
Skeletons and the Shapes of Bundles?

Shaddin F. Doghmi, Joshua D. Guttman, and F. Javier Thayer

The MITRE Corporation

Abstract. The shapes of a protocol are its minimal, essentially different
executions. Naturally occurring protocols have only finitely many, indeed
very few shapes. Authentication and secrecy properties are easy to de-
termine from the shapes, as are attacks and anomalies. In this paper, we
define the idea of shape, and we also provide some operations that can
be used to construct shapes.

These operations are versions of the two authentication tests, funda-
mental patterns for protocol analysis and heuristics for protocol design.
The authentication tests were originally presented as theorems about all
complete executions. We have strengthened those results here. We also
use them to infer construction operations for shapes. These construc-
tion operations work on partial descriptions of executions, and serve as
information-increasing transformations on the descriptions.

1 The Idea of Shapes

In this paper, we study how to construct the shapes of a protocol, where by
shapes we mean the minimal, essentially different executions of a protocol. From
the shapes, one can read off what exactly secrecy and authentication properties
a protocol satisfies, as well as observe other anomalies in possible executions. In
this, our approach differs from much work in protocol analysis, which aims at
safe approximations (e.g. [5, 1]). We also differ from work using bounded protocol
analysis (e.g. [2, 10]); the shapes describe protocol executions of all sizes.

In practice, protocols have remarkably few shapes. The Needham-Schoeder-
Lowe [11, 9] protocol has only one. This holds whether we take the point of view
of a responder B, asking what global behavior must have occurred if B has had
a local run of the protocol, or whether we start from a local run of an originator
A. In either case, the other party must have had a matching run. A, however,
can never be sure that the last message it sends was received by B, as A is no
longer expecting to receive any further messages. Uniqueness of shape is perhaps
not surprising for as strong a protocol as Needham-Schroeder-Lowe.

However, even a flawed protocol such as the original Needham-Schroeder
protocol may have a unique shape, shown in Fig. 1.

? Supported by the National Security Agency and by MITRE-Sponsored Research.
Addresses: shaddin@stanford.edu, {guttman, jt}@mitre.org.

A
{|Na ˆA|}pubk(C)- {|Na ˆA|}pubk(B)- B

•

�{|Na ˆNb|}pubk(A) � � {|Na ˆNb|}pubk(A) •

•

{|Nb|}pubk(C) - ≺
{|Nb|}pubk(B) - •

Fig. 1. Needham-Schroeder Shape for B (privk(A) uncompromised, Nb fresh)

Terminology. Newly introduced terminology is in boldface.
B’s local behavior is represented by the right-hand column in Fig. 1, consist-

ing of nodes connected by double arrows • ⇒ •. A’s local behavior is represented
by the left-hand column. We call such a column a strand. The nodes represent
message transmission or reception events, and the double arrows represent suc-
cession within a single linearly ordered local activity. The message transmitted
or received on a node n is written msg(n). A regular strand is a strand that
represents a principal executing a single local session of a protocol; it is called a
regular strand because the behavior follows the protocol rules. A local behavior
as used so far refers to a regular strand. (See Section 2.2.)

In the messages, we use {|t|}K to refer to the encryption of t with key K, and
tˆt′ means the pair of the messages t and t′. Messages are constructed freely via
these two operations from atomic values such as principal names A, nonces Na,
keys K, etc. (See Section 2.1.)

The subterm relation is the least reflexive, transitive relation such that t is
a subterm of {|t|}K , t is a subterm of tˆt′, and t is a subterm of t′ˆt (for all K, t′).
We write t v t′ if t is a subterm of t′. Thus, K 6v {|t|}K unless (anomalously)
K v t. Instead, K contributed to how {|t|}K was produced. This terminology has
an advantage: Uncompromised long-term keys are never subterms of messages
transmitted in a protocol; they are used by regular principals to encrypt, decrypt,
or sign messages, but are never transmitted. A value a originates at a node n
if (1) n is a transmission node; (2) a v msg(n); and (3) if m is any earlier node
on the same strand, then a 6v msg(m). (Section 2.2, Example 3.)

Adversary behavior is represented by strands too. These penetrator strands
codify the basic abilities that make up the Dolev-Yao model. They include trans-
mitting a basic value such as a nonce or a key; transmitting an encrypted message
after receiving its plaintext and the key; and transmitting a plaintext after re-
ceiving ciphertext and decryption key. The adversary can also pair two messages,
or separate the pieces of a paired message. Since a penetrator strand that en-
crypts or decrypts must receive the key as one of its inputs, keys used by the
adversary—compromised keys—have always been transmitted by some partici-
pant. These penetrator strands are independent of the protocol under analysis.
(See Definition 3.)

Suppose that B is a finite, directed acyclic graph whose nodes lie on regular
and penetrator strands, and whose edges are either (a) strand succession edges

n0 ⇒ n1, or else (b) message transmission edges n → m where msg(n) = msg(m),
n is a transmission node, and m is a reception node.

B is a bundle if (1) if n0 ⇒ n1 and n1 ∈ B, then n0 ∈ B, and (2) for every
reception node m ∈ B, there is a unique transmission node n ∈ B such that
the edge n → m is in B. The conditions (1,2) ensure that B is causally well
founded. A global behavior or execution, as used so far, refers to a bundle. (See
Definition 5.)

The NS Shape. In the Needham-Schroeder protocol, let us suppose that B’s
nonce Nb has been freshly chosen and A’s private key privk(A) is uncompromised,
and that B has executed the strand shown at the right in Fig. 1. In protocols
using asymmetric encryption, the private keys are used only by recipients to de-
structure incoming messages. Given that—on a particular occasion—B received
and sent these messages, what must have occurred elsewhere in the network?

