alphabet, but the choices were mostly
uninspiring.1 It was decided to use instead a different classical Greek letter, providing
continuity with lambda through the choice of alphabet rather than through the choice
of lineage.

Choosing a letter not cognate to λ loses the specific mnemonic association of
the choice with λ-calculus; so, to compensate, a letter was sought that would have

1The most interesting relative of λ identified, because of its additional connection to hacker
culture (both an asset and a liability), was lambe, which is J.R.R. Tolkien’s elvish letter (tengwa)
for the sound of λ. (Re the cultural significance, see [Ra03, “Elvish”].) However, the name lambe is
so similar in spelling to lambda as to foster confusion, and the glyphic representation of lambe, ,
looks like a relative of τ rather than λ.

375

mnemonic association with the new purpose for which it was to be used. Consid-
ered particularly likely were classical Greek cognates to the letters O (mnemonic for
Operative), or S or F (mnemonic for either word in Special Form).

• The classical Greek letter properly corresponding to the initial O in Operative

is omicron. However, omicron’s glyphs are the same as modern English O, so
that when embedded in a modern English document it fails to look like classical
Greek, undermining its association with λ.

• The other classical Greek letter corresponding to English O is omega. Omega
has the sound of long O (“mega O”), which doesn’t properly correspond to
the initial short O (“micro O”) of the word Operative. Moreover, lower- and
upper-case omega are associated with traditional uses in related mathematics —
notably, lower-case omega for the countable set of nonnegative integers, upper-
case omega for an unnormalizable term in λ-calculus— that would be misleading
in the current work.

• The classical Greek letter corresponding to S is sigma. Lower-case sigma is
already being used in the realm of λ-calculi for an entirely different purpose
(σ-capabilities, §8.3.3.2).

The usual, 24-letter classical Greek alphabet,

α A alpha ι I iota ρ P rho
β B beta κ K kappa σ Σ sigma
γ Γ gamma λ Λ lambda τ T tau
δ ∆ delta µ M mu υ Υ upsilon
ǫ E epsilon ν N nu φ Φ phi
ζ Z zeta ξ Ξ xi χ X chi
η H eta o O omicron ψ Ψ psi
θ Θ theta π Π pi ω Ω omega ,

(C.1)

has no letter corresponding to F . That alphabet was used in Hellenistic times for
writing text.

Ancient alphabets, though, were also often used as numerals — the first letter
representing 1, the second 2, and so on. The ancient Greeks also devised another, more
sophisticated system of letter-numerals: the first nine letters represented integers
1–9; the next nine letters represented multiples of ten, 10–90; and the last nine
letters represented multiples of a hundred, 100–900. Thus, a sequence of 1–3 letters
could represent any integer up to 999. (For larger numbers, a mark added to a
numeral would multiply its value by a thousand). Of course, this system requires
27 letters. They used for the purpose two letters that had been dropped from the

376

written language some time before, and one invented symbol (that may or may not
have been descended from a pre-Greek letter):

1 α A alpha 10 ι I iota 100 ρ P rho
2 β B beta 20 κ K kappa 200 σ Σ sigma
3 γ Γ gamma 30 λ Λ lambda 300 τ T tau
4 δ ∆ delta 40 µ M mu 400 υ Υ upsilon
5 ǫ E epsilon 50 ν N nu 500 φ Φ phi
6 vau 60 ξ Ξ xi 600 χ X chi
7 ζ Z zeta 70 o O omicron 700 ψ Ψ psi
8 η H eta 80 π Π pi 800 ω Ω omega
9 θ Θ theta 90 koppa 900 sampi .

(C.2)

The invented symbol, sampi, was simply tacked onto the end of the sequence.
The letters vau and koppa, which had existed in early versions of the Greek alphabet,
were retained as numerals in the alphabetic positions they had inherited from the
Phoenicians, and recognizably in the positions that the cognate Roman letters still
occupy in modern English: vau, corresponding to F, in the sequence DEF (delta
epsilon vau); koppa, corresponding to Q, in the sequence OPQRST (omicron pi koppa
rho sigma tau).

Kappa and koppa (or qoppa) are cognate to, respectively, Phoenician letters kaph
and koph (qoph), which represent sounds that are meaningfully distinct in Semitic
languages such as Phoenician, but are not meaningfully distinct in Indo-European
languages such as Greek. To the Greeks, therefore, both letters effectively represented
the same sound, and they dropped the second of the two, koppa, at an early stage in
the development of their alphabet.

The story of vau is more tangled.2 Vau (or wau, waw, vav) is the name of the sixth
letter in the Phoenician alphabet, with approximately the sound of w. The Greeks,
needing letters for vowel sounds (written vowels are needed for Indo-European but
not for Semitic languages), requisitioned the form of the Semitic vau to represent
the vowel sound of u. However, the resulting vowel wasn’t placed in the position of
its ancestor, sixth, because there was a lingering need for the sound of w ; instead it
was tacked onto the end of the alphabet, after tau (i.e., upsilon), and the sound of
w retained the sixth position, but took on a new form (on whose origins there are
multiple theories). Eventually, the new form of the sixth letter stabilized on something
much like “F ”, and in that form it is commonly called digamma, describing (so we

2The literature about vau is tangled, too. Readily available accounts of vau routinely contradict
each other on important points. I assembled the brief composite account here after consulting
a number of sources, most of which had little of substance to say on the subject and far less, I
eventually concluded, that could be relied upon. My most trusted particular sources (after careful
comparison and contrast) were, uncoincidentally, also the most recent — two 1971 Encyclopædia
Britannica articles (“F” and “Alphabet”) and (believe it or not) several Wikipedia articles (notably
“stigma (letter)”, “digamma”, “waw (letter)”; http://en.wikipedia.org/, observed 16 December
2005). A good representative of earlier sources is [Men69].

