
Published Version: 3/21/2023 11:56 AM

1

CS 2223 D23 Term. Homework 1 (100 pts.)

Homework Instructions

• This homework is to be completed individually. If you have any questions as to what constitutes

improper behavior, review the examples I have posted online

http://web.cs.wpi.edu/~heineman/html/teaching_/cs2223/d23/#policies

• The due date for this assignment can be found in Canvas. Late submissions received after the

deadline are penalized 25% and can be submitted for up to 48 hours.

• Submit your assignments electronically using the canvas site for CS2223. You must submit a

single ZIP file that contains all of your code as well as the written answers to the assignment.

• All of your Java classes must be defined in a package USERID.hw1 where USERID is your WPI

user name (the letters before the @wpi.edu in your email address). You will lose FIVE POINTS

(or 5% of your assignment) if you don’t do this. Pay Attention!!!

First Steps
Your first task is to copy all necessary files from the git repository that you will modify for homework 1.

First, make sure you have created a Java Project within your workspace (something like MyCS2223). Be

sure to modify the build path so this project will have access to the shared code I provide in the git

repository. To do this, select your project and right-click on it to bring up the Properties for the project.

Choose the option Java Build Path on the left and click the Projects tab. Now Add… the Algorithms

D2023 project to your build path.

http://web.cs.wpi.edu/~heineman/html/teaching_/cs2223/d23/#policies

Published Version: 3/21/2023 11:56 AM

2

Once done, create the package USERID.hw1 inside this project, which is where you will complete your

work. You likely will have packages for each of the homework assignments. Start by copying the

following file into your USERID.hw1 package.

• hw1.WrittenQuestions.txt → USERID.hw1.WrittenQuestions.txt

• Other files will be copied over, as described in each question

In this way, I can provide sample code for you to easily modify and submit for your assignment. I will

provide a video explanation that goes over this assignment and will post to Canvas.

This homework has a total of 100 points. You can earn additional bonus points, but sometimes the extra

bonus questions require some extensive work so be sure to complete regular homework first.

This homework assesses the following skills:

• How to use debugger to inspect information as a program executes

• How to implement a stack in a fixed size array (stacks can grow to the right or grow to the left)

• How to implement a queue in a fixed size array (queues can grow to the right or grow to the

left)

• How to use a stack as part of an algorithm

• How to work with two-dimensional arrays

• How to use Binary Array Search in a number of ways: (a) determine whether an ordered array

contains a value; (b) When an ordered array contains duplicate values, determine the location of

a (possibly duplicated) value with the lowest index; and determine the location of a (possibly

duplicated) value with the highest index

This assignment has a total of 100 points (with four potential bonus points)

• Q1 has 20 points

• Q2 has 30 points and 1 bonus point question

• Q3 has 15 points and 1 bonus point question

• Q4 has 25 points and 1 bonus point question

• Q5 has 10 points and 1 bonus point question

All told, you will copy the following files into your USERID.hw1 package:

• ComputeRectangle.java

• DigitRepresentation.java

• EmpiricalEvaluation.java

• Evaluate.java

• SolveSearch.java

• StackConverter.java

• Staque.java

• Strassen.java
• WrittenQuestions.txt

Published Version: 3/21/2023 11:56 AM

3

Q1. Stack Experiments (20 pts.)
On page 129 of the book there is an implementation of a calculator algorithm using two stacks to

evaluate an expression, invented by Dijkstra (one of the most famous designers of algorithms). I have

created the algs.hw1.Evaluate class which you should copy into your USERID.hw1 package. Note that

all input (as described in the book) must have spaces that cleanly separate all operators and values.

Note: If, to an empty stack, you push the value “1”, “2” and then “3”, the state of this stack is

represented as [“1”, “2”, “3”] where the top of the stack contains the value “3” on the right, and the

bottommost element of the stack, the value “1”, is on the left. An empty stack is represented as [].

