
Published Version: March 16 2022 8:30 PM

1

CS 2223 D22 Term. Homework 1 (100 pts.)

Homework Instructions

• This homework is to be completed individually. If you have any questions as to what constitutes

improper behavior, review the examples I have posted online

http://web.cs.wpi.edu/~heineman/html/teaching_/cs2223/d22/#policies

• Due Date for this assignment can be found in canvas. Late Submissions received after the

deadline are penalized 25% and can be submitted for up to 48 hours.

• Submit your assignments electronically using the canvas site for CS2223. You must submit a

single ZIP file that contains all of your code as well as the written answers to the assignment.

• All of your Java classes must be defined in a package USERID where USERID is your WPI user

name (the letters before the @wpi.edu in your email address). You will lose FIVE POINTS (or 5%

of your assignment) if you don’t do this. Pay Attention!!!

First Steps
Your first task is to copy all of the necessary files from the git repository that you will be modifying/using

for homework 1. First, make sure you have created a Java Project within your workspace (something like

MyCS2223). Be sure to modify the build path so this project will have access to the shared code I provide

in the git repository. To do this, select your project and right-click on it to bring up the Properties for the

project. Choose the option Java Build Path on the left and click the Projects tab. Now Add… the

Algorithms D2022 project to your build path.

http://web.cs.wpi.edu/~heineman/html/teaching_/cs2223/d22/#policies

Published Version: March 16 2022 8:30 PM

2

Once done, create the package USERID.hw1 inside this project, which is where you will complete your

work (for the whole term). You likely will have packages for each of the homework assignments. Start by

copying the following file into your USERID.hw1 package.

• hw1.WrittenQuestions.txt → USERID.hw1.WrittenQuestions.txt

• Other files will be copied over, as described in each question

In this way, I can provide sample code for you to easily modify and submit for your assignment.

• Q1 is worth 30 points

• Q2 is worth 30 points (+4 bonus points)

• Q3 is worth 30 points (+3 bonus points)

• Q4 is worth 10 points (+2 bonus points)

This homework has a total of 109 points. You can earn additional bonus points, but sometimes the extra

bonus questions require some extensive work so be sure to complete regular homework first.

Published Version: March 16 2022 8:30 PM

3

Q1. Stack Experiments (30 pts.)
On page 129 of the book there is an implementation of a calculator algorithm using two stacks to

evaluate an expression, invented by Dijkstra (one of the most famous designers of algorithms). I have

created the algs.hw1.Evaluate class which you should copy into your USERID.hw1 package. Note that

all input (as described in the book) must have spaces that cleanly separate all operators and values.

Note 1.2 has a space before final closing “)”.

The following inputs are all improperly formatted, but I am curious what will be output:

1.1. (4 pts.) Run Evaluate on input "(3 2 * / 5)"

1.2. (4 pts.) Run Evaluate on input "(4 + + 1)" (there is a space between the plus signs)

1.3. (4 pts.) Run Evaluate on input "- 76" (there is a space between the minus sign and the 76)

1.4. (4 pts.) Run Evaluate on input "(8 * (9 + (3 + 4"

The following input is more complicated but has the right format.

1.5. (4 pts.) Run Evaluate on input "((3 + 1) / ((4 * 1) / (5 - 9)))"

Now modify Evaluate to support new operations:

1.6. (5 pts.) Modify Evaluate to support two new operations:

a. Add a new binary operation “n exp b” that computes nb.

b. Add a new binary operation “n log b” which computes logb(n).

1.7. (5 pts.) Run your modified Evaluate on input "(2 exp (17 log 4))" and be sure to

explain the result of the computation in your WrittenQuestions.txt file. Hint: be sure to

explain what happens when processing each of the ‘)’ closing parentheses.

For each of these questions (a) state the observed output; (b) describe the state of the ops stack when

the program completes; (c) describe the state of the vals stack when the program completes.

Note: If, to an empty stack, you push the value “1”, “2” and then “3”, the state of this stack is

represented as [“1”, “2”, “3”] where the top of the stack contains the value “3” on the right, and the

bottommost element of the stack, the value “1”, is on the left. An empty stack is represented as [].

Write the answers to these questions in the WrittenQuestions.txt text file. For question 1.6,

modify your copy of the Evaluate class and be sure to include this revised class in your submission.

