
1  Version: 3-25-2023 8:00 AM   

CS 2223 D23 Term. Homework 2 

Homework Instructions 

• This homework is to be completed individually. If you have any questions as to what constitutes 

improper behavior, review the examples as I have posted online 

http://web.cs.wpi.edu/~heineman/html/teaching_/cs2223/d23/#policies  

• Due Date for this assignment is on Canvas. Homework submissions received after 6PM receive a 

25% late penalty. Extension is good for 48 hours. 

• Submit your assignments electronically using the canvas site for CS2223. Login to 

canvas.wpi.edu and locate HW2. You must submit a single ZIP file that contains all of your code 

as well as the written answers to the assignment. 

• All of your Java classes must be defined in a package, such as USERID.hw2, where USERID is your 

login name 

Questions 
1. Mathematical Analysis [20 points] (1 bonus point) 
2. Instrumentation and Tournament algorithm [10 points]  
3. Data Type Exercise [70 points] (2 bonus point) 

Getting Started 
Copy the following files into your USERID.hw2 package: 

• algs.hw2.Analysis 

• algs.hw2.Memory 

• algs.hw2.Tournament 

• algs.hw2.StressProgram     Use to validate Memory 

• algs.hw2.ValidateMemory     Smaller program to validate Memory 

If you attempt the bonus questions, write your results in a writtenQuestions.txt file. 

And remember that this is an individual assignment. I encourage that you discuss the problem on 

Discord and with peers and friends and talk about ways you might solve the problem. BUT once you 

start writing code, that is where the sharing should stop. If we detect submissions that violate the WPI 

academic honesty policy, we will pursue each case. If you don’t know how to get started, PLEASE come 

to office hours (either in person or in evening sessions). 

This homework assesses the following skills: 

• How to assemble linked lists (such as adding nodes, removing nodes) 

• How to do “telescoping” mathematical analysis to count key operations 

• How to use queues and stacks to solve problems  

http://web.cs.wpi.edu/~heineman/html/teaching_/cs2223/d23/#policies


2  Version: 3-25-2023 8:00 AM   

Q1. Mathematical Analysis [20 points] (REPLACE WITH NEW ONE) 
This question is a more complicated version of what you will see on the midterm exam. You can find this 

code in the algs.hw2.Analysis class. Copy this class into your USERID.hw2 package and modify it 

based on the requirements below. You will also need to instrument the code to count the number of 

times power() is invoked. 

Given the following proc function, let S(N) be the number of times power(base, exp) is invoked when 

calling proc(A, 0, n-1)  on an array, A, of length n containing integer values from 0 to n-1. 

static long power(long base, int exp) { 
  return (long) Math.pow(base, exp); 
} 
 

static long proc(int[] A, int lo, int hi) { 
   long v = power(A[lo], 2) + power(A[hi], 2); 
   if (lo == hi) {  
     return v + power(v, 2); 
   } 
 
   int m = (lo + hi) / 2; 
   long total = proc(A, lo, m) + 3*proc(A, m+1, hi); 
   while (hi > lo) { 
     total += power(A[lo], 2); 
     lo += 2; 
   } 
   
   return total; 
 } 
  

For this assignment, develop the recurrence relationship for S(N) and compute its closed-form formula. 

Then modify the Analysis class to output an updated table that shows the computed counts and the 

result of your model. 

Question 1.1 (8 pts.) 

Identify the Base Case for S() and the Recursive Case for S(N). Refer back to lecture for the format of this 

question. 

Question 1.2 (12 pts.) 

Derive an exact solution to the recurrence for S(N) when N is a power of 2. Be sure to show your work 

either in the WrittenQuestions.txt file or by a picture that you upload. Validate that your formula is 

correct by modifying the model(int n) implementation so it prints proper result when run. 

BONUS QUESTION 1.3 (1 pt.) 

Derive a formula that predicts the Value printed for proc(A, 0, A.length-1) when A contain values 

that alternate 0, N, 0, N, 0, N, ... and N is a power of 2. Note that the main() method in 

Analysis already prepares A in this fashion. 