1.1. (2 pts.) Run Evaluate on input "((4 + 1) / ((8 * 2) / (3 - 7)))" and state

the observed output

1.2. (4 pts.) Modify Evaluate to support two new operations:

a. Add a new binary operation “n mod m” that computes n % m, where % is the

modulo operator. For example, “5 mod 2” is equal to 1

b. Add a new binary operation “n choose k” which computes the binomial

coefficient C(n, k). For example, “5 choose 2” is equal to 5!/(3!*2!) = 10.

Note that the arguments to choose are first converted to integers before being

processed. Thus 5.2912 choose 2.18 first becomes 5 choose 2. This operation

has no value if n or k is negative. When grading we will only use positive

integers such that 0 < k <= n.

1.3. (2 pts.) Run your modified Evaluate on input "((9 choose 4) mod 13)" and state the

observed output (note that use the ‘mod’ operator in the input expression!)

The following inputs are all improperly formatted, but aren’t you curious what will be output? For each

of these questions below, be sure to (a) state the observed output; (b) describe the state of the ops

stack when the program completes; (c) describe the state of the vals stack when the program

completes. If you set a breakpoint at line 57 in Evaluate you can use the debugger to find the values.

1.4. (3 pts.) Run Evaluate on input "(2 3 * / 5)"

1.5. (3 pts.) Run Evaluate on input "(6 + + 1)" (there is a space between the plus signs)

1.6. (3 pts.) Run Evaluate on input "- 34" (there is a space between the minus sign and the 34)

1.7. (3 pts.) Run Evaluate on input "(4 * (5 + (8 + 9"

Write the answers to these questions in the WrittenQuestions.txt text file. For question 1.2, modify

your copy of the Evaluate class and be sure to include this revised class in your submission.

https://en.wikipedia.org/wiki/Edsger_W._Dijkstra
https://en.wikipedia.org/wiki/Binomial_coefficient
https://en.wikipedia.org/wiki/Binomial_coefficient

Published Version: 3/21/2023 11:56 AM

4

Q2. Searching Programming Exercise (30 pts.)
Many algorithms are concerned with searching for values within a given data structure, and this

homework assignment is no exception. For this assignment you will be working with 2D arrays of integer

values. I have created a helper class TwoDimensionalStorage which you will use to get the value at a

given row and column or set a value in a particular row and column. I have done this because it also

records the total number of times any value was read. The purpose of this question is to have you

design efficient algorithms that try to minimize the number of array entries that are read.

Q2.1 Searching Values [15 pts]

Consider a Permutation Array, a specially constructed two-dimensional array of integers with R rows

and C columns that contains each of the R x C integers from 1 to R x C in a permuted arrangement such

that the values in each row appear in ascending order. The following is a sample array:

int[][] sample = new int[][] {

 { 1, 2, 4, 10, 11},

 { 6, 7, 12, 13, 15},

 { 3, 5, 8, 9, 14},

}

Copy the algs.hw1.SolveSearch into your USERID.hw1 package where you will complete the

implementation of the following two functions:

• int[] less(TwoDimensionalStorage storage, int target) returns the number of

integers in each row of the array that are strictly smaller than target. For example,

less(sample, 5) produces the one-dimensional array of int[] { 3, 0, 1 }

• int contains(TwoDimensionalStorage storage, int value) returns the row that

contains value. For example, contains(sample, 5) returns 2

Once you have a working SolveSearch, execute it to confirm that it works on this simple example and a

smaller trial of ten (if it fails any of these trials then an error is reported.)