Published Version: March 16 2022 8:30 PM

4

Q2. Searching Programming Exercise (30 pts.)
Many algorithms are concerned with searching for values within a given data structure, and this

homework assignment is no exception.

For this assignment you will be working with collections of points in a two-dimensional plane. From high

school mathematics, you should be familiar with the following two types of points:

Cartesian points are defined using (x, y) coordinates. The (0,0)
origin is typically shown in the middle of the page. There are four
quadrants: Quadrant I in the upper right corner, Quadrant II is in
the upper left. Quadrant III is in the lower left, and Quadrant IV
in the lower right.
The x-axis increases in value to the right and the y-axis increases in
value up the page.

Polar points are defined using (r, theta) where r is a magnitude
distance away from the central origin point (0) on the polar axis L.
Theta is the angular coordinate in counter-clockwise motion away
from L. Theta is described using degrees from 0 (which aligns with
the L axis) all the way up to, but not including 360.

Note that r can never be negative and theta must be in the range
[0, 360).

Quadrant I contains points with 0 < theta < 90, Quadrant II has
points with 90 < theta < 180. Quadrant III has points with 180 <
theta < 270. Quadrant IV has points with 270 < theta < 360.

For this assignment, all Cartesian and Polar points will be defined using integer values for x, y, r and

theta.

Given a collection of unique points stored in an array there are some operations of interest:

• Exists – check whether a point exists in the array

• CountInQuadrant(q) – count the number of points in quadrant 1, 2, 3 or 4

• CountBetween(min, max) – draw two rays from the origin to infinity at angles min and max,

each counter-clockwise from the horizontal axis, L. Count the number of points between the

two of them. While this could also be applied to Cartesian points, for simplicity, this will only be

applied to Polar Points.

These operations can be made more efficient if you order the points in specific ways. For this question,

you are to construct solutions for both Cartesian and Polar Points. You will make use of an

OrderedArray<T> class that stores an array of elements that have been sorted in a specific way.

https://en.wikipedia.org/wiki/Cartesian_coordinate_system
https://en.wikipedia.org/wiki/Polar_coordinate_system

Published Version: March 16 2022 8:30 PM

5

There are multiple ways to sort an array of points. For this assignment, two will be relevant:

• comparePolarByTheta – sorts Polar points counter-clockwise around the origin, O, breaking ties

by sorting using distance, r, from the origin. Using this sorting scheme, the following nine points

would be sorted from 1 to 9:

 ^
 4 | 2
 | 3
 5 | 1
 <------------O------------->
 6 | 9
 7 |
 | 8

 V

• compareCartesianByQuadrant – sorts Cartesian points by quadrant: RIGHT to LEFT from
Quadrant I to II, and then LEFT to RIGHT from Quadrant III to IV. The same points above
would be ordered as follows:

 ^

 5 | 1
 | 3
 4 | 2
 <------------O------------->
 6 | 8
 7 |
 | 9

 V

The points will be randomly computed. Cartesian points will never appear on either the X- or Y-axis

while Polar points will never have a theta of 0, 90, 180 or 270.

The code I provide for this question generates random Cartesian points in the range from x=[-500, 499]

and y=[-500, 499] using only integer coordinates. No point will be duplicated, and since no points will be

generated on the axes, the total number of potential points that could be generated is 998,001.

When generating random Polar points, r is drawn from the range [0, 499] and theta is [0, 359]. Since no

points will be generated with r=0 or theta of 0, 90, 180, 270, the total number of potential points that

could be generated is 89*4*499 = 177,644.

Published Version: March 16 2022 8:30 PM

6

Q2.1 Cartesian Trials

For this question, you are asked to write an efficient countCartesiansInQuadrant(points, q)

method that counts the number of points in the given quadrant (1, 2, 3, or 4). Assume that cartesians

has already been sorted by the compareCartesianByQuadrant comparator.

Copy algs.hw1.QuadrantCounting into your USERID.hw1 package and complete the implementation

of int countCartesiansInQuadrant(OrderedArray<Point> cartesians, int q), which returns

the number of points in the given quadrant.

The cartesians object cannot be directly accessed like an array, but you can call the following

methods:

• length() returns the size of the collection.

