
Version: April 07 2021 9:30 PM 1

CS 2223 D21 Term. Homework 2

Homework Instructions

• This homework is to be completed individually. If you have any questions as to what constitutes

improper behavior, review the examples as I have posted online

http://web.cs.wpi.edu/~heineman/html/teaching_/cs2223/d21/#policies.

• Due Date for this assignment is April 15th. Homeworks received after 10AM receive a 25% late

penalty. Homeworks received after 6PM will receive zero credit.

• Submit your assignments electronically using the canvas site for CS2223. Login to

canvas.wpi.edu and locate HW2. You must submit a single ZIP file that contains all of your code

as well as the written answers to the assignment.

• All of your Java classes must be defined in a package USERID where USERID is your CCC user id.

Homework Context
This homework is concerned with how memory is allocated to store information. In Java (and most

programming languages) you have two possible choices:

• Contiguous memory that stores an array of values

• Fragmented nodes with pointers to other nodes

But there are some interesting structural variations to understand, as seen below

Fragmented

Getting Started
Copy the files from algs.hw2.submission into your USERID.hw2 package.

40 pts Q1.0 Linked Lists

10 pts Q1.1 In() shuffles to return (1 bonus pt.)

10 pts Q1.2 Out() shuffles to return (1 bonus pt.)

8 pts Q1.3 In() shuffles to reverse (2 bonus pt.)

12 pts Q2 Explorations using queues

20 pts Q3 Mathematical Analysis (1 bonus pt.)

1 pt BONUS Continued Fractions

Version: April 07 2021 9:30 PM 2

Q1.0 Linked Lists (40 points)
The central structure for this homework assignment is a linked list of nodes representing a deck of

playing cards. A standard deck of playing cards contains 52 cards of four suits (Clubs, Diamonds, Hearts,

and Spades). For each suit there are thirteen cards, each with its own rank in order of Ace, 2, 3, 4, 5, 6, 7,

8, 9, 10, Jack, Queen, King. Each card is represented by a number and an abbreviated suit, thus 8H is the

eight of hearts, QD is the Queen of Diamonds, AS is the Ace of Spades, and KC is the King of Clubs.

When you open a factory-sealed deck of playing cards, the cards are in their proper sorted order, which

is in order of suit (Clubs → Diamonds → Hearts → Spades) and then in order of rank from Ace to King.

AC → 2C → … QC → KC → AD → 2D → … QD → KD → AH → 2H → … → KH → AS → 2S → … → KS.

I have provided the following algs.hw2.Deck class that you will extend to implement your own Deck

implementation. Details can be found in the code repository.

package algs.hw2;
public abstract class Deck {
 protected Node first; // first Node in the deck (i.e., the TOP CARD)
 protected Node last; // last Node in the deck (i.e., the BOTTOM CARD)

 public abstract Card peekTop(); // O(1) performance [2 pts]
 public abstract Card peekBottom(); // O(1) performance [2 pts]
 public abstract Deck copy(); // O(N) performance [5 pts]
 public abstract int size(); // O(1) performance [2 pts]
 public abstract boolean match(Card c, int n); // O(N) performance [2 pts]

 public abstract boolean isInOrder(); // O(N) performance [2 pts]
 public abstract boolean isInReverseOrder(); // O(N) performance [2 pts]

 public abstract void out(); // O(N) performance [8 pts]
 public abstract void in(); // O(N) performance [8 pts]
 public abstract String representation(); // O(N) performance [2 pts]

 protected abstract Node cutInHalf(); // O(N) performance [5 pts]
}

In your own MyDeck class, which extends this class, you must define the constructor MyDeck(int

max_rank) which creates a deck containing 4*max_rank cards in factory order. Invoking MyDeck(3)

creates a deck of twelve cards in the following order (AC is first and 3S is last):

AC → 2C → 3C → AD → 2D → 3D→ AH → 2H → 3H→ AS → 2S → 3S

The primary responsibility of your MyDeck implementation is to maintain the ordering of the cards while

the deck is being manipulated. The in() and out() shuffle techniques split the deck into a Left and

Right and perfectly shuffles the cards together to make a new deck. You are to do this entirely using

linked lists.