Task 2.1 (15 points): Complete implementation of SolveSearch and execute it to reproduce the

following table of runs on specific random 8 x 8 arrays (which appears in the output)

[2, 3, 8, 4, 7, 7, 8, 6] for 46

[3, 5, 5, 8, 8, 8, 7, 8] for 53

[1, 1, 2, 3, 4, 1, 1, 1] for 15

[7, 6, 4, 4, 4, 4, 0, 8] for 38

[5, 7, 8, 3, 7, 4, 4, 1] for 40

[1, 3, 0, 1, 2, 3, 2, 6] for 19

[5, 5, 3, 2, 4, 6, 3, 6] for 35

[0, 0, 2, 1, 2, 1, 0, 0] for 7

[8, 8, 3, 6, 2, 5, 3, 2] for 38

[5, 8, 5, 2, 8, 7, 7, 7] for 50

It will also produce a leaderboard computation. To get full credit, you need fewer than

1,082,400,000 total inspections. DM to alert me if you outperform the leaderboard champion.

Published Version: 3/21/2023 11:56 AM

5

Q2.2 Searching for Rectangles [15 pts]

Consider an Embedded Rectangle, a specially constructed two-dimensional array of integers with R rows

and C columns where:

• Both R and C are odd values

• The only values stored in the array are 0 and 1 values

• The 1 values form a contiguous r x c rectangle, where r > R/2 and c > C/2; note that r and c

may be odd or even

• All other values in the array are 0

The following R=5 row, C=7 column array is an example with r=4 and c=5 whose upper-left corner is

(startr=1, startc=2):

int[][] sample = new int[][] {

 { 0, 0, 0, 0, 0, 0, 0 },

 { 0, 0, 1, 1, 1, 1, 1 },

 { 0, 0, 1, 1, 1, 1, 1 },

 { 0, 0, 1, 1, 1, 1, 1 },

 { 0, 0, 1, 1, 1, 1, 1 },

}

Copy the algs.hw1.ComputeRectangle class into your USERID.hw1 package and complete the

implementation of the search(TwoDimensionalStorage) method. The goal is to devise an algorithm

that computes (startr, startc, numRows, numCols) given a specially constructed two-dimensional

arrays with an Embedded Rectangle.

I have provided the implementation of algs.hw1.fixed.er.SweepFindRectangle, which is a naïve

solution you can execute. Your goal is to write code that outperforms this naïve implementation.

Task 2.2 [15 points]: Complete implementation of ComputeRectangle and execute it to reproduce

the following table of runs on specific random 7 x 15 arrays (which appears in the output):

start=(0,0) with 5 rows and 14 columns in 11

start=(1,2) with 4 rows and 9 columns in 10

start=(0,0) with 6 rows and 14 columns in 12

start=(0,1) with 6 rows and 11 columns in 11

start=(1,0) with 5 rows and 9 columns in 11

start=(1,1) with 5 rows and 12 columns in 11

start=(2,0) with 4 rows and 12 columns in 11

start=(1,3) with 5 rows and 10 columns in 11

start=(0,1) with 6 rows and 11 columns in 11

start=(1,2) with 4 rows and 11 columns in 10

It will produce a computation for the leaderboard. I have provided a simple SweepFindRectangle

algorithm which requires 2,639,301,797 array inspections. To receive half credit for this assignment,

your final leaderboard computed number of inspections must be smaller than 326,000,000. To

receive full credit, your total number of inspections must be smaller than 56,000,000.

Published Version: 3/21/2023 11:56 AM

6

Q2.2.1 BONUS Searching for Knight’s Path [1 point]

This bonus question is only worth 1 point, so don’t even attempt until you have completed the entire

assignment. Copy algs.hw1.CheckKnightPath to your USERID.hw1 package and complete its

implementation. Once done execute your code and see if you can beat my performance of 22,249:

BE PATIENT. This might take awhile.

A total of 500 boards explored.
31.068 on average for valid 5x5 board
13.43 on average for invalid 5x5 board
Total of 22249

Published Version: 3/21/2023 11:56 AM

7

Q3. Stack Programming [20 pts.]
The stack data type provides the functions push() and pop(). While you can determine if a stack is

empty, there typically is no way to determine the size of a stack.

For this question your toArray() method can assume that the FixedCapacityStack it receives as an

argument will never have more than 256 items.

Q3.1 Stack to Array [10 pts.]