377

are told) its shape that resembles two overlapping gammas. Alternatively, a number
of authors have freely called the Greek letter vau.3 The name vau is preferred for the
current work, and for Kernel, on the grounds that digamma doesn’t convey a suitable
sense of atomicity (rather, it suggests a composite device, derived from gamma).4

In a further twist to the story, since medieval times the numeral vau has often
been given the written form “ ” (even when being called digamma, a name allegedly
descriptive of a different shape5). Symbol , properly called stigma, is a medieval
ligature for the sequence sigma-tau; and in fact the Greek numeral six has also some-
times been written as “στ”. The stigma glyph is also often mistaken for a variant
form of sigma.6

Observing the situation’s remarkably high level of muddlement, especially that
the F-like symbol is commonly called digamma while both names vau and digamma

have multiple forms, it was judged reasonable to treat the written form of vau for
the current work as an open question, with initially in play the full variety of early
historical forms for the letter. Some of the more interesting of these forms (all of
these dating from, as it happens, circa 600 BCE) are

Cretan

Attic

Corinthian

Chalcidian .

(C.3)

We want a glyph that doesn’t look like lambda (“Λ”), which rules out the Cretan;
and we want a glyph that doesn’t look like “F”, which rules out the Chalcidian. The
modern associations of the symbol “?” prevent it from looking like a letter, let alone
a Greek letter. We therefore take the Corinthian backwards-F as a starting point. To
provide the required case distinction and stylistic compatibility with modern math-
ematical notation, we suppose that, if “ F” were put through the same evolutionary

3This could be taken as simply retaining the name of the ancestral Semitic letter. The Wikipedia
article on “digamma” remarked —very plausibly, given the other literature I’ve observed— that it
simply isn’t known what the ancient Greeks called the letter; but, having said that, the article also
suggested that they most likely called it vau.

4The choice of vau over occasional competing spelling wau (the suspected ancient Greek spelling
is vau-alpha-upsilon, which settles the second and third letters, but begs the question of the first)
follows in part the same selective principle, as English letter v conveys a more atomic sense than
English letter w (called “double u” and written as double v).

5However, by numerical value regardless of glyphic representation, digamma is twice gamma.
6In a final twist that somehow isn’t as surprising as it ought to be, the Wikipedia article on

“stigma” noted that stigma is also an alternative name for an obsolete Cyrillic letter. . . koppa, derived
from the Greek qoppa.

378

transformation as “F”, it would develop into a left-right reflection of the modern En-
glish F — which premise also has the practical advantage of letting us typeset our
vau glyphs (both cases) by transforming readily available F glyphs.

For the mechanics of typesetting vau glyphs in LATEX2ε (the medium of the dis-
sertation), we use the PSTricks package commands \psscalebox and \pstilt. The
upper-case vau is a simple left-to-right reflection of text-roman “F”:

\newcommand{\Vau}{{\psscalebox{-1 1}{\textrm{F}}}} . (C.4)

Because lower-case vau transforms the slanted mathematical form of lower-case F,
“f” (rather than the vertical text-roman form, “f”), it can’t be a simple left-right
reflection, because the transformed letter needs to slant in the same direction as
other mathematical letters (whereas simple left-right reflection would yield “ f”). To
produce the proper effect, we use PSTricks command \pstilt to wrench the stem of
the “f” backwards without reversing the arcs at top and bottom of the glyph, and
then use \psscalebox to reflect the entire glyph left-right (and correct for vertical
compression during the tilt):

f \pstilt{116}
f

\psscalebox{-1 1.1126} f
.

(C.5)

(The leftward tilt is 26 degrees, mapping +90 (the positive y axis) to +116. The
horizontal scale factor of 1.1126 is one over the cosine of 26 degrees. Why 26 degrees?
Because it looks better than 25 or 27.)

The currently implemented LATEX2ε code for lower-case vau (including my own
clumsy code to correct the width of the letter) is

\newlength{\vauwidth}

\newcommand{\vau}{%

\settowidth{\vauwidth}{\ensuremath{f}}%

{\hspace*{-.4583\vauwidth}%

{\psscalebox{-1 1.1126}{\pstilt{116}{\ensuremath{f}}}}%

\hspace*{-.4583\vauwidth}}} .

(C.6)

Because this code suffers from the common problem of failing to respond to font-size
changes in math mode, the common task of embedding lower-case vau in mathematical
super- and subscripts is streamlined by a separate command

\newcommand{\vauscript}{\mbox{\scriptsize \vau}} . (C.7)

379

Bibliography

[AbSu85] Harold Abelson and Gerald Jay Sussman with Julie Sussman, Structure

and Interpretation of Computer Programs, New York: McGraw-Hill, 1985.

The first edition of the Wizard Book. ([Ra03, “Wizard Book”].) Mostly
superseded by [AbSu96].

[AbSu96] Harold Abelson and Gerald Jay Sussman with Julie Sussman, Structure

and Interpretation of Computer Programs, Second Edition, New York: MIT
Press, 1996. Available (verified October 2009) at URL:
http://mitpress.mit.edu/sicp/sicp.html

The second edition of the Wizard Book. ([Ra03, “Wizard Book”].)

[Bac78] John Backus, “Can Programming Be Liberated from the von Neumann Style?
A Functional Style and its Algebra of Programs”, Communications of the

ACM 21 no. 8 (August 1978), pp. 613–641.

Augmented form of the 1977 ACM Turing Award lecture, which proposes
the functional programming paradigm, and coins the term “von Neumann
bottleneck”.

[Bare84] Hendrik Pieter Barendregt, The Lambda Calculus: Its Syntax and Semantics

[Studies in Logic and the Foundations of Mathematics 103], Revised Edition,
Amsterdam: North Holland, 1984.

The bible of lambda calculus.

[Baw88] Alan Bawden, Reification without Evaluation, memo 946, MIT AI Lab, June
1988. Available (verified April 2010) at URL:
http://publications.csail.mit.edu/ai/

Explains, criticizes, and endeavors to improve on, the decomposition of
3-LISP by Friedman and Wand ([FrWa84, WaFr86]). Confirms that reflective
procedures in [FrWa84] don’t really need continuations, making them ordinary
fexprs, which he then dismisses as an obviously bad idea. He goes on to show
that the tower of meta-interpreters introduced in [WaFr86] doesn’t really need
continuations either (and would be better off without them). He proposes a

380

language called Stepper in which interpreter level shifts are handled by a
mechanism orthogonal to continuations.

[Baw99] Alan Bawden, “Quasiquotation in Lisp”, 1999 ACM SIGPLAN Workshop on

Partial Evaluation and Semantics-Based Program Manipulation (PESP’99),
San Antonio, Texas, January 22–23, 1999, pp. 88–99.

