
Published Version: April 02 2021 9:25 AM

1

CS 2223 D21 Term. Homework 1 (100 pts.)

Homework Instructions

 This homework is to be completed individually. If you have any questions as to what constitutes

improper behavior, review the examples I have posted online

http://web.cs.wpi.edu/~heineman/html/teaching_/cs2223/d21/#policies

 Due Date for this assignment is 10AM Monday April 5th. Submissions received after 10AM are

penalized 25%. Submissions received after 6PM receive zero credit. Solutions are posted at

6PM.

 Submit your assignments electronically using the canvas site for CS2223. You must submit a

single ZIP file that contains all of your code as well as the written answers to the assignment.

 All of your Java classes must be defined in a package USERID where USERID is your CCC user id.

You will lose TEN POINTS (or 10% of your assignment) if you don’t do this. Pay Attention!!!

First Steps
Your first task is to copy all of the necessary files from the git repository that you will be modifying/using

for homework 1. First, make sure you have created a Java Project within your workspace (something like

MyCS2223). Be sure to modify the build path so this project will have access to the shared code I provide

in the git repository. To do this, select your project and right-click on it to bring up the Properties for the

project. Choose the option Java Build Path on the left and click the Projects tab. Now Add… the

Algorithms D2021 project to your build path.

http://web.cs.wpi.edu/~heineman/html/teaching_/cs2223/d21/#policies

Published Version: April 02 2021 9:25 AM

2

Once done, create the package USERID.hw1 inside this project, which is where you will complete your

work (for the whole term. You likely will have packages for each of the homework assignments). Start by

copying the following files into your USERID.hw1 package.

 algs.hw1.WrittenQuestions.txt USERID.hw1.WrittenQuestions.txt

 algs.hw1.submission.* Copy all classes in this package to USERID.hw1.*

In this way, I can provide sample code for you to easily modify and submit for your assignment.

 Q1 is worth 30 points

 Q2 is worth 40 points

 Q3 is worth 20 points

 Q4 is worth 10 points

This homework has a total of 107 points. If you do all bonus work (do not attempt until completing the

full homework!!) you can earn an additional points. Note that the amount of work to complete the

bonus points is not proportional to the few paltry points that you will achieve.

Note that Question 2.3 FuzzySquare Finder is likely the hardest question on this assignment. On each

homework, I typically have one such question, which guarantees that only the most dedicated students

will get 100 points on each assignment. Naturally, getting the full 107 points is exceptional.

This homework is concerned with how to efficiently access data stored in a 1XN one-dimensional array

or an NXN two-dimensional square array. Q1 uses a FixedCapacityStack (introduced in lecture 4).

Published Version: April 02 2021 9:25 AM

3

Q1. Stack Experiments (30 pts.)
On page 129 of the book there is an implementation of a calculator algorithm using two stacks to

evaluate an expression, invented by Dijkstra (one of the most famous designers of algorithms). I have

created the algs.hw1.Evaluate class which you should copy into your USERID.hw1 package. Note that

all input (as described in the book) must have spaces that cleanly separate all operators and values.

Note 1.2 has a space before final closing “)”.

The following inputs are all improperly formatted, but I am curious what will be output:

1.1. (4 pts.) Run Evaluate on input "(5 8 * / 4)"

1.2. (4 pts.) Run Evaluate on input "(5 + + 8)" (there is a space between the plus signs)

1.3. (4 pts.) Run Evaluate on input "- 71" (there is a space between the minus sign and the 7)

1.4. (4 pts.) Run Evaluate on input "(1 * (2 + (3 + 4"

The following input is more complicated but has the right format.

1.5. (4 pts.) Run Evaluate on input "((6 * 4) / ((3 * 7) / (5 - 1)))"

Now modify Evaluate to support new operations:

1.6. (5 pts.) Modify Evaluate to support two new operations:

a. Add a new binary operation “n exp b” that computes nb. FIXED

b. Add a new binary operation “n log b” which computes logb(n).