3  Version: 3-25-2023 8:00 AM   

Q2. Max and Second Largest (10 pts) 
Copy the algs.hw2.Tournament class into USERID.hw2 and complete its implementation. You will 

instrument this class to accumulate the total number of comparisons between two integers (using less) 

and the total number of exchanges of two elements (using exch). 

This program uses a Max Priority Heap to compute the largest and second largest values assuming that 

N integers are inserted one at a time into an empty heap that is initially constructed with capacity N.  

There are three cases to consider: 

• The values are inserted in ascending order from 0 to N-1 

• The values are inserted in descending order from N-1 to 0 

• N random integers – drawn uniformly using Random.nextInt(N) – are inserted in order. 

For each of these three cases, you are to compute (a) the total number of less invocations; and (b) the 

total number of exch invocations. 

You must print out three tables, first the BEST case table, then an AVERAGE case table, then the WORST 

case table. You must determine which of the cases above are the BEST, AVERAGE and WORST cases. 

Note that every time you run the AVERAGE case trial, the number of comparisons might change, 

because the input has changed. 

Q2.1 Mathematical Modeling 
For the WORST case, design a formula that predicts S(N), the number of combined times less and exch 

are invoked. This S(N) must be a closed formula, which means that it cannot be recursive. 

Q2.2 BONUS QUESTION [1pt] 
Use a memory-efficient algorithm to compute largest and second largest, with least number of  

comparisons (as identified by Tournament algorithm on day 2 of class). Sample code is provided.  

This took me way to long to complete, so do not even attempt this until totally done. If you complete, 

you will be able to have an algorithm that computes 1st and 2nd largest with minimal number of 

comparisons (though will require extra storage). 

 

 



4  Version: 3-25-2023 8:00 AM   

Q3. Memory Allocation Exercise (70 pts) 
This assignment gives you a chance to demonstrate your ability to program with Linked Lists. This 

assignment is non-trivial and at the end of this assignment, I provide some thoughts on the order in 

which you should tackle this problem. 

Every programmer needs to know how to store a linked list in memory. Let’s 

assume each Node in the linked list can store a single int value (which is 32-bits, 

as you know). The next reference is a 32-bit address in memory declaring where 

next node can be found. In total, you need 64-bits or 8 char to store each Node.  

Given the following linked list, it would 

require a total of 24 char in memory. 

This entire linked list could be stored 

within a contiguous 32 char as shown 

below. Gray cells are unused. Values in memory are in top row and addresses are in the bottom. 

 
  178 

  

  

  

<25> 

  

  

  

      194 

 

 

<0> 

  

  

  

      992 

  

  

  

<14> 

  

  

  

1 2 3 4 5 6 7 8 9 1

0 

1

1 

1

2 

1

3 

1

4 

1

5 

1

6 

1

7 

1

8 

1

9 

2

0 

2

1 

2

2 

2

3 

2

4 

2

5 

2

6 

2

7 

2

8 

2

9 

3

0 

3

1 

3

2 

 

The first node in the linked list is found at address <3>. Its value (stored in the char from <3> to <7>) is 

178 and the address of the next node in the linked list (stored in the next four char) is <25>. The last 

node in the linked list is found at address <14> since its next reference (found in char from <18> to 

<21>) is 0. Addresses appear like <address>. 

The C programming standard API offers the ability to dynamically allocate memory; you can allocate 

struct Node for a linked list using malloc(8) and then call free() when you are done with each node. 

Operating systems have sophisticated implementations for these operations. If you really want to see 

how it is done, check out these slides (https://moss.cs.iit.edu/cs351/slides/slides-malloc.pdf). For this 

assignment, you are going to implement this API by using linked lists.  

Let’s get started! 

  

struct Node { 
  int   value;  
  Node  next; 

}; 

https://moss.cs.iit.edu/cs351/slides/slides-malloc.pdf


5  Version: 3-25-2023 8:00 AM   

In this assignment, you will implement an API to manage dynamic memory by supporting the allocation 

and freeing of memory. To do so, a Memory(int size) object keeps a linked list of StorageNode that 

records what char has already been allocated in a computer’s memory and a linked list of 

StorageNode that records what char remains available.  Each StorageNode refers to a contiguous 

chunk of char in memory. 