Analyzes advantages of quasiquotation, addresses splicing and nesting, and
reviews the history of the technology.

[Baw00] Alan Bawden, “First-class Macros Have Types”, Proceedings of the 27th

ACM SIGPLAN-SIGACT Symposium on Principles of programming lan-

guages [Boston, Massachusetts, USA, January 19–21, 2000], 2000, pp. 133–
141. Available (verified October 2009) at URL:
http://people.csail.mit.edu/alan/mtt/

An implementation is available at the web site.

[Be69] James Bell, “Transformations: The Extension Facility of Proteus”, in
[ChrSh69], pp. 27–31.

Transformations encompass both macros and procedures; but their gener-
ality works by selecting properties, rather than unifying them.

[Bl94] Simon Blackburn, The Oxford Dictionary of Philosophy, New York: Oxford
University Press, 1994.

[BrMo62] R.A. Brooker and D. Morris, “A General Translation Program for Phrase
Structure Languages”, Journal of the ACM 9 no. 1 (January 1962), pp. 1–10.

[Cam85] Martin Campbell-Kelly, “Christopher Strachey, 1916–1975 — A Biographi-
cal Note”, Annals of the History of Computing 7 no. 1 (January 1985), pp. 19–
42.

[Car63] Alfonso Caracciolo di Forino, “Some Remarks on the Syntax of Symbolic
Programming Languages”, Communications of the ACM 6 no. 8 (August
1963), pp. 456–460.

A lucid articulation and advocacy of the principle of grammar adaptability.
Well thought out, and still worth reading.

[Che69] T.E. Cheatham, Jr., “Motivation for Extensible Languages” (followed by
group discussion), in [ChrSh69], pp. 45–49.

The pro-extensibility complement to [McI69].

[Chr69] Carlos Christensen, “Extensible Languages Symposium — Chairman’s In-
troduction”, in [ChrSh69], p. 2.

381

[Chr88] Henning Christiansen, “Programming as language development”, datalogiske

skrifter no. 15, Roskilde University Centre, February, 1988.

[ChrSh69] Carlos Christensen and Christopher J. Shaw, editors, Proceedings of the

Extensible Languages Symposium, Boston Massachusetts, May 13, 1969 [SIG-

PLAN Notices 4 no. 8 (August 1969)].

[Chu32/33] Alonzo Church, “A Set of Postulates for the Foundation of Logic” (two
papers), Annals of Mathematics (2), 33 no. 2 (April 1932), pp. 346–366; and
(2), 34 no. 4 (October 1933), pp. 839–864.

Church’s logic that contains lambda calculus as a subset. The definition of
substitution in this paper is corrected by [Kle34] to prevent variable capture.

[Chu36] Alonzo Church, “An Unsolvable Problem of Elementary Number Theory”,
American Journal of Mathematics 58 no. 2 (April 1936), pp. 345–363.

[Chu41] Alonzo Church, The Calculi of Lambda-Conversion, Annals of Mathematics
Studies, Princeton: Princeton University Press, 1941.

77 thrilling pages. Heavy reading, but could be much worse.

[Chu71] Alonzo Church, “Logic, History of”, Encyclopædia Britannica, 1971.

[ChuRo36] Alonzo Church and J.B. Rosser, “Some Properties of Conversion”, Trans-

actions of the American Mathematical Society 39 no. 3 (May 1936), pp. 472–
482.

[Cl85] William Clinger, editor, The Revised Revised Report on Scheme, or An Un-

common Lisp, memo 848, MIT Artificial Intelligence Laboratory, August
1985. Also published as Computer Science Department Technical Report 174,
Indiana University, June 1985. Available (verified April 2010) at URL:
http://publications.csail.mit.edu/ai/

This is the first of the RxRS s with a huge pile of authors (for two perspec-
tives, see [ReCl86, Introduction], [SteGa93, §2.11.1]). There is, as one might
expect from a committee, almost nothing in the way of motivation. LABELS
has disappeared in favor of a family of LET variants. The data types are elab-
orated, notably the column of numeric types, but also the other familiar ones
such as ports and vectors, so that R2R Scheme looks a lot like the current
language. There is a nifty little special form REC for creating a procedure
that can name itself; (REC x (lambda ...)) is equivalent to (LETREC ((x

(lambda ...))) x).

There is also, as one would not normally expect from a committee, a verse
about lambda modeled on J.R.R. Tolkien’s verse about the Rings of Power.

382

[ClRe91a] William Clinger and Jonathan Rees, “Macros that work”, POPL ’91 : Con-

ference Record of the Eighteenth Annual ACM Symposium on Principles of

Programming Languages, Orlando, Florida, January 21–23, 1991, pp. 155–
162.

Draws together the best of previous work reconciling macros with hygiene.
The introduction extensively discusses the various problems that can arise
with macros.

[ClRe91b] William Clinger and Jonathan Rees, editors, “The Revised4 Report on
the Algorithmic Language Scheme”, Lisp Pointers 4 no. 3 (1991), pp. 1–55.
Available (verified October 2009) at URL:
http://www.cs.indiana.edu/scheme-repository/doc.standards.html

[Cu29] H.B. Curry, “An Analysis of Logical Substitution”, American Journal of

Mathematics 51 no. 3 (July 1929), pp. 363–384.

[DaMyNy70] Ole-Johan Dahl, Bjørn Myhrhaug, and Kristen Nygaard, “Common
Base Language”, Norwegian Computing Center Forskningveien 1 B, Oslo 3,
Norway, Publication No. S-22 (Revised edition of publication S-2), October
1970. Available (verified October 2009) at URL:
http://www.fh-jena.de/~kleine/history/history.html

The original version was (apparently; I haven’t seen it) from May 1968.

[Dij72] E.W. Dijkstra, “Notes on Structured Programming”, in O.-J. Dahl, E.W.
Dijkstra, and C.A.R. Hoare, Structured Programming [A.P.I.C. Studies in

Data Programming 8], New York: Academic Press, 1972, pp. 1–82.

