
Version: 28-Apr-2023 11:30 PM

CS 2223 D23 Term. Homework 4

Homework Instructions

• This homework is to be completed individually. If you have any questions as to what constitutes

improper behavior, review the examples as I have posted online

http://web.cs.wpi.edu/~heineman/html/teaching_/cs2223/d23/#policies.

• Due Date for this assignment is on canvas.

• Submit your assignments electronically using the canvas site for CS2223. Login to

canvas.wpi.edu and locate HW4. You must submit a single ZIP file that contains all of your code

as well as the written answers to the assignment.

• All of your Java classes must be defined in a packager USERID where USERID is your CCC user id.

• Submission information is found at the end of this document.

Getting Started
This homework assignment is about problem solving. Using the data structures and algorithms

presented over the past few weeks (including the final weeks of this class), this assignment gives you the

opportunity to take the ideas presented in class and solve problems.

You will work with several graph algorithms and graph data structures.

• Copy algs.hw4.Histogram into USERID.hw4

• Copy algs.hw4.map.FlightMapApp into USERID.hw4 and rename as Delta

• Copy algs.hw4.map.FlightMapApp into USERID.hw4 and rename as Southwest

• Copy algs.hw4.map.FilterLower48 into USERID.hw4

• Copy algs.hw4.map.MapSearch into USERID.hw4

You will create the following new classes in USERID.hw4

• Create a class USERID.hw4.Overlap

• Create a class USERID.hw4.Connected

• Create a class USERID.hw4.Hub

• Create a class USERID.hw4.FlightStats

• Create a class USERID.hw4.LongestOfShortest

http://web.cs.wpi.edu/~heineman/html/teaching_/cs2223/d23/#policies

Version: 28-Apr-2023 11:30 PM

Working with GPS
I provide an algs.hw4.map.GPS class that will prove quite useful in this assignment. It records a GPS

location through two float values, a longitude and a latitude.

First compute a “bounding box” in terms of longitude and latitude. The lower 48 states in the United

States can be “roughly” approximated by constructing a large bounding box that encloses these four

states. You will use this computation later.

State Minimum Longitude Minimum Latitude Maximum Longitude Maximum Latitude

California -124.41 32.53416 -114.131 42.00952

Maine -71.0839 42.97776 -66.9499 47.45969

Florida -87.6349 24.5231 -80.0314 31.00089

Oregon -124.566 41.99179 -116.464 46.29204

Yes, I know the lines are not “straight” when drawn on the globe, but just work with me!

https://en.wikipedia.org/wiki/Global_Positioning_System
https://en.wikipedia.org/wiki/Global_Positioning_System

Version: 28-Apr-2023 11:30 PM

Airport Application Domain
The first problem is concerned with flight networks for two major airlines, Delta and Southwest Airlines.

Between December 19th and December 28th, 2022, Southwest Airlines canceled more than 16,000

flights. Even though the initial reason was a massive winter storm, the airline was unable to “restart” its

flying schedule for nearly a week after the weather had cleared up. While we won’t be able to use the

existing data to identify the root cause of the Southwest failure, these two airline networks provide a

useful domain for graph algorithms.

I provide two files – delta.json and southwest.json – that contain information about each airport

connection for each airline that I downloaded on January 2nd, 2023. Each direct flight that is possible

(from airport1 to airport2) contains the following data:

{

 "airport1": {

 "country": "United States", "iata" : "ABQ", "icao" : "KABQ",

 "lat":35.040218, "lon":-106.609001, "name": "Albuquerque International Airport"

 },

 "airport2":{

 "country": "United States", "iata" : "AUS", "icao" : "KAUS",

 "lat":30.194521, "lon":-97.6698, "name": "Austin Bergstrom International Airport"

 }

}

Use the icao field (International Civil Aviation Organization) to uniquely identify each airport, which is

located at a specific GPS location with designated latitude ("lat") and longitude ("lon"). Note that

longitude values may be negative because Greenwich, England contains the Prime Meridian, and a

negative value declares the GPS location is to the west of Greenwich, England.

Each airport has a “country”, because sometimes an airline has a direct flight from the United States to a

neighboring country, such as “Mexico.” My class FlightMap provides all the information you need.

Highway Transportation Application Domain
Smart phones can help direct us while driving because of countless information about roads that has

been encoded. I have download highway information from https://travelmapping.net/graphs/, a helpful

web site with loads of information. Each TMG file contains information like below. My class HighwayMap

provides all the information you need.

TMG 2.0 traveled

10796 12986 [(# of Vertices) (# of Edges)]

I-95(86)/MA113 42.817377 -70.915375 [GPS coordinate of intersection]

I-95(88)/MA110 42.845073 -70.902758

…

985 141 MA62 [labeled edge between two vertices]

143 144 MA60

…

https://travelmapping.net/graphs/

Version: 28-Apr-2023 11:30 PM

Q1 Histogram [10 pts.]
One frequent tool for analyzing data is a Histogram that records the frequency of specific key values. In

addition, a histogram allows you to group together ranges of keys to provide aggregate information.