It is often useful to take a stack of values and return an array of those values, in order from oldest to

youngest, while ensuring that when done the original stack is reconstituted as it was.

FixedCapacityStack<Integer> stack = new FixedCapacityStack<>(256);

stack.push(926);

stack.push(415);

stack.push(31);

int vals[] = StackConverter.toArray(stack);

// vals is the array int[] { 926, 415, 31 }

Copy algs.hw1.StackConverter into your USERID.hw1 package and complete its implementation.

• static int[] toArray(FixedCapacityStack<Integer> stack)

When toArray() completes, the stack that was passed as an argument must contain the original

elements in the same order.

Validate that your implementation is correct by executing the main() method in this class.

Task 3.1 [10 points]: Complete implementation of toArray()

Q3.2 Working with Stacks [10 pts.]

From (https://en.wikipedia.org/wiki/Numeral_system): In the decimal system (base 10), the numeral

4,327 means (4×103) + (3×102) + (2×101) + (7×100), noting that 100 = 1. In general, if b > 1 is the base, one

writes a number in the numeral system of base b by expressing it in the form anbn + an − 1bn − 1 + an − 2bn −

2 + ... + a0b0 and writing the enumerated digits anan − 1an − 2 ... a0 in descending order. The digits are

natural numbers between 0 and b − 1, inclusive.

The digit sequence for N in a given base 10 is computed as follows:

power = 10
while n > 0:
 digit = (n % 10) // use modulo arithmetic to extract digit from 0 .. 9
 print (digit)
 n = n / 10 // divide and truncate
 power = power * 10

When this program is run with N=4327, the output will be 7234, which produces the digits in reverse

order. Instead of just printing the digits, you must produce a FixedCapacityStack<Integer>

https://en.wikipedia.org/wiki/Numeral_system
https://en.wikipedia.org/wiki/Decimal

Published Version: 3/21/2023 11:56 AM

8

containing the digits in reverse order, so that popping the digits off and printing them each one at a time

would produce the proper left-to-right digit representation.

Copy the algs.hw1.DigitRepresentation class into your USERID.hw1 package and complete the

implementation of the main() method and the following method:

• static FixedCapacityStack<Integer> reverseRepresentation(int n, int b)

This function will construct a stack containing the digits (in base b) of n in reverse order such that the

topmost value on the returned stack will be the leftmost digit representation of n in base b. Validate

that your function works by completing the main() method in this class that when executed produces

the following table for n=21 and bases from 2 up to and including 10.

b 21 in base b

2 10101
3 210
4 111
5 41
6 33
7 30
8 25
9 23
10 21

Task 3.2 (10 points): Complete implementation of reverseRepresentation () and generate above

table.

Q3.2.1 Bonus Question [1 pt]

Consider the digit representation of a number, N, in any base 1 < b < N. Some of these representations

are palindromes with at least two digits. For example, the number 21 has four palindrome

representations, namely 101012 and 1114 and 336 and finally 1120. Note it can be hard to write down a

digit representation for numbers with very large base b, and so instead use integer values to store these

digits rather than characters. For example, 96,036,604 in base 200 is equal to 12 x 2003 + 183 x 2001 + 4

= 96,036,604 or new int[] { 12, 183, 4 }.

Write a program that computes the smallest N that has 50 palindrome representations with at least two

digits using base 1 < b < N. A representation is palindromic if it reads the same from left to right as it

does from right to left. What is this value of N? Submit your program and include in

WrittenQuestions.txt the value of N you computed.

After looking at the results of this effort, can you see why working with palindromes is not an interesting

numeric problem?

Published Version: 3/21/2023 11:56 AM

9

Q4. Staque Implementation [25 pts.]