1.7. (5 pts.) Run your modified Evaluate on input "(2 exp (17 log 4))" and be sure to

explain the result of the computation in your WrittenQuestions.txt file. Hint: be sure to

explain what happens when processing each of the ‘)’ closing parentheses.

For each of these questions (a) state the observed output; (b) describe the state of the ops stack when

the program completes; (c) describe the state of the vals stack when the program completes.

Note: If, to an empty stack, you push the value “1”, “2” and then “3”, the state of this stack is

represented as [“1”, “2”, “3”] where the top of the stack contains the value “3” on the right, and the

bottommost element of the stack, the value “1”, is on the left. An empty stack is represented as [].

Write the answers to these questions in the WrittenQuestions.txt text file. For question 1.6,

modify your copy of the Evaluate class and be sure to include this revised class in your submission.

Published Version: April 02 2021 9:25 AM

4

Q2. Searching Programming Exercise (40 pts.)
Many algorithms are concerned with searching for values within a given data structure, and this

homework assignment is no exception.

This particular homework assignment presents a philosophical challenge inspired by Heisenberg’s

uncertainty principle of quantum mechanics.

"What we observe is not nature itself, but nature exposed to our method of questioning."

Werner Heisenberg

You will be given Java objects that store a one-dimensional array (1XN) or a two-dimensional square

NxN array. Your task is to determine where a particular target value is contained within the object’s

storage, but you only have a limited number of mechanisms to inspect these objects’ data. Each

inspection probes an object’s state, and a running total of all probes is maintained by these objects.

For each of these problems, you are to develop an algorithm that properly locates target values (under

specific restrictions imposed). You will receive credit based on correctly locating all targets and meeting

specific constraints regarding the total number of probes your algorithm requires on specific problem

instance sizes.

In a one-dimensional array, a value’s location is uniquely determined by its index, which I commonly

abbreviate as idx, which is a value between 0 and N-1 inclusively. In a two-dimensional array, a value is

located at a given row and column location (using zero-indexing, thus the left-most column is column 0

and the bottom-most row is row N-1). I use an algs.hw1.Coordinate(row, column) object to

represent the location of a value in a two-dimensional array.

Each Java object has a toString() method that will produce a string representation of its state, but

doing so will randomized its state, so this method is only useful for debugging.

For each of the following problems, I provide code that generates a table recording the total number of

accumulated probes for different trial runs of size N, when calling the location methods that you define.

This table will be used by the grading staff to evaluate your assignment,.

Published Version: April 02 2021 9:25 AM

5

Q2.1 Slicer

A slicer object creates a two-dimensional NxN array, A, containing the integers from 0 to N*N–1 in some

random arrangement. The following is slicer = new Slicer(5, 99) using random seed 99:

 c0 c1 c2 c3 c4

r0 4 10 6 17 22

r1 20 5 24 18 14

r2 9 11 16 3 21

r3 0 19 8 1 23

r4 15 13 7 2 12

This array cannot be directly queried, but there are two supported inspection methods, each one

counting as a probe of the underlying data:

 inLeft(c, target) determines whether the target value is found in any of the columns

between column 0 and including column c. In the slicer object above, inLeft(2, 20) and

inLeft(2, 7) are true but inLeft(2, 14) is false.

 inTop(r, target) determines whether the target value is found in any of the rows between

row 0 and including row r. In the slicer object above, inTop(1, 20) and inTop(0, 17) are

true but inTop(1, 9) is false.

Copy algs.hw1.submission.SlicerFinder into your USERID.hw1 package and complete the

implementation of Coordinate find(Slicer s, int target) which returns a Coordinate

object for the location of target in s (or null, if the target does not exist). This find() method

must use inLeft(c, target)and inTop(r, target) probes to determine where target exists. As

an example, using the slicer object above, find(s, 15) must return a Coordinate object (row=4,

column=0).

Execute your class to generate a table showing how many accumulated probes you needed to properly

locate all NxN values in a Slicer(N) object. A total of N*N probes targets are made searched for in each

trial.

