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Abstract. Latency is an important metric for event detection in Event
Processing (EP) systems, particularly for detecting cyber attacks. We
introduce the Happened-Before Language (hbl), an EP language with
formal semantics with a linear bound for detection complexity. hbl sup-
ports features such as sliding windows, stateful analytics, and attribute-
value predicate expressions. hbl processing handles each event only once,
with no backtracking. Sensitivity analysis confirms that latency changes
little regardless of the event stream arrival rate and the number of predi-
cates in an analytic. The design of hbl was motivated by the problem of
detecting cyber attacks, especially on cyber-physical systems. hbl is well
suited for use by end-points or edge devices due to its linearly bounded
detection algorithm.

1 Introduction

The Event Processing (EP) paradigm that combines the sophisticated event
pattern specifications of Complex Event Processing (CEP) and the stream pro-
cessing capabilities of Event Stream Processing (EPS) has evolved over the past
decade [9]. These systems are primarily used in enterprise environments with
high computing resource availability. As an example, the recent work by Gao
et al. [13] demonstrate that the event processing approach yields detection la-
tency below 2 seconds for anomalies arising from cyber attacks in an enterprise
environment.

The growth of new IoT devices combined with the legacy Operation Technol-
ogy (OT) devices and systems with cyber and physical aspects are called cyber-
physical systems (CPS) or edge systems. The potential for cyber attacks on these
systems raises the need for event processing techniques that can support the so-
phisticated features of CEP with low latency detection, and automated response.
Such detection may be implemented on event streams generated by sensors in
these devices. At the edge, for cyber attack detection, the most important per-
formance metric for an EP system is processing-time latency as defined in [18],
because if the attack can be detected quickly enough, valuable response time
can be gained.

Achieving low-latency in an EP system is a harder goal when the analytics
could include the sequencing operator with negation [34], sliding windows [6,2],
stateful analytics where the attributes of a current event is dependent on the
existence or non-existence of events previously occurred in the event stream,
aggregation operators such as max and average, and event-attribute predicate



expressions [34]. Yet, we aim to achieve exactly this goal of low latency even
while processing highly complex and stateful analytics.

The event queries, or analytics, implemented in our detection algorithm are
called watchpoints. In the rest of the paper, we use the terms analytics and
watchpoints interchangeably. Watchpoints are specified in a new domain spe-
cific language, called the Happened-Before Language (hbl)[8]. The naming of
hbl is a nod to Leslie Lamport [19]. In hbl, the SEQ operator [34], is termed
the Happened-Before (HB) operator. Our detection algorithm supports HB op-
erators that can avoid specific events, supports time and tuple-based sliding
windows, stateful analytics, aggregation operators, event attribute predicate ex-
pressions for value-based constraints, and recursive analytics. The algorithm
achieves linearly bounded latency of detection with sliding windows. Our Java
implementation of hbl has a process-time latency of under a millisecond in all
cases that we tested.

Since a stream of events can be generated from stored events through replay,
the HBL detection algorithm can also be applied equally well to query events
previously collected and stored. We also validate the theoretical results using
our Java implementation.

Contributions: Our first contribution in this paper is the comprehensive proofs
of correctness of existing and novel streaming analytics language features in HBL.
For example, standard features such as stateful analytics, as well as novel fea-
tures such as disjunction, composability, and recursion in analytics are proven
to be correctly defined in HBL. Our second contribution is the proof of linear
performance bound for process-time latency, as defined by Karimov et. al [18],
in the HBL detection algorithm with or without sliding windows. The HBL de-
tection algorithm is also formally shown to be insensitive to the number of HB
operators in an analytic, and is shown to process each event once, and only
once. An important feature of this algorithm is its ability to process multiple
input events concurrently. The scalability of the algorithm is analyzed with re-
spect to concurrency, and is shown to be capable of delivering constant time
latency for many types of analytics with adequate support for concurrent pro-
cessing, allowing HBL detection to trade-off between latency and computational
resources. Our third contribution is the experimental proof for the theoretical
results presented in this paper.

Structure of this paper. In Section 2, we introduce a few examples from
cyber-physical systems and enterprise systems to motivate our design choices
for hbl. Section 3 introduces some basic definitions and notations. The abstract
syntax and semantics of hbl, specified as a sequence of Single Width Expressions
(swes) separated by the HB operator, are presented in Section 4. This section
also contains the algorithm for event detection. This section does not address
the complexity of evaluating a swe, and that is the subject of Section 5. The
sensitivity of the algorithm described in Section 4 is explored in Section 6. A
brief survey of related works is provided in Section 7, and Section 8 concludes
this paper.
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2 Motivating Examples

In this section, we provide three examples from the cyber domain where a low-
latency sliding window algorithm for event detection will be useful. The first
two examples are from the cyber-physical systems, and the third one is from
a WindowsTM system. The examples presented below is a subset of the watch-
points we have implemented using hbl.

GPS Spoofing Detection: In a GPS Spoofing attack such as [17], incorrect
GPS signals deceive receivers, so they report wrong location coordinates. To
detect this spoofing, whenever the location coordinates change faster than a
threshold, an alert can be generated. The threshold is set based on the physi-
cal limits of the system. One must temporarily store recent time and location
information as new GPS data arrives, and evaluate the differences in location
within a fixed duration, and flag an alert when the differences in location are
beyond expected limits. While this evaluation must be conducted using a sliding
window, starting with every new record with a GPS location data using its time
stamp, the time window itself can be adjusted to be fairly small to detect such
a spoofing attack. Bounded detection latency is important in this case, because
without it, the vehicle that uses the GPS navigation system could be at the
wrong place at the wrong time with unpleasant consequences.

Infusion Pump Attack Detection: An infusion pump is directly connected to
the patient and discharges the prescribed amount of a medicine such as insulin
into the patient’s blood stream. An attack on the pump [23] that causes the
infusion pump syringe to move beyond the prescribed limits for that medicine
will need to be detected to prevent an adverse reaction on the patient. The
movements of the syringe can be detected using a distance sensor. The violation
of the limits can be detected using a sliding window approach on the sensor
measurements. Since the future positions of the syringe are dependent on the
current position of the syringe, the limits are relative to the current position.
Therefore, similar to the GPS spoofing attack described above, the infusion
pump attack also does not require a large sliding window. Low-latency is clearly
important in this case for the well-being of the patient.

Process Spawning Chain Detection: PowerShell is a scripting environment
included within Windows that is used by both attackers and administrators. Ex-
ecution of PowerShell scripts in most Windows versions is hidden from users and
not typically secured by antivirus programs, which makes using PowerShell an
easy way to circumvent security measures. A trojan attack reported by Carbon-
Black [21] reports an attack sequence of spawning PowerShell from Outlook.exe.
The attack starts by spawning winword.exe when a user clicks on a malicious file
running a macro that spawns cmd.exe, which in turn spawns powershell.exe.
Detecting this attack requires tracking all the Outlook.exe processes and their
children, eventually leading to the powershell.exe. The detection algorithm
needs to maintain the states of spawning, and report an alert when PowerShell
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is spawned through a process chain from Outlook.exe. In this case, the sliding-
window size is not fixed, and is not within the control of the analytic. However,
if the Outlook.exe process exits, all the states and information related to that
Outlook.exe process can be discarded.

