
Understanding Attestation:
Analyzing Protocols that use Quotes

Joshua D. Guttman and John D. Ramsdell

The MITRE Corporation

Abstract. Attestation protocols use digital signatures and other crypto-
graphic values to convey evidence of hardware state, program code, and
associated keys. They require hardware support such as Trusted Execu-
tion Environments. Conclusions about attestations thus depend jointly
on protocols, hardware services, and program behavior.
We present a mechanized approach to modeling these properties, combin-
ing protocol analysis with axioms, that formalize hardware and software
properties. Here, we model aspects of Intel’s SGX mechanism. Above the
underlying manufacturer-provided protocols, we build a modular user-
level that uses its attestations to make trust decisions.

1 Introduction

Cryptographic protocols are often designed for use with particular software and
hardware. How can we craft the mechanisms so that they jointly achieve over-
all security goals? In achieving their goals, the protocols may rely on specific
assumptions about the remaining components’ behaviors. These assumptions
define security-relevant specifications for the remaining components, focusing
the design and validation processes for these components.

This codesign process for protocols and other mechanisms requires protocol
analysis to explore the executions that satisfy the axioms for the other com-
ponents’ expected behaviors. In this paper, we use the cpsa protocol analysis
tool [33], which we have enriched with the ability to apply axioms or, as they
are also called, rules [32]. cpsa with axioms checks if a protocol is using its con-
text correctly. The analysis codifies what matters about this context, focusing
attention—for further formal or empirical investigation—on whether the compo-
nents satisfy the axioms. The axioms cpsa allows are implications, specifically
universally quantified implications belonging to the geometric fragment of first
order logic [14]. They formalize behavioral assumptions on the software and
hardware context.

cpsa implements enrich-by-need protocol analysis. The analyst selects a sce-
nario of interest—perhaps, that one participant has had a successful local run,
a couple of keys are uncompromised, and a nonce has been successfully chosen
to be fresh—after which cpsa displays all of the minimal, essentially different
executions compatible with it [18]. cpsa can also “read off” a strongest security
goal (e.g. authentication or confidentiality) that holds for that scenario [35].

Other protocol analysis tools (e.g. Tamarin [29] and ProVerif [4]) can support
variants of our method, which seems to increase its value. For instance, Tamarin’s
restrictions specify axioms, leading Tamarin to explore the set of traces that are
compatible with the restrictions. This is used successfully on a substantial scale
in Sapic to model protocols that manipulate state [25].

Attesting to Trusted Execution Environments. We illustrate our method
by examining attestation for trusted execution environments or tees. A trusted
execution environment is a software entity—either a thread with some memory
or a virtual machine—that the processor promises to protect. Specifically, the
processor will encrypt the tee’s memory before evicting it, and decrypt it only
to return it to the same tee.

An attestation for a tee is a digital signature or Message Authentication
Code that asserts that a tee E is under the control of particular code C, and
associated with other data D. Attestations, also called quotes, require support
from the processor that must guarantee the tee.

As we use tees, the data D always includes a public key K. The tee gener-
ates the key pair K,K−1 on startup, and protects the private part K−1, inserting
K into D. Thus, any remote entity that obtains an attestation for E,C,K, . . .
can use K to create secure channels to E. Messages over these channels are en-
trusted to the code C. If the code C faithfully implements a protocol Π, then
E uses the private key K−1 only in accordance with that protocol Π.

tees—as threads with protected memory within user-level processes—are
available on recent Intel processors. These so-called enclaves use the instruction
set extension Software Guard Extensions (SGX) [22]. tees, as virtual machines,
are available on AMD processors (Secure Encrypted Virtualization [24]). Other
manufacturers may offer tees; academic work such as Sancus [31], for embedded
systems, and Sanctum [10] also provide tees. Our methods are applicable well
beyond SGX, which currently has weaknesses [7].

Case study. Our case study justifies layering substantial mechanisms, using
protocol analysis and assumptions about hardware and software.

At the lower level, we represent the original mechanisms for SGX attestation,
which involve complications, such as online interaction with an Intel attestation
server. We identify three axioms that jointly characterize what the hardware is
intended to ensure, and how the provisioning of a signature key to the processor
provides a supply-chain guarantee. On top of the lower layer, we illustrate how
to use its attestations to draw conclusions about a user-layer protocol.

Contributions. We show how to combine rules and protocol analysis to design
protocols targeted to hardware and software contexts. Our method provides
simple descriptions of what the protocol requires from these contexts.

The rules in our case study fit three patterns that appear to be reusable for
many attestation mechanisms.

Hardware rules codify the relevant behavioral consequences of the manufac-
turer’s claims about the processor.

2

Trust rules formalize the decisions and practices of an organization about cre-
ating keys and certificates, and using the certified keys.

Attestation rules apply only when a tee is executing known code C; they
express a behavioral specification for that code C, such as how it will handle
its private keys. Static analysis and empirical testing, such as for side chan-
nels, can justify these rules, or refute them [30]. Attestation rules furnish
precise goals to prove or refute in these ways.

While other sorts of axioms also fit our formalism, these three types were central
in applying the formalism to attestation and tees. They mechanize some of the
reasoning in previous work on attestation for secure systems design, e.g. [9].

cpsa is an excellent interactive tool for determining the relevant rules. We
derived the ones in this paper by observing what cpsa could not establish. We
then introduced successive rules that would provide it with information it needs,
respecting the intentions of the hardware and system designers.

Our work is a descendent of authentication logics [26], i.e. special-purpose
logics for system designers to determine trust relations. Subsequent work showed
how to use standard logics (Datalog as in [27]), and how to connect them with
protocols [20,16]. We add a clear axiomatic structure for the combined analysis.

A non-contribution of this paper is any evidence that the rules are true. In-
stead, we identify simple, relevant rules that—if true—suffice to ensure that the
application will meet its goals. To determine whether they are true in a partic-
ular instantiation calls for other—largely independent—methods, tuned to the
claims of the hardware, trust, and attestation rules. Subramanyan et al. propose
one basis for reasoning about enclaves in this complementary area [40].