In the example introduced at the start of this question, there were 32 char of memory being managed. 

Given the earlier color-coded chunk being managed by mem = new Memory(32), the following could be 

the allocated linked list: 

 

And the following is the available linked list (note that addresses must appear in ascending order): 

 

Ok, now let’s get to the actual assignment! 

  

class StorageNode { 
  int         addr;  
  int         numChars;  
 
  StorageNode next; 

} 



6  Version: 3-25-2023 8:00 AM   

Allocating and freeing memory 
Implement the following Memory data type to manage the allocation (and subsequent free) of dynamic 

memory in a computer. For simplicity, the memory is defined by a one-dimensional char[] storage 

array that contains the char to be managed. Memory maintains two linked lists containing information 

about storage. 

• available – records the char in  storage[] that are available; these are broken into “chunks” 

of contiguous char in storage.  

• allocated – records the char in storage[] that have already been allocated. These are 

discrete “chunks” from storage that have been claimed for use. 

Memory manages a one-dimensional array of char of a given size containing '\0' char values. For 

example, using Memory mem = new Memory(64) the allocated linked list is null and the following 

represents the available linked list with a single StorageNode: 

 

A valid address is an integer greater than zero; the first valid address is <1>. 

From this block that represents a one-dimensional array of 64 char, you can make multiple requests to 

allocate consecutive char sequences: 

• mem.alloc(32) – allocate 32 consecutive char and return <1>, the address of the first char 

• mem.alloc(7) – allocate 7 consecutive char and return <33>, the address of the first char 

• mem.alloc(8) – allocate 8 consecutive char and return <40>, the address of the first char 

The resulting allocated linked list contains three StorageNode entries. The programmer can 

setChar(addr, ch) or getChar(addr) any address that has been allocated (in this case any address 

from <1> to <47>). 

 

The original available linked list contains a single StorageNode entry: 

 

You can request to release an allocated chunk that had previously been allocated by calling 

mem.free(addr) using the address of the first char in the consecutive sequence of char that had 

previously been allocated.  



7  Version: 3-25-2023 8:00 AM   

Given the above situation, after calling mem.free(33), the resulting available linked list looks like: 

 

While the allocated linked list looks like: 

 

You can only call setChar() with an address that remains on allocated. In the example above, this 

means addresses 1 to 32 and 40 to 47. 

Organizing StorageNode in available 
Now comes the tricky part. For full credit (a) the StorageNode entries in available must appear in 

ascending order by addr; and (b) available must contain the fewest number of StorageNode entries 

by merging adjacent StorageNode entries where possible when memory is freed. 

Specifically, if given the above configuration, after calling mem.free(40), the available linked list 

would have three StorageNode entries: (addr=<33>, numChars=7) and (addr=<40>, numChars=8) 

and (addr=<48>, numChars=17). But as you can see, these are all directly adjacent to each other and 

so allocated can be collapsed into just a single StorageNode as follows: 

 

While the allocated linked list looks like: 

 

Accessing memory 
You can call mem.getChar(addr) anytime to return the char stored at that address location. You can 

also call mem.getChars(addr, numChars) to return a char[] containing the desired number of char. I 

have provided the implementation of a helper method, getInt(addr), that returns the 32-bit value 

stored in the 4 consecutive char found in address addr through addr+3. 

However, to set a char in Memory at a specified address, the address must be wholly contained within a 

previously allocated chunk. Any attempt to setChar() using an address that was not previously 

allocated should throw a RuntimeException. I have provided the implementation of a helper method 

setInt(addr,value) that encodes value in the four consecutive char from addr to addr+3. 



8  Version: 3-25-2023 8:00 AM   

You need to complete the implementation of validateAllocated(addr) and 

validateAllocated(addr,numChars) to protect against invalid setChar() requests. 

Reallocating memory 
Memory provides the ability to resize an existing chunk of allocated memory of size n to a new size, ns. 