3 Preliminaries

Fig. 1: Detection Context

An HBL watchpoint expression, or watchpoint, specifies a complex event
pattern to be detected within a stream of events, and generates one or more
alerts corresponding to one or more event sequences that match the pattern (see
Section 4 for a formal definition). An hbl Processor implements the watchpoint
matching algorithm, and takes a number of watchpoints—specifications of the
event patterns it should report. An hbl Processor then processes a stream of
incoming events, in response to which it emits a stream of alerts, one for each
time an input event segment completes a match against a watchpoint (Fig. 1).

Event Stream: A finite or infinite sequence of events is an input event stream
[2]. An event is a record, i.e. a tuple with fields such as an event type, time stamp,
sender, location, or IP address. The structure of records is largely irrelevant, as
is how successive records are distinguished in its input stream.

Notation. rec is the set of possible records. A possible sequence of records a
trace. Formally, a trace is a function from numerical indices to records r ∈ rec.
The domain of a trace is an Interval, either all the natural numbers N or an
initial segment of N:

Segi = {j : 0 ≤ j < i} (1)

Interval = {N} ∪ { Segi : i ∈ N} (2)

tr ⊆ {τ : I → rec where I ∈ Interval}. (3)

We use τ to range over traces. Not every function from an interval to records
is a trace. For instance, some input streams have record numbers that increase
monotonically. Others may have non-decreasing timestamps, or timestamps that
are always within some bound of the largest seen value.

If τ ∈ tr is a trace and i, j ∈ N, then:

4



D1 ×D2: the domain of pairs of elements of D1 and D2.
D1 → D2: the domain of functions from D1 to D2.
D1 +D2: the set of tagged values {(left, d1) : d1 ∈ D1} ∪ {(right, d2) : d2 ∈ D2}.

When D1 ∩D2 = ∅, we tacitly omit the tag.
D⊥ : lifts D by augmenting it with a bottom element ⊥.

For functions with range D⊥, ⊥ represents non-termination. ⊥ also represents
undefinedness, e.g. τ @ i for too large an i. All function symbols f we define are
strict, i.e. f(⊥) = ⊥.

Table 1: Domain operators applied to domains D,D1, D2

τ @ i means τ(i), the record at position i in τ .
|τ | is the length of τ , when dom(τ) is finite, i.e. τ : [0, j)→ rec.
⊥ means undefinedness. E.g, τ @ i = ⊥ in case |τ | ≤ i.
τ [i, j] is the stretch of τ from position i to position j inclusive. If j < i or
|τ |<j, then τ [i, j] cannot be well-defined. Formally, τ [i, j] = (τ, i, j), but we
use τ [i, j] for the sequence of records 〈τ @ i, . . . , τ @ j〉, e.g. if τ [i, j] is a
segment of τ matching e.

τ † i is the part of τ following the first i records. Formally, (τ†i)@j = τ@(i+j).
The empty list is 〈〉. The list with head a and tail ` is a :: `.

We consider rec, tr, and N as data types, or “domains,” that are used by the
hbl Processor. Table 1 gives operators used later in the semantics of hbl.

Environment. A watchpoint is processed by the hbl Processor within the con-
text of an environment. An environment may have variables. The hbl Processor
binds values derived from the fields of records to these variables. The hbl Proces-
sor may consult these variables when evaluating a newly arrived record to match
a watchpoint. These variables thus provide a mechanism for storing information
from previously encountered records for use in processing future records.

Formally, the domain env of environments is the set of partial functions from
variables to values. Variables η, η′, η1, etc. range over environments. The next
two sections describe the semantics of hbl in more detail.

4 The Happened-Before Language (HBL)

In this section, we define the syntax and semantics for the Happened-Before
Language (hbl). The syntax shown in this paper is an abstracted version of the
syntax used in our Java implementation of hbl.

We use a, a1, b, etc. to refer to single-width expressions in swe and e, e1, e
′,

etc. for hbl watchpoint expressions. We also refer to these expressions below
simply as watchpoints.

Watchpoint Categories: The watchpoints are of three kinds. First, there
are single-width expressions (swes). A single-width expression a is satisfied or
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matched by a single event record. A single-width expression can contain a nega-
tion [34], e.g. !a, where !a is satisfied by any single record that does not satisfy
a. It may also use disjunction a ∨ b, conjunction a ∧ b, and so on. However, a
match is always a single record.

Second, a watchpoint a → e matches a segment of the input. It must begin
with a record satisfying the single-width expression a, followed (not necessarily
immediately) by segment matching the remainder e. Since a matches a single
record and e matches a segment of length one or more, a → e matches only
segments of length ≥ 2.

Third, a watchpoint a  b  e matches a segment starting with a record
satisfying a, and is followed by segment matching the remainder e; however,
it must also avoid any record satisfying the single-width expression b after the
record satisfying a and until the match to e begins. A match to a  b  e is
also of length ≥ 2.

Avoid expressions are not negations. In a match to the avoid expression
a  b  e, there may be no record that matches !b. The match to e may start
immediately after the record that satisfies a, so the avoidance requirement is
satisfied “vacuously.”

To keep these considerations clear, we divide our description of the Happened-
Before Language into two sections. First, in this section, we describe the watch-
points, by assuming there is a satisfies relation that determines whether a single
record succeeds in matching a single-width expression or fails. Subsequently, in
Section 5, we will the satisfies relation of swe.

4.1 HBL Syntax

Let us define the different types of watchpoints that we discussed in the previous
section more formally now.

Definition 1. An hbl watchpoint may consist of:

a, an swe, meaning that the hbl Processor will report the single width stretch
τ [i, i] whenever the record τ @ i satisfies a.

a→ e, meaning that the hbl Processor will report the stretch τ [i, j] whenever
τ @ i satisfies a; the sub-stretch τ [k, j] offers a match to e; and no partial
match to e starts in τ [i+1, k], where i < k ≤ j. This last condition expresses
the eager (or greedy) approach to looking for a match to e. We call a → e
an arrow expression.

a b e also requires avoiding satisfying the swe b between a and the start
of e. Specifically, it means that a−→e holds, and, moreover, in the stretch
τ [i + 1, k] between the record satisfying a and the beginning of the following
match to e, there should be no record satisfying b. We call a  b  e an
avoid expression, and say that b is its avoided condition.

The lead of an hbl expression e, written ld(e), where e has one of the forms a,
a→ e, or a b e, is the swe a.
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The importance of ld(e) is that any match to e must begin with a record satis-
fying a.

The avoid expression a b e is a single operator with three parameters.
It is not built from parts of the form a→ b, b→ e or c→ e, where c is satisfied
by records that do not satisfy b, etc.

Observe that an hbl expression never begins or ends with an underlined swe
b. Thus the syntax can never yield two successive underlined swes . . . b c . . ..
There is always a non-avoided swe in between, such as c in a b c d e.