• get(idx) returns the Point stored at the given index location, idx.

Execute your class to generate a table that outperforms the following result (which you can observe by

executing algs.hw1.fixed.CartesianTrials).

N Q1 Q2 Q3 Q4 QAll #Inspections
255 68 56 65 66 255 1020
511 135 137 124 115 511 2044
1023 224 269 266 264 1023 4092
2047 518 534 500 495 2047 8188
4095 1040 1021 1033 1001 4095 16380
8191 2098 2053 1984 2056 8191 32764
16383 4108 4124 4096 4055 16383 65532
32767 7988 8229 8217 8333 32767 131068
65535 16285 16436 16364 16450 65535 262140

Each row above reports the results of counting the points in the four quadrants – showing how many

were found in each one – and summarizing under QAll the total number (which must equal N). The final

column, labeled #Inspections, determines the total number of get(idx) calls that were used. As you

can see, this number is always 4xN, because the naïve brute-force algorithm simply checks each point to

determine whether it is in quadrant q, and countCartesiansInQuadrant(q) is called four times.

Task 2.1 (10 points): Complete countCartesiansInQuadrant() method in QuadrantCounting and

produce the following output (which is correct, yet requires FAR FEWER inspections):

N Q1 Q2 Q3 Q4 QAll #Inspections

255 68 56 65 66 255 48

511 135 137 124 115 511 54

1023 224 269 266 264 1023 60

2047 518 534 500 495 2047 66

4095 1040 1021 1033 1001 4095 72

8191 2098 2053 1984 2056 8191 78

16383 4108 4124 4096 4055 16383 84

32767 7988 8229 8217 8333 32767 90

65535 16285 16436 16364 16450 65535 96

Q2.1.1 Bonus (+1 bonus point)

Develop a formula C(N) – where N is one less than a power of 2 – that counts the number of Inspections

in the table shown in Task 2.1 above, for any N ≥ 255.

Published Version: March 16 2022 8:30 PM

7

Q2.1.2 Bonus (+1 bonus point)

Only attempt this bonus point after you have completed the first part. Can you come up with an

optimization that improves performance to be:

N Q1 Q2 Q3 Q4 QAll #Inspections
255 68 56 65 66 255 48
511 135 137 124 115 511 53
1023 224 269 266 264 1023 59
2047 518 534 500 495 2047 64
4095 1040 1021 1033 1001 4095 71
8191 2098 2053 1984 2056 8191 77
16383 4108 4124 4096 4055 16383 83
32767 7988 8229 8217 8333 32767 88
65535 16285 16436 16364 16450 65535 95

Published Version: March 16 2022 8:30 PM

8

Q2.2 Polar Trials

For this question, you are asked to write efficient methods below. Assume that polars has already been

sorted by the comparePolarByTheta comparator.

• boolean existsThetaOrdered(OrderedArray<Point> polars, PolarPoint p), which

determines whether p is in the polars OrderedArray.

• int countBetweenThetaOrdered(OrderedArray<PolarPoint> points,int min,int max)

which counts the number of PolarPoints between angles min and max (inclusive on both ends).

Copy algs.hw1.PolarPointTrials into your USERID.hw1 package and complete the implementation

of two methods:

The polars object cannot be directly accessed like an array, but you can call the following methods:

• length() returns the size of the collection.

• get(idx) returns the Point stored at the given index location, idx.

Execute your class to generate a table that outperforms the following result (which you can observe by

executing algs.hw1.fixed.PolarTrials).

N #Found Exists-I #Betw. Between-I
255 105 16698554 255 15300
511 170 33447889 511 30660
1023 374 66849068 1023 61380
2047 773 133330107 2047 122820
4095 1511 265239878 4095 245700
8191 2949 524900393 8191 491460
16383 6077 1023467126 16383 982980
32767 12131 1947821462 32767 1966020
65535 23839 3516530722 65535 3932100

Each row above reports the results of (a) 65,536 invocations of existsThetaOrdered() using random

PolarPoints; and (b) invoking countBetweenThetaOrdered() 60 times using different 6 degree

slices, for example, (min=0, max=5), then (min=6, max=11), then (min=12, max=17) all the way up to

(min=354, max=359). The value in #Betw. must exactly match N since all possible angles are involved.