The original allocated memory must be released and min(n, ns)1 char from the original chunk is 

copied to the newly allocated chunk. One thing that will be true is that after a valid realloc() request, 

the number of allocated blocks remains the same. Below are the methods that you must complete: 

public class Memory { 
  final char[] storage;     // actual memory being managed 
 
  class StorageNode { 
    int  addr;              // address into storage[] array 
    int  numChars;          // how many chars are allocated 
   
    StorageNode   next;     // the next StorageNode in linked 
  } 
 
  // operations that must be independent of the number of StorageNode objects 
  public int charsAllocated() { ... } 
  public int charsAvailable() { ... } 
  public char getChar(int addr) { ... } 
  public char[] getChars(int addr, int len) { ... } 
 
  // operations that are dependent (in some way) on # of StorageNode objects 
  public int blocksAllocated() { ... } 
  public int blocksAvailable() { ... } 
 
  public void setChar(int addr, char value) throws RuntimeException; 
  public void setChars(int addr, char[] values) { ... } 
         void validateAllocated(int addr) throws RuntimeException; 
         void validateAllocated(int addr, int numChars) throws RuntimeException; 
 
  public int alloc(int numChars) { ... } 
  public int realloc(int addr, int numChars) { ... } 
  public int copyAlloc(char[] chars) { ... } 
  public boolean free(int addr) { ... } 
 
  // bonus method only 
  public Iterator<StorageNode> iterator(char[] pattern) { ... } 
} 

 

Copy algs.hw2.Memory into USERID.hw2 and complete its implementation, which must conform to 

performance specifications that are included in the sample code. More documentation is found in the 

sample file. In the performance specifications, N refers to the number of StorageNode in Memory. 

  

 
1 The minimum of n and ns. 



9  Version: 3-25-2023 8:00 AM   

How you should approach this question 
This question will prove to be a challenging programming assignment. Do not procrastinate! I 

recommend that you work on this question as follows: 

• Get alloc() to work and validate by implementation charsAllocated() 

• Get getChars() working and copyAlloc() 

• Make sure charsAvailable() work 

• Get free() to work  

• Now handle all the cases where the free() of a chunk could be merged with a neighboring 

existing chunk as already found in the available linked list 

• Lastly get realloc() to work 

• Note that the blocksAvailable() and blocksAllocated() are for testing purposes and you 

actually might want to have them working first so you can debug your program. 

This assignment is challenging if you have not programmed extensively with linked lists. Do not wait!! 

Get started on this assignment as soon as you can. Come to office hours if you have questions. 

Bonus Question 3.1. (1 pt) Implement java.util.Iterator<StorageNode> match(char[] pattern) 

that produces an Iterator object that returns the allocated chunks of char[] in memory that match 

the given pattern sequence exactly. 

  



10  Version: 3-25-2023 8:00 AM   

Submission Details 
Each student is to submit a single ZIP file that will contain the implementations.  In addition, there is a 

file “WrittenQuestions.txt” in which you are to complete the short answer problems on the homework. 

The best way to prepare your ZIP file is to export your entire USERID.hw2 package to a ZIP file using 

Eclipse. Select your package and then choose menu item “Export…” which will bring up the Export 

wizard. Expand the General folder and select Archive File then click Next.   

 

You will see something like the above. Make sure that the entire “hw2” package is selected and all files 

within it will also be selected. Then click on Browse… to place the exported file on disk and call it 

USERID-HW2.zip or something like that. Then you will submit this single zip file in Canvas as your 

homework2 submission. 

Addendum 
If you discover anything materially wrong with these questions, be sure to contact the professor or 

TA/SAs posting to the discussion forum for HW2 on Discord;  

When I make changes to the questions, I enter my changes in red colored text as shown here. 

Change Log 
1. Clarified that blocksAllocated() and blocksAvailable() are to be implemented for Q3 

2. Clarify that in proc for Q1 the inner loop has “lo += 2;” 



11  Version: 3-25-2023 8:00 AM   

3. Clarify that for Q2, you are to derive a formula for the combined number of less and exch 

operations 