Task 2.1 (10 points): Complete find() method in SlicerFinder and ensure that on a 13x13 array, the

sample trial executed by SlicerFinder.main() completes with fewer than 3,000 probes.

Q2.1.1 Bonus (+1 bonus point)

Only attempt the bonus point after you have completed the first part. Can you achieve (or do better

than) 1,274 total probes on the sample 13x13 array. This is the number reported by

slicer.solver(new algs.hw1.submission.SlicerFinder())that you can see in the main() method

of SlicerFinder.

Hint: BINARY ARRAY SEARCH can come to your rescue

Published Version: April 02 2021 9:25 AM

6

Q2.1.2 Bonus (+1 bonus point)

Develop a formula C(N) – where N is a power of 2 – that counts the number of total probes as reported

in the following table, which represents the output from my best solution. The total number of probes is

the accumulation of searching for all N2 integers in the range from 0 to N*N – 1. For example, C(16)

should compute 2048. Note that the formula only needs to be accurate when N is a power of 2.

N Total Probes by Slicer
2 8

3 30

4 64

5 120

6 192

7 280

8 384

9 522

10 680

11 858

12 1056

13 1274

14 1512

15 1770

16 2048

17 2380

18 2736

19 3116

Published Version: April 02 2021 9:25 AM

7

Q2.2 ManhattanSquare

A ManhattanSquare object creates a two-dimensional NxN array, A, containing the integers from 0 to

N*N–1 in random locations. The following is ms = new ManhattanSquare(5, 99) using random seed 99:

 c0 c1 c2 c3 c4

r0 4 10 6 17 22

r1 20 5 24 18 14

r2 9 11 16 3 21

r3 0 19 8 1 23

r4 15 13 7 2 12

This array cannot be directly queried; instead, use int distance (r, c, target) to return the

Manhattan distance1 from location A[r][c] to the actual location of target within the array; if

target does not exist in A then return -1, otherwise the distance is returned in terms of the number of

horizontal and vertical steps from A[r][c] to target’s location. You are to develop code that determines

the Coordinate for a target value’s location in A or return null to signal that value is not present.

 distance(2, 1, 17) returns 4 because you need at least this many up/down/left/right

movements to get from A[2][1] to the location that contains 17, in this case A[0][3].

 distance(3, 4, 23) returns 0 because A[3][4] contains that value; distance(0,0,99)

returns -1 since that value does not exist in A.

Copy algs.hw1.submission.ManhattanSquareFinder into your USERID.hw1 package and complete

the implementation of Coordinate find(ManhattanSquare ms, int target) which returns a

Coordinate object for the location of target in ms (or null, if the target does not exist). Using the

ms object above, find(ms, 2) must return a Coordinate object (row=2, column=4).

Once you implement find(), execute your class to generate a table showing how many accumulated

probes you needed to properly locate all NxN values in a ManhattanSquare(N) object. A total of N*N

probes targets are made searched for in each trial.

Task 2.2 (10 points): Complete find() method in ManhattanSquareFinder and ensure that on a 13x13

array, the sample trial completes with fewer than 1,000 probes.

Q2.2.1 Bonus (+1 bonus point)

Only attempt the bonus point after you have completed the first part. Can you achieve (or do better

than) 337 total probes on the sample 13x13 array. This is the number reported by ms.solver(new

algs.hw1.submission.ManhattanSquareFinder())that you can see in the main() method of

ManhattanSquareFinder.

1 https://en.wikipedia.org/wiki/Taxicab_geometry

https://en.wikipedia.org/wiki/Taxicab_geometry

Published Version: April 02 2021 9:25 AM

8

Q2.3 HeisenbergFinder

h = new Heisenberg(N) creates a one-dimensional 1xN array, A, of random integers in ascending

order drawn from the range [0 to 10*N] (inclusive). The following is h = new Heisenberg(7, 99) using

random seed 99:

4 10 17 24 28 37 45

You can inspect a given index position using int inspect(idx) which returns the value of A[idx].

