
April 9 2022 11:30 PM 

CS 2223 D22 Term. Homework 3 
This homework covers material that extends back to before the midterm. 

Homework Instructions 
• This homework is to be completed individually. If you have any questions as to what constitutes 

improper behavior, review the examples as I have posted online 

http://web.cs.wpi.edu/~heineman/html/teaching_/cs2223/d22/#policies. 

• Due Date for this assignment is 6PM April 19th. Homeworks received after 6PM will receive a 

25% penalty if submitted within 48 hours, otherwise zero points. 

• Submit your assignments electronically using the canvas site for CS2223. Submit your homework 

under “HW3”. You must submit a single ZIP file that contains all of your code as well as the 

written answers to the assignment. 

• All of your Java classes must be defined in a packager USERID.hw3 where USERID is your CCC 

user id (i.e., your email address without the @wpi.edu). 

Homework Context 
This homework introduces students to the Binary Tree data structure. When used as the basis for Binary 

Search Trees, this structure offers the ability to dynamically insert and remove values, while supporting 

efficient search and traversals. 

 

Recursive 
Data 

Structure 

 
 

 

 

  

http://web.cs.wpi.edu/~heineman/html/teaching_/cs2223/d22/#policies


April 9 2022 11:30 PM 

Q1. Evaluating Sorting Algorithms (TBD pts) 
When evaluating sorting algorithms, we have so far only been concerned with the number of times two 

elements are compared with each other. It’s time to do a deeper dive into the number of times two 

values are exchanged. After all, with comparison-based sorting, we would like to minimize the number 

of times two values are exchanged. 

An Observation  
The array [1, 2, 3, 4, 5, 0] contains SIX values, and requires five pair-wise exchanges to sort in ascending 

order. Try it out yourself. So you can always construct an array of size N that requires N-1 exchanges as 

the worst case. Given a random array of integers, how should we proceed? 

I have created an algs.hw3.sort.Exchangeable class that stores an Integer value and which can be 

used to record the number of times an object was exchanged during a sort. Note that for this to 

happen, the static void exch(Exchangeable[] a, int i, int j)  method has been 

instrumented to increment the exchange count for a[i] and a[j] for four different sorting algorithms 

(INSERTION SORT, SELECTION SORT, QUICKSORT, HEAP SORT and MERGE SORT). I have done this for you. 

Q1.1 Trial Number One: Run 100 Trials for each size N 
For N in the range from 128 to 16,384, run 100 trials of each algorithm sorting a different random array 

of Exchangeable objects (using the Exchangeable.create(N) method). You know you are doing 

this right when you see that for each problem N, you ultimately call Exchangeable.create 500 times 

because there are FIVE sorting algorithms and ONE HUNDRED trials. 

• For each trial, inspect the Exchangeable objects themselves to count the total number of 

times all objects were exchanged. Note that if you simply accumulate the total increment counts 

of all Exchangeable objects in the array, the resulting total is TWICE the number of times the 

exch() method was called (do you see why?), so be sure to cut it in half. 

• For these 100 trials of sorting arrays of length N, record the largest number of exch() 

invocations you recorded, which will reflect “the random trial that required the most number of 

exchanges.” 

Your output should look like the following (although because these are random trial, some of the 

numbers in the columns may be different). You should order the columns from left to right in ascending 

order BASED ON THE FINAL ROW OF 16384. Note that for one of the algorithms, the total number of 

exchanges becomes unmanageable, so for that algorithm (you will eventually see which one) do not run 

it for values of N ≥ 4096, but instead output “*” for its number of exchanges. 

N Sort1 Sort2 Sort3 Sort4 Sort5 
128 128 364 807 896 4647 
256 256 785 1851 2048 17736 
512 512 1663 4202 4608 69183 
1024 1024 3557 9370 10240 271760 
2048 2048 7556 20797 22528 1097560 
4096 4096 16012 45611 49152 * 
8192 8192 33949 99340 106496 * 
16384 16384 71571 215011 229376 * 
 

Deleted: 807

Formatted: Highlight

Deleted: 2048

Deleted: 1851

Deleted: 4608

Deleted: 4202

Deleted: 10240

Deleted: 9370

Deleted: 22528

Deleted: 20797



April 9 2022 11:30 PM 

 

Naturally, you need to replace the column headings with the corresponding label of “Heap”, “Insert”, 
“Merge”, “Quick”, “Select”. 
 
Note in my original code, I had defect that swapped two columns by mistake. The above is now accurate 
(again, within the noise that you will get with randomly generated runs). 

Q1.2 Classifying Number of Exchanges 
For each of these algorithms, you must classify the # of exchanges using the Big O notation, to capture 

the order of growth. 



April 9 2022 11:30 PM 

Q2. Working with Binary Search Trees (TBD pts). 
There are three kinds of methods you can envision for Binary Search Trees: 

• Structural – just inspects .left and .right references, like computing the height of a tree 

• Read Only – traverses a tree by inspecting the keys but makes no changes to the structure. Like 

the get() method. 

• Modifying – like the put() method. 

Your task is to copy the algs.hw3.BST class (and TestBST class) into your USERID.hw3 package and 

complete the methods at the end of the class. 

Note that all references below to BST refer to USERID.hw3.BST. 

