
Formal Support for Standardizing
Protocols with State

Joshua D. Guttman, Moses D. Liskov,
John D. Ramsdell, and Paul D. Rowe

The MITRE Corporation

Abstract. Many cryptographic protocols are designed to achieve their
goals using only messages passed over an open network. Numerous tools,
based on well-understood foundations, exist for the design and analysis
of protocols that rely purely on message passing. However, these tools
encounter difficulties when faced with protocols that rely on non-local,
mutable state to coordinate several local sessions.
We adapt one of these tools, cpsa, to provide automated support for
reasoning about state. We use Ryan’s Envelope Protocol as an example
to demonstrate how the message-passing reasoning can be integrated
with state reasoning to yield interesting and powerful results.

Keywords: protocol analysis tools, stateful protocols, TPM, PKCS #11.

1 Introduction

Many protocols involve only message transmission and reception, controlled by
rules that are purely local to a session of the protocol. Typical protocols for
authentication and key establishment are of this kind; each participant maintains
only the state required to remember what messages must still be transmitted,
and what values are expected in messages to be received from the peer.

Other protocols interact with long-term state, meaning state that persists
across different sessions and may control behavior in other sessions. A bank
account is a kind of long-term state, and it helps to control the outcome of
protocol sessions in the ATM network. Specifically, the session fails when we try
to withdraw money from an empty account. Of course, one session has an effect
on others through the state: When we withdraw money today, there will be less
remaining to withdraw tomorrow.

Hardware devices frequently participate in protocols, and maintain state that
helps control those protocols. For example, PKCS#11 devices store and use
keys, and are constrained by key attributes that control e.g. which keys may
be used to wrap and export other keys. Trusted Platform Modules (TPMs)
maintain Platform Configuration Registers (PCRs) some of which are modified
only by certain special instructions. Thus, digitally signing the values in these
registers attests to the history of the platform. Some protocols involve multiple
state histories; for instance, an online bank transfer manipulates the state of the
destination account as well as the state of the source account.

State-based protocols are more challenging to analyze than protocols in which
all state is session-local. Among the executions that are possible given the mes-
sage flow patterns, one must identify those for which a compatible sequence
of states exists. Thus, to justify standardizing protocols involving PKCS#11
devices or TPMs, one must do a deeper analysis than for stateless protocols.
Indeed, since these devices are themselves standardized, it is natural to want to
define and justify protocols that depend only on their required properties, rather
than any implementation specific peculiarities.

The goal of this paper is to explain formal ideas that can automate this
analysis, and to describe a support tool that assists with it.

Contributions of this paper. We make four main contributions:

– We identify two central axioms of state that formalize the semantics of state-
respecting behaviors (Def. 6). Each time a state is produced,
1. it can be consumed by at most one subsequent transition.
2. it cannot be observed after a subsequent transition consumes it.

The first axiom is the essence of how the state-respecting analysis differs
from standard message-based analysis. By contrast, once a message has been
transmitted, it can be delivered (or otherwise consumed) repeatedly in the
future.
The second axiom, like the reader/writer principle in concurrency, allows
observations to occur without any intrinsic order among them, so long as
they all occur while that state is still available. It preserves the advantages
of a partial order model, as enriched with state.

– We prove that our model of state-respecting behaviors exactly matches an
alternative model in which state is maintained by a family of traditional
state machines, whose transitions are triggered by synchronization events in
a state-respecting behavior.

– We incorporated these two axioms into the tool cpsa [24], obtaining a tool
that can perform state-respecting enrich-by-need protocol analysis.

– We applied the resulting version of cpsa to an interesting TPM-based pro-
tocol, the Envelope Protocol [2], verifying that it meets its security goal. We
have also analyzed some incorrect variants, obtaining attacks.

Roadmap. After giving some background, we describe the Envelope Protocol
and the TPM behaviors it relies on (Section 2). We introduce our protocol model
(Section 3) in both its plain form, and the form enriched by the axioms in Con-
tribution 1. Section 4 describes the cpsa analysis in the original model where
state propagation is not distinguished from message-passing, and in the enriched
model. We turn to related work in Section 5. Section 6 addresses a logical inter-
pretation of enrich-by-need analysis and observes that this framework may be
used, unmodified, for stateful protocols as we model them. We end with a brief
comment on conclusions and future work.