A must have had a partially matching strand, with the messages sent and
received in the order indicated by the arrows of both kinds and the connecting
symbols ≺. These symbols mean that the endpoints are ordered, but that other
behavior may intervene, whether adversary strands or regular strands. A’s strand
is only partially matching, because the principal A meant to contact is some C
which may or may not equal B. There is no alternative: Any diagram containing
the responder strand of Fig. 1 must contain at least an instance of the initiator
strand, with the events ordered as shown, or it cannot have happened.

Such a diagram is a shape. A shape consists of the regular strands of some
execution, forming a minimal set containing the initial regular strands (in this
case, just the right-hand column). Possible executions may freely add adversary
behavior. Each shape is relative to assumptions about keys and freshness, in this
case that privk(A) is uncompromised and Nb freshly chosen.

Although there is a single shape, there are two ways that this shape may be
realized in executions. Either (1) C’s private key may be compromised, in which
case we may complete this diagram with adversary activity to obtain the Lowe
attack [9]; or else (2) C = B, leading to the intended run.

Some protocols have more than one shape, Otway-Rees, e.g., having four. In
searching for shapes, one starts from some initial set of strands. Typically, the
initial set is a singleton, which we refer to as the “point of view” of the analysis.

Skeletons, Homomorphisms, Shapes. A skeleton represents regular (non-
penetrator) behavior that might make up part of an execution, and a homo-
morphism is an information-preserving map between skeletons. Skeletons are
partially-ordered structures, like fragments of Lamport diagrams [8] or fragments
of message sequence charts [7].

A skeleton A is (1) a finite set of regular nodes, equipped with additional
information. The additional information consists of (2) a partial order �A on
the nodes indicating causal precedence; (3) a set of keys nonA; and (4) a set

of atomic values uniqueA. Values in nonA must originate nowhere in A, whereas
those in uniqueA originate at most once in A.1 (See Def. 7.)

A is realized if it has precisely the regular behavior of some execution. Every
message received by a regular participant either should have been sent previously,
or should be constructable by the adversary using messages sent previously. (See
Def. 9.)

Example 1. Fig. 1 shows skeleton Ans , with nonAns = {privk(A)} and uniqueAns
=

{Nb}. Ans is a realized skeleton.
The right-hand strand of Fig. 1, B’s responder strand, also forms a skeleton

Ab with the same choice of non, unique. Ab is not realized.
The first two nodes on Fig. 1 also form a skeleton Ab2 . This skeleton is

realized, as the adversary can prepare the incoming message of its first node,
and discard the outgoing message of its second node.

The result of replacing C by B throughout Ans—hence replacing pubk(C) by
pubk(B)—yields a realized skeleton Ansi , the Needham-Schroeder intended run.

A homomorphism is a map H from A0 to A1, written H : A0 7→ A1. We
represent it as a pair of maps (φ, α), where φ maps the nodes of A0 into those
of A1, and α is a replacement mapping atomic values into atomic values. We
write t ·α for the result of applying a replacement α to a message t. H = (φ, α) is
a homomorphism iff: (1) φ respects strand structure, and msg(n) ·α = msg(φ(n))
for all n ∈ A0; (2) m �A0 n implies φ(m) �A1 φ(n); (3) nonA0 · α ⊆ nonA1 ; and
(4) uniqueA0

· α ⊆ uniqueA1
. (Defs. 1, 11.)

Homomorphisms are information-preserving transformations. Each skeleton
A0 describes the realized skeletons reachable from A0 by homomorphisms. Since
homomorphisms compose, if H : A0 7→ A1 then any realized skeleton accessible
from A1 is accessible from A0. Thus, A1 preserves the information in A0: A1

describes a subset of the realized skeletons described by A0.
A homomorphism may supplement the strands of A0 with additional behavior

in A1; it may affect atomic parameter values; and it may identify different nodes
together, if their strands are compatible in messages sent and positions in the
partial ordering.

Example 2. The map Hns : Ab 7→ Ans embedding the responder strand of Fig. 1
into Ans is a homomorphism. Likewise if we embed the first two nodes of B’s
strand (rather than all of Ab) into Ans . Another homomorphism Hi : Ans 7→ Ansi

rewrites each occurrence of C in Ans to B, hence each occurrence of pubk(C)
to pubk(B). It exhibits the Needham-Schroeder intended run as an instance of
Fig. 1. The composition Hnsi = Hi ◦Hns embeds the responder strand into the
intended run.

A homomorphism H = (φ, α) is nodewise injective if the function φ on
nodes is injective. The nodewise injective homomorphisms determine a useful
partial order on homomorphisms: When for some nodewise injective H1, H1◦H =
H ′, we write H ≤n H ′. If H ≤n H ′ ≤n H, then H and H ′ are isomorphic.
1 When n ⇒∗ n′ and n′ ∈ A, we require n ∈ A and n �A n′.

A homomorphism H : A0 7→ A1 is a shape iff (a) A1 is realized and (b) H
is ≤n -minimal among homomorphisms from A0 to realized skeletons. If H is a
shape, and we can factor H into A0

H07→ A′ H17→ A1, where A′ is realized, then
A′ cannot contain fewer nodes than A1, or identify fewer atomic values. A1 is as
small and as general as possible. (Def. 13.)

We call a skeleton A1 a shape when the homomorphism H (usually an em-
bedding) is understood. In this looser sense, Fig. 1 shows the shape Ans . Strictly,
the embedding Hns : Ab 7→ Ans is the shape. The embedding Hnsi : Ab 7→ Ansi ,
with target the Needham-Schroeder intended run Ansi , is not a shape. Ans iden-
tifies fewer atoms, and the map replacing C with B is a nodewise injective
Hi : Ans 7→ Ansi , so Hns ≤n Hi ◦Hns = Hnsi .

Shapes exist below realized skeletons: If H : A0 7→ A1 with A1 realized, then
the set of shapes H1 with H1 ≤n H is finite and non-empty. (Prop. 7.)

