
1

Lecture 5: Computer
Architecture

• Computer Architecture
– Registers
– Flags
– Address Calculation

Computer Organization

Control Unit

ALU

Registers

Memory

CPU

Input Output

Components

• Control Unit –

• Arithmetic logical unit (ALU) –

• Registers –

• Buses –

8086 Block Diagram

CS
DS
SS
ES

SI
DI
BP
SP

AX
BX
CX
DX

AH
BH
CH
DH

AL
BL
CL
DL

Data Registers

Index Registers

ALU

Bus
Interface

Unit

IP

Flags R

Control Unit

Instruction

Data

Data
Bus

Address
Bus

Control BusClock

Interrupt

+5V

2

Registers
General Purpose

Registers

• Data registers, also known as
general purpose registers: AX,
BX, CX, DX

• Used for arithmetic operations
and data movement

• Can be addressed as 16 bit or 8
bit values. For AX, upper 8 bits
are AH, lower 8 bits are AL.

• Remember: when when a 16 bit
register is modified, so are the
corresponding 8 bit registers!

Example

• move 0001 1001 1110 0100 to AX

AX AH AL

15 0

7 0 7 0

AX

AH AL

0000 0000 0000 0000

AX

AH AL

0001 1001 1110 0100

• move 0011 1101 to AH

AX

AH AL

Special Attributes of GP
Registers

• AX – accumulator

• BX – base

• CX – counter

• DX – data

3

Segment Registers

• Segment registers are used as
base locations for program
instructions, data, and the stack.

• All references to memory
involve a segment register as
the base location.

Segment Registers, cont.

• CS – code segment

• DS – data segment

• SS – stack segment

• ES – extra segment

Index Registers

• Index registers contain the
offsets of data and instructions.

• Offset:

• Index registers are used when
processing strings, arrays, and
other data structures.

Index Registers, cont.
• BP – base pointer

• SP – stack pointer

• SI – source index

• DI - destination index

4

Status and Control
Registers

• IP – instruction pointer

• Flags –

Status Flags

• Carry flag (CF)

• Overflow flag (OF)

• Sign flag (SF)

Status Flags, cont.

• Zero flag (ZF)

• Parity

Addressing

• Address: a number referring to
an 8-bit memory location

• Logical addresses go from 0 to
the highest location

• Logical addresses require
translation into physical
addresses

• For Intel (8086):

5

Pins on the 8086

1

2

3

4

5

6

7

8

9

10

11

12

14

13

15

16

17

18

19

20

40

39

38

37

36

35

34

33

32

31

30

29

27

28

26

25

24

23

22

21

8086
CPU

GND

D14/A14

D13/A13

D12/A12

D11/A11

D10/A10

D9/A9

D8/A8

D7/A7

D6/A6

D5/A5

D4/A4

D3/A3

D2/A2

D1/A1

D0/A0

NMI

INTR

CLK

GND

VCC

A15/D15

A16/S3

A17/S4

A18/S5

A19/S6

MN/MX

RD

RQ/GT0

R/GT1

LOCK

S2

S1

S0

QS0

INTA

TEST

READY

RESET

Addressing, cont.

• How do you have a 20-bit
address with 16 bit registers?

Why Segment-Offset? Data Segment
addressable memory on 8086

FFFFF

00000
Example:
DS = 0100h

data seg. start?
data seg. end?

If BX contains the
offset:

BX = 005Ah
EA = ?

6

Segment Register
Combinations

• Code Segment – the CS register
and IP (instruction pointer) are
used to point to the next
instruction.

• Stack – the SS register is used
with the SP (stack pointer) or
BP (base pointer)

• Data Segment – DS with BX,
SI, or DI

• Extended Segment – BX, SI, or
DI

More on Effective
Addresses

• There’s more than one way to
get the same effective address!

• Example:
– CS = 147Bh
– IP = 131Ah
– EA = 147B0 + 131A = 15ACAh

or
– CS = 15ACh
– IP = 000Ah
– EA = 15AC0 + 000A = 15ACAh

• If CS = 147B, what range of
effective addresses can be
referenced without changing the
value in CS?

Homework 2
• Two parts:

– Part 1: Use Debug to enter and
run a simple machine code
program

• convert input data into 2’s
complement hex

• enter data at the correct address
• enter program at the correct address
• run the program

– Part 2: Write a simple machine
code program, given pseudo-code

• these instructions should be similar
to those in the Part 1 problem.

• enter and run the resulting program.

7

Part I - Example Program
Given below is a machine code program that calculates the sum
of all the words in a given range of addresses in memory. The
code expects that the lower bound of this range is specified in the
BX register and the upper bound in the DX register. (BX holds
the offset of the beginning of the data to be summed from the
beginning of the data segment (DS). DX holds the offset of the
last data element from the beginning of the data segment.) The
sum gets stored in AX. The first 4 hex digits given on each line
below represent the offset of the instruction from the beginning
of the code segment. The digits after the dash are the machine
code instructions. To the right are English explanations of the
instructions.

0000 - 2BC0 subtract AX from itself (to make it 0)
0002 - 0307 add the word pointed to by BX to AX
0004 - 83C302 add 2 to BX (to point to the next word)
0007 - 3BD3 compare BX to DX

(compare sets internal flags that are used by
subsequent jump instructions)

0009 - 7DF7 if DX >= BX, then jump back to the
instruction at 0002

000B - B8004C this instruction and the next one return
control to DOS

000E - CD21

Part 1

• Convert input data into 2’s
complement hex
– use the techniques you used on HW2

• Enter data at the correct address
– DS holds the segment
– Look at how you did this in lab!

• Enter program at the correct address
– CS holds the segment
– IP holds the offset
– Again – look at the lab!

• Run your program!