In a → e and a  b  e, the hbl Processor looks for a greedy match to e;
i.e. it starts an attempted match at the first record that could start a match to
e, after which it will not backtrack to look again at previous records. Therefore,
hbl Processor will evaluate an event record once, and only once in the processing
of a watchpoint.

We will next give a precise semantics for hbl when environments are in use.

4.2 HBL Semantics

Since hbl watchpoints aim to correlate event records with value-based con-
straints, they process the stream statefully, using environments that the hbl
processor maintains.

The goal of the hbl Processor, when given a watchpoint e and an input
stream τ , is to detect the stretches τ [i, j] that provide matches to e, starting off
from some initial environment η0 ∈ env. Thus, the overall goal of the semantics
is to predict what the right answer to this question should be, as a function
of e, τ , and the choice of η0. As a practical matter, the hbl Processor also
stores various useful pieces of information into the successive environments as
it computes, such as the indices of various partial matches within τ . Thus, we
in fact want the pairs (τ [i, j], η) such that matching e succeeds from i to j and
results in the final environment η.

The form of the semantics. To give the semantics in a compositional way,
we define [[e]] to take as arguments the environment η in force at any point in
the matching, the trace, and index i for the start of a match. The result for
[[e]]ητi is a pair j, η′ such that τ [i, j] is a shortest match starting at i, and η′ is
the environment resulting at the end of the matching. Alternatively, if i is not
the start of a successful match, [[e]]ητi = ⊥. Thus:

[[e]] : env→ tr→ N→ (N× env)⊥ (4)

We also regard [[e]]η as determining a set of stretches:

τ [i, j] ∈ [[e]]η iff ∃η′ . [[e]]η τ i = j, η′. (5)

τ [i, j] ∈ [[e]]η always implies that i ≤ j. That is, we are interested only in stretches
of τ that include at least one record.

The semantics of hbl is parameterized by a choice of syntax and semantics
for the single-width expressions swe. The results of this section are essentially
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satη(a, τ, i) = η′

[[a]]η τ i = i, η′

satη(a, τ, i) = η1 [[e]]η1 τ k = j, η′ i < k ≤ j
failsη1(ld(e), τ, i+ 1, k − 1)

[[a→ e]]η τ i = j, η′

satη(a, τ, i) = η1 [[e]]η1 τ k = j, η′

i < k ≤ j failsη1(ld(e), τ, i+ 1, k − 1) failsη1(b, τ, i+ 1, k − 1)

[[a b e]]η τ i = j, η′

Fig. 2: Semantic rules for hbl

independent of the choice of the swe language. We assume only that the swe
semantics determines a satisfaction function:

sat(a, τ, i) : env→ env + ({False}+ {Never}). (6)

sat decides, for any a : swe, and any record r = τ@ i : rec, whether r satisfies a
under environment η, which we generally write satη(a, τ, j). If r does satisfy a,
sat returns an updated environment η′. To report non-satisfaction, sat returns
False.

The result Never reflects the possible monotonicity constraints on τ . When
satη(a, τ, i) yields a tagged value Never, r does not satisfy a under η, and more-
over there can be no j > i such that satη(a, τ, j). For instance, once the index i
has passed some bound, no later entry j will ever decrease it below the bound.
Since False and Never are in themselves distinguishable from each other and
from any environment, we have ignored the tags left, right that are present in
the definition of D1 +D2 in Fig. 1.

We say satη(a, τ, i) fails iff satη(a, τ, i) /∈ env, i.e. satη(a, τ, i) = False or
satη(a, τ, i) = Never. By failsη(a, τ, i, j), we mean that satη(a, τ, k) fails through-
out the interval i ≤ k ≤ j.

Semantic rules for hbl The semantics of hbl watchpoints is given by the
three rules in Fig 2. The first rule says that, for the stretch τ [i, i] to be a stretch
of the input in which a matches, it suffices that satη(a, τ, i) = η′, after which
further matching should proceed from η′.

The second rules says that a stretch τ [i, j] that matches a→ e consists of a
match to a at τ [i, i], followed by a match to e at stretch τ [k, j], subject to the
requirement that the lead ld(e) fails throughout the intervening records. The ηs
are threaded through monadically; i.e. there is an intermediate η1 generated by
the match to a at τ [i, i] and consumed by the match to e at τ [k, j], which yields
the final η′ from which any further matching will proceed.
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(1): η
a7→ η1

(2): ld(e1) fails,
(3): b fails if e = a  b  e1

(5): η1
e17→ η′

satη(a, τ, i) (4): satη1 (ld(e1), τ, k) = η2
� e1 // ◦

τ : i k j

Fig. 3: Conclusions (1)–(5) of Lemma 1

The third rule checks that the avoid swe b fails for the intervening records.
The rules in Fig. 2 express an inductive definition, so that [[ · ]] is the least fixed
point of these rules; this minimality property justifies inductive proof [10].

4.3 Consequences of the semantics

We can now give routine proofs of various consequences of the semantics, using
the inductive proof method.

Lemma 1 If [[e]]η τ i = j, η′, then j ≥ i. If e = a, then i = j.
Otherwise e = a→ e1 or e = a b e1, j > i and ∃η1, k > i :

1. [[a]]η τ i = i, η1;
2. failsη1(ld(e1), τ, i+ 1, k − 1);
3. failsη1(b, τ, i+ 1, k − 1) in case e = a b e1;
4. ∃η2 . [[ld(e1)]]η1 τ k = k, η2;
5. [[e1]]η1 τ k = j, η′.

Proof. Consider for the successive clauses:

1. The rules for arrow expressions and avoid expressions require the premise
satη(a, τ, i) = η′, which suffices for [[a]]η τ i = i, η1.

2. The rules for arrow expressions and avoid expressions require the premise
failsη1(ld(e), τ, i+ 1, k − 1).

3. The rule for avoid expressions requires the premise failsη1(b, τ, i+ 1, k − 1).
4. Applying claim (1) recursively to the subexpression e1.
5. The rules for arrow expressions and avoid expressions require the premise

[[e]]η1 τ k = j, η′.

Fig. 3 shows a diagram of these conclusions. We can also define an composi-
tion function on hbl expressions:

Definition 2. For any e1, e2 : hbl, the result of composing e1 and e2, written
e1
_e2 is defined by recursion on the structure of e1;

e1
_e2 =

a→ e2 if e1 = a
a→ (e3

_e2) if e1 = a→ e3
a b (e3

_e2) if e1 = a b e3

The semantics of e1
_e2 follows from the semantics of e1 and e2:
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Lemma 2 [[e1
_e2]]η τ i = j, η′ iff ∃η2, k, ` such that i ≤ k < ` ≤ j and

1. [[e1]]η τ i = k, η2;
2. [[e2]]η2 τ ` = j, η′; and
3. failsη2(ld(e2), τ, k + 1, `− 1).

Proof. By induction on the structure of e1. If e1 = a, then [[e1]]η τ i = k, η2 iff
k = i and satη(a, τ, i) = η2. Since a_e2 = a → e2, the semantics for the latter
ensures the claim.