However, after every call to inspect(), the values stored in A are perturbed as follows:

 all values in index positions 0 to idx–1 are reduced by one

 all values in index positions idx+1 to N-1 are increased by one

 the value at index position idx is randomly incremented or decremented by one

Copy algs.hw1.submission.HeisenbergFinder into your USERID.hw1 package and improve upon the

default implementation of int find(Heisenberg h, int target) which returns an index location,

idx, if A[idx] == target, or -1 if target does not exist in h. Using the h object above, find(h, 10)

must return the integer 1.

Once you implement find(), execute your class to generate a table showing how many accumulated

probes you needed to properly check whether all 10N+1 values in a HeisenbergFinder(N) object. A

total of 10*N+1 probes targets are searched for made in each trial.

Task 2.3 (10 points): Complete find() method in HeisenbergFinder and ensure that on a 1x13 array,

the sample trial completes with fewer than 1,000 probes. Even though the Heisenberg object changes

after every probe, each of the 10N+1 trials will start with the exact same initial 1xN Heisenberg state. I

have provided a sample HeisenbergFinder that you must modify to work more efficiently.

Hint: Can BINARY ARRAY SEARCH come to your rescue?

Published Version: April 02 2021 9:25 AM

9

Q2.3.1 Bonus (+1 bonus point)

When you execute the original, inefficient algs.hw1.submission.HeisenbergFinder, the following

table shows the total number of inspections required to run a trial that checks whether all 10N+1

possible values are present.

N Total Probes by Default HeisenbergFinder
2 41

3 90

4 158

5 245

6 351

7 476

8 620

9 783

10 965

11 1166

12 1386

13 1625

14 1883

15 2160

16 2456

17 2771

18 3105

19 3458

What is the formula HF(N) that predicts the total number of probes in the above table for any N?

Q2.3.2 Bonus (+1 bonus point)

The following reports my Best HeisenbergFinder solution. Can you develop a formula BHF(N) that

predicts the values of BHF(N) when N is 1 less than a power of 2, such as 3, 7, 15, or 31?

N Total Probes by Best HeisenbergFinder
3 61

7 209

15 593

31 1529

63 3729

127 8777

255 20161

Published Version: April 02 2021 9:25 AM

10

Q2.4 FuzzyFinder

A FuzzySquare object creates a two-dimensional NxN array, A, of random integers drawn from the

range from 0 to 10*N*N inclusive that are in ascending order within each row, and each subsequent row

contains values greater than values in lower rows. The following fs = new FuzzySquare(5, 99) using

random seed 99.

 c0 c1 c2 c3 c4

r0 4 8 11 17 24

r1 28 35 40 47 48

r2 51 57 60 65 71

r3 74 77 80 85 91

r4 99 103 111 116 118

This array cannot be directly queried; instead, use int probe3x3(r, c, target) that inspects a 3x3

region centered at (r, c) . The above image visualizes a probe3x3() inspection with r=2 and c=3. It

returns a special integer status code:

 0 [FuzzySquare.FOUND] – the target value is contained within the 3x3 probe region; using a

target of 60 or 91, for example, in the above 3x3 region would return this status code.

 5 [FuzzySquare.NOT_PRESENT] – the target value cannot be contained in A. In the above

probe, for example, if target were equal to 45, FuzzySquare would report that this value cannot

possibly exist, because of the sorted nature of the array and the fact that the probe region has

both 40 and 47, but nothing in between. If you search for a target that is less than 0 OR greater

than 10*N*N this status code will also be returned.

You only need to know these status return codes to complete this question to receive its 10 points.

Copy algs.hw1.submission.FuzzyFinder into your USERID.hw1 package and complete the

implementation of Coordinate find(FuzzySquare fs, int target) which returns a Coordinate

where target is found, or null if target does not exist in fs. Using the fs object above, find(fs, 111)

must return a Coordinate object of (row=4, column=2)

When you successfully complete probe3x3(), execute your class to generate a table showing how many

accumulated probes you needed to properly check whether all 10*N*N+1 values exist in fs. A total of

10*N*N +1 probes targets are made searched for in each trial.