Copy algs.hw4.Histogram into your USERID.hw4 package and modify its main() method to produce

the following output, which shows the raw output (in order) together with two summarized outputs

using different bin sizes.

Raw Histogram [FIXED! My earlier output was incorrect]
0 2
1 2
2 1
4 2
7 1
8 1
9 1
11 1
13 2
14 1
15 3
17 2
19 1
Histogram (binSize=1)
0-0 2
1-1 2
2-2 1
3-3 0
4-4 2 [Note: When a histogram has a binSize, it]
5-5 0 [should always start reporting from 0,]
6-6 0 [regardless of minimum key that it records.]
7-7 1
8-8 1
9-9 1
10-10 0
11-11 1
12-12 0
13-13 2
14-14 1
15-15 3
16-16 0
17-17 2
18-18 0
19-19 1
Histogram (binSize=5)
0-4 7
5-9 3
10-14 4
15-19 6

Q1.1 Bonus Question [1pt]: Create a method int slidingMaximum(width) that returns the low value

of the range (low, low + width) for which the sum total of values associated with these keys is a

https://en.wikipedia.org/wiki/Histogram

Version: 28-Apr-2023 11:30 PM

maximum. For the sample table above, slidingMaximum(5) should return 13, since the sum of the

values associated with the keys (13, 14, 15, 16 and 17) is 8, a maximum for this data collection. Modify

your main() method to demonstrate it works.

Q2 Delta and Southwest Flight Networks
Copy the algs.hw4.map.FlightMapApp class into USERID.hw4 package and rename the class to be

Delta; copy a second time, this time renaming to Southwest.

Within each of these new class files, be sure to modify the main() method to load up either “delta.json”

or “southwest.json” as appropriate. Run each of these classes so you can visualize their flight networks.

However, the results are not that easy to understand, so you have some work to do.

Q2.1 Implement FilterLower48 [5 pts.]
Copy the algs.hw4.map.FilterLower48 class into your USERID.hw4 and modify it to only accept

airports that are in the country “United States” and whose GPS coordinates are within the bounding box

of allowed GPS coordinates as identified on page 1 of this homework description.

You know your FilterLower48 class is correct when you can determine that:

• The dataset contains 289 airports for Delta Airlines, but only 187 in the United States

• The dataset contains 125 airports for Southwest Airlines, but only 99 in the United States

And when you run Delta you might be able to see the contours of the United States (especially the

major hub for Delta Airlines in Atlanta, Georgia).

For all subsequent questions in this assignment, it is assumed that you will filter all airports to be within

the lower 48 states.

Q2.2 Determine airports with Southwest Flights but no Delta Flights [10 pts.]
Create a class USERID.hw4.Overlap that determines those United States airports in the Lower 48 states

that are served by Southwest Airlines but not by Delta Airlines.

Your program must print out a list of the ICAO codes for the airports. Print each ICAO code one per line

in any order. Hint: There are six of them.

Bonus Question 2.2.1 [1pt] : Which of these airports is also a Space Port with a valid Commercial

Space Launch Site license from the FAA?

Version: 28-Apr-2023 11:30 PM

Q2.3 Determine Connectivity in an Airline Network [10 pts.]
Is it possible to use a single airline carrier (either Delta or Southwest Airlines) and start from Boston

Logan Airport (whose ICAO code is “KBOS”) and fly to every other airport (using any number of

connecting flights) in that carrier’s network by only using that carrier?

To fly from Boston to Highfill, Arkansas (ICAO code “KXNA”), one possible route would be:

• fly from KBOS to KTPA (Tampa, Florida);

• to KSLC (Salt Lake City, Utah);

• to KTUS (Tucson, Arizona);

• to KMSP (Minneapolis, St. Paul);

• to KXNA.

One of these airlines (either Delta or Southwest) has two airports in its network (AIRPORT-1 and

AIRPORT-2) that you cannot reach from Boston.

Create a class USERID.hw4.Connected that prints out (a) the name of the airline; and (b) the ICAO codes

for these two airports. Your program must process the graphs to produce the following output:

The name of the airline is XXXXX

The airports that cannot be reached from KBOS using XXXXX are:

AIRPORT-1

AIRPORT-2

Q2.4 Hub and Spoke Airline Models [10 pts.]
From Wikipedia: “The hub-and-spoke system allows an airline to serve fewer routes, so fewer aircraft

are needed. The system also increases passenger loads; a flight from a hub to a spoke carries not just

passengers originating at the hub, but also passengers originating at multiple spoke cities.”