Structure of this paper. Section 2 presents our model of the SGX protocols
for local (MAC-based) quotes, remote quotes using the EPID signature scheme,
and online validation. A summary of cpsa appears in Section 2.3. Section 3
shows how an application level protocol can use SGX reliably. Sections 2.4 and 3
present the analysis at the successive layers, determining what the protocols can
do subject to the rules. Overall patterns in these rules are discussed in Section 4,
with related work and conclusions in Section 5.

The new cpsa is available [32], as are input and output files for this case
study [21]. Our main notation is in Table 1.

Non-compromised keys. We do not build into our notation that K = sk(A)
or dk(A) is really uncompromised, which we instead express by writing Non(K).

The assertion Non(K) has two parts. The first is that no entity other than
the intended one(s) possesses and can use the key K. Hardware and software
must cooperate so a malicious adversary does not obtain its value.

The second part is that the intended entity uses it only in the ways that the
protocol dictates. It is not used to sign/MAC/decrypt messages in any other
situation. Thus, when the intended entity is an enclave E under the control of
code C, then Non(K) induces a software requirement, namely to ensure that the
code C uses the key only to prepare messages that the protocol dictates should
be sent, and only subject to the control flow the protocol dictates.

3

#(m) is the result of a hash function applied to m;

mac(m,K) is a keyed hash or Message Authentication Code in which
K is the key and m is the value being authenticated;

mdk is the MAC key on a processor, regarding mdk as naming the processor.

{|m|}K is an encryption of m with K, either a symmetric or
an asymmetric encryption, depending on the type of K.

[[m]]K is a digital signature prepared using K;

[[m]]eK is a digital signature using Intel’s EPID algorithm.

tag m0 is the contents m tagged with the distinctive bitstring tag.

(K,K−1) is a keypair for an asymmetric algorithm, with (K−1)−1 = K.

sk(A) is the principal A’s private signing key, and

vk(A) is the public verification key other principals use to check them.

pk(A) is a public encryption key to prepare messages for A, and

dk(A) is the corresponding private decryption key.

Thus, sk(A)−1 = vk(A) and dk(A)−1 = pk(A).

Table 1. Notation

The term of art “non-compromised” will cover these two parts.
The second aspect of Non justifies protocol analysis in taking cases based on

the protocol definition when a key is known or assumed to be non-compromised.

The adversary. cpsa works within a Dolev-Yao model [12], so we always as-
sume that the adversary controls how messages are routed among participants.
The adversary can also generate values, concatenate them and separate their
parts, and can encrypt and decrypt using keys it possesses or can obtain. The ad-
versary can obtain all long term secrets we do not assume non-compromised. The
adversary can guess random values unless we assume them fresh and unguessable
(“uniquely originating” in cpsa’s terminology).

Software and hardware can misbehave at the convenience of the adversary,
except when we make explicit behavioral assumptions expressed in rules.

Thus, limitations on the adversary are under the control of the modeler.

A brief introduction to strands. A strand is a finite sequence of message
transmission and reception events, which we call nodes. Some strands, called
regular strands, represent the compliant behavior of a single principal in a single
local protocol session. Other strands represent actions of an adversary, who may
control the network and may carry out cryptographic operations using keys that
are public or have become compromised. An execution (or bundle) involves any
number of regular strands and adversary strands, with the proviso that any
message that is received must previously have been sent.

A protocol Π is a finite set of strands called the roles ρ ∈ Π. The roles
contain parameters, and the instances of ρ are the strands that result from ρ
by plugging in values for these parameters. This set of instances—obtained from
Π’s roles by plugging in values for parameters—are the regular strands of Π.

4

Figures 1 and 3 show roles. We write roles and other strands either vertically
or horizontally with double arrows • ⇒ • connecting successive nodes. Single
arrows • → m and • ← m indicate that message m is being transmitted or
received at the node (resp.).

A strand may contain only an initial segment of the nodes of a role. For
instance, at a particular time, a local run of the local-quote role (Fig. 1) may
have received a message, but given as yet no response. We say that this strand
has height 1, rather than the height 2 it would have if the next step had occurred.
For more information on strands as a basis for protocol analysis, see [18].

2 Attestation in SGX

Intel’s SGX attestation mechanism involves four elements.
First, a local quote about a subject enclave σ can be verified by a target

enclave τ resident on the same processor. The local quote is a Message Au-
thentication Code (MAC) prepared keyed with a secret #(mdk , τ) hashed from
τ plus a unique secret mdk permanently protected within each processor (the
Master Derivation Key, in SGX-speak). The content of the MAC is the Enclave
Record (ER) for σ. The ER includes a hash of the code controlling σ and other
data. The ereport instruction creates a local quote.

To check a local quote, τ executes instruction egetkey to obtain the MAC
key #(mdk , τ), and recomputes the MAC value. Enclave τ must be resident on
the same processor, because mdk is used in the key #(mdk , τ). A misbehaving
τ cannot use this to forge local quotes targeted at a compliant τ ′, since τ ′,
obtaining a different key #(mdk , τ ′), will reject the forged MAC.

Second, to obtain attestations for entities on other devices, a remote quote is
made by a particular enclave, the quoting enclave τq. It receives a claimed ER
and a local quote q. It checks ER and q via egetkey. On success, it generates
a digital signature on ER using the group signature scheme EPID [6].

Third, Intel’s attestation server validates remote quotes. A client connects
via TLS, provides a claimed digital signature and ER, and receives an answer
within the TLS connection. The attestation server vouches that some signing
key provisioned by Intel created the digital signature on ER. The EPID group
signature scheme prevents Intel from knowing which processor it was; the quoting
enclaves they provision generate valid, but indistinguishable, EPID signatures.

Fourth, the attestation client queries the server over TLS.
We eliminate TLS’s complexities, replacing it with a simple confirmation via

public key encryption. This does not affect anything that matters to attestation.
Any version of TLS that ensures integrity will lead to the same conclusions.