2 Terms, Strands, and Bundles

In this section and Section 4 we give precise definitions, which include a number
of fine points which seemed an unnecessary distraction in Section 1. In this
section, the definitions of replacement and protocol (Defs. 1, 4) are new versus [6].

2.1 Algebra of Terms

Terms (or messages) form a free algebra A, built from atomic terms via construc-
tors. The atoms are partitioned into the types principals, texts, keys, and nonces.
An inverse operator is defined on keys. There may be additional functions on
atoms, such as an injective public key of function pubk(a) mapping principals
to keys, or an injective long term shared key of function ltk(a) mapping pairs
of principals to keys. These functions are not constructors, and their results are
atoms. pubk(a)−1 is a’s private key, where pubk(a)−1 6= pubk(a). We often write
the public key pair as Ka,K−1

a . By contrast, ltk(a)−1 = ltk(a).
Atoms, written in italics (e.g. a,Na,K−1), serve as indeterminates (vari-

ables). We assume A contains infinitely many atoms of each type. Terms in A are
freely built from atoms using tagged concatenation and encryption. The tagged
concatenation using tag of t0 and t1 is written tagˆt0ˆt1. Tagged concatenation
using the distinguished tag null of t0 and t1 is written t0ˆt1. Encryption takes a
term t and an atomic key K, and yields a term as result written {|t|}K .

Replacements have only atoms in their range:

Definition 1 (Replacement, Application). A replacement is a function α
mapping atoms to atoms, such that (1) for every atom a, α(a) is an atom of the
same type as a, and (2) α is a homomorphism with respect to the operations on
atoms, i.e., α(K−1) = (α(K))−1 and α(pubk(a)) = pubk(α(a)).

The application of α to t, written t · α, homomorphically extends α’s action
on atoms. More explicitly, if t = a is an atom, then a · α = α(a); and:

(tagˆt0ˆt1) · α = tagˆ(t0 · α)ˆ(t1 · α)
({|t|}K) · α = {|t · α|}K·α

Application distributes through larger objects such as pairing and sets. Thus,
(x, y) · α = (x · α, y · α), and S · α = {x · α : x ∈ S}. If x 6∈ A is a simple value
such as an integer or a symbol, then x · α = x.

2.2 Strands and Origination

Since replacements map atoms to atoms, not to compound terms, unification
is very simple. Two terms are unifiable if and only if they have the same ab-
stract syntax tree structure, with the same tags associated with corresponding
concatenations, and the same type for atoms at corresponding leaves. To unify
t1, t2 means to partition the atoms at the leaves; a most general unifier is a finest
partition that maps a, b to the same c whenever a appears at the end of a path
in t1 and b appears at the end of the same path in t2. If two terms t1, t2 are
unifiable, then t1 · α and t2 · β are still unifiable.

The direction + means transmission, and the direction − means reception:

Definition 2 (Strand Spaces). A direction is one of the symbols +,−. A di-
rected term is a pair (d, t) with t ∈ A and d a direction, normally written +t,−t.
(±A)∗ is the set of finite sequences of directed terms.

A strand space over A is a structure containing a set Σ and two mappings: a
trace mapping tr : Σ → (±A)∗ and a replacement application operator (s, α) 7→
s · α such that (1) tr(s · α) = (tr(s)) · α, and (2) s · α = s′ · α implies s = s′.

By (2), Σ has infinitely many copies of each s, i.e. strands s′ with tr(s′) = tr(s).

Definition 3. A penetrator strand has trace of one of the following forms:
Mt: 〈+t〉 where t ∈text, principal,nonce KK : 〈+K〉
Cg,h: 〈−g, −h, +gˆh〉 Sg,h: 〈−gˆh, +g, +h〉
Eh,K : 〈−K, −h, +{|h|}K〉 Dh,K : 〈−K−1, −{|h|}K , +h〉.

If s is a penetrator strand, then s · α is a penetrator strand of the same kind.
The subterm relation, written v, is the least reflexive, transitive relation

such that (1) t0 v tagˆt0ˆt1; (2) t1 v tagˆt0ˆt1; and (3) t v {|t|}K . Notice,
however, K 6v {|t|}K unless (anomalously) K v t. We say that a key K is used
for encryption in a term t if for some t0, {|t0|}K v t.

A node is a pair n = (s, i) where i ≤ length(tr(s)); strand(s, i) = s; and the
direction and term of n are those of tr(s)(i). We prefer to write s ↓ i for the
node n = (s, i). A term t originates at node n if n is positive, t v msg(n), and
t 6v msg(m) whenever m ⇒+ n. Thus, t originates on n if t is part of a message
transmitted on n, and t was neither sent nor received previously on this strand.
If a originates on strand s, we write O(s, a) to refer to the node on which it
originates.

Example 3. Na originates on the first node of the Needham-Schroeder initiator
strand si, so we write O(si, Na) = si ↓ 1. Nb originates on the second node of the
responder strand sr, i.e. O(sr, Nb) = sr ↓ 2. More precisely, O(sr, Nb) = sr ↓ 2
unless Nb = Na, because if the two nonces were the same, then Nb would not

originate on the responder strand at all. Instead, it would have been received
before being re-transmitted. Thus, the replacement β = [Nb 7→ Na] destroys the
point of origination. Even if we have O(sr, Nb) = sr ↓ 2, we have O(sr ·β, Nb ·β)
undefined. In this sense, applying β to sr is a kind of degeneracy that destroys a
point of origination. When we have assumed that a value such as Nb originates
uniquely, we will avoid applying replacements that would destroy its point of
origination. (See Def. 4, regular strands, and Def. 11, homomorphism.)