• Delete the key from the BST that is the maximum key from the BST  

• Locate the key whose count is largest among all keys in the BST 

• Return a copy of the BST 

Once you are done, you can execute the TestBST class and if it doesn’t throw any exceptions, you 

have successfully implemented BST. 

Q2.1. BONUS QUESTION (1 pt.)   

Create in your project a package USERID.hw3.bonus and copy the classes from algs.hw3.bonus 

into your package (this includes algs.hw3.bonus.BST and algs.hw3.bonus.SimpleRangeList). 

Yes, RangeList is BACK! 

For this bonus question, you are to complete the implementation of SimpleRangeList and the BST to 

provide the public SimpleRangeList ranges() method, which returns a SimpleRangeList. 

Formatted: Font: Consolas

Formatted: Font: Consolas

Formatted: Font: Consolas

Formatted: Font: Consolas

Formatted: Font: Consolas

Formatted: Font: Consolas

Formatted: Font: Consolas



April 9 2022 11:30 PM 

Q3. Benfords Law (TBD pts). 
Benford's law, also known as the Newcomb–Benford law, the law of anomalous numbers, or the first-

digit law, is an observation that in many real-life sets of numerical data, the leading digit is likely to be 

small.  

Examining a list of the heights of the 62 tallest structures in the world by category shows that 1 is by far 

the most common leading digit, irrespective of the unit of measurement (whether in feet or meters): 

I have created a algs.hw3.Table class that contains the heights of 62 tallest structures in the world 

by category. Process the data from these building heights to represent the table (by leading digit)  

Reproduce the values in the table shown below (including the percentages for actual (meters and feet) 

and predicted (per Benford’s law). Of course, your output will be in plain text, but you can see what I am 

looking for. 

 

Q3.1. BONUS QUESTION (1 pt.)   

The original Wikipedia entry in Benford’s law refers to “58 tallest structures by category”, but the 

revised table has 62 tallest structure categories. (a) what are the four newest categories that were 

added? (b) did any category change its height, based on the stats from the Wikipedia table? 

 

https://en.wikipedia.org/wiki/Benford%27s_law
https://en.wikipedia.org/wiki/List_of_tallest_buildings_and_structures#Tallest_structure_by_category
https://en.wikipedia.org/wiki/List_of_tallest_buildings_and_structures#Tallest_structure_by_category


April 9 2022 11:30 PM 

Q4. Using a BST as a Symbol Table (TBD pts). 
Compare the efficiency of using a BST as a Symbol Table. I have created a stripped-down Binary Search 

Tree, which you should use “as is” without copying/modifying. Find this class as 

algs.hw3.BST_SymbolTable. 

Compare the performance of using this class as a symbol table against the 

edu.princeton.cs.algs4.SeparateChainingHashST and 

edu.princeton.cs.algs4.LinearProbingHashST implementations, provided by Sedgewick. 

For each value of N from 16384 to 1048576, complete 10 different trials. In each trial, you will generate 

N/2 random integers using StdRandom.uniform(N*8). For each of these N/2 random numbers, check 

if the number is contained in the Symbol table – if not, put the number there with a count of 1, 

otherwise increment the count that is associated with it. The essential idea is that you are trying to 

count the number of times that you see each of the random numbers. You will need to use 

StopwatchCPU to time the total time it takes to complete all ten trials (I run ten trials just to be sure I 

have something to measure – computers are just so fast these days!). As you can see, for each value N, 

you will perform a get() and a put() invocation, thus the total number of operations will be 2 * 10 * N/2 

= 10*N. 

Once done, compute the AVERAGE cost of a put() or get() operation, by dividing the total running time 

by 10*N, and output the result. 

Q4.1 Generate Output Table 

        N  Avg.BST  Avg.List  Avg.OA 
     16384 #  #  # 
     32768 #  #  # 
     65536 #  #  # 
    131072 #  #  # 
    262144 #  #  # 
    524288 #  #  # 
   1048576 #  #  # 

 
Q4.2 What is O() classification for the average operation for each of these implementations? 

 

Deleted: 0



April 9 2022 11:30 PM 

Q5. Bonus Questions (1 pt) 

A complete binary tree with N=2k - 1 nodes is the most compact representation for storing N nodes. This 

bonus question asks what is the "least compact" AVL trees you can construct. A Fibonacci tree is an AVL 

tree such that in every node, the height of its left subtree is bigger (by just 1) than the height of its right 

subtree. Think of this as an AVL tree that would need to perform the most number of rotations when 

deleting its largest value. Complete the implementation of  FibonacciTree(N) that returns a Fibonacci 

AVL tree whose root value is the Nth Fibonacci number. For example, FibonacciTree(7) returns a 

simple FibonacciTree object (composed of algs.hw3.Node objects) as depicted below: 

 

To confirm you have the right structure, implement a postorder traversal of this tree and output the 

values in the traversal, as 1 2 4 3 6 7 5 9 10 12 11 8. The following is the next-larger Fibonacci Tree: 

 

 

  



April 9 2022 11:30 PM 

Change Log 
1. Clarification that Q4 generates random numbers and then counts the number of times it sees 

each of the numbers between 0 and N*8. 

2. Added Bonus Question Q2.1 

3. Table for sorting had some switched columns once I started printing “*” for the final three rows. Formatted: List Paragraph, Numbered + Level: 1 +
Numbering Style: 1, 2, 3, … + Start at: 1 + Alignment: Left +
Aligned at:  0.25" + Indent at:  0.5"