2.1 The Core SGX Protocol

The four roles of the manufacturer’s mechanisms are shown in Fig. 1. The local-
quote role does not run on every value er, but only on values that are in fact the
enclave record of some enclave executing on the processor with secret mdk . In

5

local-quote epid-quote attest-client attest-server

•

��

eroo •

��

er,m // •
��

{|N,er, [[rq er]]eek|}pk(AS)// •

��
•
��

{|N,er,m|}pk(AS)//

•

τ,er,mac(er,#(mdk,τ))kkkkkkkk

55kkkkkkkk

•
er, [[rq er]]eek // • •Noo

Fig. 1. SGX core roles

the EPID-quote role, the quoting enclave makes sure that its initial input has the
form shown by executing egetkey on mdk . In the attestation-server role, the
server receives a message encrypted with its public encryption key. Inside that
message is a nonce N , which it will release just in case the remaining components
er, [[rq er]]eek form a valid digital signature on er, formed using an EPID key ek
generated in a protocol with the manufacturer as processors are prepared [6]. It
thus provides a supply chain guarantee that the processor is genuine.

The attestation client’s role corresponds, except that the client cannot di-
rectly determine that its input is of the form er, [[rq er]]eek; it needs the attesta-
tion server precisely for this. Thus, the client may possibly submit any message
m. If the client successfully receives N , then in fact m = [[rq er]]eek for some
EPID key ek. The attestation client chooses N randomly.

2.2 Rules for the SGX Protocol

Analyzing the manufacturer’s protocol uses three rules. Each one codifies what
follows when a role in Fig. 1 occurs. To express them, we use predicates that say
when a strand is an instance of the roles, and to at least what height (number
of steps). When a strand z engages in at least the first i transmissions and
receptions of a role ρ, we write:

LocQt(z, i) if ρ is the local-quote role;
EpidQt(z, i) if ρ is the epid-quote role; and
AttServ(z, i) if ρ is the attestation server role;

To refer to the values selected for role parameters, we write:

LocQtER(z, er) if er is the enclave record value for local-quote instance z;
LocQtPr(z,mdk) if mdk is the processor secret;
EpidQtKey(z, ek) if ek is the signing EPID key of epid-quote instance z;
EpidQtProc(z,mdk) if z runs on the processor with secret mdk ; and
ASQtKey(z, ek) if attestation server run z validates a quote signed with ek.

The rules also use uninterpreted predicate symbols. Their formal significance
comes from the rules, which allow us to infer them, or infer further consequences
from them. Their informal English descriptions relate them to the actual prop-
erties of the components they constrain.

6

Content of the rules. The local-quote role executes on a valid SGX processor
only if there is an SGX-protected enclave with the given enclave record er. It
should be a sequence that starts with the enclave id number, the hash of its
controlling code, and a public key, and may contain other entries subsequently.
Writing :: for the list-construction operation, we thus have er = eid :: ch ::k::rest .

The processor secret mdk can “name” the processor. Even if no one knows
mdk , we can still reason about whether mdk = mdk ′, etc. A run of the local-quote
role on a processor with non-compromised mdk ensures there is an enclave with
the parameters eid, ch, k,mdk , which we will write EnclCodeKey(eid, ch, k,mdk):

Rule 1 Quote guarantees enclave

∀z : strd, eid, ch, rest : mesg, k : akey, mdk : skey . LocQt(z, 2) ∧
LocQtER(z, eid :: ch ::k :: rest) ∧ LocQtPr(z,mdk) ∧ Non(mdk)
=⇒ EnclCodeKey(eid, ch, k,mdk).

This straightforwardly states what a compliant processor’s local quoting is sup-
posed to tell us: It accurately reports some enclave running on that processor.

When the Attestation Server completes a run, what must hold? It has checked
that the purported EPID signature was genuine, and the signing key ek generated
interactively with the manufacturer’s EPID master secret. It also vouches that
the enclave mechanism can preserve the secrecy of ek within the EPID quoting
enclave.1 Hence:

Rule 2 AS says EPID key is manufacturer-made and non-compromised

∀z : strd, ek : akey . AttServ(z, 2) ∧ ASQtKey(z, ek)
=⇒ ManuMadeEpid(ek) ∧ Non(ek).

The conclusion Non(ek) feeds back into the protocol analysis: a non-compromised
key often requires compliant local sessions to have occurred. The conclusion
ManuMadeEpid(ek) will also be used as a premise in the next rule.

The third rule applies when the epid-quote role executes a complete strand z
with a valid EPID key. This is a supply chain property. It ensures that the pro-
cessor is in fact manufactured by Intel, which also generated a non-compromised
processor secret mdk . Moreover, the processor is capable of preserving the se-
crecy of mdk and ensuring that it is used only in accordance with the roles
shown in Fig. 1. The conclusion is simply Non(mdk), stating that mdk is non-
compromised, again enabling further protocol analysis.

Rule 3 Manufacturer-made EPID on non-compromised processor

∀z : strd, ek : akey, mdk : skey . EpidQt(z, 2) ∧
EpidQtKey(z, ek) ∧ EpidQtProc(z,mdk) ∧ ManuMadeEpid(ek)
=⇒ Non(mdk).

1 Since an out-of-order execution attack falsifies this claim [7], the current SGX does
not satisfy our axioms.

7

2.3 Protocol analysis with CPSA

Suppose that an attestation client has a run, following its role defined in the
lower right of Fig. 1. We assume that it queries an attestation server AS with
Non(dk(AS)), and uses a fresh, unguessable nonce N . We also assume the pur-
ported enclave record to be of the form er = eid :: ch :: k :: rest. What else must
then have happened, given the protocol of Fig. 1?

What CPSA does. A cpsa run starts with a scenario, in which some protocol
activity is assumed to have occurred, which in this case is a regular attestation
client strand. Moreover, additional facts may be included, such as Non(dk(AS))
and Unique(N). The latter asserts that N was freshly generated and unguessable
(“uniquely originating”).

cpsa’s job is then to find all minimal, essentially different executions that
enrich the initial scenario [18]. To find them, cpsa explores increasingly detailed
scenarios—often with additional regular strands—until it finds some that are
sufficiently rich. “Sufficiently rich” means:

1. Whenever a regular strand receives a message, the adversary can supply that
message, possibly using messages transmitted previously by regular strands.
The adversary has the usual, Dolev-Yao derivations [12], starting with initial
values compatible with assumptions such as Non(dk(AS)) and Unique(N).