[Dil03] Ray Dillinger, “External Representation for Data with Shared Structure”,
SRFI-38, finalized 2 April 2003. Available (verified October 2009) at URL:
http://srfi.schemers.org/srfi-38/

[DoGhLe04] Daniel J. Dougherty, Silvia Ghilezan, and Pierre Lescanne, “Characteriz-
ing strong normalization in a language with control operators”, Proceedings of

the 6th ACM SIGPLAN International Conference on Principles and Practice

of Declarative Programming, August 24–26, 2004, Verona, Italy, pp. 155–166.
Available (verified October 2009) at URL:
http://web.cs.wpi.edu/~dd/publications/#a_fest07

[Dy92] Freeman Dyson, review of Genius: The Life and science of Richard Feynman

by James Gleick (New York: Simon and Schuster, 1992); in Physics Today,
November 1992, p. 87.

[Fe87] Matthias Felleisen, The Calculi of Lambda-v-CS Conversion: A Syntactic

Theory of Control and State in Imperative Higher-Order Programming Lan-

guages, Ph.D. Dissertation, TR226, Computer Science Department, Indiana

383

University, 5 August 1987. Available (verified April 2010) at URL:
http://www.ccs.neu.edu/scheme/pubs/#felleisen87

[Fe88] Matthias Felleisen, “The Theory and Practice of First-Class Prompts”, POPL

’88 : Conference Record of the Fifteenth Annual ACM Conference on Princi-

ples of Programming Languages, San Diego, California, January 10–13, 1988,
pp. 180–190.

[Fe91] Matthias Felleisen, “On the Expressive Power of Programming Languages”,
Science of Computer Programming 17 nos. 1–3 (December 1991) [Selected Pa-
pers of ESOP ’90, the 3rd European Symposium on Programming], pp. 35–75.
A preliminary version appears in Neil D. Jones, editor, ESOP ’90: 3rd Euro-

pean Symposium on Programming [Copenhagen, Denmark, May 15–18, 1990,
Proceedings] [Lecture Notes in Computer Science 432], New York: Springer-
Verlag, 1990, pp. 134–151. Available (verified October 2009) at URLs:
http://www.ccs.neu.edu/scheme/pubs/#scp91-felleisen

http://www.cs.rice.edu/CS/PLT/Publications/Scheme/

His formal criterion for expressiveness is closely related to Landin’s notion
of syntactic sugar and Kleene’s formal definition of eliminable symbols in a
formal system.

[FeFr89] Matthias Felleisen and Daniel P. Friedman, “A Syntactic Theory of Se-
quential State”, Theoretical Computer Science 69 no. 3 (18 December 1989),
pp. 243–287.

Provides some good insights into the nature of calculi.

[FeFrKoDu87] Matthias Felleisen, Daniel P. Friedman, Eugene Kohlbecker, and
Bruce Duba, “A Syntactic Theory of Sequential Control”, Theoretical Com-

puter Science 52 no. 3 (1987), pp. 205–237.

[FeHi92] Matthias Felleisen and Robert Hieb, “The Revised Report on the Syntactic
Theories of Sequential Control and State”, Theoretical Computer Science 103
no. 2 (September 1992), pp. 235–271. Available (verified December 2009) at
URL:
http://www.ccs.neu.edu/scheme/pubs/#tcs92-fh

[Fl10] Matthew Flatt and PLT, Reference: PLT Scheme, version 4.2.5. Available
(verified April 2010) at URL:
http://download.plt-scheme.org/doc/html/reference/index.html

384

[FrWa84] Daniel P. Friedman and Mitchell Wand, “Reification: Reflection without
Metaphysics”, Proceedings of the 1984 ACM Conference on Lisp and Func-

tional Programming, 1984, pp. 348-355.

Reflective procedures are what might be called ‘three-argument fexprs’
— operand list, dynamic environment, and continuation; but the reflective
capacity of the language actually comes from mixing these with an erosion
of the encapsulation of the environment data type. Their language is called
Brown, and includes neither the rearrangement of evaluation and quotation
embodied in Smith’s work by 2-LISP, [Sm84], nor Smith’s infinite tower of
interpreters. The tower is reintroduced in [WaFr86].

[Ga89] Richard P. Gabriel, editor, “Draft Report on Requirements for a Common
Prototyping System”, SIGPLAN Notices 24 no. 3 (March 1989), p. 93ff (in-
dependently paginated; only the first page also has issue pagination).

[Ga91] Richard P. Gabriel, “LISP: Good News, Bad News, How to Win Big”, AI

Expert 6 no. 6 (June 1991), pp. 30–39. Available (verified April 2010) at
URL:
http://www.dreamsongs.com/WIB.html

[GaSt90] Richard P. Gabriel and Guy L. Steele Jr., “Editorial: The Failure of Ab-
straction”, Lisp and Symbolic Computation 3 no. 1 (January 1990), pp. 5–12.

Lists three advantages of abstraction: abbreviation, opacity, and locality.
Details nine failures of abstraction.

The first six are “failures of human spirit to push the concept of abstraction
to its maximum extent”: (1) During modification, locality disappears. (2–
4) Lack of control, communication, and process abstractions. (5) These omis-
sions cause programs to be written at varying levels of abstraction. (6) Failure
to abstract over time.

The last three are “failures of the people who design and use programming
languages”: (7) Lack of support for documentation and other mechanisms for
learning about an abstraction. (8) Abstractions are often selected for perfor-
mance reasons. (9) Difficulty of reapplying abstractions to new problems.

[GiSu1880] Sir W.S. Gilbert and Sir Arthur Sullivan, The Pirates of Penzance; or,

The Slave of Duty, 1880. Available (verified April 2010) at URL:
http://math.boisestate.edu/gas/pirates/html/

[GoSmAtSo04] Dina Q. Goldin, Scott A. Smolka, Paul C. Attie, and Elaine L. Son-
deregger, “Turing machines, transition systems, and interaction” Information

385

and Computation 194 no. 2 (1 November 2004), pp. 101–128. Available (ver-
ified April 2010) at URL:
http://www.cs.aub.edu.lb/pa07/files/pubs.html

[Gra93] Paul Graham, On Lisp, Practice Hall, 1993. Available (verified April 2010)
at URL:
http://www.paulgraham.com/onlisp.html

[Gri90] Timothy G. Griffin, “A Formulae-as-Types Notion of Control”, POPL ’90 :
Proceedings of the 17th ACM SIGPLAN-SIGACT Symposium on Principles

of Programming Languages, San Francisco, California, United States, 1990,
pp. 47–58.

