
Version : April 11 2023 10:00 pm 1

CS 2223 D23 Term. Homework 3
This homework covers material that extends back to before the midterm.

Homework Instructions

• This homework is to be completed individually. If you have any questions as to what constitutes

improper behavior, review the examples as I have posted online

http://web.cs.wpi.edu/~heineman/html/teaching_/cs2223/d23/#policies.

• Due Date for this assignment is on Canvas. Homeworks received after 6PM will receive a 25%

penalty if submitted within 48 hours, otherwise zero points.

• Submit your assignments electronically using the canvas site for CS2223. Submit your homework

under “HW3”. You must submit a single ZIP file that contains all of your code as well as the

written answers to the assignment.

• All of your Java classes must be defined in a packager USERID.hw3 where USERID is your CCC

user id (i.e., your email address without the @wpi.edu).

Homework Context
This homework introduces students to the Binary Tree data structure. When used as the basis for Binary

Search Trees, this structure offers the ability to dynamically insert and remove values, while supporting

efficient search and traversals. You will also explore the tradeoffs when implementing symbol tables

using the three structures, namely SeparateChainingHashST, LinearProbingST and

BinaryTree.

Heap Array
Structure for

Priority Queue

Linear Probing
Array for

Symbol Table

Recursive
Data

Structure

Copy classes/files into your USERID.hw3: BST, MaxPQ, MergeMaxPQ, TrialST, WrittenQuestions.txt

Classes you do not copy: Collection, ID

http://web.cs.wpi.edu/~heineman/html/teaching_/cs2223/d23/#policies

Version : April 11 2023 10:00 pm 2

Q1. Evaluating Symbol Table Structures [20 pts]
When evaluating symbol tables (STs), consider the Figure on p. 487 of the textbook, which summarizes

the “asymptotic cost summary” for different ST implementations.

After inserting N (key, value) pairs into a symbol table, the first two columns provide a measure of the

worst case to (a) search for a key; or (b) insert a new (key, value) pair. The third and fourth column

suggest an average-case cost of doing same. How do these align with real-world examples?

Use the following domain to evaluate the performance of these different ST implementations in terms

of the number of times equals() is called. Note that compareTo() also is accounted in this total, but

that is not really used within a hash Symbol Table (can you see why?).

College ID numbers
College IDs typically have 9 digits. These can be represented by a 32-bit int or a Java String. Also, no ID

starts with the digit 0. I have provided an ID class that you can use as the Key for any Symbol Table. One

added benefit is that whenever anyone calls equals(o) or compareTo(o), the ID object will increment a

counter associated with that ID. In this way, you don’t have to instrument the code that implements the

symbol table just to determine how many times an ID was compared.

Version : April 11 2023 10:00 pm 3

Copy the algs.hw3.TrialST class into your USERID.hw3 package and modify it to produce several

tables of statistics that include:

a) # of compares/equals when building the initial structure.

b) average # of compares/equals when processing 1,024 get(key) operations where the key is

known to exist in the symbol table.

c) average # of compares/equals when processing 1,024 get(key) operations where the key does

not exist in the symbol table.

Modify TrialST to create similar report() methods as I have already provided. You will evaluate FIVE

different Symbol Table implementations:

• AVLTreeST

• BST

• LinearProbingHashST

• SeparateChainingHashST

• SequentialSearchST

You will need to modify your code to produce five SIMILAR LOOKING tables that are assigned the labels

(Table I, Table II, Table III, Table IV, Table V). Now make sure that the label for each table is the one that

most closely matches the output on the next page.

For this question, you must complete the WrittenQuestions.txt file to identify which Table is

generated by which structure. On the next page are the tables you should be able to reproduce.

Once you can generate these tables, make a list (in decreasing order of efficiency) of these five

implementations of Symbol Table when considering the average cost for a HIT.

Once again, your output tables may not exactly match the BUILD, HIT, and MISS columns due to the

nature of working with randomized trials. STILL, there are clear differences between each table that

become evident once N is large enough.

Version : April 11 2023 10:00 pm 4

Table I: Symbol Table Structure (FILL IN)

 N BUILD HIT MISS
 64 1.97 4.06 32.69
 128 7.94 16.13 64.62 [Note: don’t worry about the tabular format]
 256 31.88 64.25 128.69 [it’s ok if the columns do not exactly line up]
 512 127.75 256.50 256.70
 1024 511.50 512.50 512.75
 2048 2047.00 1040.25 1024.73
 4096 8190.00 2194.35 2048.75
 8192 32764.00 4066.89 4096.78
 16384 131064.00 8450.84 8192.71
 32768 524272.00 17230.81 16384.71
 65536 2097120.00 34226.50 32768.82

Table II: Symbol Table Structure (FILL IN)

 N BUILD HIT MISS
 64 0.30 0.67 3.84
 128 0.72 1.57 4.18
 256 1.68 3.58 4.77
 512 3.90 8.20 5.30
 1024 8.74 9.24 5.88
 2048 19.64 10.21 6.38
 4096 42.97 11.09 6.89
 8192 94.69 12.40 7.44
 16384 204.71 13.27 7.84
 32768 446.06 14.20 8.40
 65536 964.26 15.36 9.03

Table III: Symbol Table Structure (FILL IN)

