Ledure 24: Sample
MicroArchitedure

Control Unit

ALU

Registers
Instructions
Instruction Deaoding
Microlnstructions

Abou the Sample
MicroArchitedure

* We'll beusing a Sample
Microarchitecture to learn about
microprogramming.

 |t'sdescribed in ahandout on the
web. Thiswas generated by Prof.
Hamel from anumber of different
sources (listed in the handout)

* Why not use Intel ?

— think badk on how complicated the
machine code was.

— microcode to implement all those
instructions would be too much to lean
in threedays!

Control Unit

Control unit: works with the
microprogram to interpret
microinstructions.
MAP — mapping memory used
to get the start addressin our
microprogram.
Control memory (Control store)
—holds our microprogram
MUX condtional codes — status
bitsfromthe ALU
— N —set if ALU output is negative
—Z—setif ALU output is zero

ALU

* ALU has three comporents:
— general registers
—ALU itself
— Shift unit
* ALU Functions:
— addition (+)
— binary AND (and)
— complement left operand (com)

— passleft operand through
unchanged (default)

ALU, cornt.

« Shift functions:
— |eft shift (Ishift)
— right shift (rshift)
— no shift (default)
* A andB latches are used to
present stable datato the ALU
» Statusbitsare N and Z
(described earlier)

Internal Registers

» We've seen registers that the
programmer has accessto (for
Intel: AX, BX, ...).

 Units within the processor (such
asthe oontrol unit or ALU)
have their own interna
registers.

MicroArchitedure
Registers

» Genera Registers:

— ACC (Register 0): Accumulator

— PC (Register 1): Program counter

— IR (Register 2): Instruction
register

— TMP (Register 3): Temporary
register, used for instruction
encoding and aher things

— AMASK (Register 4): Address
mask, used to mask out the high-
order bits of an instruction
(leaving 13 addresshits)

— 1 (Register 5): Containsthe
constant 1

MicroArchitedure
Registers

 Other Registers:

— MAR: Memory addressregister,
holds the aldressof an operand
(13 htswide)

— MBR: Memory buffer register,
halds the item read from memory

— MIR: Microprogram instruction
register —halds the current
microinstruction

— MPC: Microprogram program
counter — points to the next
microinstruction

Microlnstructions

» Microinstructions contain many
fields, each controlling a
different unit.

— Commands (such as RD, WR) —
set to oneto send asignal onthe
respedive ntrol lines.

— Function codes (such as ALU,
SH) — represent which operation
isrequired by the ALU or shifter.

— Addresses (such as A, or B) —
give the register number that
should be operated on

Instruction Set

* To keep things smple, we'll be
using asimplified macine
language (NOT Intel!)

* In this machine language
instructions are 16 hbts:

— high-order 3 bits are the opcode
— low-order 13 hts are the address

|nstruction Set, cont.

» Our instructions:

Instruction | Op Code | Description

ADD 000 ACC:=ACC+(A)
SUB 001 ACC:=ACC-(A)
LOAD 010 ACC = (A)

STORE |011 (A) :=ACC

JUMP 100 PC:=A

JZER 101 IFACC==0JUMP A

* A —our operand address(lower
13 [tsof the instruction)

Instruction Deaoding

» The opcode needsto be decded
S0 we can determine what
portions (“subroutines’) of the
microprogram apply.

» One method adeoding tree

— microprogram makes as many
comparisons as there ae opcode
bits:

IR bit0
RS
IR bit1 IR bit1
1
NN

IR bit2 IR bit2

/N /N

Instruction Deaoding,
cor.

» Thedeoding treeis very time
consuming.

* Inredity, other methods are
used:
— jump tables
* jump to thetable

* jump to the spot in the table with the
address

* jump to the address
— mapping memory
* opcode goes to speda memory to
find the start address.

The Microprogram
* inweb handou

Microl nstruction Format
Types

» Horizontal microinstructions — there
are no coded fields. There is one bit
in the microinstruction for each
signal.

* Verticd microinstructions — contain
coded fields (example: using a 3-bit
addressfield to spedfy which one of
8 registers houd be used).

* Verticd microinstructions sve on
control memory but are slower (need
to decode the fields).

¢ Most microarchitectures (such as
ours) use amixture of formats—
some fields are coded, others are nat.

Our Microinstructions

 Our control storeisa64x27 bit read-
only memory.

* Microinstruction format (and
#hits/field) is:

* picture from handout

Microlnstruction Fields

* handou

Microprogram Syntax

To be életo read our
microprogram, we use amicro
assembly language (MAL)
One microingtruction per line, with
different parts of the
microinstruction separated by
semicolons
They are ordered onalinein the
order in which they are caried ou.
Assgning avalue, use “:=*

MAR :=PC
Jumps within the microcode are
indicated by goto <line#>

— goto 25

Microprogram Syntax,
cont.

» Conditionals are written using if
<condition> then
— if N then gato 25 ;if negative goto 25
e ALU functions:
— addition
ACC:=ACC+1
—and
PC := and(IR, AMASK)
— pass(default)
TMP:=TMP
— complement (1's complement)
TMP := com(MBR)
 Shifting:
— right shift
TMP := rshift(IR)
— left shift
TMP := Ishift(IR)

Microprogram Syntax,
cont.

ALU and Shift functions can be
combined:
— adding, then shifting:

TMP := Ishift(IR + IR)
—adds IR and IR, then shifts | eft

and stores theresult in TMP

An ALU functionand a
condtional jump can be
combined on ore line:
TMP := TMP; if N then goto 21