Version: April 07 2021 9:30 PM 3

Out() performs a perfect Faro out shuffle

In an out() shuffle, the topmost and bottommost cards remain unchanged. Starting from a deck of N=8

cards in its factory ordering:

AC → 2C → AD → 2D → AH → 2H → AS → 2S

The deck is split into two subdecks of N/2 cards:

Left: AC → 2C → AD → 2D

Right: AH → 2H → AS → 2S

The deck is recombined by selecting cards from Left and Right, in alternating turns:

 * LEFT: AC 2C AD 2D
 * RIGHT: | AH | 2H | AS | 2S
 * | | | | | | | |
 * v v v v v v v v
 *
 * RESULT: AC AH 2C 2H AD AS 2D 2S

The result is AC → AH → 2C → 2H → AD → AS → 2D → 2S

In() performs a perfect Faro in shuffle

In an in() shuffle, the topmost and bottommost cards are changed. Starting from a deck of N=8 cards

in its factory ordering:

AC → 2C → AD → 2D → AH → 2H → AS → 2S

The deck is split into two subdecks of N/2 cards:

Left: AC → 2C → AD → 2D

Right: AH → 2H → AS → 2S

The deck is recombined by selecting cards from Left and Right, in alternating turns:

 * LEFT: AC 2C AD 2D
 * RIGHT: AH | 2H | AS | 2S |
 * | | | | | | | |
 * v v v v v v v v
 *
 * IN: AH AC 2H 2C AS AD 2S 2D

The result is AH → AC → 2H → 2C → AS → AD → 2S → 2D

Once you can rearrange the contents of a deck simply by calling in() and out() to shuffle it

repeatedly, it becomes natural to consider how the deck is ordered. The isInOrder() function returns

True if the deck is in its original, factory-sealed ordering, while the isInReversedOrder() function

returns True if the deck is the exact reverse of the factory-sealed ordering.

https://en.wikipedia.org/wiki/Faro_shuffle
https://en.wikipedia.org/wiki/Faro_shuffle

Version: April 07 2021 9:30 PM 4

For a deck of eight cards (whose max_rank is 2), the reverse order would be:

2S → AS → 2H → AH → 2D → AD → 2C → AC

You will find it useful and necessary to implement the representation() method that produces a

space-separated string representing the order of cards in the deck. For the above reversed factory

order, the representation would be:

"2S 2H 2D 2C AS AH AD AC"

The last method to implement is match(Card c, int n) that determines whether the nth card in the

deck (from the top) matches c.

You should consider starting your development with a deck of 8 or 12 cards (with

max_rank of 2 or 3) and then – once that is working – scale up to a full deck of 13

cards. This will make it easier to debug your code.

Q1.1. How many in() shuffles to return deck to original position [10 points]
If you construct a deck using different max_rank (that is, other than 13

for a standard deck of playing cards) you will find that using a different

number of in() shuffles will return it to its original configuration.

For example, given a standard deck of playing cards in some ordering,

after 52 in() shuffles, the deck is restored back to that ordering, but

with a max_rank of 5, it takes 6 in() shuffles to restore the ordering.

You are to write a program that computes the number of orderings

needed to return a deck with any given max_rank ≥ 1 to its original

configuration.

Your program should compute up to max_rank=20 (that is, a deck

containing 80 cards) and print the full table like shown here.

Q1.1.1 Bonus Question (1 pt.)

Can you come up with a formula that predicts the maximum # of in()

shuffles for any max_rank, to return to the original configuration?

max_rank #in()
1 4

2 6

3 12

4 8

5 6

6 20

7 28

8 10

9 36

10 20

11 12

12 21

13 52

Version: April 07 2021 9:30 PM 5

Q1.2. How many out() shuffles to return deck to original position [10 points]
If you construct a deck using different max_rank (that is, other

than 13 for a standard deck of playing cards) you will find that

you can repeatedly shuffle the deck using just out() shuffles

and it will eventually return to its original configuration.

For example, given a standard deck of playing cards in some

ordering, after 8 out() shuffles, the deck is restored back to

that ordering, but with a max_rank of 5, it takes 18 out()

shuffles to restore the ordering.