A listener role is a regular strand Lsn[a] with trace 〈−a〉. It documents that
a is available on its own to the adversary, unprotected by encryption. Since
replacements respect type, atoms of different type must be overheard by different
roles. We assume each protocol Π has listener roles Lsn[N] and Lsn[K] for nonces
and keys respectively, with traces 〈−N〉 and 〈−K〉.

2.3 Protocols and Bundles

Definition 4 (Protocols). A candidate 〈Π, strand non, strand unique〉 consists
of: (1) a finite set Π of strands—containing the listener strands Lsn[N], Lsn[K]—
called the roles of the protocol; (2) a function strand non mapping each role r
to a finite set of keys strand nonr, called the non-originating keys of r; and (3) a
function strand unique mapping each role r to a finite set of atoms strand uniquer

called the uniquely originating atoms of r.
A candidate 〈Π, strand non, strand unique〉 is a protocol if (1) K ∈ strand nonr

implies that K does not occur in any node of r, but either K or K−1 is used
for encryption on some term of tr(r); and (2) a ∈ strand uniquer implies that a
originates on r, i.e. O(r, a) is well defined.

The regular strands of 〈Π, strand non, strand unique〉 form the set ΣΠ =

{r · α : r ∈ Π and ∀a ∈ strand uniquer, (O(r, a)) · α = O(r · α, a · α)}.

The non-originating keys strand nonr and uniquely originating atoms strand uniquer

are used in Defs. 8 and 14, Clauses 1c,d. The condition that constrains r ·α based
on O(r, a) is a non-degeneracy condition. It says that replacement α determines
an instance of r only if it does not cause a value a, assumed uniquely originat-
ing, to collide with another value already encountered in executing r. Since for
a ∈ strand uniquer, the left hand side of (O(r, a)) · α = O(r · α, a · α) is well-
defined, we interpret the equation as meaning that the right hand side is also
well-defined, and has the same value.

Example 4. The Needham-Schroeder protocol has a set Πns of roles containing
the two roles shown in Fig. 1 and two listener roles, to hear nonces and keys.
For each r ∈ Πns, strand nonr = ∅ = strand uniquer.

Setting strand noninit = {privk(B)}, strand nonresp = {privk(A)} reproduces
the original Needham-Schroeder [11] assumption that each peer chosen is un-
compromised. The protocol achieves its goals relative to this assumption.

Setting strand uniqueinit = {Na} would express the assumption that every
initiator uses a strong random number generator to select nonces, so that the
probability of a collision or of an adversary guessing a nonce is negligible.

The set N of all nodes forms a directed graph G = 〈N , (→ ∪ ⇒)〉 with edges
n1 → n2 for communication (with the same term, directed from positive to
negative node) and n1 ⇒ n2 for succession on the same strand.

Definition 5 (Bundle). A finite acyclic subgraph B = 〈NB, (→B ∪ ⇒B)〉 of G
is a bundle if (1) if n2 ∈ NB is negative, then there is a unique n1 ∈ NB with
n1 →B n2; and (2) if n2 ∈ NB and n1 ⇒ n2, then n1 ⇒B n2. When B is a
bundle, �B is the reflexive, transitive closure of (→B ∪ ⇒B).

A bundle B is over 〈Π, strand non, strand unique〉 if for every s ↓ i ∈ B, (1)
either s ∈ ΣΠ or s is a penetrator strand; (2) if s = r ·α and a ∈ strand nonr ·α,
then a does not occur in B; and (3) if s = r · α and a ∈ strand uniquer · α, then
a originates at most once in B.

Example 5. Fig. 1 is a bundle if we replace C with B and then connect arrows
with matching labels. Alternatively, it becomes a bundle by adding penetrator
strands to unpack values encrypted with KC and repackage them encrypted with
KB .

We say that a strand s is in B if s has at least one node in B. Henceforth, assume
fixed some arbitrary protocol 〈Π, strand non, strand unique〉.

Proposition 1. Let B be a bundle. �B is a well-founded partial order. Every
non-empty set of nodes of B has �B-minimal members.

B · α is a bundle if, for every regular strand s = r · β in B, and for every
a ∈ strand uniquer · β, we have (O(s, a)) · α = O(s · α, a · α).

3 Strengthened Authentication Tests in Bundles

To direct the process of searching for realized skeletons, we use the authentication
tests [6] in a strengthened and simplified form.

3.1 “Occurs Only Within”

An outgoing test node receives a uniquely originating atom in a new form, while
an incoming test node receives an encryption in a new form. A message t occurs
in a new form in msg(n) if it occurs outside a set S of encryptions, whereas
previously t occurred only within members of S:

Definition 6 (Occurs only within/outside). A term t0 occurs only within
S in t, where S is a set of encryptions, if:

1. t0 6v t; or
2. t ∈ S; or
3. t 6= t0 and either (3a) t = {|t1|}K and t0 occurs only within S in t1; or (3b)

t = tagˆt1ˆt2 and t0 occurs only within S in each ti (i = 1, 2).

It occurs outside S in t if t0 does not occur only within S in t.
We say that t exits S passing from t0 to t1 if t occurs only within S in t0

but t occurs outside S in t1. Term t exits S at a node n if t occurs outside S in
msg(n) but occurs only within S in every msg(m) for m ≺ n.

So t0 occurs only within S in t if in the abstract syntax tree, every path from
the root t to an occurrence of t0 as a subterm of t traverses some t1 ∈ S before
reaching t0.2 If it occurs outside S, this means that t0 v t and there is a path
from the root to an occurrence of t0 as a subterm of t that traverses no t1 ∈ S.

Example 6 (Needham-Schroeder Occurrences). Nb occurs only within the
singleton set Sr = {{|NaˆNb|}pubk(A)} in the term {|NaˆNb|}pubk(A). However,
Nb occurs outside Sr in the term {|Nb|}pubk(B), so Nb exits Sr passing from
{|NaˆNb|}pubk(A) to {|Nb|}pubk(B).