Task 2.4 (10 points): Complete find() method in FuzzyFinder and ensure that on a 13x13 array, the

sample trial completes with fewer than 200,000 total probes.

Published Version: April 02 2021 9:25 AM

11

Q2.4.1 Bonus (+1 bonus point)

Be warned. I spent about 10 hours solving this bonus problem to get it working right, but it is only worth

one additional point. Well done in advance if it takes you less time!

The int probe3x3(r, c, target) method that inspects a 3x3 region centered at (r, c) returns

different status codes that you can use to more efficiently search for a target value. Given that

fs.probe3x3(2, 2, target) was invoked below, there are different status codes that are returned:

 c0 c1 c2 c3 c4 Status Codes

r0 4 8 11 17 24 1 1 1 1 1

r1 28 35 40 47 48 1 2

r2 51 57 60 65 71 2 3

r3 74 77 80 85 91 3 4

r4 99 103 111 116 118 4 4 4 4 4

 1 [FuzzySquare.ABOVE] – Marked with Yellow. The target value is contained above the probe

region, which means (a) any row above the 3x3 region; or (b) to the left of the top row for the

probe region. [Using the above 3x3 probe region and searching for a value in the range from 0 to

34 would return ABOVE].

 2 [FuzzySquare.M1] – Marked with Orange. The target value is contained “between” the first

row and the middle row of the probe 3x3 range. This means either (a) extending to the right of

the 3x3 probe region from the top row of the probe region; or (b) extending to the left of the

3x3 probe region from the middle row of the probe region. [Using the above 3x3 probe region

and searching for a value in the range from 48 to 56 would return M1].

 3 [FuzzySquare.M2] – Marked with Blue. The target value is contained “between” the middle

row and the bottom row of the probe 3x3 range. This means either (a) extending to the right of

the 3x3 probe region from the middle row of the probe region; or (b) extending to the left of the

3x3 probe region from the bottom row of the probe region. [Using the above 3x3 probe region

and searching for a value in the range from 66 to 76 would return M2].

 4 [FuzzySquare.BELOW] – Marked with Green. The target value is contained below the probe

region, which means (a) any row below the 3x3 region; or (b) to the right of the bottom row for

the probe region. [Using the above 3x3 probe region and searching for a value in the range from

86 to 10*5*5 (or 250) would return BELOW].

Bonus Task (1 points) Complete find() method in FuzzyFinder and ensure that on a 13x13 array,

the sample trial completes with 23,402 or fewer total probes.

Published Version: April 02 2021 9:25 AM

12

Q3. Stack Programming And Recursion Exercise (20 pts.)

Q3.1 Evaluate and Convert a Postscript Expression into an Infix Expression [10pt]

Question 1 contains the Evaluate class that demonstrates how to use stacks to compute the value of an

infix expression, where a binary operator appears between its arguments, like “((4 + 5) * 7)”, using

parentheses to disambiguate sub-expressions.

Expressions can be represented without parentheses using postfix notation2, where a binary operator

appears after its arguments. The infix expression “((4 + 5) * 7)” is represented as “4 5 + 7 *” using

postfix. You can read this from left to right as “Given values 4 and 5, sum them and leave the result as 9,

which together with 7 is multiplied to make 63”. The elegance of postfix notation is that you do not

need parentheses!

Copy the algs.hw1.submission.Q3_PostFixToInfix class into your USERID.hw1 package and

complete the implementation so it converts postfix expressions into an infix expression, using

parentheses for each sub-expression. While doing this conversion, you should also compute the value’s

expression, using similar logic to what you saw in Evaluate – you only need to support the standard

mathematical operations of +, -, /, and *.