The values of Exists-I and Between-I reflect the total number of inspections required to perform

each trial. Your challenge is to solve the question more efficiently.

Note: Make sure that your local copy of PolarPointTrials has its main method to match this:

 /** Do not change this function. Just execute it. */
 public static void main(String[] args) {
 new PolarPointTrials().runTrial();
 }

Published Version: March 16 2022 8:30 PM

9

Task 2.2 (20 points): Complete existsThetaOrdered() and countBetweenThetaOrdered() methods in

PolarPointTrials to produce the following improved results (note: the values under #Found and

#Betw. must exactly match the earlier table).

N #Found Exists-I #Betw. Between-I

255 105 524184 255 960

511 170 589655 511 1080

1023 374 655014 1023 1200

2047 773 720117 2047 1320

4095 1511 784783 4095 1440

8191 2949 849091 8191 1560

16383 6077 911388 16383 1680

32767 12131 970783 32767 1800

65535 23839 1024892 65535 1920

Q2.2.1 Bonus (+1 bonus point)

Only attempt this bonus point after you have completed the first part. Can you achieve (or do better

than) the following results for Between-I, which reduces the number of inspections needed to:

N #Found Exists-I #Betw. Between-I
255 105 524184 255 885
511 170 589655 511 997
1023 374 655014 1023 1124
2047 773 720117 2047 1243
4095 1511 784783 4095 1363
8191 2949 849091 8191 1477
16383 6077 911388 16383 1597
32767 12131 970783 32767 1718
65535 23839 1024892 65535 1841

Q2.2.2 Bonus (+1 bonus point)

Given the tabular output above, do the #Found numbers seem reasonable? That is, since random Polar

points are being generated and random Polar points are being searched for, compute the expected

totals for this #Found column (using basic statistics) and compare against the output above.

Published Version: March 16 2022 8:30 PM

10

Q3. Stack Programming And Recursion Exercise (30 pts.)

Q3.1 Evaluate and Convert a Postscript Expression into an Infix Expression [10pt]

Question 1 contains the Evaluate class that demonstrates how to use stacks to compute the value of an

infix expression, where a binary operator appears between its arguments, like “((4 + 5) * 7)”, using

parentheses to disambiguate sub-expressions.

Expressions can be represented without parentheses using postfix notation1, where a binary operator

appears after its arguments. The infix expression “((4 + 5) * 7)” is represented as “4 5 + 7 *” using

postfix. You can read this from left to right as “Given values 4 and 5, sum them and leave the result as 9,

which together with 7 is multiplied to make 63”. The elegance of postfix notation is that you do not

need parentheses! Forget PEMDAS! This is the future of computation.

Copy the algs.hw1.PostFixToInfix class into your USERID.hw1 package and complete the

implementation so it converts postfix expressions into an infix expression, using parentheses for each

sub-expression. While doing this conversion, you should also compute the value’s expression, using

similar logic to what you saw in Evaluate – you only need to support the standard mathematical

operations of +, -, /, and *.

It should process a single a postfix notation input (with spaces between all values and operators) using

FixedCapacityStack. Output the corresponding infix expression for the input.

Sample Input Sample Output
2 6 + (2 + 6) = 8.0
3 1 + 4 * 1 5 - / (((3 + 1) * 4) / (1 - 5)) = -4.0
9 8 7 6 5 * / - + (9 + (8 - (7 / (6 * 5)))) = 16.766666…

1 https://en.wikipedia.org/wiki/Reverse_Polish_notation

Published Version: March 16 2022 8:30 PM

11

Q3.2 There is a deep relationship between Recursion and Stacks [10pt]

The Fibonacci Sequence has been studied extensively throughout history.

Fibonacci Sequence (A00045) The Zeckendorf sum for n is computed as follows:

while n > 0:
 f = largest Fibonacci number smaller than n
 print (f)
 n = n - f

𝐹𝑛 = {
0 𝑛 = 0
1 𝑛 = 1
𝐹𝑛−1 + 𝐹𝑛−2 𝑛 > 1

Sequence: 0, 1, 1, 2, 3, 5, 8, 13, 21, ….

Note that F8 = 21 since the first entry is F0.