2. Suppose η instantiates the variables of a rule R to make the hypothesis of
R true. Then η yields a true instantiation of the conclusion of R.

cpsa uses authentication tests [18] to find a small set of enrichments to explain a
message reception that does not yet satisfy Clause 1. cpsa considers how to add
new regular strands and new hypotheses about compromised keys. Alternative
possible explanations cause branching in the search.

When R and η are a counterexample to Clause 2, cpsa adds information
to make the conclusion hold. When the conclusion is an equation s = t, cpsa
equates the values η(s) and η(t). When the conclusion is an atomic formula
P (t1, . . . , tk), it adds its instance P (η(t1), . . . , η(tk)) to the scenario.

The approach accommodates additional forms of conclusion, containing con-
junctions, existentially quantifiers ∃x . φ, and disjunctions (logical ors, although
not in this paper). These syntactic forms are preserved by all homomorphisms [19],
and the rules are geometric sequents [14]. This yields scenarios that cover all pos-
sible executions that homomorphically enrich the initial scenario [18,36,13].

cpsa is implemented in Haskell, and the core program takes input in s-
expression format, and gives its output as s-expressions. This is then converted
by several supplementary tools to other forms, especially xhtml to be displayed
in a browser.

CPSA’s input and output. Given a protocol and rules, cpsa’s input is a
scenario consisting of some strands of regular participants, together with as-
sumptions such as Non(dk(AS)) and Unique(N) or other facts (closed atomic
formulas). The starting scenario and similar structures are called skeletons.

8

attest-client attest-server epid-quote local-quote

•
��

•
��

•oo

•
��

•qq

•
��

// •
��

• •oo

Facts: ManuMadeEpid(ek), EnclCodeKey(eid, ch, k,mdk)
Non keys: Non(mdk), Non(ek), Non(dk(AS))

Fig. 2. Consequences of an attestation client success

cpsa returns skeletons representing all minimal, essentially different execu-
tions enriching the initial skeleton. This is the empty set when the initial skeleton
cannot occur; e.g. it hypothesizes some security disclosure that cannot occur.
Very often, this set is small, containing only one or a few possibilities.

cpsa presents its results by diagrams like those in Figs. 2, 4, etc., in xhtml.
Each diagram shows some strands, presented as vertical columns of transmissions
and receptions, together with arrows summarizing ordering information among
the events. Each skeleton also shows the parameter values of the different strands,
and the other facts that hold in this skeleton.

2.4 Applying CPSA to the SGX protocols

In our case study, an attestation client has a run, following its role defined in
Fig. 1. We assume it queries an attestation server AS such that Non(dk(AS)),
and uses a fresh, unguessable nonce N . We also assume the purported enclave
record to have the form er = eid :: ch :: k :: rest. What else must have happened,
given the remainder of the protocol contained in Fig. 1?

We ask cpsa this question, subject to Rules 1–3. cpsa answers by computing
the result shown in Fig. 2. The assumed attestation client run is shown as the
leftmost column in Fig. 2. The keys ek and mdk are new, implicitly existentially
quantified values. The client does not find out what they are, but knows they
exist. cpsa computes this in three steps.

1. The first step introduces the attestation server run shown immediately to
the right. cpsa infers this as a consequence of the protocol definition. Only an
attestation server run can extract the nonce N from the encryption inside which
the client transmits it. Rule 2 now applies to the new strand, introducing the
facts ManuMadeEpid(ek) and Non(ek).

2. Since cpsa now knows that the client run started by receiving a valid EPID-
signed remote quote, cpsa explains it by a matching run of the epid-quote role.
Its mdk parameter was previously unknown. By Rule 3, we infer Non(mdk).

9

3. How was the local quote mac(er,#(mdk , τ)) generated? cpsa infers it can
come only from a run of the local-quote role with matching parameters. Applying
Rule 1, it adds the fact that the enclave record describes an enclave running on
mdk . This fact is expressed by EnclCodeKey(eid, ch, k,mdk).

The analysis is now complete.

Omitting rules. Omitting Rule 1 does not change the diagram, but the fact
EnclCodeKey(eid, ch, k,mdk) is lost. We no longer know that there is an enclave
controlled by the code with hash ch and public key k running on processor mdk .

Omitting Rule 3 omits this fact, as well as the (rightmost) local-quote strand.
The key mdk is no longer known to be Non. Finally, omitting Rule 2 means that
only the attest-server strand is available. Each rule has a predictable effect on
how much of the analysis goes through.

Attestation consequence. We have now identified the exact consequences
that follow from a successful attestation client run with fresh N and non-
compromised dk(AS): A processor with confirmed supply chain generated a local
quote for the enclave record er. On that same processor, a remote quote was cre-
ated from the local quote. Finally, on that processor there is an enclave under
control of the known code ch with associated key k.

These conclusions depend on the rules: SGX hardware should ensure that a
local quote on a processor with non-compromised mdk ensures a corresponding
enclave (Rule 1); the attestation server succeeds only when the remote quote was
generated with a properly provisioned, non-compromised EPID key (Rule 2); and
the EPID key provisioning should ensure that a processor with an acceptable
EPID key can keep its mdk non-compromised (Rule 3).

Making the three rules hold requires challenging—not yet fully achieved—
engineering [7]. However, the rules summarize the requirements succinctly, trans-
parently, and usefully for mechanized analysis.

3 An application protocol using quotes

Section 2 shows how to use SGX attestation. To learn EnclCodeKey(eid, ch, k,mdk),
we attempt a Attestation Client local run with er = eid :: ch ::k :: rest. If we
succeed with fresh nonce N and non-compromised peer key Non(dk(AS)), then
EnclCodeKey(eid, ch, k,mdk) holds for some mdk with Non(mdk).