If e1 = a → e0, then e1
_e2 = a → e0

_e2. Suppose inductively that the
claim holds for e0 and e2. Thus again the semantics for a→ e ensures the claim.
The case for e1 = a b e0 is similar. ut

Lemma 2 says we can faithfully evaluate e1
_e2 by evaluating e1 and e2 in se-

quence, starting e2 with the intermediate environment η2, and checking that
ld(e2) fails from the completion of e1 until the selected start index ` for e2.

Lemma 2 suggests our execution strategy. We say that e1 is an e0-derivative
of e iff e = e0

_e1. Thus, Lemma 2 says that to find matches to e, it suffices—
having found a partial match to e0 and obtaining the environment η1—to look
for a match to the derivative e1 after an interval in which no records satisfying
ld(e1) are found.

In the next section, we show that the hbl semantics justifies a processing
model that maintains a set of active partial matches as parts of a watchpoint are
matched. Each active partial match moves forward when a record is received that
satisfies the watchpoint requirements. The partial match is discarded if a record
is received that violates an avoid condition. In no case does the hbl processor
backtrack and revisit previously seen records.

4.4 Execution model

The hbl Processor maintains a set of active partial matches for an expression e
it is processing. Each active partial match is a triple, consisting of:

– e1, the derivative of e that remains to be matched;
– either b, the swe to avoid from the enclosing expression, or ⊥ if none; and
– η1, the environment returned by the partial matching so far.

Execution generates a stream of matches, each represented by a final environ-
ment η, as each partial match reaches the empty derivative.

Execution begins—given a set of user-supplied initial watchpoints E0—with
the set of active partial matches {(e0,⊥, η0) : e0 ∈ E0}, where η0 is a suitable
initial environment.

On receiving a new record, with index one greater, we try to “step forward”
each active partial match. Each active partial match α = (e,mb, η) consists of
a derivative e of some initial expression e0 ∈ E0, possibly an avoid swe, and
the environment η that resulted from the match encountered so far. For the new
record r = τ @ i:
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1. For each watchpoint e0 ∈ E0, we allocate a new active partial match α =
(e0,⊥, η0), where η0 is the initial environment.

2. Now, for each active partial match α = (e,mb, η), we let a = ld(e) and
evaluate satη(a, τ, i), obtaining one of:
(a) η′ when r = τ @ i satisfies a. Depending on the form of e:

i. If e = a, we report η′ as a new successful match, discarding the now
completed active partial match α.

ii. If e = a→ e′, replace α with active partial match α = (e′,⊥, η′).
iii. If e = a b e′, replace α with active partial match α = (e′, b, η′).

(b) Never, so no match will ever occur: we discard α.
(c) False. If mb = b must be avoided, check satη(b, τ, i); if it is satisfied, we

discard α. Otherwise, we retain α.

This algorithm, described more precisely in Fig. 4 using OCaml [20], contains a
procedure process_one to process a single record r with a single active partial
match a at position i in the stream. Data type definitions and a few auxiliary
procedures are shown in Fig. 9, p. 25. The procedure process_records calls
process_one repeatedly, using io.report to report the environments of com-
pleted, successful matches. It handles a list of watchpoints on which to attempt
matches, and it accumulates active partial matches apm, apm’ as they are re-
turned by calls to process_one. In this version, we identify each swe a with the
function Φa(r, i, η) such that Φa((τ @ i), i, η) = satη(a, τ, i).

Example 1. Suppose that we have the three watchpoints

a→ b→ c, d b c, b→ d,

which we will refer to as e1, e2, e3 respectively. In this example, the environments
do not change; all environments equal the initial environment η0.

After processing records including an a and then a d, we have copies of the
initial apms for e1, e2, e3, plus apms α1 = (b→ c,⊥, η0) and α2 = (c, b, η0). The
apm α1 is looking for a b followed by a c, while α2 is looking for a c but will fail
if a b is encountered.

If b comes next, α1 steps to (c,⊥, η0), and α2 is discarded. Meanwhile,
(e3,⊥, η0) also consumes b and steps to (d,⊥, η0).

Observe that processing any record r with any α requires either one or, if
there is an avoid expression, two evaluations of sat(·, τ, i). Thus, it is linear in
the maximum cost of evaluating any swe appearing in the initial, user-specified
expression e0.

Theorem 3 Suppose that the algorithm of Fig. 4 is executed starting with a
(fixed) set S of k watchpoints, and within those watchpoints the worst case time
` is needed to evaluate any single swe on any record r at any stream position i.

1. Any call to process_one with a record r and active partial match a takes at
most 2 · `+ c time, where c characterizes the auxiliary functions used;

2. After processing i records in the stream, there are at most i · k active partial
matches;
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let process_one r i a =

match (lead a.e) r i a.env with

| E eta -> (* satisfied the lead *)

(match remainder a.e with (* Done or continue? *)

| None -> Success eta

| Some e’ -> Next (make_apm e’ a.e eta))

| Never -> Fail (* Will discard apm *)

| False ->

(match a.avoider with (* Avoid expr? *)

| None -> Next a (* No: Continue *)

| Some av ->

(match av r i a.env with

| E _ -> Fail (* Fail if satisfied *)

| _ -> Next a)) (* Else, continue *)

let rec process_records : (exp list -> io_struct -> apm list -> unit) =

fun watchpoints io apms ->

process_records watchpoints io (* Call recursively after *)

(let r = io.get () in (* handling next record *)

let i = io.index () in (* at next stream pos *)

List.fold_left (* Collect new apms *)

(fun so_far apm ->

match process_one r i apm with (* apply apm to r *)

| Fail -> so_far

| Next apm’ -> apm’ :: so_far (* apm’ is new *)

| Success eta’ -> (io.report eta’; (* report success *)

so_far))

[]

(prepend_apms i apms (* Add to apms: New starts *)

watchpoints)) (* for given watchpoints *)

Fig. 4: process one delivers a record r to an APM a; process records calls it
iteratively.

3. For fixed k, the time needed for process_records to handle the ith record
is at most O(i · `).

Proof. Joshua - TBD

The last clause (3) implies that, for a given set of watchpoints (and hence
a fixed `) the latency can at worst grow linearly in the length of the stream
processed so far.

Example 2. A worst case in clause (2), arises from a single watchpoint e =
a letting(x = str ind())→ b that looks for an occurrence of a, binds the variable
x to the stream index at which it occurs in the environment, and then looks for
b.
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Executing e against an input stream 〈a, a, a, a, . . . , a, b〉, a causes a new active
partial match seeking b. These are all distinct, since each one binds x to different
index i in the environment.

In Example 2, apms persist, and e triggers a distinct apm from each input
record. However, in many situations the likelihood of matching on the initial
record is low; then new active partial matches will rarely accumulate. When the
watchpoints have avoid expressions, and the likelihood of a record satisfying the
avoid clause is substantial, the pool of active partial matches will again remain
modest.

