L ecture 5: Computer
Architecture

» Computer Architecture
—Registers

—Flags
— Address Caculation

Computer Organization

CPU

Control Unit

ALU

Registers

|| Output

Input —

| [
Memory

Components

* Control Unit —

Arithmetic logical unit (ALU) —

Registers—

Buses—

8086 Block Diagram

Clck - Control Bus
= > Control Unit —
Interrupt
Flags R
y
1P
ALU
) Address
INares Instructior Bus
BX |BH| BL Bus
CexeH | CL Interface
DX [DH | DL Data .
(> Unit [
Data Registers N—
Index Registers i gf:
+5V
— Sl cs
DI
» DS
<] ap =
SP ES

General Purpose
Registers

o Dataregisters, also known as
general purposeregisters. AX,
BX, CX, DX

 Used for arithmetic operations
and data movement

 Can be addressed as 16 bit or 8
bit values. For AX, upper 8 bits
are AH, lower 8 bitsare AL.

* Remember: when when a 16 bit
register is modified, so are the
corresponding 8 bit registers!

Registers
Example
15 0
AX AH AL
7 07 0
AH AL
AX | 00000000 0000 0000

* move 0001 1001 1110 0100 to AX
AH AL

AX 0001 1001 11100100

¢ move 0011 1101 to AH
AH AL

AX

Special Attributes of GP
Registers

* AX —accumulator

BX —base

e CX —counter

DX —data

Segment Registers Segment Registers, cont.

» Segment registers are used as » CS-— code segment
base locations for program
instructions, data, and the stack.

* All references to memory

involve a segment register as
the base location.

DS —data segment

o SS— stack segment

ES — extra segment

Index Registers, cont.
Index Registers » BP —base pointer

* Index registers contain the
offsets of data and instructions.

o Offsat:

e SP-— stack pointer

* S| — sourceindex

* Index registers are used when * DI - destination index
processing strings, arrays, and
other data structures.

Status and Control

Registers Status Flags

 |P—ingtruction pointer » Carry flag (CF)

» Overflow flag (OF)

* Flags—

» Signflag (SF)

Status Flags, cont. Addressing

» Zeroflag (ZF) * Address: anumber referring to
an 8-bit memory location

Logical addresses go from 0 to
the highest location

_ Logical addresses require
* Parity trandation into physical
addresses

For Intel (8086):

Pins on the 8086

G 1 20 fivee
DIENTY 39 J] A15D15
DAl 3 33 JA16/s3
DI2ALZ | 4 37 P ALTISA
pwAlll s 36 JA18/S5
DALl 6 35 | AL9s6

pgAs | 7 ull

D&/As || 33 MNMX

8
p7ATR 9 8086 32 JRD _
DE/AG [} 10 CPU 3 fi RQIGTO

D5/AS | 11 30 [JRGTL
DaA4 12 29 JjLock
DIA3 R 13 28 2
p2A2 || 14 27 st
DVALR 15 2 |
poAo | 16 2 o
Nt 17 24 JJINTA
INTR]| 18 23 || TEST
cLk | 19 2 J] READY
G\ | 20 21 || RESET

Addressing, cont.

How do you have a 20-hit
address with 16 bit registers?

Why Segment-Offset?

00000

FFFFF

Data Segment

addressable memory on 8086

Example:
DS=0100h
data seg. start?
data seg. end?

If BX containsthe
offset:

BX =005Ah
EA =7

Segment Register
Combinations

Code Segment — the CSregister
and IP (instruction pointer) are
used to point to the next
instruction.

Stack — the SSregister is used
with the SP (stack pointer) or
BP (base pointer)

Data Segment — DSwith BX,
Sl, or DI

Extended Segment —BX, S, or
DI

More on Effective
Addresses

» There’smore than one way to
get the same effective address!
* Example:
—CS=147Bh
—-1P=131Ah
—EA =147B0 + 131A = 15ACAh

or

—CS=15ACh

—1P=000Ah

—EA = 15AC0 + 000A = 15ACAh

If CS = 147B, what range of
effective addresses can be
referenced without changing the
valuein CS?

Homework 2

* Two parts:

—Part 1. Use Debug to enter and
run asimple machine code
program

* convert input datainto 2's
complement hex

* enter data at the correct address
* enter program at the correct address
* run the program
— Part 2: Write asimple machine

code program, given pseudo-code

« these ingtructions should be similar
to those in the Part 1 problem.

* enter and run the resulting program.

Part | - ExampleProgram

Given below is a machine code program that calculates the sum
of al the words in a given range of addresses in memory. The
code expects that the lower bound of this range is specified in the Part 1
BX register and the upper bound in the DX register. (BX holds
the offset of the beginning of the data to be summed from the
beginning of the data segment (DS). DX holds the offset of the

last data element from the beginning of the data segment.) The ; P y
sum gets stored in AX. ThgefBig rst 4 r?a digits giv:gon ea):h line * Convert Inpm datainto 2's
below represent the offset of the instruction from the beginning compl ement hex
of the code segment. The digits after the dash are the machine — use the techniques you used on HW2
code ingtructions. To the right are English explanations of the
instructions. Enter data at the correct address
— DS holds the segment

0000 -2BCO subtract AX from itself (to make it O) o
0002 - 0307 add the word pointed to by BX to AX — Look at how you did thisin lab!

0004 -83C302 add 2to BX (to point to the next word)
0007 -3BD3 compare BX to DX « Enter program at the correct address

(compare sets internal flags that are used by — CS holds the segment
subsequent jump instructions) _

0009 - 7DF7 if DX >= BX, then jump back to the P h_OI ds the offset
instruction at 0002 — Again —look at thelab!

000B - B8004C thisinstruction and the next one return

|
control to DOS * Run your program!

000E -CD21