[Gua78] Loretta Rose Guarino, “The Evolution of Abstraction in Programming Lan-
guages, CMU-CS-78-120, Department of Computer Science, Carnegie-Mellon
University, Pennsylvania, 22 May 1978.

[Ha63] Timothy P. Hart, MACRO Definitions for LISP, memo 57, MIT AI Lab,
October 1963. Available (verified April 2010) at URL:
http://publications.csail.mit.edu/ai/

[Hof79] Douglas R. Hofstadter, Gödel, Escher, Bach: An Eternal Golden Braid, New
York: Vintage Books, 1979.

[Hu00] John Hughes, “Generalizing monads to arrows”, Science of Computer Pro-

gramming 37 nos. 1–2 (May 2000), pp. 67–111.

His overloading of the term “arrow” in a categorical setting is reprehensible.
Instead of adjunctions (thus, monads) he’s using Freyd categories.

[Ic71] Jean D. Ichbiah, “Extensibility in SIMULA 67”, in [Sc71], pp. 84–86.

[KeClRe98] Richard Kelsey, William Clinger, and Jonathan Rees, editors, “Revised5

Report on the Algorithmic Language Scheme”, 20 February 1998. Available
(verified April 2010) at URL:
http://groups.csail.mit.edu/mac/projects/scheme/index.html

[KeRi78] Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language,
Englewood Cliffs: Prentice-Hall, 1978.

The Old Testament. (See [Ra03, “Old Testament”].)

[Kle34] S.C. Kleene, “Proof by Cases in Formal Logic”, Annals of Mathematics (2),
35 no. 3 (July 1934), pp. 529–544.

Incidental to the main point of the paper, which is to show that proof by
cases is possible under the axioms of [Chu32/33], adjusts the definition of
substitution to avoid variable capture.

386

[Kle52] S.C. Kleene, Introduction to Metamathematics, Princeton, N.J.: Van Nos-
trand, 1952.

This excellent book is (as of January 2003) still in print, by North-Holland,
in its thirteenth impression. Corrections were made through the seventh im-
pression in 1971.

[KleRo35] S.C. Kleene and J.B. Rosser, “The Inconsistency of Certain Formal Log-
ics”, Annals of Mathematics (2), 36 no. 3 (July 1935), pp. 630–636.

[Kli72] Morris Kline, Mathematical Thought from Ancient Through Modern Times,
New York: Oxford University Press, 1972.

[Kl80] Jan Willem Klop, Combinatory Reduction Systems, Ph.D. Thesis, University
of Utrecht, 1980. Also, Mathematical Centre Tracts 127. Available (verified
December 2009) at URL:
http://web.mac.com/janwillemklop/Site/Bibliography.html

[KoFrFeDu86] Eugene Kohlbecker, Daniel P. Friedman, Matthias Felleisen, and
Bruce Duba, “Hygienic macro expansion”, Proceedings of the 1986 ACM Con-

ference on Lisp and Functional Programming, 1986, pp. 151–159.

[Kr01] Shriram Krishnamurthi, “Linguistic Reuse”, Ph.D. Dissertation, Rice Univer-
sity, May 2001. Available (verified April 2010) at URL:
http://www.cs.rice.edu/CS/PLT/Publications/Scheme/#diss

[La64] P.J. Landin, “The mechanical evaluation of expressions”, Computer Journal

6 no. 4 (January 1964), pp. 308–320.

[La00] P.J. Landin, “My Years with Strachey”, Higher-Order and Symbolic Compu-

tation 13 no. 1/2 (April 2000), pp. 75–76.

[Li93] C.H. Lindsey, “A History of ALGOL 68”, SIGPLAN Notices 28 no. 3 (March
1993) [Preprints, ACM SIGPLAN Second History of Programming Languages

Conference, Cambridge, Massachusetts, April 20–23, 1993], pp. 97–132.

[Lo1690] John Locke, An Essay Concerning Human Understanding, 1690. Available
(verified April 2010) at URL:
http://humanum.arts.cuhk.edu.hk/Philosophy/Locke/echu/

[McC60] John McCarthy, “Recursive Functions of Symbolic Expressions and Their
Computation by Machine”, Communications of the ACM 3 no. 4 (April 1960),
pp. 184–195.

This is the original reference for Lisp.

387

[McC78] John McCarthy, “History of LISP”, SIGPLAN Notices 13 no. 8 (August
1978) [Preprints, ACM SIGPLAN History of Programming Languages Con-

ference, Los Angeles, California, June 1–3, 1978], pp. 217–223.

Covers development of the basic ideas, through 1962.

Erratum: The second and third sections are both numbered “2”.

[McC+60] J. McCarthy, R. Brayton, D. Edwards, P. Fox, L. Hodes, D. Luckham, K.
Maling, D. Park, and S. Russell, Lisp I Programmer’s Manual, Computation
Center and Research Laboratory of Electronics, Massachusetts Institute of
Technology, Cambridge, Massachusetts, March 1, 1960. Available (verified
April 2010) at URL:
http://www.softwarepreservation.org/projects/LISP/

[McC+62] John McCarthy, Paul W. Abrahams, Daniel J. Edwards, Timothy P. Hart,
and Michael I. Levin, LISP 1.5 Programmer’s Manual, Cambridge, Massachu-
setts: The MIT Press, 1962. Available (verified April 2010) at URL:
http://www.softwarepreservation.org/projects/LISP/

The second edition was 1965, same authors.

[McI60] M. Douglas McIlroy, “Macro Instruction Extensions of Compiler languages”,
Communications of the ACM 3 no. 4 (April 1960), pp. 214–220.

[McI69] M. Douglas McIlroy, “Alternatives to Extensible Languages” (followed by
group discussion), in [ChrSh69], pp. 50–52.