4.5 Regex Processing

As described so far, the hbl watchpoints are a simple subset h of the regular
expressions over an alphabet that consists not of individual characters but of all
possible records. These regular expressions, res, are of the three forms:

h ⊆ re ::= a

| a([ˆ ld(h)]∗)h (7)

| a([ˆ b, ld(h)]∗)h

That is, on the middle line of Equation 7, a match consists of a record satisfying
a; a stretch in which these is no match to the lead of the remainder; and a
stretch that consists of a match to the remainder h. On the third line, records
satisfying the avoided condition b must also not be found. This exclusion of
partial matches to the lead ld(h) accounts for the simple, predictable execution
model, with no backtracking, that hbl Processor executes. Indeed, when the
hbl processor knows that part of a watchpoint does not affect the environment,
and that the record stream is represented as a string, it uses regular expressions
as in Eq. (7) to speed up its processing. Woods et. al [33] use a related trick.

4.6 Sliding Window

The bound in (2) is pessimistic in another way also. In many cases, we have a
sliding window w for matching that ensures that any matcher created at step i
will be discarded with a Never by step i + w. Given such a sliding window, the
number of active partial matches is bounded by w · k independent of i, and the
bound in (3) is simply O(`).

To define the sliding window functionality carefully, we will say recursively
for any watchpoint e: the 0th derivative of e is e; and if en is the nth derivative
of e, then:

– the n+ 1st lead in e is ld(en);
– the n+ 1st derivative of e is en+1 if either en = an → en+1 or en = an+1  
b en+1.
Otherwise, the n+ 1st derivative is undefined.
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〈(ik, ηk)〉0≤k≤j is generated by e from stream τ iff, recursively,

– j = 0; i0 = 0; and η0 is the initial environment; or
– 〈(ik, ηk)〉0≤k≤j−1 is generated by e from τ and:
• the jth lead of e is aj ;
• failsηj−1(aj , τ, ij−1, ij − 1); and
• satηj−1(aj , τ, ij) = ηj .

Intuitively, the ik are the positions of the records that satisfied swes in e, and
ηk are the resulting environments, for k > 0.

Definition 3. A watchpoint e enforce sliding window w iff, for any stream τ ,
there is a maximal 〈(ik, ηk)〉0≤k≤j generated by e, where ik < i1 + w and the
j+1st lead in e is either (i) undefined, or else (ii) aj+1 and for some ` < i1 +w,
satηj (aj+1, τ, `) = Never.

Here, case (i) arises when the earliest match for e in τ succeeds before the sliding
window expires, and case (ii) occurs when the window expires with the j + 1st

lead reporting Never.
One may implement windows using stream indices (as in Example 2) and a

conditional in a2. Given a bound on the rate at which new records will arrive
in the stream, one can also implement a window using timestamps contained in
the records.

Lemma 4 Suppose that the algorithm of Fig. 4 is executed starting with a (fixed)
set S of k watchpoints, and within those watchpoints at most time ` is needed to
evaluate any single swe, regardless of the record r and stream position i. Suppose
moreover that S is chosen so that each watchpoint ej ∈ S enforces a window wj,
with each wj < w.

Then the worst case time for process_records to handle a record is O(w ·`).

Proof. Joshua - TBD

4.7 Disjunctions and recursion in HBL

Using the syntax and semantics of hbl described so far, we can represent process-
spawning chains with a fixed number of steps for the third motivating example
from 2. The disjunctive and recursive extension defined in this section allows us
to specify chains of unpredictable length using compact hbl watchpoints so that
at any stage, either the current process spawns the target powershell.exe, or
else it spawns a new process that becomes the current process for a recursive
call.

The hbl language we have defined in Section 4.1 can be extended without
unreasonable damage to Thm. 3. In particular, we consider two extensions, one
containing disjunctions of hbl expressions, and the other containing disjunctions
and also recursions. In the latter case, we will require that there is at most one
recursive call in any one hbl expression.
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hbl with disjunction. The syntax with disjunction is:

e ::= a

| a→ (e1 | e2 | . . . | en) (8)

| a b (e1 | e2 | . . . | en)

Thus, our previous syntax is simply the special case in which n = 1 always holds.
It is easy to update our execution model. In process one, instead of gen-

erating an apm for a single resumption expression e, we generate a list of apms
for e1, e2, . . . , en, which we label with the tag Next. In process records, when
Next delivers this list of apms, we prepend its members before so far.

We say that the branch number bn(a) of a swe a is one, and the branch
number bn(e) of a compound e = a → (e1 | e2 | . . . | en) or e = a  b  
(e1 | e2 | . . . | en) is

∑
1≤i≤n bn(ei). Now it is clear that a single watchpoint can

cause the generation of a number of apms as it executes, but no more than its
branch number. Therefore, in Thm. 3, we relax the bound on apms by a factor
of bn(e). This leads to:

Theorem 5 Suppose that the algorithm of Fig. 4 is executed starting with a
(fixed) set S of k watchpoints. Suppose that, for each e ∈ S, bn(e) ≤ b, and
within those watchpoints at most time ` is needed to evaluate any single swe on
any record r at any stream position i.

1. Any call to process_one with a record r and active partial match a takes at
most 2 · `+ bc time, where c characterizes the auxiliary functions used;

2. After processing i records in the stream, there are at most i·k ·b active partial
matches;

3. For fixed k, the time needed for process_records to handle the ith record
is at most O(ib · (`+ b)).

Proof. Joshua -TBD

hbl with a recursive call. Suppose now that we extend the signature above
with recursion variables X ranging over hbl expressions, and use the Xs to
invoke recursive calls. The recursion variables are disjoint from the environment
variables, and will be used in a different way.

Put definition around this stuff.

e ::= a | X

| a→ (e1 | e2 | . . . | en) (9)

| a b (e1 | e2 | . . . | en)

q ::= X = e (10)

An equation q of the form X = e says how to expand X when it is encountered,
namely to continue by matching against e.
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A watchpoint consists now of a sequence of equations 〈Xi = ei〉0≤i≤k where
0 ≤ k. By convention, X0 is the “main expression,” and execution will start
looking for a match to e0. Any time an apm reaches a variable Xi, the processor
looks it up in the equations and replaces it by its right hand side ei.

We accept only watchpoints W = (〈Xi = ei〉0≤i≤k) satisfying two properties:

Guarded: Every a recursion variable occurrence Xi is in an f1, . . . , fn in an
after expression a → (f1 | f2 | . . . | fn) or an avoid expression a  b  
(f1 | f2 | . . . | fn); no occurrence replaces the lead a or avoid swe b, and no
ej is identical with a recursion variable X`.

Linear: An expression e is linear iff it contains at most one variable occurrence.
A watchpoint is linear iff every expression e0, . . . , ek in its equations is linear.

For guarded, linear watchpoints, there is not too large a runtime penalty. Let
us define bn(W ) = max0≤i≤k bn(ei). Then a watchpoint with branch number b
after one step may yield up to b apms: invoking all its b continuations, one of
which is a variable Xi that is replaced with an ei. After another step this ei
may add another b apms, so we now have (b − 1) + b. One of the b fresh apms
is then expanded, and may after another step contribute a new b apm, yielding
2(b − 1) + b, etc. Since we add new copies of the k initial watchpoint at every
step, this yields a bound in Clause (2) on the order of i2bk, and in Clause (3) of
O(i2b · (`+ b)). With a sliding window restriction, we can again replace i by the
window width w.