Background: Strand spaces. We work within the strand space framework.
A strand is a (usually short) finite sequence of events, where the events are

2

message transmission nodes;
message reception nodes; and
state synchronization nodes.

Each message transmission and reception node is associated with a message that
is sent or received. State synchronization nodes will be related to states via two
different models in Section 3.

The behavior of a principal in a single, local run of one role of a protocol
forms a strand. We call these regular strands. We also represent basic actions
of an adversary as strands, which we call adversary strands. Adversary strands
never need state synchronization nodes, since our model of the adversary allows
it to use the network as a form of storage that never forgets old messages.

A protocol Π is represented by a finite set of strands, called the roles of
the protocol, together with some auxiliary information about freshness and non-
compromise assumptions about the roles. We write ρ ∈ Π to mean that ρ is one
of the roles of the protocol Π. The regular strands of Π are then all strands
that result from any roles ρ ∈ Π by applying a substitution that plugs in values
in place of the parameters occurring in ρ.

For more information on strand spaces, see e.g. [14, 27]. For the version con-
taining state synchronization events as well as transmissions and receptions,
see [15, 23].

Background: Enrich-by-need analysis. In our form of protocol analysis, the
input is a fragment of protocol behavior.

The output gives zero or more executions that contain this fragment. We call
this approach “enrich-by-need” analysis (borrowed from our [16]), because it is
a search process that gradually adds information as needed to explain the events
that are already under consideration.

An analysis begins with an execution fragment A, which may, for instance,
reflect the assumption that one participant has engaged in a completed local
session (a strand); that certain nonces were freshly chosen; and that certain keys
were uncompromised. The result of the analysis is a set S of executions enriching
the starting fragment A. An algorithm implementing this approach is sound if,
for every possible execution C that enriches A, there is a member B ∈ S such
that C enriches B.

We do not require S to contain all possible executions because there are
infinitely many of them if any. For instance, executions may always be extended
by including additional sessions by other protocol participants. Thus, we want
the set S to contain representatives that cover all of the essentially different
possibilities. We call these representatives S the shapes for A.

In practice, the set S of shapes for A is frequently finite and small.
When we start with a fragment A and find that it has the empty set S = ∅ of

shapes, that means that no execution contains all of the structure in A. To use
this technique to show confidentiality assertions, we include a disclosure event
in A. If A extends to no possible executions at all, we can conclude that this
secret cannot be revealed. If S is non-empty, the shapes are attacks that show
how the confidentiality claim could fail.

3

The set S of shapes, when finite, also allows us to ascertain whether authen-
tication properties are satisfied. If each shape B ∈ S satisfies an authentication
property, then every possible execution C enriching A must satisfy the prop-
erty too: They all contain at least the behavior exhibited in some shape, which
already contained the events that the authentication property required.

This style of analysis is particularly useful in a partially ordered execution
model, such as the one provided by strand spaces. In partially ordered models,
when events e1, e2 are causally unrelated, neither precedes the other. In linearly
ordered execution models, both interleavings e1 ≺ e2 and e2 ≺ e1 are possible,
and must be considered. When there are many such pairs, this leads to exponen-
tially many interleavings. None of the differences between them are significant.

2 The Envelope Protocol

We use Mark Ryan’s Envelope Protocol [3] as a concrete example throughout the
paper. The protocol leverages cryptographic mechanisms supported by a TPM
to allow one party to package a secret such that another party can either reveal
the secret or prove the secret never was and never will be revealed, but not both.

It is a particularly useful example to consider because it is carefully designed
to use state in an essential way. In particular, it creates the opportunity to
take either of two branches in a state sequence, but not both. In taking one
branch, one loses the option to take the other. In this sense, it utilizes the non-
monotonic nature of state that distinguishes it from the monotonic nature of
messages. Additionally, although the Envelope Protocol is not standardized, it
demonstrates advanced and useful ways to use the TPM. Standardization of
such protocols is under the purview of the Trusted Computing Group (TCG). It
will be very useful to understand the fundamental nature of state and to provide
methods and tools to support the future standardization of protocols involving
devices such as the TPM.