Your program should compute up to max_rank=20 (that is, a

deck containing 80 cards) and print the full table like you see

here.

Bonus Question 1.2.1 (1 pt.)

Can you state the condition for which k out() shuffles returns

a deck of 4*max_rank cards to its original configuration?

Q1.3. How many in() shuffles to reverse the state of a deck? [8 points]
For a standard deck of 13 cards, how many in() shuffles does it take to convert a deck into the

reversed order? That is, starting from a standard 52-card deck in factory-sealed ordering, how many

in() shuffles are needed to reverse the cards so the ordering is:

KS → … → 2S → AS → KH → … 2H → AD → KD → … 2D → AD → KC → … → AC

Write a program that computes and prints the number of in() shuffles to reverse the state of a regular

52-card deck of cards.

Bonus Question 1.3.1 (1 pt.)

What is the smallest max_rank for which no amount of in() shuffles produce the reversed ordering?

Bonus Question 1.3.2 (1 pt.)

Can you find a pattern for the values of max_rank for which no amount of in() shuffles reverses the

deck? Note: I have not yet been able to see the pattern…

max_rank #out()

1 2

2 3

3 10

4 4

5 18

6 11

7 18

8 5

9 12

10 12

11 14

12 23

13 8

Version: April 07 2021 9:30 PM 6

Q2. Explorations Using Queues and Linked Lists [12 pts.]
Functional recursion uses a call stack to remember progress as it recursively solves smaller and smaller

instances of the same problem, as you have seen with Merge Sort.

For this question, you will use a Queue to conduct a (potentially) infinite search which cannot be

accomplished through recursion, mainly because there is no Base Case to stop a potentially infinite

computation.

You will explore every possible arrangement of in() and out() shuffles to determine the smallest

number of combined in() and out() shuffles from a factory-sealed deck that places a given card on

the top of the deck. Just think about how a magician could use this to amaze an audience!

For example, to move the Four of Diamonds (4D) to the top of a factory-sealed deck of cards, simply do

three out() shuffles, followed by one more in() shuffle, and the top card is a Four of Diamonds!

 Deck d = new MyDeck(13);
 d.out();
 d.out();
 d.out();
 d.in();
 System.out.println("is true:" + d.match(new Card("4D"), 1));

The Deck API has a match() method so you can confirm your results as shown above.

I provide a helper State class to record a Deck and a String representing the shuffle sequence to

achieve that deck, using "I" and "O" characters to represent an in() and an out() shuffle. For

example, the above deck (which placed a 4D on the top) would have a shuffle string of "OOOI".

Copy the algs.hw2.submission.Q2 Java class into your USERID.hw2 package and modify it to use

the following exploration algorithm which uses a Queue to maintain its

exploration status, and a SequentialSearchST object, recorded, to keep

track of the shuffles needed to place a given card on the top of the Deck, from

the initial factory-sealed order.

Start with a Queue that contains a single State class for the initial, factory-

sealed Deck and an empty shuffle string "". The while loop will continue until the

size of recorded is the size of a deck; it stops once it has found a sequence of

shuffles for each card in the deck.

The key exploration step is to dequeue a past state, s, from the queue and then

enqueue two additional states to reflect the fact that from state, s, you can generate two additional

states by (a) performing an in() shuffle; and separately (b) performing an out() shuffle. The copy()

method in your Deck class will prove to be essential here. For each state, s, you record the new shuffle

sequence by appending "I" or "O" to the existing shuffle sequence, s.shuffle. Output a table for all

52 cards in order that looks like the above, but extends to show all 52 cards and their shuffle sequence.

Use the algs.hw2.AllCards helper class to iterate over all cards in a regular deck.

AC
2C IOIOI
3C OIIIII
4C OIOI
5C IIIII
6C IOIOII
7C IOI
8C OIIIOI
9C OOOOI
10C IIII

…

Version: April 07 2021 9:30 PM 7

Q3. Mathematical Analysis [20 pts.]
This question is a more complicated version of what you will see on the midterm exam. You can find this

code in the algs.hw2.submission.Q3 class. Copy this class into USERID.hw2.Q3 and modify it based on

the requirements below.