If we relax the constraint that the watchpoint W be linear, we instead get
a blow-up kbi or kbw that is exponential in i or w. This is why we require our
watchpoints to be linear.

In the powershell example of Section 2, we have a “main expression” X0 =
e0, where e0 has the form a → c | X1. The swe a looks for the creation of a
process pid invoking the executable Outlook.exe. It stores current = pid into
the environment that will be in place for the remainder. The first disjunct c of
the remainder is an swe that is satisfied by a process-spawn record, in which
the parent is current and the child invokes the executable powershell.exe.

The other is a call to X1. The body of X1 is an after-expression d→ c | X1.
The swe d is satisfied by any process-spawn record in which the parent is current.
If the child process id is pid, it stores current = pid into the environment for its
remainder. Its remainder has the same two cases c,X1 as we saw in X0. Each
time through the recursion, the branch c succeeds if the current process invokes
powershell.exe. The branch X1 follows the chain of invocations one additional
step, after which it is ready to succeed via c or continue following the chain.

4.8 Concurrency Analysis

Theorem 3 states that for a fixed number of watchpoints, k, the worst case
time needed for process_records to handle the ith record is O(i · `). Let us
explore whether the worst case time bound for evaluating hbl expressions can
be reduced further with concurrent processing.
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Lemma 6 Suppose that the algorithm of Fig. 4 is executed starting with a (fixed)
set S of k watchpoints, and within those watchpoints at most time ` is needed to
evaluate any single swe on any record r at any stream position i. With unlimited
concurrency, the time to evaluate any single swe on any record r at any stream
position i at most O(k · `) is needed.

Proof. After processing i records in the stream, there are at most i · k active
partial matches (from 2 ). Since a partial match does not depend on another
partial match to continue its computation, every partial match can be evaluated
concurrently. Therefore, for k watchpoints, O(k · `) is the upper bound for eval-
uating any single swe on any record r at any stream position i at most O(k · `)
is needed. ut

Indeed, our Java implementation takes advantage of this possibility of con-
currency. Fig. 4 differs from our Java implementation in two important ways.
First, List.fold_left in OCaml handles each list entry sequentially, whereas
our Java implementation can process a number of apms concurrently when multi-
ple threads are available. The standard version of OCaml does not offer multiple
threads. Second, prepend_apms adds new (initial) active partial matches to the
front of its second (list) argument; in fact we handle the apms as a set in our
Java implementation, so that we add members only if they are different from
current members.

Realistically, however, unlimited concurrency is not a possibility. In many
cases, unlimited concurrency is not required, and instead a thread can be spawned
to process each partial match, and the number of threads spawned can be speci-
fied in hbl configuration. Let us say, the number of such threads is m. The worst
case memory required to store the partial matches would be at worst O(m.k) at
any time, and the computational upper bound reduces to O(k · `/m) .

On the other hand, if sliding windows are used, then the maximum concur-
rency required to achieve O(k · `) limits to the number of records within the
sliding window, and analytics writer can control the sliding window size for a
given system, and thus improve performance.

5 Single-Width Expressions

The conclusions of the previous section are parametric in the choice of the swe
language and its semantics satη(a, τ, i). In this section, we show that that eval-
uating the satisfies relation for a swe, a, requires at most work proportional to
the length of a (Lemma 1). That says that the work for any one active partial
match to handle any new record has a predictable bound independent of the
length of the input stream (or its contents).

An swe consists of a record specification followed by a binding clause. The
record specification determines whether any given record will successfully satisfy
it. The binding clause takes effect only if the record specification succeeds, and
it determines the resulting environment η′ from η by saying which variable iden-
tifiers may differ from η, and what values η′ yields for those variable identifiers.
Fig. 5 states that a record may assert:
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swe ::= recsp bndsp

recsp ::= absent(fld) | present(fld)

| pred(t∗) | not(recsp)

| recsp and recsp | recsp or recsp

bndsp ::= 〈empty〉 | letting (id = t)∗

Fig. 5: Abstract syntax for swes.

– a field fld is present or absent.
– a predicate pred holds of the values of terms t; a predicate may return True,

False, or Never.
A predicate returns Never when it can never again return true, given the
point reached in the input stream, e.g. when the record index or timestamp
is already too large. Individual predicate definitions determine which results
are Never.

– a logical operation on values. The negation of Never is true; a conjunction
of Never with anything returns Never; a disjunction all of whose components
are Never yields Never; and a disjunction with non-Never components yields
the same result as if the Never components were omitted.

A non-empty binding clause bndsp consists of a sequence of let-bindings that
associate identifiers id with the values of terms t. New bindings may shadow
earlier bindings to id.

A term t may access the field values fld of the record r = τ @ i, so as to
remember them for use in evaluating future records r′ = τ @ i′, for instance
to check whether they involve the same values. These field values may include
timestamps from the generating systems. The term t may also involve the stream
index i, so that evaluation of a future swes at a stream index j may depend on
whether j − i has surpassed a bounded window-length. This is a prime reason
that sat returns Never, since no subsequent j− i will decrease. Timestamps may
also be used to generate Never responses, since it may be reasonable to conclude
that the difference between timestamps will never decrease beyond a limited
jitter amount.

The implemented hbl provides a rich language for building terms t and
predicates pred. Its concrete syntax is designed with user expectations in mind,
unlike the abstract syntax of Fig. 5. In effect, it builds in some bookkeeping
operations into the binding clauses, so that—for instance—a final successful
environment always contains a list of the stream indices at which successive
swes a were satisfied.

SWE processing bound. Based on a number of reasonable assumptions, we
can conclude that the compute time needed to evaluate a swe is linear in its
length as an expression, i.e. the total number of symbols in it. In particular, we
assume that there is a fixed maximum cost to evaluate any of the following:
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a single field from a record, or to observe the absence of a field, regardless of
record type.

a single value from the environment η, i.e. to retrieve η(x) for any identifier
x.

an update for an environment entry η(x) for an identifier x, once the new
value v has been evaluated.

a single function symbol f(v1, . . . , vk) that may appear in a binding clause,
once its k arguments have been evaluated.

the truth value of a predicate pred(v1, . . . , vk) once its k arguments have
been evaluated.

Assuming that no individual record type has fields of genuinely unpredictable
length, familiar data structures (e.g. vectors for environments) allow an imple-
mentation to satisfy these conditions.

Lemma 1. On the five assumptions just mentioned, given any record r = τ @ i
and any swe a where the length of a is `, computing satη(a, τ, i) can be done in
time O(`).

Proof. By induction on the structure of a. Each clause in the grammar of Fig. 5
increases the length of its arguments; the assumptions ensure that evaluating
sat adds only a constant amount to the cost of evaluating the arguments.