I will describe the implementation of FixedCapacityStack on day03 of the class. For this question, you

are to implement a made-up data type that I call a Staque, which uses a single storage array to store

two independent sub-structures:

• a stack of char[] values that starts just to the left of the middle of storage and grows to the left

with each push and shrinks to the right with each pop. You can request to push up to 255 char

at a time

• a queue of char[] values that starts just to the right of the middle of storage and grows to the

right with each enqueue. Note that each dequeue shrinks the queue from the left

Copy the algs.hw1.Staque class into your USERID.hw1 package and complete its implementation. In

my lecture on the implementation of stacks and queue data types, I describe how these classes define

extra class attributes to record information; you should do the same for your Staque class.

The Staque constructor has a single size parameter which represents the number of char set aside for

the stack (and similarly for the queue); the total size of internal storage array is 2*size+1. For example,

after creating a Staque with size=7, its storage array of 15 char looks like the following. Note that the

char at address 7 is never used.

-- -- -- -- -- -- -- X -- -- -- -- -- -- --

0 Stack 7 Queue → 14

The Staque must support the following operations (review the starting file to see the full set):

• push(char[]) – push a sequence of char values (from 1 to 255 of them) to the top of the stack

• pop() – pop and return the most recently pushed sequence of char values

• enqueue(char[]) – enqueue a sequence of char values (from 1 to 255 of them) to the tail of

the queue

• dequeue() – dequeue and return the oldest enqueued sequence of char values.

Consider the following sequence of commands using c3 = new char[] { 'a', 'b', 'c' } and c4 =

new char[] { 'w', 'x', 'y', 'z' }.

• push(c3) -- push 3 char to the stack

• enqueue(c4) -- enqueue 4 char in the queue

The internal storage array will be updated as follows:

-- -- -- \3 a b c X \4 w x y z -- --

0 Stack 7 Queue → 14

As you can see, the length of the respective char[] arrays is stored just prior to the actual char[] values

(using the notation \# where # is the length) that had been push’d (or enqueue’d) to the stack (or

Published Version: 3/21/2023 11:56 AM

10

queue). Because we have to stuff an integer (i.e., the length of the char sequence) into a char, we must

limit the size of these char[] arrays to 255 characters.

This Staque object can support the following two additional requests with c1 = new char[] {'M'}

and c2 = new char[] { 'x', 'y'}.

• push(c2) -- push 2 char to the stack

• enqueue(c1) -- enqueue 1 char in the queue

The internal storage array will be updated as follows:

\2 x y \3 a b c X \4 w x y z \1 M

0 Stack 7 Queue → 14

If you execute the following two commands:

• pop() -- pop and return char[] {'x', 'y'} that had been pushed

• dequeue() -- dequeue and return char[] {'w','x','y','z'} from head

The internal storage array will be updated as follows:

-- -- -- \3 a b c X -- -- -- -- -- \1 M

0 Stack 7 Queue → 14

You can confirm your implementation works for this example by executing the main() method in

Staque. Your output will look something like this:

If you are running on Linux or from the command line, your output might look like this:

Note that in the output, the encoded lengths may appear as a strange
character (like ^G) because of how characters appear.

 0:[, , , , , , , , , , , , , ,] <empty>
 1:[, , , ^C, a, b, c, , , , , , , ,] <pushed 3>
 2:[, , , ^C, a, b, c, , ^D, w, x, y, z, ,] <enqueued 4>
 3:[, , , ^C, a, b, c, , ^D, w, x, y, z, ^A, M] <enqueued 1>
 4:[^B, x, y, ^C, a, b, c, , ^D, w, x, y, z, ^A, M] <pushed 2>
 5:[, , , ^C, a, b, c, , , , , , , ^A, M] <pop'd and dequeued>

Published Version: 3/21/2023 11:56 AM

11

Q4.1 Bonus Question (1 pt)

The Staque queue will eventually become full, because memory for the queue is not reclaimed when

elements are dequeued. Implement a circular queue (using ideas from day05) but be careful about the

edge cases (i.e., it can be confusing to detect the difference between a full queue and an empty queue).