The symposium had two papers back to back, roughly pro and con exten-
sibility. The pro position was taken by T.E. Cheatham, [Che69]; while con

was taken in this paper (by McIlroy, who was as close to a founding father as
the extensible-languages movement had). The mood of the paper isn’t exactly
negative, though; he actually agrees with Cheatham on a couple of big points,
one being that “the effort in extensible languages is going to lay bare the fun-
damentals of programming and, therefore, from an academic standpoint, the
effort is highly justified.”

[Men69] Karl Menninger, Number Words and Number Symbols, translated by Paul
Broneer from the revised German edition, Cambridge, Massachusetts: The
MIT Press, 1969.

[Mer90] N. David Mermin, “What’s wrong with these equations?”, in: Boojums All

The Way Through: Communicating Science in a Prosaic Age, Cambridge
University Press, 1990, pp. 68–73.

Eloquently promotes three rules for treatment of displayed equations:

388

1. Number all displayed equations (so that anyone who later reads the
document can refer to them).

2. Refer to a displayed equation by a descriptive phrase as well as by number
(so that the reader can make sense of a referring sentence without having
to first decode its references).

3. Treat each displayed equation as part of the prose in which it occurs,
ending the equation with a punctuation mark as appropriate (so the
reader passes smoothly through the equation as part of the text, rather
than stepping discontinuously into and then out of it as they would if it
were a table or figure separated from the text).

[Mi93] John C. Mitchell, “On Abstraction and the Expressive Power of Program-
ming Languages”, Science of Computer Programming 212 (1993) [Special is-
sue of papers from Symposium on Theoretical Aspects of Computer Software,
Sendai, Japan, September 24–27, 1991], pp. 141–163. Also, a version of the
paper appeared in: Takayasu Ito and Albert R. Meyer, editors, Theoretical

Aspects of Computer Science: International Conference TACS’91 [Sendai,
Japan, September 24–27, 1991] [Lecture Notes in Computer Science 526],
Springer-Verlag, 1991, pp. 290–310. Available (verified April 2010) at URL:
http://theory.stanford.edu/people/jcm/publications.htm

#typesandsemantics

[MitGnuScheme] MIT Scheme 9.0.1 Reference. Available (verified April 2010) at
URL:
http://www.gnu.org/software/mit-scheme/documentation/mit-

scheme-ref/index.html

[Mose70] Joel Moses, The Function of FUNCTION in LISP; or, Why the FUNARG

Problem Should be Called the Environment Problem, memo 199, MIT AI Lab,
June 1970. Available (verified April 2010) at URL:
http://publications.csail.mit.edu/ai/

[Moss00] Peter D. Mosses, “A Foreword to ‘Fundamental Concepts in Programming
Languages’ ”, Higher-Order and Symbolic Computation 13 no. 1/2 (April
2000), pp. 7–9.

[Mu91] Robert Muller, “M-LISP: Its Natural Semantics and Equational Logic”, in
Proceedings of the ACM SIGPLAN and IFIP Symposium on Partial Evalu-

ation and Semantics Based Program Manipulation, June 1991, pp. 234–242.
Available (verified April 2010) at URL:
http://www.cs.bc.edu/~muller/research/papers.html#pepm91

Superseded by [Mu92], but the later paper doesn’t specifically address fex-
prs (and, incidentally, beware the bibliography of the later paper, as it’s
riddled with errors).

389

[Mu92] Robert Muller, “M-LISP: A Representation-Independent Dialect of LISP with
Reduction Semantics”, ACM Transactions on Programming Languages and

Systems 14 no. 4 (October 1992), pp. 589–616. Available (verified April 2010)
at URL:
http://www.cs.bc.edu/~muller/research/papers.html#toplas

Caveat: the bibliography of this paper is riddled with errors.

A revised and expanded version of, and supersedes, [Mu91]; however, the
earlier paper specifically discusses fexprs, which this paper does not.

[Pi80] Kent M. Pitman, “Special Forms in Lisp”, Proceedings of the 1980 ACM Con-

ference on Lisp and Functional Programming, 1980, pp. 179–187. Available
(verified January 2010) at URL:
http://www.nhplace.com/kent/Papers/Special-Forms.html

This is one of those papers that gets cited a lot, by papers within its par-
ticular clique, because it carefully and clearly develops some basic conclusions
that everyone later wants to take as given. In a nutshell: fexprs are badly be-
haved (second opinion: they’re ugly, too), so future Lisps should use macros
instead.

[Pi83] Kent M. Pitman, The revised MacLisp Manual (Saturday evening edition),
MIT Laboratory for Computer Science Technical Report 295, May 21, 1983.

[Pla86] P.J. Plauger, “Which tool is best?”, Computer Language 3 no. 7 (July 1986),
pp. 15–17, 19.

The premier of Plauger’s regular column, “Programming on Purpose”.

[Plo75] Gordon D. Plotkin, “Call-by-name, call-by-value, and the λ-calculus”, The-

oretical Computer Science 1 no. 2 (December 1975), pp. 125–159. Available
(verified April 2010) at URL:
http://homepages.inf.ed.ac.uk/gdp/publications/

[Plo81] Gordon D. Plotkin, “A structural approach to operational semantics”, Tech-
nical Report DAIMI FN-19, Aarhus University, 1981. A transcribed version
is available (verified April 2010) at URL:
http://homepages.inf.ed.ac.uk/gdp/publications/

[Qu61] W.V. Quine, from a logical point of view, Second Edition, revised, New York:
Harper & Row, 1961.

A collection of nine “logico-philosophical essays”.

[Ra03] Eric S. Raymond, The Jargon File, version 4.4.7, 29 December 2003. Available
(verified April 2010) at URL:
http://www.catb.org/~esr/jargon/

390

[ReCl86] Jonathan Rees and William Clinger, editors, “The Revised3 Report on
the Algorithmic Language Scheme”, SIGPLAN Notices 21 no. 12 (Decem-
ber 1986), pp. 37–43. Available (verified April 2010) at URL:
http://www.cs.indiana.edu/scheme-repository/doc.standards.html

The second of the RxRS s authored by a committee. Introduces a high-level
statement on language-design principles in the Introduction, which has been
passed on to all the RxRS s since.