Combining Lemma 1 with Thm. 3 we may infer:

Corollary 7 Suppose that the algorithm of Fig. 4 is executed starting with a
(fixed) set S of k watchpoints, none of which contains an swe of length greater
than the fixed value `0.

Then the time complexity needed for process_records to handle the ith

record is at most O(i).

Moreover, as we noted after Thm. 3, this bound is often unnecessarily pessimistic,
since the population of active partial matches tends to grow much more slowly
than the worst case bound of i · k in Thm. 3, clause 2. Indeed, our performance
measurements in Section 6 agree. We formalize the window-bounded case:

Corollary 8 In addition to the assumptions of Cor. 7, assume each watchpoint
ej ∈ S enforces a window wj, with each wj < w. The time complexity for
process_records to handle any record is O(w).

6 Sensitivity Analysis

Our goal in this section is to report the results of experiments conducted to evalu-
ate the sensitivity of our algorithm to various operational parameters based on its
implementation in Java. Conducting absolute performance measurements is not
our goal, since the performance could vary based on the software and hardware
used to implement the algorithm. Karimov et al. [18] define a processing-time
latency metric as the interval between a tuple’s ingestion time (i.e., the time that
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(a) Rate x Latency (b) Rate x CPU usage (c) Rate x Heap

Fig. 6: Sensitivity Analysis for Input Arrival Rate

(a) swes x Latency (b) swes x CPU usage (c) swes x Heap

(d) Sliding Window x La-
tency

(e) Sliding Window x
CPU usage

(f) Sliding Window x
Heap

Fig. 7: swes and Sliding Window

(a) swe Complexity x La-
tency

(b) swe Complexity x
CPU usage

(c) swe Complexity x
Heap

(d) Evidence x CPU usage (e) Evidence x Heap

Fig. 8: swe Complexity and Evidence
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the event has reached the input operator of the streaming system) and the emis-
sion of an alert from the streaming analytics engine. For aggregate operations
such as avg, [18] defines process-time latency as the maximum processing-time
of all events that contributed to that event (or alert in hbl). The calculation
of maximum processing-time is irrelevant in an HBW with multiple swes, since
the most relevant time is the ingestion time of the last event record that will
complete the avg, and and generate the average value as an alert. Therefore,
we measure the time difference between the arrival into the hbl Processor of
the tuple or event record that matches the last swe in a watchpoint, and the
generation of the alert. We also measured the changes in computing resource
usages during these experiments.

In order to compare latency by varying different parameters in controlled
conditions, we chose to artificially generate event records. The operational pa-
rameters that we individually varied were the following: the rate of arrival of
events, predicate depth or the number of swes in a watchpoint, the size of
sliding window, size of event type name, the average size of event record, and
the operator complexity of swe. The default values used in the experiments
were {arrival rate: 1 million per second, matching span:10000 records, predicate
length: 2, swe complexity: 2}.

When the rate of arrival of events were varied from 100 to 1 million per
second, the process-time latency remained within 600 to 250 microseconds (Fig.
6a), whereas the CPU usage percentage changed from under 6% to slightly over
18% Fig. 6b, and the heap memory used varied from around 1GB to 2GB (Fig.
6c). The increase in CPU usage and heap memory is expected because more
number of records are processed with increased rate of arrival.

The number of swes in a watchpoint was increased from 1 to 9, and the
latency was measured. The latency remained roughly within 300 microseconds
to 200 microseconds (Fig. 7a). The CPU usage was between 15% to 17.5% (Fig.
7b), with the heap memory in the range of 960MB to 1020MB (Fig. 7c).

We varied the size of the sliding windows. We predicted that larger sliding
windows would increase the usage of the computational resources (Theorem 3).
When we increased the size from 10 to 10000, the latency remained within 200 to
400 microseconds (Fig. 7d), whereas the CPU usage steadily increased from 13%
to 20% (Fig. 7e), and the heap usage increased from 980MB and 1030MB (Fig.
7f). These analytics did not return the event stream segments that matched, only
an alert when a match occurred. When the experiments were repeated with alerts
that retuned event stream segments, referred to as Evidence, while the CPU
usage (Fig. 8d) was comparable to (Fig. 7e), heap usage increased considerably
(Fig. 8e) compared to Fig. 7f, as expected, since the partially matched records
were stored in memory.

The impact of the complexity of operations and operators were evaluated
with string, double and int operations with variable number of operators rang-
ing from 1 to 160. While Lemma 1 predicts increased cost with increased length
of expressions, our Java implementation did not show much sensitivity to this
length (Fig. 8a), or CPU usage (Fig. 8b) which leads us to think that the com-
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putational cost of swe evaluation is less significant than the cost of maintaining
partial matches.

The detection algorithm was implemented in Java, and run with Java HotSpotTM

64-bit server VM with no optimization settings, on a Macbook Pro, 2.2GHz,
16GB. The experiments were run from an Eclipse IDE, and the computing re-
source usage was measured with VisualVM [27]. The Java based implementa-
tion had a size of 11MB, including all the jars. The implementation included a
compiler for hbl written using ANTLR4 [24] and the hbl Processor. The hbl
compiler generated object code in JSON format that was used for generating
alerts.

7 Related Work

Cugola and Margara [7] trace the evolution of modern streaming analytics sys-
tems from active database systems and classic Complex Event Processing (CEP)
systems that permit complex queries. A distinguishing feature of streaming ana-
lytics systems from classical CEP based querying systems is the need to perform
real-time or quasi-real-time processing of incoming information to produce new
knowledge [7]. CEP is also applicable to Big Data processing as detailed in this
survey [11]. Event Stream Processing (ESP) is a related area of research that en-
tirely focuses on processing event streams, as exemplified by the design patterns
described in this tutorial [25]. A recent survey by Dayarathna and Perera [9]
attempts to generalize ESP systems and CEP systems under a common Event
Processing (EP) umbrella.

The languages used by streaming analytics systems fall into two categories:
SQL like in varying degrees, or non-SQL. One of the early SQL-like category of
query languages is StreamSQL [31], which eventually led to the development of
a streaming analytics system in a commercial platform that uses a visual pro-
gramming language called EventFlow, which allows developers to rapidly create
and tailor stream processing applications and connect to over 150 streaming and
static data sources with its pre-built data connectivity integration points. IBM
has a competing StreamBase system that compares well with TIBCO’s system
[14]. Both the TIBCO and IBM systems are primarily intended for business an-
alytics for event streams such as stock ticker symbols. One of the early non-SQL
like languages for streaming analytics is Event Processing Language (EPL) used
by Esper [22,30]. Since Esper is written in Java, it is capable of triggering alert
actions directly in Java code.