According to the Zeckendorf theorem, every positive integer can be represented uniquely as the sum of

one or more distinct Fibonacci numbers in such a way that the sum does not include any two

consecutive Fibonacci numbers.

For example, the Zeckendorf sum for 64 is 55 + 8 + 1. This can be converted into a Zeckendorf

representation by using 0 or 1 to determine which Fibonacci numbers are included in the sum. For

example:

64 = 1 (55) + 0 (34) + 0 (21) + 0 (13) + 1 (8) + 0 (5) + 0 (3) + 0 (2) + 1 (1)

Which means the Zeckendorf representation is 100010001. For any given positive integer, the

Zeckendorf sum can be found using a greedy algorithm, as shown above. Your job is to compute the

Zeckendorf string representation for any positive integer.

Copy the algs.hw1.Zeckendorf class into your USERID.hw1 package and complete the implementation

so it generates the following table:

N Zeck. Repr.
1 1
2 10
3 100
4 101
5 1000
6 1001
7 1010
8 10000
9 10001
10 10010
11 10100
12 10101
13 100000
14 100001
15 100010

Task 3.2 (10 points): Complete implementation and generate above table [10 pts]

https://oeis.org/A000045
https://en.wikipedia.org/wiki/Zeckendorf%27s_theorem

Published Version: March 16 2022 8:30 PM

12

Q3.2.1 Bonus Question (1 pt)

Can you determine the number of Zeckendorf representations of length N? For example, there are three

encodings of length four (i.e., 1000, 1001, 1010).

Q3.2.2 Bonus Question (1 pt)

What is the Fibonacci encoding for 9223372036854775807?

Published Version: March 16 2022 8:30 PM

13

Q3.3 Double Stack Implementation [10pt]

I will describe the implementation of FixedCapacityStack<T> on day03 of the class. For this question,

you are to implement a DoubleStack that uses a single array to store two independent stacks of int

values, one that grows from the left upwards into the array, while the other grows from the right

downwards into the array.

Copy the algs.hw1.DoubleStack class into your USERID.hw1 package and complete the

implementation. For example, after creating a DoubleStack of size 7, its storage array looks like the

following:

-- -- -- -- -- -- --

Now issue the following commands:

• pushLeft(5)

• pushLeft(3)

• pushRight(7)

• pushRight(2)

• pushLeft(1)

The resulting storage should look like the following:

5 3 1 -- -- 2 7

Naturally, your DoubleStack must support the following methods:

• pushLeft(v) and pushRight(v) – Pushes value to top of either left or right side

• isFull() – is there room to push an element (either on the left or right side?)

• sizeLeft() and sizeRight() to determine the number of elements on either side

• popLeft() and popRight() to remove an element from either side

• exchange() – if left side and right side contain at least one element each, swap top values

You can confirm your implementation is complete by copying algs.hw1.TestDoubleStack from the

test/ source folder in Algorithms D2022 into your USERID.hw1 directory. Then execute it as a JUnit

test case and all test cases should pass.

Q3.3.1 Bonus Question (1 pt)

Create a DoubleStackIterator that drains all values from the Double stack by popping and returning

all values from the left side; then once the size of the left is 0, pop and return all values from the right

side. When the Iterator completes, the DoubleStack is empty.

Published Version: March 16 2022 8:30 PM

14

Q4 Big O Notation [10 points]
In lecture, I will present the Big O notation used to classify the worst case runtime performance of an

algorithm. The ThreeSum program on page 173 offers a classic example of an O(N3) algorithm. Upon

inspecting the code, you can see the triply-nested for loop that ensures that each different possible

triple (i, j, k) is checked. With a little bit of mathematical help, you can evaluate that the number of

times the if statement executes is
𝑛3

6
−

𝑛2

2
+

𝑛

3
 . For n=10, for example, this results in (1000/6 – 100/2 +

10/3) = 120. You can read more about this on p. 181 of the textbook. In lecture I will explain asymptotics

to explain behavior: as N grows larger and larger, the n3 term dominates and determines the order of

growth.

public static int count(int[] a) {
 int N = a.length;
 int ct = 0;
 for (int i = 0; i < N; i++) {
 for (int j = i+1; j < N; j++) {
 for (int k = j+1; k < N; k++) {
 if (a[i] + a[j] + a[k] == 0) { ct++; }
 }
 }
 }
 return ct;
 }

You will try another problem and use Big O notation to classify its worst-case runtime performance as

well as provide empirical evidence.