[Rey93] John C. Reynolds, “The discoveries of continuations”, Lisp and Symbolic

Computation 6 nos. 3/4 (1993), pp. 233–247. Available (verified April 2010)
at URL:
ftp://ftp.cs.cmu.edu/user/jcr/histcont.pdf

[Rey72] John C. Reynolds, “Definitional Interpreters for Higher-Order Program-
ming Languages”, Proceedings of the ACM Annual Conference, 1972, (vol. 1)
pp. 717–740. Reprinted in Higher-Order and Symbolic Computation 11 no. 4
(December 1998), pp. 363–397.

Unifies several previous attempts to define language semantics under the
name “meta-circular evaluator”.

He describes static scoping, not by that name, and says —forcefully— that
everyone agrees that well-designed languages must work that way.

[Rog87] Hartley Rogers, Jr., Theory of Recursive Functions and Effective Computabil-

ity, Cambridge, Massachusetts: The MIT Press, 1987.

[Ros82] J. Barkley Rosser, “Highlights of the history of the lambda-calculus”, Pro-

ceedings of the 1982 ACM Conference on Lisp and Functional Programming,
1982, pp. 216–225.

[Sa69] Jean E. Sammet, Programming Languages: History and Fundamentals, En-
glewood Cliffs: Prentice-Hall, 1969.

[Sc71] Stephen A. Schuman, Proceedings of the International Symposium on Exten-

sible Languages, Grenoble, France, September 6–8, 1971 [SIGPLAN Notices

6 no. 12 (December 1971)].

[Share58] J. Strong, J. Olsztyn, J. Wegstein, O. Mock, A. Tritter, and T. Steel,
“The Problem of Programming Communication With Changing Machine: A
Proposed Solution” (Report of the Share Ad-Hoc Committee on Universal
Languages), Communications of the ACM 1 no. 8 (August 1958), pp. 12–18.

The first of two parts.

391

[ShiWa05] Olin Shivers and Mitchell Wand, “Bottom-up β-reduction: uplinks and
λ-DAGs”, in Moogly Sagiv, editor, Programming Languages and Systems:

14th European Symposium on Programming, ESOP 2005, Held as Part of

the Joint European Conferences on Theory and Practice of Software, ETAPS

2005, Edinburgh, UK, April 4–8, 2005, Proceedings [Lecture Notes in Com-

puter Science 3444], Springer-Verlag, 2005. Available (verified April 2010) at
URL:
http://www.ccs.neu.edu/home/wand/pubs.html#ShiversWand:ESOP-05

Expanded version: BRICS Technical Report RS-04-38, Department of Com-
puter Science, University of Århus. Available (verified April 2010) at URL:
http://www.brics.dk/RS/04/38/index.html

[Sho95] R.J. Shoenfield, “The mathematical work of S.C. Kleene”, The Bulletin of

Symbolic Logic 1 no. 1 (March 1995), pp. 9–43.

[Shu03a] John N. Shutt, “Monads for programming languages”, technical report
WPI-CS-TR-03-21, Worcester Polytechnic Institute, Worcester, MA, June
2003. Available (verified April 2010) at URL:
http://www.cs.wpi.edu/Resources/techreports.html

[Shu03b] John N. Shutt, “Recursive Adaptable Grammars”, M.S. Thesis, WPI CS
Department, 10 August 1993, emended 16 December 2003. Available (verified
April 2010) at URL:
ftp://ftp.cs.wpi.edu/pub/projects_and_papers/theory/

[Shu08] John N. Shutt, “Abstractive Power of Programming Languages: Formal Defi-
nition”, technical report WPI-CS-TR-08-01, Worcester Polytechnic Institute,
Worcester, MA, March 2008, emended 26 March, 2008. Available (verified
April 2010) at URL:
http://www.cs.wpi.edu/Resources/techreports.html

[Shu09] John N. Shutt, “Revised-1 Report on the Kernel Programming Language”,
technical report WPI-CS-TR-05-07, Worcester Polytechnic Institute, Worces-
ter, MA, March 2005, amended 29 October 2009. Available (verified June
2010) at URL:
http://www.cs.wpi.edu/Resources/techreports.html

[Shu10] John N. Shutt, Fexprs as the basis of Lisp function application; or, $vau :

the ultimate abstraction, Ph.D. Dissertation, WPI CS Department, 2010.

392

[Sm84] Brian Cantwell Smith, “Reflection and Semantics in Lisp”, POPL ’84 : Con-

ference Record of the ACM Conference on Principles of Programming Lan-

guages, Salt Lake City, Utah, January 15–18, 1984, pp. 23–35.

3-LISP lambda expressions have a keyword simple or reflect. Reflec-
tive procedures take three parameters: operands, dynamic environment, and
continuation. This paper is short on technical explanation.

[Sp+07] Michael Sperber, R. Kent Dybvig, Matthew Flatt, and Anton van Straaten,
“Revised6 Report on the Algorithmic Language Scheme”, 26 September 2007.
Available (verified April 2010) at URL:
http://www.r6rs.org/

[Sta75] Thomas A. Standish, “Extensibility in Programming Language Design”, SIG-

PLAN Notices 10 no. 7 (July 1975) [Special Issue on Programming Language

Design], pp. 18–21.

A retrospective survey of the subject, somewhat in the nature of a post-
mortem. The essence of Standish’s diagnosis is that the extensibility features
required an expert to use them. He notes that when a system is complex,
modifying it is complex. (He doesn’t take the next step, though, of suggesting
that some means should be sought to reduce the complexity of extended
systems.)

He classifies extensibility into three types: paraphrase (defining a new fea-
ture by showing how to express it with pre-existing features — includes or-
dinary procedures as well as macros); orthophrase (adding new facilities that
are orthogonal to what was there — think of adding a file system to a lan-
guage that didn’t have one); and metaphrase (roughly what would later be
called “reflection”).

[Ste76] Guy Lewis Steele Jr., LAMBDA: The Ultimate Declarative, memo 379, MIT
AI Lab, November 1976. Available (verified April 2010) at URL:
http://publications.csail.mit.edu/ai/

[Ste78] Guy Lewis Steele, RABBIT: A Compiler for SCHEME, memo 474, MIT AI
Lab, May 1978. Available (verified April 2010) at URL:
http://publications.csail.mit.edu/ai/

[Ste90] Guy Lewis Steele Jr., Common Lisp: The Language, 2nd Edition, Digital
Press, May 1990. Available (verified April 2010) at URL:
http://www.supelec.fr/docs/cltl/cltl2.html

[SteGa93] Guy L. Steele Jr. and Richard P. Gabriel, “The Evolution of Lisp”, SIG-

PLAN Notices 28 no. 3 (March 1993) [Preprints, ACM SIGPLAN Second

History of Programming Languages Conference, Cambridge, Massachusetts,
April 20–23, 1993], pp. 231–270.