3.2 The Tests in Bundles

We say that a is protected in B iff msg(n) 6= a for all n ∈ B. By the definitions
of the penetrator strands for encryption and decryption (Definition 3), if the
adversary uses K for encryption or decryption anywhere in B, then K is not
protected in B. Thus, the adversary cannot create any encrypted term with a
protected key K. If K−1 is protected, it cannot decrypt any term encrypted with
K.

We say that a is protected up to m in B, written a ∈ Protm(B), iff, for all
n ∈ B, if msg(n) = a then m ≺B n. If a key is protected up to a negative node
m, then the adversary cannot use that key to prepare the term received on m.

Proposition 2 (Outgoing Authentication Test). Suppose an atom a orig-
inates uniquely at a regular node n0 in bundle B, and suppose

S ⊆ {{|t|}K : K−1 ∈ Protn1(B)}.

If, for some n1 ∈ B, a exits S passing from msg(n0) to msg(n1), then a exits
from S at some positive regular m1 �B n1. If n0 and m1 lie on different strands,
then for some negative m0 ∈ B with a v msg(m0),

n0 ≺B m0 ⇒+ m1 �B n1.

In the outgoing test, we call m0 ⇒+ m1 an outgoing transforming edge for a, S. It
transforms the occurrence of a, causing a to exit S. We call (n0, n1) an outgoing
test pair for a, S when a originates uniquely at n0 and a exits S passing from
msg(n0) to msg(n1). We also sometimes call m1 an outgoing transforming node
and n1 an outgoing test node.

2 In our terminology (Section 2), the K in {|t|}K is not an occurrence as a subterm.

Example 7. In the Needham-Schroeder protocol, with responder role sr, the
nodes (sr ↓ 2), (sr ↓ 3) form an outgoing test pair for Nb, Sr, where Sr is as
given in Example 6. If the initiator role is si, then the edge si ↓ 2 ⇒ si ↓ 3 is a
outgoing transforming edge for Nb, Sr.

Also, the nodes (si ↓ 1), (si ↓ 2) form an outgoing test pair for Na, Si,
where Si is the singleton set {{|NaˆA|}pubk(C)}. Letting s′r = sr · [B 7→ C], then
s′r ↓ 1 ⇒ s′r ↓ 2 forms an outgoing transforming edge for Na, Si.

Proposition 3 (Incoming Authentication Test). Let t = {|t0|}K with K ∈
Protn1(B), and let S ⊆ {{|t′|}K0 : K−1

0 ∈ Protn1(B)}. If t occurs outside S in any
n1 ∈ B, then t exits S at some positive regular m1 �B n1.

We call m1 an incoming transforming node for t, S, and n1 an incoming test node
for t, S. In our experience with existing protocols, Prop. 3 is always used with
S = ∅, i.e. t does not occur at all before m1. However, one can invent protocols
requiring non-empty S, and completeness requires the stronger form.

4 Preskeletons, Skeletons, and Homomorphisms

The notion of a skeleton is intended to extract parts of the regular behavior of
bundles, so that we can focus our inferences on what regular behavior must also
be present.

4.1 Skeletons

A preskeleton is potentially the regular (non-penetrator) part of a bundle or of
some portion of a bundle, and skeletons are the subset that are well-behaved, in
that atoms intended to originate uniquely do so.

A preskeleton consists of nodes annotated with additional information, in-
dicating order relations among the nodes, uniquely originating atoms, and non-
originating atoms. We say that an atom a occurs in a set nodes of nodes if for
some n ∈ nodes, a v msg(n). A key K is used in nodes if for some n ∈ nodes,
{|t|}K v msg(n). We say that a key K is mentioned in nodes if K or K−1 either
occurs or is used in nodes. For a non-key a, a is mentioned if it occurs.

Definition 7. A four-tuple A = (nodes,�, non, unique) is a preskeleton if:

1. nodes is a finite set of regular nodes; n1 ∈ nodes and n0 ⇒+ n1 implies
n0 ∈ nodes;

2. � is a partial ordering on nodes such that n0 ⇒+ n1 implies n0 � n1;
3. non is a set of keys, and for all K ∈ non, either K or K−1 is used in nodes;
3′. for all K ∈ non, K does not occur in nodes;
4. unique is a set of atoms, and for all a ∈ unique, a occurs in nodes.

A preskeleton A is a skeleton if in addition:

4′. a ∈ unique implies a originates at no more than one node in nodes.

We select components of a preskeleton using subscripts, so, in A = (N,R, S, S′),
�A means R and uniqueA means S′. A need not contain all of the nodes of a
strand, just some initial subsequence. We write n ∈ A to mean n ∈ nodesA, and
we say that a strand s is in A when at least one node of s is in A. The A-height
of s is the largest i with s ↓ i ∈ A. By Clauses 3, 4, uniqueA ∩ nonA = ∅.

Example 8. Ans, shown in Fig 1, is a skeleton with non = {privk(A)}, unique =
{Nb}. Its ordering is generated from the double arrows ⇒, single arrows →, and
precedence signs. Ab, containing only the responder strand sr on the right side
of Fig 1, is also a skeleton (equipped with non = {privk(A)}, unique = {Nb}).
However, if we adjoin a copy s′r = sr · [B 7→ C] to Ans, then the result is not a
skeleton, but only a preskeleton Apre . Nb originates both at sr ↓ 2 and at s′r ↓ 2.
If instead we adjoin s′′r = sr · [B 7→ C,Nb 7→ N ′

b], we obtain a skeleton A′
pre .

The skeletons for a protocol 〈Π, strand non, strand unique〉 are defined like
the bundles for that protocol.