When you complete this implementation, validate it works by writing a class with the following main()

method that moves values back and forth between the stack and the queue a few hundred times.

public static void main(String[] args) {
 Staque stq = new StaqueCircular(64);

 stq.push("parting".toCharArray());
 stq.push("is".toCharArray());
 stq.push("such".toCharArray());
 stq.push("sweet".toCharArray());
 stq.push("sorrow".toCharArray());

 for (int i = 0; i < 500; i++) {
 System.out.println(i + "...");
 while (stq.canPop()) {
 char[] bb = stq.pop();
 System.out.println(String.valueOf(bb));
 stq.enqueue(bb);
 }

 while (stq.canDequeue()) {
 char[] bb = stq.dequeue();
 System.out.println(String.valueOf(bb));
 stq.push(bb);
 }
 }
}

Published Version: 3/21/2023 11:56 AM

12

Q5. Big O Notation [10 points]
In lecture, I will present the Big O notation used to classify the upper bound of the asymptotic

complexity of an algorithm. Empirically, I will demonstrate evidence to support the Big O classification of

an algorithm on a worst case input, by (a) counting the number of times a key operation executes; (b)

timing the run of a Java program. The number of executions of a key operation often correlates directly

with the execution time.

The ThreeSum program on page 173 offers a classic example of an O(N3) algorithm. Upon inspecting the

code, you can see the triply-nested for loop that ensures that each different possible triple (i, j, k) is

checked. With a little bit of mathematical help, you can evaluate that the number of times the if

statement executes is
𝑛3

6
−

𝑛2

2
+

𝑛

3
 . For n=10, for example, this results in (1000/6 – 100/2 + 10/3) = 120.

You can read more about this on p. 181 of the textbook. In lecture I will explain asymptotic concepts to

explain behavior: as N grows larger and larger, the n3 term dominates and determines the order of

growth.

public static int count(int[] a) {
 int N = a.length;
 int ct = 0;
 for (int i = 0; i < N; i++) {
 for (int j = i+1; j < N; j++) {
 for (int k = j+1; k < N; k++) {
 if (a[i] + a[j] + a[k] == 0) { ct++; }
 }
 }
 }
 return ct;
 }

You will evaluate another problem and use Big O notation to classify its worst-case runtime performance

as well as provide empirical evidence of the same.

Given two square matrices, Matrix Multiplication is a binary operation that computes a new matrix from

these two matrices (to simplify this question, you will only consider multiplication of square matrices).

The naïve matrix multiplication shown below computes the product of A and B, and it has been

instrumented to keep track of the total number of multiplications and additions.

public static int[][] multiply (int[][] A, int[][] B) {
 numMultiplications = 0; // reset count of multiplications and additions
 numAdditions = 0;
 int [][] result = new int[A.length][B.length];
 for (int rA = 0; rA < A.length; rA++) {
 for (int cB = 0; cB < B[0].length; cB++) {
 for (int cA = 0; cA < A[0].length; cA++) {
 result[rA][cB] += A[rA][cA] * B[cA][cB];
 numAdditions++; // instrument to count both the multiplication…
 numMultiplications++; // …and the addition
 }
 }
 }
 return result;
}

https://en.wikipedia.org/wiki/Matrix_multiplication

Published Version: 3/21/2023 11:56 AM

13

In the naïve multiplication algorithm, the number of additions (result[rA][cB] += …) is the same as the

number of multiplications (A[rA][cA] * B[cA][cB]).

Note: By convention, you do not count the number of times the for loop variables are incremented (i.e.,

rA++); you only count the number of additions or multiplications of the array elements.

In 1969, Volker Strassen invented an algorithm that outperforms naive matrix multiplication. Known as

Strassen’s algorithm, the asymptotic complexity for multiplying two N x N matrices where N=2n is

𝑂(𝑁log2 7) which is approximately 𝑂(𝑁2.8074…). For this question you will copy algs.hw1.Strassen

into your USERID.hw1 package and instrument it (similar to how you have seen how MatrixMultiply is

instrumented) to account for all the integer multiplications as well as integer additions; for simplicity,

you should count both the number of integer subtractions and integer additions in the same counter.