393

[SteSu76] Guy Lewis Steele Jr. and Gerald Jay Sussman, LAMBDA: The Ultimate

Imperative, memo 353, MIT AI Lab, March 10, 1976. Available (verified April
2010) at URL:
http://publications.csail.mit.edu/ai/

[SteSu78a] Guy Lewis Steele Jr. and Gerald Jay Sussman, The Revised Report on

SCHEME: A Dialect of LISP, memo 452, MIT Artificial Intelligence Labora-
tory, January 1978. Available (verified April 2010) at URL:
http://publications.csail.mit.edu/ai/

The last 12 of 34 pages are endnotes. Contrast with the original Scheme
report ([SuSt75]): EVALUATE has been removed, replaced by ENCLOSE that
takes an expression and a representation of an environment. There are macros.
The multiprocessing is still there, but the synchronization primitive has been
removed and they say (p. 24) it was a mistake because it synchronized lexically
instead of dynamically. There are also fluid bindings.

[SteSu78b] Guy Lewis Steele Jr. and Gerald Jay Sussman, The Art of the Interpreter;

or, The Modularity Complex, memo 453, MIT Artificial Intelligence Labora-
tory, May 1978. Available (verified April 2010) at URL:
http://publications.csail.mit.edu/ai/

Incrementally evolves a meta-circular evaluator starting from the most
primitive LISP, analyzing difficulties at each state and augmenting/modifying
accordingly. Focus is on support for incremental development of modular sys-
tems.

See [SteGa93, §2.8].

[Stra67] Christopher Strachey, “Fundamental Concepts in Programming”, Lecture
notes for International Summer School on Computer Programming, Copen-
hagen, August 7 to 25, 1967.

These notes have been cited commonly when crediting Strachey with coin-
ing the term polymorphism as it applies to programming languages. The dis-
cussion of polymorphism is on page 10.

Strachey later turned these notes into a paper, which remained unpublished
until it appeared as [Stra00].

[Stra00] Christopher Strachey, “Fundamental Concepts in Programming Languages”,
Higher-Order and Symbolic Computation 13 no. 1/2 (April 2000), pp. 11–49.

This is Strachey’s paper based on his lectures, [Stra67]. On the history of
the paper, see [Moss00].

394

[SuSt75] Gerald Jay Sussman and Guy Lewis Steele Jr., Scheme: An Interpreter for

Extended Lambda Calculus, memo 349, MIT Artificial Intelligence Laboratory,
December 1975.

The revised0 report on Scheme. The actual description of the language is
only through page 5.

[Ta99] Walid Taha, “Multi-Stage Programming: Its Theory and Applications”,
Ph.D. Dissertation, Technical Report CSE-99-TH-002, Oregon Graduate In-
stitute of Science and Technology, November 1999. Available (verified April
2010) at URL:
http://www.cs.rice.edu/~taha/publications.html

[To88] M. Tofte, “Operational semantics and polymorphic type inference”, Ph.D.
Thesis, University of Edinburgh, 1988. Available (verified April 2010) at URL:
http://www.itu.dk/people/tofte/publ/

Big step operational semantics. (Contrast [WrFe94].)

[Tu37] Alan Turing, “Computability and λ-Definability”, Journal of Symbolic Logic

2 no. 4 (December 1937), pp. 153–163.

[vW65] Adriann van Wijngaarden, “Orthogonal design and description of a formal
language”, Technical Report MR 76, Mathematisch Centrum, Amsterdam,
1965. Available (verified April 2010) at URL:
http://www.fh-jena.de/~kleine/history/history.html

This paper is the origin of the term orthogonal in programming-language
design (although that term occurs only in the title), and of W-grammars. It
was an early element of the Algol X (later Algol 68) development process; see
[Li93].

[Wa98] Mitchell Wand, “The Theory of Fexprs is Trivial”, Lisp and Symbolic Com-

putation 10 no. 3 (May 1998), pp. 189–199. Available (verified April 2010) at
URL:
http://www.ccs.neu.edu/home/wand/pubs.html#Wand98

This paper is a useful elaboration of the basic difficulty caused by mixing
fexprs with implicit evaluation in an equational theory. Along the way, the
author makes various sound observations. “We care,” he notes in the conclud-
ing section, “not only when two terms have the same behavior, but we may
also care just what that behavior is.”

[WaFr86] Mitchell Wand and Daniel P. Friedman, “The Mystery of the Tower Re-
vealed: A Non-Reflective Description of the Reflective Tower”, Lisp and Sym-

bolic Computation 1 no. 1 (1988), pp. 11–37.

Sequel to [FrWa84], adds a reflective tower to Brown.

395

[Wegb80] Ben Wegbreit, Studies in Extensible Programming Languages [Outstanding

Dissertations in the Computer Sciences], New York: Garland Publishing, Inc.,
1980.

A reprint of ESD-TR-70-297, Harvard University, May 1970.

Shows that (1) ECFL membership is Turing decidable, and (2) a large
subset of ECFLs are context-sensitive; but whether all ECFLs are context-
sensitive is left an open question.

[Wegn69] Peter Wegner, Chair, “Panel on the Concept of Extensibility”, in
[ChrSh69], pp. 53–54.

[WrFe94] Andrew K. Wright and Matthias Felleisen, “A Syntactic Approach to
Type Soundness”, Information and Computation 155 no. 1 (November 1994),
pp. 38–94. Available (verified April 2010) at URL:
http://www.ccs.neu.edu/scheme/pubs/#ic94-wf

Small step operational semantics. (Contrast [To88].)

[Za03] Richard Zach, “Hilbert’s Program”, 2003, in Stanford Encyclopedia of Phi-

losophy, Metaphysics Research Lab, Stanford University. Available (verified
April 2010) at URL:
http://plato.stanford.edu/entries/hilbert-program/

396