Suppose software analysis of the code with hash ch shows this code will:

1. generate a fresh key pair k, k−1;
2. place the public value k into the its enclave record, while protecting the

private value k−1; and
3. use k−1 only for the cryptographic operations required by certain roles of
Π, and only under the control structure required by those roles.

Hence Non(k−1); so we can use k to contact enclave eid for those roles of Π.
In this section, we work out an example protocol, using a rule that summarizes

10

the software analysis (1)–(3), plus a rule that expresses the client’s policy of
checking an attestation before engaging in the application level protocol Π.

As an example application level protocol, consider the Yes-or-No proto-
col, as shown in Fig. 3. In this protocol, the client P (a.k.a. the poser) sends

er

��
• Yoo

•oo +3 •

��

/7hhhhhhh
hhhhhhh
'/VV

VVVVV VVVVV
VV

• Noo

{|Q,Y,N |}pk(A)

��
• // Y

•
/7hhhhhhh

hhhhhhh
'/VV

VVVVV VVVVV
VV

• // N

Fig. 3. The Yes-or-No protocol

a yes/no question Q together with two nonces
Y and N encrypted with pk(A). The job of the
compliant answerer A is to release either the
first nonce Y in case the answer is yes or else
the second nonce N in case the answer is no. If
P completes the branch receiving Y , P learns
one answer, and P learns the other answer
by completing the other branch. Before ask-
ing its question, the poser obtains a valid en-
clave record of the form eid :: ch ::pk(as)::rest,
abbreviated er in Fig. 3.

Our cpsa analysis concentrates on the au-
thentication property, which is that when P

completes along either branch, the answerer must in fact have executed the cor-
responding branch. If the poser thinks the answer was yes, then the answerer
really committed to yes; and likewise for no. There is an additional secrecy goal,
to ensure that even an adversary that can guess what question Q will be asked
cannot determine what the answer is. The adversary cannot distinguish

Run 1 in which the answer was yes; v0 was chosen as the value of the parameter
Y ; and v1 was chosen as the value of the parameter N ; from

Run 2 in which the answer was no; v1 was chosen as the value of the parameter
Y ; and v0 was chosen as the value of the parameter N .

Distinguishing these two runs would require distinguishing {|Q, v0, v1|}pk(A) from
{|Q, v1, v0|}pk(A). With a semantically secure encryption, this is intractable.

An Attestation Rule for the Peer. Suppose the predicate AnsCode(ch) holds
true only of bitstrings that result by compiling and hashing source code that we
have analyzed. Suppose, moreover, that our analysis indicates this code satisfies
properties (1)–(3), specifically when “certain roles of Π” means the two answerer
roles of the Yes-or-No protocol. Unless other entities discover its private key
k−1, k−1 will be non-compromised, i.e. known only to a principal that will use
it only in accordance with the protocol. Moreover, the processor prevents other
entities from discovering k−1 from an enclave, as it encrypts evicted memory.
This justifies a rule:

Rule 4 (Answerer attestation) ∀ eid, ch : mesg .

EnclCodeKey(eid, ch, k,mdk) ∧ AnsCode(ch) =⇒ Non(k−1).

11

client-yes attest-client attest-server epid-quote local-quote ans-yes

•
��

•
��

•oo

•
��

•rr

•
��

// •
��

•
��

•oo •oo

•
��

00 •
��

• •nn

Fig. 4. cpsa output for client protocol, yes branch.

Client rule: Obtain quote first. Suppose parties executing the poser roles
in the Yes-or-No protocol obtains an attestation for its peer before starting the
run. Perhaps its code ensures a control flow in which the code implementing
the poser roles cannot be reached until after an attestation is complete. We can
express this via a pair of rules, using the predicates PoseY(s, i) and PoseN(s, i)
to mean that strand s is an instance of the poser affirmative or negative role, up
to height (step) i. The parameter predicates Eid(s, eid), Ch(s, ch), Ans(s, a), and
Rest(s, rest) to indicate strand s is given an enclave record with components
(respectively) eid for the EID; ch for the controlling code hash; a for the answerer
peer; and rest for the remainder. The following rule asserts that the start of an
affirmative poser strand must be preceded by a successful attestation client run
with suitable er:

Rule 5 (Client gets quote) ∀ s : strd, eid, ch, rest : mesg, a : name .

PoseY(s, 1) ∧ Eid(s, eid) ∧ Ch(s, ch) ∧ Ans(s, a) ∧ Rest(s, rest)

=⇒ ∃ z : strd, n : text, as : name . AttCl(z, 3) ∧ AttClN(z, n) ∧
AttClAs(z, as) ∧ AttClEr(z, eid :: ch ::pk(as) :: rest) ∧
(z, 2) ≺ (s, 0) ∧ Non(pk(as)) ∧ Unique(n)

A symmetric rule—about a negative poser strand PoseN(sno, 1) of height at least
1—is not needed, since any negative poser strand agrees with a positive strand
up to height 1 (and 2). Thus, Rule 5 applies to sno also.

Protocol analysis: Application level. Suppose now a poser runs the yes
branch to completion, with challenge nonce Y , code hash ch, and peer public
key pk(as). Moreover, assume:

Fact: AnsCode(ch) Keys: Unique(Y).

Now cpsa constructs the diagram shown in Fig. 4. The leftmost strand starts by
receiving the enclave record. Rule 5 ensures that there is a attest-client run that

12

precedes it, indicated by the dotted arrow. The middle reconstructs the conse-
quences in Fig. 2. Using EnclCodeKey(eid, ch, pk(as),mdk), which Fig. 2 implies,
and the assumption AnsCode(ch), cpsa applies Rule 4, inferring Non(dk(as)).

Hence, only an answerer strand can extract Y from {|Q,Y,N |}pk(as); the ad-
versary does not have the decryption key. Thus, cpsa infers the rightmost strand.

The analysis in the client-no case corresponds exactly.