It should process a single a postfix notation input (with spaces between all values and operators) using

FixedCapacityStack. Output the corresponding infix expression for the input.

Sample Input Sample Output
3 6 + (3 + 6) = 9
3 6 + 5 * 8 2 - / (((3 + 6) * 5) / (8 - 2)) = 7.5
9 8 7 6 5 + * / - (9 - (8 / (7 * (6 + 5)))) = 8.896103…

2 https://en.wikipedia.org/wiki/Reverse_Polish_notation

Published Version: April 02 2021 9:25 AM

13

Q3.2 There is a deep relationship between Recursion and Stacks [10pt]

The Fibonacci Sequence has been studied extensively throughout history.

Fibonacci Sequence (A00045) Lucas Numbers (A00032)

𝐹𝑛 = {
0 𝑛 = 0
1 𝑛 = 1
𝐹𝑛−1 + 𝐹𝑛−2 𝑛 > 1

𝐿𝑛 = {
2 𝑛 = 0
1 𝑛 = 1
𝐿𝑛−1 + 𝐿𝑛−2 𝑛 > 1

Sequence: 0, 1, 1, 2, 3, 5, 8, 13, 21, ….

Note that F8 = 21 since the first entry is F0.

Sequence: 2, 1, 3, 4, 7, 11, 18, 29, 47 …

Note that L8 = 47 since first entry is L0.

A fundamental identify for Lucas numbers is that:

Ln = Fn-1 + Fn+1 for n > 1

For example, 18 = L6 = F5 + F7 = 5 + 13. One surprising identity3 is that:

Fx+y = ((Fx * Ly) + (Fy * Lx))/2

For example, F16 = (F7*L9 + F9*L7)/2 = (13*76 + 34*29)/2 = (988 + 986)/2 = 987. You can confirm that this

is the appropriate Fibonacci number.

For this assignment, you will improve upon the following standard recursive implementation and

provide empirical evidence to show the improvement.

static long fibonacci_recursive(long n) {
 numRecursiveCalls++; // count the number of recursive calls
 // base case
 if (n == 0) { return 0; }
 if (n == 1) { return 1; }

 return fibonacci_recursive(n-1) + fibonacci_recursive(n-2);
 }

Copy the algs.hw1.submission.Q3_Fibonacci class into your USERID.hw1 package and complete the

implementation so it generates the following table. Columns Fn and Ln refer to the Nth Fibonacci and

Lucas numbers. Frec contains the total number of recursive calls needed to compute Fn using

fibonacci_recursive() shown above. Firec contains the total number of recursive calls of both

fibonacci_improved() and lucas_improved() since they are both needed.

Task 3.2 (10 points): Complete implementation and generate table [10 pts]

3 https://core.ac.uk/download/pdf/53189783.pdf

https://oeis.org/A000045
https://oeis.org/A000032

Published Version: April 02 2021 9:25 AM

14

 N Fn Ln Frec Firec

 0 0 2 1 1

 1 1 1 1 1

 2 1 3 3 1

 3 2 4 5 1

 4 3 7 9 9

 5 5 11 15 17

 6 8 18 25 25

 7 13 29 41 41

 8 21 47 67 57

 9 34 76 109 81

10 55 123 177 105

11 89 199 287 137

12 144 322 465 169

13 233 521 753 209

14 377 843 1219 249

15 610 1364 1973 305

16 987 2207 3193 361

17 1597 3571 5167 425

18 2584 5778 8361 489

19 4181 9349 13529 569

20 6765 15127 21891 649

21 10946 24476 35421 737

22 17711 39603 57313 825

23 28657 64079 92735 929

24 46368 103682 150049 1033

25 75025 167761 242785 1145

26 121393 271443 392835 1257

27 196418 439204 635621 1393

28 317811 710647 1028457 1529

29 514229 1149851 1664079 1681

Q3.2.1 Bonus Question (1 pt)

Develop a formula TR(N) that computes the total number of recursive invocations in column Frec above

using Fibonacci and/or Lucas numbers.