Definition 8. A is a preskeleton for protocol 〈Π, strand non, strand unique〉 iff
for every n ∈ nodesA with n = s ↓ i, (1) s ∈ ΣΠ ; (2) if s = r · α and
a ∈ strand nonr · α, then a does not occur in A; and (3) if s = r · α and
a ∈ strand uniquer · α, then a ∈ uniqueA. A is a skeleton for a protocol if A
is a skeleton, and A is a preskeleton for that protocol.

4.2 Skeletons and Bundles

Bundles correspond to certain skeletons:

Definition 9. Bundle B realizes skeleton A if:

1. The nodes of A are the regular nodes n ∈ B.
2. n �A n′ just in case n, n′ ∈ nodesA and n �B n′.
3. K ∈ nonA iff case K or K−1 is used in nodesA but K occurs nowhere in B.
4. a ∈ uniqueA iff a originates uniquely in B.

The skeleton of B is the skeleton that it realizes. The skeleton of B, written
skeleton(B), is uniquely determined. A is realized if some B realizes it.

By condition (4), B does not realize A if A is a preskeleton but not a skeleton.
Given a skeleton A, methods derived from [6] determine whether A is realized.
Skeleton Ans from Example 8 is realized, but Nb is not.

Definition 10. A term t is derivable before n in A if there is a penetrator web
G with t ∈ RG such that:

1. SG ⊆ {msg(m) : m positive and m �A n};
2. If K ∈ nonA, K does not originate in Gn; and
3. If a ∈ uniqueA and a originates in A, then a does not originate in Gn.

Proposition 4. A skeleton A is realized iff, for every negative n ∈ A, msg(n)
is derivable before n in A.

4.3 Homomorphisms

When A is a preskeleton, we may apply a substitution α to it, subject to the
same condition as in Prop. 1. Namely, suppose α is a replacement, and suppose
that for each regular strand s = r · β such that s has nodes in A, and for each
atom b ∈ ur · β,

(O(s, b)) · α = O(s · α, b · α).

Then A·α is a well defined object. However, it is not a preskeleton when x·α = y·α
where x ∈ nonA while y occurs in A. In this case, no further identifications can
restore the preskeleton property. So we are interested only in replacements with
the property that x · α = y · α and x ∈ nonA implies y does not occur in A. On
this condition, A · α is a preskeleton.

However, A may be a skeleton, while objects built from it are preskeletons but
not skeletons. In a preskeleton, we can sometimes, though, restore the skeleton
unique origination property (4′) by a mapping φ that carries the two points of
origination to a common node. This will be possible only if the terms on them are
the same, and likewise for the other nodes in A on the same strands. We regard
φ, α as an information-preserving, or more specifically information-increasing,
map. It has added the information that a1, a2, which could have been distinct,
are in fact the same, and thus the nodes n1, n2, which could have been distinct,
must also be identified.

Example 9. A′
pre is a skeleton, but the result of applying the replacement

[N ′
b 7→ Nb] yields the preskeleton Apre which is not a skeleton. If the map

φ : nodesApre 7→ nodesAns maps the successive nodes of the strand s′r to the nodes
of the strand sr, then it will identify s′r ↓ 2 with sr ↓ 2, and thus restore the
unique point of origination for Nb.

Definition 11. Let A0, A1 be preskeletons, α a replacement, φ : nodesA0 →
nodesA1 . H = [φ, α] is a homomorphism if

1a. For all n ∈ A0, msg(φ(n)) = msg(n) · α, with the same direction;
1b. For all s, i, if s ↓ i ∈ A then there is an s′ s.t. for all j ≤ i, φ(s ↓ j) = (s′, j);
2. n �A0 m implies φ(n) �A1 φ(m);
3. nonA0 · α ⊆ nonA1 ;
4. uniqueA0

·α ⊆ uniqueA1
; and φ(O(s, a)) = O(s′, a ·α) whenever a ∈ uniqueA0

,
O(s, a) ∈ A0, and φ(s ↓ j) = s′ ↓ j.

We write H : A0 7→ A1 when H is a homomorphism from A0 to A1. When
a · α = a · α′ for every a that occurs or is used for encryption in dom(φ), then
[φ, α] = [φ, α′]; i.e., [φ, α] is the equivalence class of pairs under this relation.

The condition for [φ, α] = [φ, α′] implies that the action of α on atoms not
mentioned in the A0 is irrelevant. The condition on O in Clause 4 avoids the de-
generacy in which a point of origination is destroyed for some atom a ∈ uniqueA0

.
We stipulate that such degenerate maps are not homomorphisms. For instance,

a replacement α that sends both Na and Nb to the same value would not fur-
nish homomorphisms on Ans . A responder, expecting to choose a fresh nonce,
inadvertently selecting the same nonce Na he has just received, would be an
event of negligible probability. Thus, we may discard this degenerate set. Some
homomorphisms are given in Example 2.

A homomorphism I = [φ, α] : A0 7→ A1 is an isomorphism iff φ is a bijection
and there is an injective α′ such that [φ, α] = [φ, α′]. Two homomorphisms
H1,H2 are isomorphic if they differ by an isomorphism I; i.e. H1 = I ◦H2.

When transforming a preskeleton A into a skeleton, one identifies nodes n, n′

if some a ∈ uniqueA originates on both; to do so, one may need to unify additional
atoms that appear in both msg(n),msg(n′). This process could cascade. However,
when success is possible, and the cascading produces no incompatible constraints,
there is a canonical (universal) way to succeed:

Proposition 5. Suppose H0 : A 7→ A′ with A a preskeleton and A′ a skeleton.
There exists a homomorphism GA and a skeleton A0 such that GA : A 7→ A0

and, for every skeleton A1 and every homomorphism H1 : A 7→ A1, for some H,
H1 = H ◦GA. GA and A0 are unique to within isomorphism.

Definition 12. The hull of A, written hull(A), is the universal map GA given
in Prop. 5, when it exists. We write hullα(·) for the partial map that carries any
skeleton A to hull(A · α).