From Wikipedia: The United States airport system was point-to-point, controlled by CAB, until

deregulation late 1960s/early 1970s, and eventually the 1978 Airline

Deregulation Act when they switched to the hub concept.

Let’s arbitrarily define a hub to be an airport that is connected to more than

75 other airports by a direct flight. Create a class USERID.hw4.Hub that

prints for each airline the ICAO code for each of its hubs together with the

number of flights at that hub (this list does not need to be in any specific

order). Your output should be something like the table on the right:

Hint: One of these airlines only has a single hub assuming you are restricting

all airport information to the lower48 as requested earlier.

Version: 28-Apr-2023 11:30 PM

Q2.5 Find the shortest and longest direct flight based on distance [10 pts.]
For both Delta and Southwest airlines, what is the longest direct flight in their network? Or the shortest

direct flight? Compute the distance by using the GPS.distance(GPS other) method, which computes

the distance between two GPS coordinates. For this question, you must truncate distance values into

integers, like distance = (int) gps1.distance(gps2).

Create a class USERID.hw4.FlightStats that prints out (a) the name of the airline; (b) the ICAO codes

for the shortest and longest flights for each airline; and (c) the average flight distance for all of the

airline’s flights. NOTE: Continue to filter out airports using the Lower48 filter from before.

Shortest flight for Delta is from ???? to ???? for ??? miles

Longest flight for Delta is from ???? to ???? for ??? miles

Average Delta flight distance = 786.9050847457627 [Note: check your work]

Shortest flight for Southwest is from ???? to ???? for ??? miles

Longest flight for Southwest is from ???? to ???? for ??? miles

Average Southwest flight distance = 817.312762973352 [Note: check your work]

Then for each airline compute a Histogram (recall question 1 on this assignment) for the flight distances

of each airline and output the results using a binSize of 500 miles.

These histograms should look like this (with small formatting variations, especially on first row).

Naturally do not print out my annotated comment, but instead replace all ??? with real values.

Delta Airlines:
Histogram (binSize=500)

0-499 ???
500-999 ???
1000-1499 ???
1500-1999 ???
2000-2499 26 [Note: I include these two so you can check your work]
2500-2999 4

Southwest Airlines:
Histogram (binSize=500)

0-499 ???
500-999 ???
1000-1499 ???
1500-1999 60 [Note: I include these two so you can check your work]
2000-2499 4

Version: 28-Apr-2023 11:30 PM

Q2.6 Find Longest of Shortest possible trips between any two airports [15 pts.]
Create a class USERID.hw4.LongestOfShortest that solves the “All Pairs, Shortest Distance” over the

network graphs for each carrier and determines the maximal of these shortest paths – that is, a pair of

airports for which the total accumulated distance (when trying to compute the shortest path between

these airports) is larger than any other pair of airports in the network.

For each carrier (Delta or Southwest), given any two airports with a direct flight within its network,

construct a weighted undirected digraph (using the AdjMatrixEdgeWeightedDigraph class), where the

weight of the edge representing that connection is the computed distance (in miles) between the GPS

locations of the two airports. Note: Be sure to filter using Lower48 as before.

Use Floyd-Warshall to solve the “All Pairs, Shortest Distance” for this edge-weighted digraph. Based on

the results, compute the shortest distance (and the actual path) between any two vertices in the graph.

Now you need to find the largest value from among all possible pairs. This maximal value reflects the

worst case, that is, the most work performed when minimizing the travel from any point A to point B.

The “test.json” sample provides specific guidance on this question. In this airport network, there are

five airports (A1 to A5) whose GPS distances from each other are:

Actual A1 A2 A4 A3 A5

A1 0 533.293 0 0 0

A2 533.293 0 576.334 694.805 0

A4 0 576.334 0 0 0

A3 0 694.805 0 0 861.994

A5 0 0 0 861.994 0

In this graph, the computed “shortest path” between two airports using Floyd Warshall is reported

below. For example, the shortest travel distance from A1 to A4 is 533.2933 + 694.8053 = 1228.0986 and

that is reflected in table below. The “longest” shortest path entry is between A4 and A5.

Flight A1 A2 A4 A3 A5

A1 0 533.293 1109.627 1228.099 2090.092

A2 533.293 0 576.334 694.805 1556.799

A4 1109.627 576.334 0 1271.139 2133.133

A3 1228.099 694.805 1271.139 0 861.994

A5 2090.092 1556.799 2133.133 861.994 0

To compute the average flight-to-distance ratios, you need to accumulate the efficiency of each shortest

possible distance. The table below computes efficiency (Flight / Actual). The average of all efficiency

values is 3.004437757217313.

Efficiency A1 A2 A4 A3 A5

A1 0 1.000 1.693 1.480 14.108

A2 1.000 0 1.000 1.000 3.598

A4 1.693 1.000 0 1.021 4.144

A3 1.480 1.000 1.021 0 1.000
A5 14.108 3.598 4.144 1.000 0

The column and row labels are

not strictly in ascending order.