 N BUILD HIT MISS
 64 0.05 0.16 1.38
 128 0.16 0.39 1.23
 256 0.32 0.78 1.38
 512 0.64 1.60 1.41
 1024 1.14 1.53 1.51
 2048 2.12 1.45 1.46
 4096 4.03 1.48 1.50
 8192 8.86 1.57 1.56
 16384 15.87 1.48 1.43
 32768 33.66 1.52 1.43
 65536 72.78 1.53 1.64

Table IV: Symbol Table Structure (FILL IN)

 N BUILD HIT MISS

 64 0.33 0.78 4.21
 128 0.99 2.24 5.54
 256 2.15 4.81 5.96
 512 5.58 12.17 7.30
 1024 11.18 12.18 7.22
 2048 23.22 12.53 7.59
 4096 54.43 14.51 8.56
 8192 125.77 16.83 9.67
 16384 254.67 16.84 9.62
 32768 560.49 18.23 10.38
 65536 1259.95 20.62 11.67

Table V: Symbol Table Structure (FILL IN)
 N BUILD HIT MISS
 64 1.19 0.68 4.78
 128 2.86 1.28 4.57
 256 6.44 2.61 4.69
 512 13.99 5.10 4.67
 1024 27.41 4.96 4.73
 2048 55.76 4.94 4.67
 4096 111.45 5.22 4.86
 8192 223.40 4.95 4.68
 16384 446.63 5.14 4.71
 32768 897.18 5.01 4.73
 65536 1793.04 5.04 4.85

Version : April 11 2023 10:00 pm 5

Q2. Working with Heaps [20 pts.]
Given two max heaps of size M and N, devise an algorithm that returns an array of size M + N containing

the combined items from M and N in ascending order.

Copy the algs.hw3.MaxPQ and algs.hw3.MergeMaxPQ classes into your USERID.hw3 package and

complete the methods in MergeMaxPQ. Note that this MaxPQ class has a special method, peekMax(), that

returns the maximum value maintained by the MaxPQ without removing it.

You will need to instrument your local copy of MaxPQ to keep track of the number of “key operations” –

which includes both calls to less() and to exch() – and then complete the implementation of

keyOperations() and resetKeyOperationsCount().

When you are done, the output of MergeMaxPQ should be:

[13, 31, 41, 50, 59, 77] should be output
[13, 31, 41, 50, 59, 77]

 1024 2048 4096 8192 16384 32768 65536
 +---
 1024| 50053 81072 149647 298615 621253 1315670 2803452
 2048| 81071 112091 180669 329640 652286 1346721 2834546
 4096| 149646 180669 249247 398218 720864 1415299 2903124
 8192| 298614 329640 398218 547189 869835 1564270 3052095
16384| 621252 652286 720864 869835 1192481 1886916 3374741
32768| 1315669 1346721 1415299 1564270 1886916 2581351 4069176
65536| 2803451 2834545 2903123 3052094 3374740 4069175 5557009

[Sorry to have to update this sample table, but MY code had a defect, so I had to fix properly.]

Version : April 11 2023 10:00 pm 6

Q3. Working with Binary Search Trees [60 pts.]
There are three kinds of methods you can envision for Binary Search Trees:

• Structural – just inspects .left and .right references, like computing the height of a tree

• Read Only – traverses a tree by inspecting the keys but makes no changes to the structure. Like

the get() method.

• Modifying – like the put() method.

Copy the algs.hw3.BST class (and TestBST class) into your USERID.hw3 package and complete the

methods at the end of the class. This BST is simplified since it only contains an integer key for each node.

Note that all references below to BST refer to USERID.hw3.BST which is a streamlined BST that you will

be working with

• [15 pts.] Return a copy of the BST.

• [15 pts.] Return an int that computes the total number of nodes in the BST whose int values

are even.

• [15 pts.] Return a Queue<Integer> that contains the integer depths for all nodes in the BST.

• [15 pts.] Remove all leaf nodes that contain odd key values.

Once you are done, you can execute the TestBST class to check any obvious issues with your

implementation.

Version : April 11 2023 10:00 pm 7

Q4. Bonus Questions (1 pt)
A Max Priority Queue using a heap conforms to (a) the Heap Ordered Property (the value of a node is

larger than or equal to either of its children; and (b) the Heap Shape Property, where each level is filled

before any nodes appear on any subsequent level.

What if you make a small change to allow children on level k to have k+2 children? Let’s call this an

Expanding Max Priority Queue.

The above is such an Expanding Max Priority Queue where, as you can see, each parent node is larger

than any of its children. It is still possible to store this structure in a contiguous array (though the

mapping is a bit more complicated).

Complete the implementation by storing this heap in an array and perform empirical evaluation. Use the

worst case as the benchmark, namely, where you insert N integers in ascending order (one at a time)

into an empty Max Priority Queue.

Using the same approach as shown in an earlier problem, count the number of key operations (exch

and less) and produce a table that looks like the following.

logN N MaxPQ ExpandMaxPQ

2 4 16 16

3 8 55 52

4 16 168 169

5 32 469 417

6 64 1226 1145

7 128 3055 2619

8 256 7348 6436

9 512 17209 14500

…

While the number of key operations is smaller for Expanding Max PQ, the time to complete is longer, so

there is still a tradeoff that our empirical operation counting is missing.

Version : April 11 2023 10:00 pm 8

Change Log
Updates are enumerated below:

1. Clarified that the output from Question 1 may be different from the tables that I’ve produced.

Fortunately, each of your tables will likely differ by only a tiny amount from the values in the

final rows of each of the tables.