We sometimes use the word hull to refer also to the target A0 of GA.
We say that a skeleton A0 is live if for some H, A1, H : A0 7→ A1 and A1 is

realized. Otherwise, it is dead. There are two basic facts about dead skeletons:

Proposition 6 (Dead Skeletons). (1) If a ∈ nonA and (Lsn[a]) ↓ 1 ∈ A, then
A is dead. (2) If A is dead and H : A 7→ A′, then A′ is dead.

4.4 Shapes

Shapes are minimal realizable skeletons, or more precisely, minimal homomor-
phisms with realizable targets.

Definition 13 (Shape). [φ, α] : A0 7→ A1 is nodewise injective if φ is an injec-
tive function on the nodes of A0.

A homomorphism H0 is nodewise less than or equal to H1, written H0≤n H1,
if for some nodewise injective J , J ◦H0 = H1. H0 is nodewise minimal in a set
S if H0 ∈ S and for all H1 ∈ S, H1 ≤n H0 implies H1 is isomorphic to H0.

H : A0 7→ A1 is a shape for A0 if H is nodewise minimal among the set of
homomorphisms H ′ : A0 7→ A′

1 where A′
1 is realized.

The composition of two nodewise injective homomorphisms is nodewise injec-
tive, and a nodewise injective H : A 7→ A is an isomorphism. Thus, H0,H1 are
isomorphic if each is nodewise less than or equal to the other. Hence, the relation
≤n is a partial order on homomorphisms, to within isomorphism.

When we say that A1 is a shape, we mean that it is the target of some shape
H : A0 7→ A1, where a particular A0 is understood from the context.

Proposition 7. Let H : A0 7→ A1. The set S = {H ′ : H ′ ≤n H} is finite (up to
isomorphism). If A1 is realized, then at least one H ′ ∈ S is a shape for A0.

Example 10. The process described in this proof, applied to the embedding
Hnsi : Ab 7→ Ansi (see Example 2), discovers that the multiple occurrences of
pubk(B) can be partitioned into those on the responder strand and those on the
initiator strand. These can be distinguished, preserving being realized. Applied
to the embedding of Ab2 (containing the first two responder node, see Example 1)
into Ansi , it discards all the nodes outside Ab2 , since the latter is already realized.

5 The Tests in Skeletons

To adapt the authentication tests of Section 3 to skeletons and homomorphisms,
there are essentially two steps. First, we must “pull back” from bundles or re-
alized skeletons to the skeletons that reach them via homomorphisms. Second,
we can no longer read off the safe atoms from Prot(B). We have only partial
information about which atoms will turn out to be safe or compromised. Thus,
we speculatively consider both possibilities, i.e. both the possibility that a key
will turn out to be compromised, and also the possibility that the transformed
nodes need to be explained with a transforming edge.

Definition 14 (Augmentations, Contractions). 1. An augmentation is an
inclusion [id, id] : A0 7→ A1 such that:
(a) nodesA1 \ nodesA0 = {s ↓ j : j ≤ i} for some s = r · α;
(b) �A1 is the transitive closure of (i) �A0 ; (ii) the strand ordering of s up

to i; (iii) pairs (n, m) or (n, m) with n ∈ nodesA0 , m = s ↓ j, and j ≤ i;
and (iv) the pair (na,ma), when a originates on a node na ∈ A0 and a
is mentioned in ma = s ↓ j, for any a ∈ uniqueA1

.
(c) nonA1 = nonA0 ∪ (strand nonr · α); and
(d) uniqueA1

= uniqueA0
∪ (strand uniquer · α).

2. An augmentation H : A0 7→ A1 is an outgoing augmentation if there exists
an outgoing test edge n0, n1 ∈ A0 with no outgoing transforming edge in A0,
and s ↓ 1 ⇒∗ m0 ⇒+ s ↓ i, where m0 ⇒+ s ↓ i is the earliest transforming
edge for this test on s. The additional pairs in the ordering (clause 1b(iii))
are the pairs (n0,m0) and ((s ↓ i), n1).

3. It is an incoming augmentation if it adds an incoming transforming edge for
an incoming test node in A0. The pair (m1, n1) in the notation of Prop. 3 is
the additional pair in the ordering.

4. It is a listener augmentation for a if it adds a listener strand Lsn[a], with no
pairs added to the ordering.

5. A replacement α is a contraction for A if there are two distinct atoms a, b
mentioned in A such that a · α = b · α. We write hullα(A) for the canonical
homomorphism from A to hull(A·α), when the latter is defined. (See Prop. 5.)

Example 11. The embeddings Hns ,Hnsi (Example 2) are outgoing augmenta-
tions; the test edge lies between the second and third nodes of the responder
strand. Hns is more general, as Hnsi factors through it.

We use a listener strand Lsn[K], having the form K→ • to mark a key K as a target
for compromise. Lsn[K] records a commitment, the commitment to somehow
compromise the value K before reaching a realized skeleton, if a transforming
edge has not been chosen. The listener strand thus tests compromise for K.
If K cannot be compromised, the skeleton containing the listener strand will
be dead, and no homomorphism leads from it to a realized skeleton. Listener
strands, lacking transmission nodes, never precede anything else; they are always
maximal in �A.

Since in a realized skeleton listener strands may be freely omitted, or freely
added as long as the skeleton remains realized, we regard realized skeletons as
similar if they differ only in what listener strands they contain. We write A1∼LA2

for skeletons that are similar in this sense. Shapes, being minimal, contain no
listener strands; a homomorphism that simply embeds A1 into a A2 having more
listener strands is nodewise injective.