There is a well-known Sylvester Line Problem, which states that in every finite set of points in the

Euclidean plane, there is a line that either (a) passes through exactly two of the points; or (b) it passes

through all of them.

Copy the algs.hw1.LineProblem class into your USERID.hw1 package and complete its

implementation. I have provided a helper method to compute the greatest common divisor between

two integers. You will find this useful when determining whether three points are collinear. As you have

already seen, these random Cartesian points all have integer coordinates, which makes it easy to

determine whether three points are collinear. In the figure on the left, for

example, if you select points p1=(2,5) and p2=(18,29), you can determine that the

slope of this line is
(29−5)

(18−2)
 or

24

16
 which can be simplified to

3

2
.

Now, the middle point p3=(10,17) is on this line, because you can compute the

slope between points p1 and p3 as
(5−17)

(2−10)
 or

−12

−8
 which can be simplified to

3

2
 so

you know it is on the same line as the other two points.

https://en.wikipedia.org/wiki/Sylvester%E2%80%93Gallai_theorem

Published Version: March 16 2022 8:30 PM

15

You must complete the following implementations:

• Solution compute(Point[] points) – compute a Solution to the Sylvester Line Problem by

returning a structure that contains two points and the number of other points that are collinear

to these points (which handles the odd case where ALL points are collinear)

• int findAllJustTwo(Point[] points) – compute the number of potential lines that contain

only two collinear points from points.

Task 4.1 (10 points): Complete implementation and generate following table [10 pts]

This will take over a minute to complete. Be patient!
N Time TimeCt #Found
32 0.000 0.000 496
64 0.000 0.000 2009
128 0.000 0.016 8095
256 0.000 0.125 32335
512 0.000 0.953 128360
1024 0.000 8.109 506149
2048 0.000 67.844 1979530

The first column, Time, reports the time to find a single pair of points that have no other collinear point.

The second column, TimeCt, reports the time it took to find the total number of pairs of points that

share no other collinear points (also reported in #Found).

As you can see, TimeCt, appears to increase by a factor of 8 whenever the problem instance size, N,

doubles. This strongly indicates a O(N3) implementation.

Q4.1.1 Bonus Question (1 pt)

Determine a formula F(N) that predicts #Found for a given problem size, N. It won’t be exact (since

these are randomly generated points) but it should do a good job in predicting this actual number.

Q4.1.2 Bonus Question (1 pt)

What is the Big O classification for compute(Point[] points)?

Published Version: March 16 2022 8:30 PM

16

Submission Details
Each student is to submit a single ZIP file that will contain the implementations. In addition, there is a

file “WrittenQuestions.txt” in which you are to complete the short answer problems on the homework.

The best way to prepare your ZIP file is to export your entire USERID.hw1 package to a ZIP file using

Eclipse. Select your package and then choose menu item “Export…” which will bring up the Export

wizard. Expand the General folder and select Archive File then click Next.

You will see something like the above. Make sure that the entire “hw1” package is selected and all of the

files within it will also be selected. Then click on Browse… to place the exported file on disk and call it

USERID-HW1.zip or something like that. Then you will submit this single zip file in canvas.wpi.edu as

your homework1 submission.

Addendum
If you discover anything materially wrong with these questions, be sure to contact the professor or

TA/SAs posting to the discussion forum for HW1 on discord.

When I make changes to the questions, I enter my changes in red colored text as shown here.

1. Deadline is meant to be at the start of class, which is 10AM, but you can turn in up to 6PM.

Published Version: March 16 2022 8:30 PM

17

2. If, for question 3.3, you copy algs.hw1.TestDoubleStack into your USERID.hw1 folder, then you

will need to modify the build properties for the project to include the JUnit 5 runtime libraries,

as I describe in the video I posted further describing this homework assignment.

3. For question 2.2, you have to make sure that YOUR local copy of “PolarPointTrials” has a main

method that instantiates your local PolarPointTrials object, like this:

/** Do not change this function. Just execute it. */

public static void main(String[] args) {

 new PolarPointTrials().runTrial();

}