The key language features of streaming analytics languages are: causality
operator, time and tuple-based based sliding window specification, stateful com-
putation, aggregation operators, and event attribute predicate expressions. The
support for these features vary in different streaming analytics languages. Sev-
eral alternate references to the Happened-Before operator exist such as the SEQ
operator in SASE query language [34], and followed-by operator in Apache Flink
[5]. This operator specifies that one event appears in an event stream prior to
another event, with the implied assumption that the earlier occurring event
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will arrive first in an event stream. The sliding window is used for continuous
evaluation, and was applied to streams first by the Aurora system [6]. Stateful
computing is used to correlate information across multiple events that occur
spatially separated in a space or time window. Logical expressions with event
attributes are used to identify the events with the right attributes. While the
basic concepts of these features remain the same, there can be much variation
in how these features are supported, and the specifics of the support.

Since real-time is a key goal of streaming analytics, reducing latency and
increasing throughput are of much interest. A recent benchmark of three open
source streaming analytic systems, Apache Flink [5], Apache Spark [35], and
Apache Storm [32] finds that if the average latency is a priority, then Flink is
the better choice [18]. A hardware based design using FPGA for a C-based event
language is reported to be capable of processing with a 20Gbps network interface
card [15].

Another aspect of streaming analytics systems is the use of a data streaming
model for further processing the outputs of streaming analytics systems using
additional streaming analytics engines. Akdere et al. [1] discuss a data flow
streaming model. IBM’s SPL is another approach to managing the data streams
between the analytic engines [14]. Apache Flink [5] is an open source system
that also utilizes a data flow streaming model. When executed, Flink programs
are mapped to streaming dataflows, consisting of streams and transformation
operators. Each dataflow starts with one or more sources and ends in one or
more sinks. The dataflows resemble arbitrary directed acyclic graphs (DAGs)

When event records have timestamps, we assume their values in the input
stream are in monotonically non-decreasing order, or nearly so. Records may also
have fields similar to timestamps, such as Mattern’s vector clock values [?]. An
important question any EP system will face is the ordering of events in the event
stream, especially since events do not occur instantaneously, and thus events
overlap each other. Indeed, segments in the input event stream may be consid-
ered composite events, and composite events certainly have duration. White et
al. [?] address the ordering of events, and define a successor function that can
be implemented to order an event stream. Therefore, we assume when an input
event has a time stamp that specifies its time of occurrence, it is always possible
to find the successor of that event in a stream.

If records have position identifiers embedded in them, we assume they are
strictly increasing in the event stream. Even if records do not have a timestamp
or a positional index field embedded within them, they arrive in a sequence.
Thus, our processing may depend on the numerical position of a record within
the input event stream.

[5].

7.1 Comparison to SAQL

Streaming analytics have been applied for real-time detection of security inci-
dents for a number of years [12,16,4]. Recently, Gao et al. developed SAQL, a
domain specific language, for specifying abnormal system behaviors [13]. SAQL
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is supported by an efficient query generator and scheduler over Siddhi stream-
ing analytics engine [29,28]. SAQL queries can specify rule-based anomalies,
time-series anomalies, invariant-based anomalies, and outlier-based anomalies.
SAQL is targeted for deployment in an enterprise environment with less than 2s
latency and scalable throughput. An alternate search-based approach for time-
series queries is by using Splunk [3]. Splunk needs to index the incoming events
using time stamps, store the the events and indices to support or searching.
While this approach may be useful for analysis in a Security Operations Cen-
ter (SOC) of an enterprise, it still lacks the ability to provide near real-time
detection by systems such as SAQL and HBL.

Since SAQL is specifically targeted for use in detection of cyber effects, and
it is a recent language, we are going to do a more detailed comparison with
SAQL here. The first difference between SAQL and HBL is that HBL’s stream-
ing analytics engine is implemented using the algorithm described in the previous
sections, whereas, SAQL has a query engine that is built over an existing Sid-
dhi streaming analytics engine. Event patterns in SAQL supports an event type
using a subject-object entity, whereas HBL supports event types and sets of
event types, and does not have any constraints on what constitutes an event
type, allowing detection of event occurrences that occur in any order in time.
Event attribute relationship in SAQL is supported in HBL using variables in
the execution context. SAQL supports an event temporal relationship similar to
Happened-Before relationship. HBL supports comprehensive attribute expres-
sions, similar to SAQL. SAQL supports sliding windows in time, whereas HBL
supports sliding windows in time and space, i.e., number of records. HBL and
SAQL support rule based anomalies as well as time-series anomalies using the
execution context to store the time series operators such as average. SAQL pro-
vides specialized language constructs to store information from prior

8 Conclusions

In this paper, we introduce a new algorithm for Event Processing (EP) systems
with an upper bound for latency. This algorithm was implemented using a new
language, Happened-Before Language (hbl), and its processor. We provide the
formal semantics for hbl, and we show that the algorithm has an upper bound
with a linear complexity relative to the size of the sliding window size. The ana-
lytics in hbl, specified in an HBL watchpoint contains one or more Single Width
Expressions (swes) separated by the Happened-Before operator. We evaluated
the sensitivity of the algorithm to the event arrival rate in the event stream,
number of swes in a watchpoint, distance between the first matching event to
the first swe in a watchpoint to the last event matching the watchpoint, and
the complexity of swe itself. The results show that as expected, process-time
latency remains within a bound, while the CPU utilization and heap memory
usage increase with increased complexity in some cases, expect in the case of
number of swes in an hbl watchpoint, where there is no significant increase.
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We developed our approach to event processing for edge devices and end-points
where relatively reduced computational resources are available.

The edge systems are located in remote locations, and often their opera-
tors are not necessarily experts in cyber attack detection. Therefore, the EP
system at the edge should only support analytics that must result in computa-
tions guaranteed to terminate in a reasonable time [26]. While a general purpose
streaming analytics language cannot prevent the analytics designers from cre-
ating inefficient and nonterminating computations, it is possible for a language
designer to expose to the analytics designer simple paradigms such as sliding win-
dows that reduce the computational load, and the detection engine to implement
time based limits to prevent runaway threads from consuming computational re-
sources. The discussion of such ease of use and run-time optimization features
in HBL are beyond the scope of this paper.

type record = string list

type e_val = St of string

| N of int

| L of e_val list

type env = (string * e_val) list

type io_struct = {

get : (unit -> record);

report : (env -> unit);

index : (unit -> int)

}

type sat =

| E of env

| False

| Never

type swe = record -> int -> env -> sat

type exp = | S of swe

| Arr of swe * exp

| Av of swe * swe * exp

let lead = function

S a -> a

| Arr (a,_) -> a

| Av (a,_,_) -> a

let remainder = function

| S a -> None

| Arr (_,e) -> Some e

| Av (_,_,e) -> Some e

let avoid = function

| S _ -> None

| Arr (_,_) -> None

| Av (_,b,_) -> Some b

type apm = { e : exp;

avoider : swe option ;

env : env }

let eta_0 = [] (* initial env empty *)

let init_apm e i = {

e = e ;

avoider = None ;

env = eta_0 }

let make_apm e prev_e eta = {

e = e ;

avoider = avoid prev_e;

env = eta }

let rec prepend_apms i l = function

| [] -> l

| e :: rest ->

prepend_apms i ((init_apm e i) :: l) rest

type proc_res =

| Success of env

| Next of apm

| Fail

Fig. 9: Auxiliary OCaml definitions
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