We write H1 ∼L H2 if by adding listener strands we can equalize the homo-
morphisms H1,H2. That is, H1 ∼L H2 iff each Hi (for i = 1, 2) is of the form
Hi : A 7→ Ai, and there are embeddings Ei : Ai 7→ A′ such that A1 ∼L A′ ∼L A2

and E1 ◦H1 = E2 ◦H2.
The search-oriented version of Prop. 2 states that when a skeleton A0 with an

unsolved outgoing transformed pair leads to a realized skeleton A1, we can reach
it starting with one of three kinds of steps: (1) a contraction, (2) an outgoing
augmentation, or (3) adding a listener strand witnessing that one of the relevant
keys is in fact not properly protected by the time we reach A1.

Theorem 1 (Outgoing Augmentation). Let H : A0 7→ A1, where A1 is re-
alized. Let n0, n1 ∈ A0 be an outgoing test pair for a, S, for which A0 contains
no transforming edge. Then there exist H ′,H ′′ such that either:

1. H = H ′′ ◦H ′, and H ′ = hullα(A0) for some contraction α; or
2. H = H ′′ ◦H ′, and H ′ is some outgoing augmentation for a, S; or
3. H ∼L H ′′ ◦ H ′, and H ′ is a listener augmentation H ′ : A0 7→ A′

0 adding
Lsn[K−1], for some K ∈ used(S).

Proof. Assuming H = [φ, α] : A0 7→ A1 with A1 realized, say with skeleton(B) =
A1, we have the following possibilities. If α contracts any atoms, then we may
factor H into a contraction followed by some remainder H ′′ (clause 1).

If α does not contract any atoms, then (φ(n0), φ(n1)) is an outgoing test pair
for a ·α, S ·α. There are now two cases. First, suppose used(S) ·α ⊆ Protφ(n1)(B).
Then we may apply Prop. 2 to infer that B and thus also A1 contains an outgoing
transforming edge m0 ⇒+ m1 for a · α, S · α. Since α is injective on atoms
mentioned in A0, we may augment A0 with an edge m′

0 ⇒+ m′
1 such that

msg(m′
0) · α = msg(m0) and msg(m′

1) · α = msg(m1).
Second, if there is some K ∈ used(S) such that K−1 · α 6∈ Protφ(n1)B, then

there is A′
1∼LA1 such that A′

1 contains Lsn[K−1·α], and φ(n1) 6� (Lsn[K−1 · α]) ↓
1. Hence, clause 3 is satisfied.

Incoming augmentations are similar to outgoing ones, except that the key
used for encryption in the test node is also relevant. The proof is similar.

Theorem 2 (Incoming Augmentation). Let H : A0 7→ A1, where A1 is re-
alized. Let n1 ∈ A0 be an incoming test node for t, S with t = {|t0|}K . If there is
no incoming transforming node for t, S in A0, then there exist H ′,H ′′ such that
either:

1. H = H ′′ ◦H ′, and H ′ = hullα(A0) for some contraction α; or
2. H = H ′′ ◦H ′, for H ′ an incoming augmentation emitting {|t0|}K occurring

outside S; or
3. H ∼L H ′′ ◦ H ′, for H ′ a listener augmentation H ′ : A0 7→ A′

0 adding K or
some K−1

0 , for K0 ∈ used(S).

Evidently, Thms. 1–2 are useful for constructing shapes. They say in effect
that any shape Hs : A0 7→ As may be factored into a composition H ′′ ◦H ′, where
H ′ is dictated by Thm. 1 or Thm. 2, and H ′′ can be determined by repeating this
process. Since As is a finite structure, presumably this process must terminate
in each case, although one cannot predict in advance how many steps might be
needed [4]. In related work, we have in fact proved that every shape may in fact
be obtained through this process [3, ext.vers.]

References

1. Mart́ın Abadi and Bruno Blanchet. Analyzing security protocols with secrecy types
and logic programs. Journal of the ACM, 52(1):102–146, January 2005.

2. Roberto M. Amadio and Denis Lugiez. On the reachability problem in crypto-
graphic protocols. In Concur, number 1877 in LNCS, pages 380–394, 2000.

3. Shaddin F. Doghmi, Joshua D. Guttman, and F. Javier Thayer. Searching for
shapes in cryptographic protocols. In Tools and Algorithms for Construction and
Analysis of Systems (TACAS), number 4424 in LNCS, pages 523–538. Springer,
March 2007. Extended version at URL:http://eprint.iacr.org/2006/435.

4. Nancy Durgin, Patrick Lincoln, John Mitchell, and Andre Scedrov. Multiset rewrit-
ing and the complexity of bounded security protocols. Journal of Computer Secu-
rity, 12(2):247–311, 2004. Initial version appeared in Workshop on Formal Methods
and Security Protocols, 1999.

5. Andrew D. Gordon and Alan Jeffrey. Types and effects for asymmetric crypto-
graphic protocols. Journal of Computer Security, 12(3/4):435–484, 2003.

6. Joshua D. Guttman and F. Javier Thayer. Authentication tests and the structure
of bundles. Theoretical Computer Science, 283(2):333–380, June 2002. Conference
version appeared in IEEE Symposium on Security and Privacy, May 2000.

7. ITU. Message sequence chart (MSC). Recommendation Z.120, 1999.
8. Leslie Lamport. Time, clocks and the ordering of events in a distributed system.

CACM, 21(7):558–565, 1978.
9. Gavin Lowe. Breaking and fixing the Needham-Schroeder public-key protocol using

FDR. In Proceeedings of tacas, volume 1055 of Lecture Notes in Computer Science,
pages 147–166. Springer Verlag, 1996.

10. Jonathan K. Millen and Vitaly Shmatikov. Constraint solving for bounded-process
cryptographic protocol analysis. In 8th ACM Conference on Computer and Com-
munications Security (CCS ’01), pages 166–175. ACM, 2001.

11. Roger Needham and Michael Schroeder. Using encryption for authentication in
large networks of computers. Communications of the ACM, 21(12), 1978.

