
1

Lecture 24: Sample
MicroArchitecture

• Control Unit

• ALU

• Registers

• Instructions

• Instruction Decoding

• MicroInstructions

About the Sample
MicroArchitecture

• We’ ll be using a Sample
Microarchitecture to learn about
microprogramming.

• It’ s described in a handout on the
web. This was generated by Prof.
Hamel from a number of different
sources (li sted in the handout)

• Why not use Intel?
– think back on how complicated the

machine code was.
– microcode to implement all those

instructions would be too much to learn
in three days!

Control Unit

• Control unit: works with the
microprogram to interpret
microinstructions.

• MAP – mapping memory used
to get the start address in our
microprogram.

• Control memory (Control store)
– holds our microprogram

• MUX conditional codes – status
bits from the ALU
– N – set if ALU output is negative
– Z – set if ALU output is zero

ALU

• ALU has three components:
– general registers

– ALU itself

– Shift unit

• ALU Functions:
– addition (+)

– binary AND (and)

– complement left operand (com)

– pass left operand through
unchanged (default)

2

ALU, cont.

• Shift functions:
– left shift (lshift)

– right shift (rshift)

– no shift (default)

• A and B latches are used to
present stable data to the ALU

• Status bits are N and Z
(described earlier)

Internal Registers

• We’ve seen registers that the
programmer has access to (for
Intel: AX, BX, …).

• Units within the processor (such
as the control unit or ALU)
have their own internal
registers.

MicroArchitecture
Registers

• General Registers:
– ACC (Register 0): Accumulator
– PC (Register 1): Program counter
– IR (Register 2): Instruction

register
– TMP (Register 3): Temporary

register, used for instruction
encoding and other things

– AMASK (Register 4): Address
mask, used to mask out the high-
order bits of an instruction
(leaving 13 address bits)

– 1 (Register 5): Contains the
constant 1

MicroArchitecture
Registers

• Other Registers:
– MAR: Memory address register,

holds the address of an operand
(13 bits wide)

– MBR: Memory buffer register,
holds the item read from memory

– MIR: Microprogram instruction
register – holds the current
microinstruction

– MPC: Microprogram program
counter – points to the next
microinstruction

3

MicroInstructions

• Microinstructions contain many
fields, each controlli ng a
different unit.
– Commands (such as RD, WR) –

set to one to send a signal on the
respective control lines.

– Function codes (such as ALU,
SH) – represent which operation
is required by the ALU or shifter.

– Addresses (such as A, or B) –
give the register number that
should be operated on.

Instruction Set

• To keep things simple, we’ ll be
using a simpli fied machine
language (NOT Intel!)

• In this machine language
instructions are 16 bits:
– high-order 3 bits are the opcode

– low-order 13 bits are the address

Instruction Set, cont.

• Our instructions:

IF ACC==0 JUMP A101JZER

PC := A100JUMP

(A) := ACC011STORE

ACC := (A)010LOAD

ACC := ACC – (A)001SUB

ACC := ACC + (A)000ADD

DescriptionOp CodeInstruction

• A – our operand address (lower
13 bits of the instruction)

Instruction Decoding

• The opcode needs to be decoded
so we can determine what
portions (“subroutines”) of the
microprogram apply.

• One method: a decoding tree
– microprogram makes as many

comparisons as there are opcode
bits:

IR bit0

IR bit1

IR bit2

IR bit1

IR bit2

0

0 1

1

4

Instruction Decoding,
cont.

• The decoding tree is very time
consuming.

• In reali ty, other methods are
used:
– jump tables

• jump to the table
• jump to the spot in the table with the

address
• jump to the address

– mapping memory
• opcode goes to special memory to

find the start address.

The Microprogram

• in web handout

MicroInstruction Format
Types

• Horizontal microinstructions – there
are no coded fields. There is one bit
in the microinstruction for each
signal.

• Vertical microinstructions – contain
coded fields (example: using a 3-bit
address field to specify which one of
8 registers should be used).

• Vertical microinstructions save on
control memory but are slower (need
to decode the fields).

• Most microarchitectures (such as
ours) use a mixture of formats –
some fields are coded, others are not.

Our Microinstructions

• Our control store is a 64x27 bit read-
only memory.

• Microinstruction format (and
#bits/field) is:

• picture from handout

5

MicroInstruction Fields

• handout

Microprogram Syntax

• To be able to read our
microprogram, we use a micro
assembly language (MAL)

• One microinstruction per line, with
different parts of the
microinstruction separated by
semicolons

• They are ordered on a line in the
order in which they are carried out.

• Assigning a value, use “:=“
MAR := PC

• Jumps within themicrocodeare
indicated by goto <line#>
– goto 25

Microprogram Syntax,
cont.

• Conditionals are written using if
<condition> then
– if N then goto 25 ;if negative go to 25

• ALU functions:
– addition

ACC := ACC + 1

– and
PC := and(IR, AMASK)

– pass (default)
TMP := TMP

– complement (1’s complement)
TMP := com(MBR)

• Shifting:
– right shift

TMP := rshift(IR)

– left shift
TMP := lshift(IR)

Microprogram Syntax,
cont.

• ALU and Shift functions can be
combined:
– adding, then shifting:

TMP := lshift(IR + IR)

– adds IR and IR, then shifts left
and stores the result in TMP

• An ALU function and a
conditional jump can be
combined on one line:
TMP := TMP; if N then goto 21