This is not important and reflects

the fact that it can be hard to

impose a meaningful ordering on

the labels for vertices in a graph.

Version: 28-Apr-2023 11:30 PM

For the test airport network, the resulting output should look something like this:

Test : Total Flight Distance is 2133.133159485895 but airports are only
514.7274553433999 miles apart.
KA4 -> KA2 for 576.3340228351461 [+4 for path of “longest” shortest path]
KA2 -> KA3 for 694.8052755548911
KA3 -> KA5 for 861.9938610958576
Average Efficiency:3.004437757217313 [+5 properly computed efficiency]

As a hint: When you are done you will see that for one of these airlines, the maximal flight distance is

4485.740310568238 miles while the actual GPS distance is only 433.155065627006 miles. In this case, the

efficiency is a horrible ~10.35 because the flying time is more than 10x the actual distance between the

two airports.

Version: 28-Apr-2023 11:30 PM

Q3 Search Algorithms over Graphs
On Day 21, I show how to work with highway maps as graphs. In those examples, I arbitrarily pick two

vertices to conduct the search. For this assignment, you are to compute specific paths through the

highway graph. Feel free to use the ideas from algs.days.day21.BreadthFirstPaths and others.

Copy the algs.hw4.map.MapSearch class into USERID.hw4 and modify it to complete this question. The

output is subdivided below by each question, but you should just output all at once in this class.

Q3.1 Standard Paths [10 pts.]
Using Breadth First Search, compute the shortest path (in terms of total number of highway segments)

from the western-most highway location to the eastern most highway location. Complete the

implementation of westernMostVertex() and easternMostVertex(). Be sure to identify the label

associated with each vertex and print (a) the total number of edges in the path; and (b) the total

distance by computing the GPS-distance of each highway segment. Your output should look like this:

BFS: From (SOMEPLACE-WEST) to (SOMEPLACE-EAST) has BBB edges.
BFS provides answer that is : NNN.DDDD miles.

Q3.2 Demonstrate why Depth First Search is inappropriate here [10 pts.]
For the same west → east scenario, now complete a Depth First Search and report the total number of

edges in the computed solution, as you did with Breadth First Search. If you are unable to apply

edu.princeton.cs.algs4.DepthFirstPaths consider the alternative I introduced on Day 20.

DFS provides answer that is : NNN.DDDDD miles with DDD total edges.

Q3.3 Use Dijkstra’s Single Source Shortest Path Algorithm [10 pts.]
For the same west → east scenario, now construct an equivalent EdgeWeightedGraph and apply

Dijkstra’s Single Source Shortest Path algorithm to determine the shortest path in terms of total

accumulated miles.

Shortest Distance via Dijkstra: NNN.DDDDD miles with SSS total edges.

Hint: You don’t have to invent the wheel! Just use the classes provided by Sedgewick (or myself) and if

you do so, you will know your code works properly when BBB + DDD + SSS is equal to 17,307.

Version: 28-Apr-2023 11:30 PM

Q4 Bonus Question [1 pt.]
A directed graph with no cycles is called a directed acyclic graph, or DAG for short. Dijkstra’s algorithm in

the worst case is classified as O((E+V) log V), but for a DAG you can compute the single-source, shortest

path in O(E+V). First, apply Topological Sort to produce a linear order of the nodes. Second, process

each node, n, in linear order, relaxing the edges that emanate from n. There is no need to use a priority

queue. Confirm runtime behavior on random mesh graphs where each edge has a weight of 1. In the

mesh graph shown below the shortest distance from node 1 to node 16 is 6.

Version: 28-Apr-2023 11:30 PM

Submission Details
Each student is to submit a single ZIP file that will contain the implementations. In addition, there is a

file “WrittenQuestions.txt” in which you are to complete the short answer problems on the homework.

The best way to prepare your ZIP file is to export your entire USERID.hw4 package to a ZIP file using

Eclipse. Select your package and then choose menu item “Export…” which will bring up the Export

wizard. Expand the General folder and select Archive File then click Next.

You will see something like the above. Make sure that the entire “hw4” package is selected and all files

within it will also be selected. Then click on Browse… to place the exported file on disk and call it

USERID-HW4.zip or something like that. Then you will submit this single zip file in Canvas as your

homework4 submission.

Addendum
If you discover anything materially wrong with these questions, be sure to contact the professor or

TA/SAs posting to the discussion forum for HW4 on Discord;

When I make changes to the questions, I enter my changes in red colored text as shown here.

Change Notes
1. Fixed ERROR in output for Question 1 Histogram! Sorry about that

2. Clarified all of question 2 should continue to FilterLower48. I’ve updated accordingly.

Version: 28-Apr-2023 11:30 PM

3. Fixed values in bonus question 1.1