For N=15, TR(N) = 1973

Published Version: April 02 2021 9:25 AM

15

Q4 Big O Notation
In lecture, I will present the Big O notation used to classify the worst case runtime performance of an

algorithm. As an introduction, I have pulled together the resulting total number of probes for each of

the implementations from Question 2. These are the TOTAL accumulated probes after a number of

search requests were made. Note that I have provided the results for two different FuzzySquare and

Heisenberg implementations – my First solution and my Best solution.

N
Manhattan

Square
Heisenberg

Best
Slicer
Best

Heisenberg
First

FuzzySquare-
Best

FuzzySquare-
First

3 31 61 30 90 111 135

4 49 104 64 158 362 700

5 71 139 120 245 1384 2275

6 97 175 192 351 2101 5652

7 127 209 280 476 2825 11851

8 161 274 384 620 3772 22120

9 199 315 522 783 4835 37935

10 241 365 680 965 7951 61000

11 287 408 858 1166 13471 93247

12 337 456 1056 1386 17881 136836

13 391 501 1274 1625 23402 194155

14 449 549 1512 1883 27593 267820

15 511 593 1770 2160 32074 360675

16 577 697 2048 2456 36746 475792

17 647 756 2380 2771 41867 616471

18 721 815 2736 3105 46964 786240

 HeisenbergFirst contains the results from algs.hw1.submission.HeisenbergFinder default

implementation

 FuzzySquareFirst contains my first solution to the problem (which will be revealed once HW1 is

done)

 FuzzySquareBest and HeisenbergBest contain the results of my best solutions for these

problems (again, you can see the code once HW1 is done).

4.1 Produce Normalized Table for Average probe/request cost [5 pts]

You want to compute the probe/request average, so you will need to go back and determine the total

number of locate requests conducted so you can normalize the above values to compute the average

number of probes per locate request. This will result in another table which you need to submit as part

of your assignment, inside the WrittenQuestions.txt file. These values are a good indication as to the

runtime performance of each algorithm in solving a problem instance of size N.

Published Version: April 02 2021 9:25 AM

16

4.2 Classify these different algorithm implementations from empirical data [5pts]

Classify the expected runtime performance for each of these algorithm implementations using the

notation I introduce during lectures 4 and 5 (Monday March 29th and Tuesday March 30th).

Published Version: April 02 2021 9:25 AM

17

Submission Details
Each student is to submit a single ZIP file that will contain the implementations. In addition, there is a

file “WrittenQuestions.txt” in which you are to complete the short answer problems on the homework.

The best way to prepare your ZIP file is to export your entire USERID.hw1 package to a ZIP file using

Eclipse. Select your package and then choose menu item “Export…” which will bring up the Export

wizard. Expand the General folder and select Archive File then click Next.

You will see something like the above. Make sure that the entire “hw1” package is selected and all of the

files within it will also be selected. Then click on Browse… to place the exported file on disk and call it

USERID-HW1.zip or something like that. Then you will submit this single zip file in canvas.wpi.edu as

your homework1 submission.

Addendum
If you discover anything materially wrong with these questions, be sure to contact the professor or

TA/SAs posting to the discussion forum for HW1 on discord.

When I make changes to the questions, I enter my changes in red colored text as shown here.

1. Deadline is meant to be at the start of class, which is 10AM.

2. Also the deadline is MONDAY APRIL 5TH AS IT IS IN CANVAS.

3. Mistake in Question 1 regarding Exponentation. (2 exp 3) should be 8.0\

Published Version: April 02 2021 9:25 AM

18

4. Added “Hint: be sure to explain what happens when processing each of the ‘)’ closing

parentheses.” to question 1.7

5. In the description for Heisenberg (2.3) I mistakenly referred to an NxN array, when it should be a

1xN array.

6. Q3 is only worth 20 points (not 30 as it had showed in its header by mistake).

7. For all searching questions, I was using the wrong terms when describing my trials, which are

targets to be searched for.