Omitting rules. Omitting Rule 4 has the expected effect: Without it, cpsa has
no grounds to infer Non(dk(as)). If the key Non(dk(as)) is compromised, perhaps
the adversary has used it to decrypt {|Q,Y,N |}k, and the adversary can transmit
Y back to the poser P . Thus, the rightmost strand in Fig. 4, the ans-yes strand,
will not be added. The poser has no evidence of the authenticity of the answer.

Omitting Rule 5 means that no other strands need to be added. Without an
attestation, nothing is known about Non(dk(as)).

4 Types of rules

We first categorize Rules 1–3 from Section 2 and Rules 4–5 from Section 4. We
divide them into three types: hardware rules, trust rules, and attestation rules.

Hardware rules. Rule 1 stipulates a hardware property, namely when the
processor generates a local quote on er, there is an enclave with record er. Rule 3
is also, at least partly, a hardware requirement: a processor with a manufacturer-
made EPID key protects mdk , and uses it only to generate and check local quotes.
There is also a trust aspect: the manufacturer should not install a manufacturer-
made key ek unless the processor can protect its secret mdk .

These rules define the hardware requirements. Naturally, the hardware’s en-
clave support must also justify the code analysis leading to the attestation rules.

Trust rules. Rules 2 and 5 are trust rules. Rule 2 expresses our trust that the
manufacturer will operate a reliable Attestation Server, and it defines what we
need from the AS, namely confirmation of the origin of ek and of its protection
from compromise. However, there is no attestation here, since there is no evidence
that particular code is in control of the AS. Hence there is no direct evidence
the code will ensure the conclusions we care about.

Rule 5 expresses the client’s policy of always checking the remote attestation
for er before asking a question Q. Again, there is no attestation here, since there
is no evidence that particular code is in control of the client.

Attestation rules. Rule 4 is an attestation rule. It applies only when its
premise EnclCodeKey(eid, ch, k,mdk) is known to hold, i.e,. other evidence has
already established the existence of an enclave eid with code (hashing to) ch.

A rational process—analyzing the behaviors of the code with known hash
ch—governs proposed enclave rules. Does it randomly generate its keypair k, k−1

and install k in the enclave record? Does it protect the private k−1, using it only
in secure cryptographic algorithms? What holds (empirically or by code analysis)
about side channels? Does the code respect the control flow of the specific roles

13

in which this key is expected to engage? In attestation rules, we always know
what code is in control of an enclave.

Developing the rules. cpsa is an excellent assistant for developing rules. It
gives quick interactive feedback when rules are too weak. This allows a designer
to balance out the security goals she expects the system to achieve against
the requirements she is willing to impose on the remaining components. cpsa’s
graphic output makes the effects of particular choices very clear. Its speed is
very helpful; no individual run in the development of this paper took more than
a few seconds on a standard laptop. cpsa is competitive with other symbolic
protocol protocol analysis tools (e.g. Scyther [11] and Tamarin [29]) for a variety
of examples [28], and seems much faster than some (e.g. Maude-NPA [15]).

The rules we have developed are modeled on the intent of the SGX mecha-
nisms. However, we expect that other attestation mechanisms, based on different
hardware primitives, will lead to alternative sets of rules. The use of those rules
for protocol analysis, however, will be very similar in cases that we can envisage.

The danger of unsound rules. What prevents an analyst from writing
wishful-thinking rules rather than accurate descriptions of the intended system?

Nothing, in fact. The rules require scrutiny, to determine whether they are
reasonable specifications of the system ingredients. We recommend that rules
be reused whenever possible, so that when reusing components in a new design
one should reuse the rules that have already passed scrutiny as specifying it. We
offered our taxonomy of rules into hardware, trust, and attestation rules as a
way to focus attention on the main jobs that rules fulfill in this application area.
This is meant to encourage rule specifiers to write rules that have a clear, simple
explanation. If they are wrong, there is more likely to be a well-known property
of the system, or a way to test the system, to expose the error.

Uses of the rules. The rules provide specifications of the relevant compo-
nents. Hardware rules make clear what we need from SGX. Trust rules provide
guidelines for organizations’ public attestation server and client code. Attesta-
tion rules specify what behavior to permit from the attested code ch. Hence, the
rules provide guidance to an implementer about how to build the components
correctly, or whether to adopt existing components. Testing gets improved fo-
cus from these succinct, intuitive rules. The testers should especially attempt to
identify whether these rules could be wrong.

They also help the red team that would like to find out how the mechanism
can fail. It says which misbehaviors in the pieces would lead to a jackpot for the
red team, namely the failure of the mechanism.

Alternate protocols and rules. We have considered a variety of different
protocols, including Intel’s newer, EPID-free ECDSA protocol [23], our own
mechanism which uses standard signatures on top of EPID, and simplifications
of the protocols that omit tags such as rq in Fig. 1. Additional rules are required
in these cases, but they reuse the same ideas we have presented already.

A small change to the application-level protocol also assures the client that
the attestation occurred recently.

14

5 Related work and Conclusion

Security protocol analysis is a very well-developed field, with numerous so-
phisticated tools for trace properties (e.g. [4,15,29,33]), and some for determining
indistinguishability properties also (e.g. [5,8]). In many cases, our work is com-
patible with other approaches rather than in competition with it. For instance,
tamarin [29] has a notion of restriction used to restrict the traces of interest.
This increases the value of using rules to formalize the context in which protocols
run: Multiple tools can shed light on the consequences.

Enrich-by-need, which is specific to cpsa, is useful in development. It provides
an overview of all minimal, essentially different possibilities.

Connecting security protocols to context has been less studied than one
would expect. Protocol failures such as the renegotiation attacks on TLS [34]
arise because the protocol does not provide enough information to its context
when the authenticated identity of the peer changed.

Some papers a decade ago generated application-specific protocols for spe-
cific tasks, expressed in a session notation, and implementations for them [3,2],
improving on a compiler for application-specific protocols [20]. More recently, a
study of protocols and the goals they meet showed how application-level goals
may be expressed in an extension of a language for protocol goals [35].