Then copy algs.hw1.EmpiricalEvaluation into your USERID.hw1 and complete it.

Task 5. [10 points]: Complete implementation of EmpiricalEvaluation and generate following

table. In WrittenQuestions.txt be sure to:

(a) Write a formula that computes #SM Mult given N

(b) Write a formula that computes #SM Add/Sub given N

BE PATIENT! This might take a few minutes to run...
 N #MM MULT #MM ADD #SM MULT #SM ADD/SUB TIME MM TIME SM
 4 64 64 49 198 0.000000 0.000000
 8 512 512 343 1674 0.000000 0.000000
 16 4096 4096 2401 12870 0.000000 0.015625
 32 32768 32768 16807 94698 0.000000 0.000000
 64 262144 262144 117649 681318 0.015625 0.046875
 128 2097152 2097152 823543 4842954 0.000000 0.343750
 256 16777216 16777216 5764801 34195590 0.031250 2.296875
 512 134217728 134217728 40353607 240548778 0.265625 16.343750
 1024 1073741824 1073741824 0 0 2.109375 -1.000000
 2048 8589934592 8589934592 0 0 66.000000 -1.000000

The first column, N, declares the problem size. Column #MM MUL and #MM ADD record the number of

multiplications and additions for a matrix multiplication problem of size N. Similarly, #SM MUL and #SM

ADD/SUB do the same for Strassen.

To complete this question, come up with a formula for #SM MULT and for #SM ADD/SUB. For example,

the entry for #MM MULT is N3.

Q5.1 Bonus Question [1 pt]

Given the 4x4 array shown below:

A = { {1, 0, 0, 1},
 {0, 1, 1, 0},
 {0, 1, 1, 0},
 {1, 0, 0, 1} };

If AN represents the product A x A x … x A where A is multiplied N-1 times, write a program to compute
the value of A[1][1] for any N. Can you define this value in terms of N?

https://en.wikipedia.org/wiki/Strassen_algorithm

Published Version: 3/21/2023 11:56 AM

14

Submission Details
Each student is to submit a single ZIP file that will contain the implementations. In addition, there is a

file “WrittenQuestions.txt” in which you are to complete the short answer problems on the homework.

The best way to prepare your ZIP file

is to export your entire USERID.hw1

package to a ZIP file using Eclipse.

Select your package and then choose

menu item “Export…” which will

bring up the Export wizard. Expand

the General folder and select Archive

File then click Next.

You will see something like the

above. Make sure that the entire

“hw1” package is selected and all of

the files within it will also be

selected. Then click on Browse… to

place the exported file on disk and

call it USERID-HW1.zip or something

like that. Then you will submit this

single zip file in Canvas as your

homework1 submission.

If you would rather just Zip your files from your computer directly, then use the windows explorer to

locate the src/ folder which contains your code and zip this folder up and submit it.

Published Version: 3/21/2023 11:56 AM

15

Addendum
If you discover anything materially wrong with these questions, be sure to contact the professor or

TA/SAs posting to the discussion forum for HW1 on discord.

When I make changes to the questions, I enter my changes in red colored text as shown here.

1. For Q1 you can assume that when the choose operator executes its arguments are converted to

integers first before being processed. Thus “(5.31 choose 2.11)” is equivalent to “(5 choose 2)”

2. For Q1, make sure spaces between every token

3. Confirm for Q1 that “(n choose k)” will only be called with integer values such that 0 < k <= n.

you should convert the given values into integers before attempting to compute this operation.

If you want to write a defensive implementation (NO NEED TO DO SO), you could simply have “n

choose k” evaluate to 0 if it is given any invalid input.

4. Fixed errant comment regarding the enqueue of c1 which, of course, enqueues a char[] of a

single char to the queue.