Given the following proc function, let S(N) be the number of times power(base, exp) is invoked when

calling proc(a, 0, n-1) on an array, a, of length n containing integer values from 0 to n-1.

static long power(int base, int exp) {
 return (long) Math.pow(base, exp);
}

public static long proc(int[] a, int lo, int hi) {
 if (lo == hi) {
 return power(a[lo], 2) + power(a[hi],2);
 }

 int m = (lo + hi) / 2;
 long total = proc(a, lo, m);
 while (hi > lo) {
 m = (lo + hi) / 2;
 total += power(a[m], 2);
 hi = m;
 }

 return total;
}

For this assignment, develop the recurrence relationship for S(N) and compute its closed-form formula.

Then modify the Q3 class to output an updated table that shows the computed counts and the result of

your model.

Question 3.1 (8 pts.)

Identify the Base Case for S() and the Recursive Case for S(n). Refer back to lecture for the format of this

question.

Question 3.2 (12 pts.)

Derive an exact solution to the recurrence for S(N) when N is a power of 2. Be sure to show your work.

Bonus Question 3.3 (1pt.)

Can you derive a formula that predicts the Value printed for proc(a, 0, a.length-1) when a

contains the integers from 0 to n-1 and N is a power of 2.

Version: April 07 2021 9:30 PM 8

BONUS-1 Working with Continued Fractions (1 pts)
In mathematics, a continued fraction is an expression obtained through an iterative process of
representing a number as the sum of its integer part and the reciprocal of another number, then writing
this other number as the sum of its integer part and another reciprocal, and so on

The above continued fraction is represented as [a0; a1, a2, a3, …, an].

Here is how you find the continued fraction for a positive number x. Let a0 be floor(x) or the largest
integer that does not exceed x. Now set b0 to the fractional leftover, or x – a0.

For example, to find a continuous fraction for π, set a0 = floor(3.1415…) = 3 and b0  0.14159

Note that if you set x1 =
1

𝑏0
 you have x1  7.062513:

x0 = a0 + b0

 = a0 +
1

𝑥1

Truncate this last term, x1, and our first approximation to π is 3 +
1

7
 which you might be familiar with

from grade school as
22

7
 = 3.1428… which is π accurate to two decimals. Define this expansion as [3; 7].

Let’s conduct this expansion one more step, starting with x1 and repeating the process. Let a1 be

floor(x1) = 7 and b1  0.062513.Note that if you set x2 =
1

𝑏1
 you have x2  15.99659:

x1 = a1 + b1

 = a1 +
1

𝑥2

Truncate this last term, x2, and our second approximation to π is 3 +
1

7+
1

15

 which evaluates to 3 +
1

106

15

 = 3

+
15

106
 =

333

106
 = 3.141509… which is π accurate to four decimal places. Define this expansion as [3; 7, 15].

This process can be repeated for as long as the precision allows, or the final remainder is 0 and the

continued fraction is finite. Using double precision, you should be able to compute that [3;7,15,1,292] is

the continued fraction for π. Your implementation must use the provided Node class to construct linked

lists.

Version: April 07 2021 9:30 PM 9

Submission Details
Each student is to submit a single ZIP file that will contain the implementations. In addition, there is a

file “WrittenQuestions.txt” in which you are to complete the short answer problems on the homework.

The best way to prepare your ZIP file is to export your entire USERID.hw2 package to a ZIP file using

Eclipse. Select your package and then choose menu item “Export…” which will bring up the Export

wizard. Expand the General folder and select Archive File then click Next.

You will see something like the above. Make sure that the entire “hw2” package is selected and all of the

files within it will also be selected. Then click on Browse… to place the exported file on disk and call it

USERID-HW2.zip or something like that. Then you will submit this single zip file in canvas.wpi.edu as

your homework2 submission.

Addendum
If you discover anything materially wrong with these questions, be sure to contact the professor or

TA/SAs posting to the discussion forum for HW2 on Discord;

When I make changes to the questions, I enter my changes in red colored text as shown here.

Change Log
1. Fixed mistaken description in Q1.2

2. Grrrr. My in() and out() tables were with the wrong question. Updated.

3. At top of page 4, I had the example of a reversed deck wrong. UPDATED