Rigorous reasoning about the behavior of tees is a recognized need [37].
Sihna et al.’s Moat proved confidentiality properties of the code in an enclave [39].
[38] provided a much easier way to prove a much narrower property: Separate
the code of an enclave into a fixed library and user code. And automated control
flow check on the user code ensures it does not abuse the library. The library can
be subjected to a one-time code verification. Thus, many enclaves can be proved
to interact with the external world only through properly encrypted I/O. A more
general model may now be found in [40]; it uses a clean state machine transition
model to formalize core integrity, confidentiality, and attestation properties that
SGX and other tee models such as Sanctum [10].

Gollamudi and Chong [17] produce code for enclaves that respect information
flow properties, although at the cost of a larger trusted computing base.

Barbosa et al. [1] develop cryptographic-style definitions for core functional-
ities within tees including key exchange, attested and outsourced computation.
They prove that specific schemes, in standard crypto-style pseudocode, achieve
these functionalities. Their fine-grained results come at the cost of mechanized
support and clean construction of protocols and rules. In particular, they do not
identify anything similar to the contrast of hardware, trust, and attestation, as
their goals are more aligned with cryptographic mechanisms.

Much of the recent work complements ours, which provides proof goals for
enclave code. If the local code meets these derived goals, our analysis shows that
protocols and code will cooperate to achieve our overall application goals.

Conclusion. We have illustrated, by means of example, how to combine reason-
ing about protocols with reasoning about their context of execution. All of our
reasoning is mechanized, with a visualization of the executions for each scenario.

15

For attestation protocols, the rules may be divided into hardware rules, trust
rules, and attestation rules. This provides an objective set of requirements for the
supporting mechanisms, based in hardware for attestation or in trust anchors or
trust between organizations. Modular layers provide a repeatable way to ensure
user-level protocols are crafted to their trust and attestation context.

References

1. Manuel Barbosa, Bernardo Portela, Guillaume Scerri, and Bogdan Warinschi.
Foundations of hardware-based attested computation and application to SGX. In
IEEE EuroS&P, pages 245–260, 2016.

2. Karthikeyan Bhargavan, Ricardo Corin, Pierre-Malo Deniélou, Cédric Fournet, and
James J. Leifer. Cryptographic protocol synthesis and verification for multiparty
sessions. In IEEE Computer Security Foundations Symposium, 2009.

3. Karthikeyan Bhargavan, Ricardo Corin, Cédric Fournet, and Andrew D. Gordon.
Secure sessions for web services. ACM Trans. Inf. Syst. Secur., 10(2):8, 2007.

4. Bruno Blanchet. An efficient protocol verifier based on Prolog rules. In IEEE
CSFW, pages 82–96. IEEE CS Press, June 2001.

5. Bruno Blanchet and David Pointcheval. Automated security proofs with sequences
of games. In Advances in Cryptology - CRYPTO 2006, pages 537–554, 2006.

6. Ernie Brickell and Jiangtao Li. Enhanced privacy ID: A direct anonymous attesta-
tion scheme with enhanced revocation capabilities. In ACM workshop on Privacy
in the Electronic Society, pages 21–30. ACM, 2007.

7. Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci, Frank
Piessens, Mark Silberstein, Thomas F. Wenisch, Yuval Yarom, and Raoul Strackx.
Foreshadow: Extracting the keys to the intel SGX kingdom with transient out-of-
order execution. In USENIX Security, pages 991–1008, 2018.

8. Rohit Chadha, Vincent Cheval, Ştefan Ciobâcă, and Steve Kremer. Automated
verification of equivalence properties of cryptographic protocols. ACM Trans. Com-
put. Log., 17(4):23:1–23:32, 2016.

9. G. Coker, J. Guttman, P. Loscocco, A. Herzog, J. Millen, B. O’Hanlon, J. Ramsdell,
A. Segall, J. Sheehy, and B. Sniffen. Principles of remote attestation. IJIS, 2011.

10. Victor Costan, Ilia A. Lebedev, and Srinivas Devadas. Sanctum: Minimal hardware
extensions for strong software isolation. In USENIX Security Symposium, pages
857–874, 2016.

11. Cas Cremers and Sjouke Mauw. Operational semantics and verification of security
protocols. Springer, 2012.

12. Daniel Dolev and Andrew Yao. On the security of public-key protocols. IEEE
Transactions on Information Theory, 29:198–208, 1983.

13. Daniel J. Dougherty, Joshua D. Guttman, and John D. Ramsdell. Security protocol
analysis in context: Computing minimal executions using SMT and CPSA. In
Integrated Formal Methods, pages 130–150. Springer, 2018.

14. Roy Dyckhoff and Sara Negri. Geometrisation of first-order logic. Bulletin of
Symbolic Logic, 21(2):123–163, 2015.

15. Santiago Escobar, Catherine Meadows, and José Meseguer. Maude-NPA: Crypto-
graphic protocol analysis modulo equational properties. Foundations of Security
Analysis and Design V, pages 1–50, 2009.

16. Cédric Fournet, Andrew Gordon, and Sergei Maffeis. A type discipline for autho-
rization policies. In European Symposium on Programming, LNCS, 2005.

16

17. Anitha Gollamudi and Stephen Chong. Automatic enforcement of expressive se-
curity policies using enclaves. In OOPSLA, pages 494–513, 2016.

18. Joshua D. Guttman. Shapes: Surveying crypto protocol runs. In Veronique Cortier
and Steve Kremer, editors, Formal Models and Techniques for Analyzing Security
Protocols, Cryptology and Information Security Series. IOS Press, 2011.

19. Joshua D. Guttman. Establishing and preserving protocol security goals. Journal
of Computer Security, 22(2):201–267, 2014.

20. Joshua D. Guttman, Jonathan C. Herzog, John D. Ramsdell, and Brian T. Sniffen.
Programming cryptographic protocols. In Rocco De Nicola and Davide Sangiorgi,
editors, Trust in Global Computing, LNCS, pages 116–145. Springer, 2005.

21. Joshua D. Guttman and John D. Ramsdell. CPSA inputs for understanding at-
testation, April 2019. https://web.cs.wpi.edu/~guttman/pubs/understanding_
attestation_example/.

22. Intel. Intel R© Software Guard Extensions (Intel R© SGX). https://software.

intel.com/en-us/sgx, 2016.
23. Intel. Intel R© Software Guard Extensions (Intel R© SGX) data center attestation

primitives: ECDSA quote library API. https://download.01.org/intel-sgx/

dcap-1.0.1/docs/Intel_SGX_ECDSA_QuoteGenReference_DCAP_API_Linux_1.0.

1.pdf, November 2018.
24. David Kaplan, Jeremy Powell, and Tom Woller. AMD memory en-

cryption. https://developer.amd.com/wordpress/media/2013/12/AMD_Memory_

Encryption_Whitepaper_v7-Public.pdf, April 2016.
25. Steve Kremer and Robert Künnemann. Automated analysis of security protocols

with global state. Journal of Computer Security, 24(5):583–616, 2016.
26. Butler Lampson, Mart́ın Abadi, Michael Burrows, and Edward Wobber. Authen-

tication in distributed systems: Theory and practice. ACM Transactions on Com-
puter Systems, 10(4):265–310, November 1992.

27. Ninghui Li, John C. Mitchell, and William H. Winsborough. Design of a role-based
trust management framework. In Proceedings, 2002 IEEE Symposium on Security
and Privacy, pages 114–130. May, IEEE CS Press, 2002.

28. Moses D. Liskov, Joshua D. Guttman, John D. Ramsdell, Paul D. Rowe, and
F. Javier Thayer. Enrich-by-need protocol analysis for Diffie-Hellman. In Founda-
tions of Security, Protocols, and Equational Reasoning: Essays Dedicated to Cather-
ine A. Meadows, pages 135–155, 2019.

29. Simon Meier, Benedikt Schmidt, Cas Cremers, and David A. Basin. The tamarin
prover for the symbolic analysis of security protocols. In Computer Aided Verifi-
cation (CAV), pages 696–701, 2013.

30. Toby Murray and P. C. van Oorschot. Formal proofs, the fine print and side effects.
In IEEE SecDev, Sept 2018.

31. Job Noorman, Jo Van Bulck, Jan Tobias Mühlberg, Frank Piessens, Pieter Maene,
Bart Preneel, Ingrid Verbauwhede, Johannes Götzfried, Tilo Müller, and Felix
Freiling. Sancus 2.0: A low-cost security architecture for IoT devices. ACM Trans.
Priv. Secur., 20(3):7:1–7:33, July 2017.

32. John D. Ramsdell and Joshua D. Guttman. CPSA4: A cryptographic protocol
shapes analyzer with geometric rules. The MITRE Corporation, 2018. https:

//github.com/ramsdell/cpsa.
33. John D. Ramsdell, Joshua D. Guttman, and Moses Liskov. CPSA: A cryptographic

protocol shapes analyzer, 2016. http://hackage.haskell.org/package/cpsa.
34. E. Rescorla, M. Ray, S. Dispensa, and N. Oskov. Transport Layer Security (TLS)

Renegotiation Indication Extension. RFC 5746 (Proposed Standard), 2010.

17

https://web.cs.wpi.edu/~guttman/pubs/understanding_attestation_example/
https://web.cs.wpi.edu/~guttman/pubs/understanding_attestation_example/
https://software.intel.com/en-us/sgx
https://software.intel.com/en-us/sgx
https://download.01.org/intel-sgx/dcap-1.0.1/docs/Intel_SGX_ECDSA_QuoteGenReference_DCAP_API_Linux_1.0.1.pdf
https://download.01.org/intel-sgx/dcap-1.0.1/docs/Intel_SGX_ECDSA_QuoteGenReference_DCAP_API_Linux_1.0.1.pdf
https://download.01.org/intel-sgx/dcap-1.0.1/docs/Intel_SGX_ECDSA_QuoteGenReference_DCAP_API_Linux_1.0.1.pdf
https://developer.amd.com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf
https://developer.amd.com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf
https://github.com/ramsdell/cpsa
https://github.com/ramsdell/cpsa
http://hackage.haskell.org/package/cpsa

35. Paul D. Rowe, Joshua D. Guttman, and Moses D. Liskov. Measuring protocol
strength with security goals. International Journal of Information Security, Febru-
ary 2016. DOI 10.1007/s10207-016-0319-z, http://web.cs.wpi.edu/~guttman/

pubs/ijis_measuring-security.pdf.
36. Salman Saghafi, Ryan Danas, and Daniel J. Dougherty. Exploring theories with a

model-finding assistant. In Conference on Automated Deduction, volume 9195 of
Lecture Notes in Computer Science, pages 434–449. Springer, 2015.

37. Felix Schuster, Manuel Costa, Cédric Fournet, Christos Gkantsidis, Marcus
Peinado, Gloria Mainar-Ruiz, and Mark Russinovich. VC3: trustworthy data an-
alytics in the cloud using SGX. In 2015 IEEE S&P, pages 38–54, 2015.

38. Rohit Sinha, Manuel Costa, Akash Lal, Nuno P. Lopes, Sriram K. Rajamani, San-
jit A. Seshia, and Kapil Vaswani. A design and verification methodology for secure
isolated regions. In PLDI, 2016.

39. Rohit Sinha, Sriram K. Rajamani, Sanjit A. Seshia, and Kapil Vaswani. Moat:
Verifying confidentiality of enclave programs. In ACM CCS, 2015.

40. Pramod Subramanyan, Rohit Sinha, Ilia A. Lebedev, Srinivas Devadas, and San-
jit A. Seshia. A formal foundation for secure remote execution of enclaves. In ACM
CCS, 2017.

18

http://web.cs.wpi.edu/~guttman/pubs/ijis_measuring-security.pdf
http://web.cs.wpi.edu/~guttman/pubs/ijis_measuring-security.pdf

	Understanding Attestation: Analyzing Protocols that use Quotes