Protocol motivation. The plight of a teenager motivates the protocol. The
teenager is going out for the night, and her parents want to know her destination
in case of emergency. Chafing at the loss of privacy, she agrees to the following
protocol. Before leaving for the night, she writes her destination on a piece of
paper and seals the note in an envelope. Upon her return, the parents can prove
the secret was never revealed by returning the envelope unopened. Alternatively,
they can open the envelope to learn her destination.

The parents would like to learn their daughter’s destination while still pre-
tending that they have respected her privacy. The parents are thus the adversary.
The goal of the protocol is to prevent this deception.

Necessity of long-term state. The long-term state is the envelope. Once the
envelope is torn, the adversary no longer has access to a state in which the enve-
lope is intact. A protocol based only on message passing is insufficient, because
the ability of the adversary monotonically increases. Initially, the adversary has
the ability to either return the envelope or tear it. In a purely message-based
protocol the adversary will never lose these abilities.

4

Cryptographic version. The cryptographic version of this protocol uses a
TPM to achieve the security goal. Here we restrict our attention to a subset
of the TPM’s functionality. In particular we model the TPM as having a state
consisting of a single PCR and only responding to five commands.

A boot command (re)sets the PCR to a known value. The extend command
takes a piece of data, d, and replaces the current value s of the PCR state with
the hash of d and s, denoted #(d, s). In fact, the form of extend that we model,
which is an extend within an encrypted session, also protects against replay.
These are the only commands that alter the value in a PCR.

The TPM provides other services that do not alter the PCR. The quote

command reports the value contained in the PCR and is signed in a way as to
ensure its authenticity. The create key command causes the TPM to create an
asymmetric key pair where the private part remains shielded within the TPM.
However, it can only be used for decryption when the PCR has a specific value.
The decrypt command causes the TPM to decrypt a message using this shielded
private key, but only if the value in the PCR matches the constraint of the
decryption key.

In what follows, Alice plays the role of the teenaged daughter packaging the
secret. Alice calls the extend command with a fresh nonce n in an encrypted
session. She uses the create key command constraining a new key k′ to be used
only when a specific value is present in the PCR. In particular, the constraining
value cv she chooses is the following:

cv = #(obt,#(n, s))

where obt is a string constant and s represents an arbitrary PCR value prior the
extend command. She then encrypts her secret v with k′, denoted {|v|}k′ .

Using typical message passing notation, Alice’s part of the protocol might
be represented as follows (where we temporarily ignore the replay protection for
the extend command):

A → TPM : {|ext, n|}k
A → TPM : create,#(obt,#(n, s))

TPM→ A : k′

A → Parent : {|v|}k′

The parent acts as the adversary in this protocol. We assume he can perform all
the normal Dolev-Yao operations such as encrypting and decrypting messages
when he has the relevant key, and interacting with honest protocol participants.
Most importantly, the parent can use the TPM commands available in any order
with any inputs he likes. Thus he can extend the PCR with the string obtain

and use the key to decrypt the secret. Alternatively, he can refuse to learn the
secret and extend the PCR with the string ref and then generate a TPM quote
as evidence the secret will never be exposed. The goal of the Envelope Protocol
is to ensure that once Alice has prepared the TPM and encrypted her secret, the
parent should not be able to both decrypt the secret and also generate a refusal
quote, {| quote,#(ref,#(n, s)), {|v|}k′ |}aik .

5

A crucial fact about the PCR state in this protocol is the collision-free nature
of hashing, ensuring that for every x

#(obt,#(n, s)) 6= #(ref, x) (1)

Formal protocol model. We formalize the TPM-based version of the Enve-
lope Protocol using strand spaces [14]. Messages and states are represented as
elements of a crypto term algebra, which is an order-sorted quotient term alge-
bra. Sort > is the top sort of messages. Messages of sort A (asymmetric keys),
sort S (symmetric keys), and sort D (data) are called atoms. Messages are atoms,
tag constants, or constructed using encryption {| · |}(·), hashing #(·), and pair-
ing (·, ·), where the comma operation is right associative and parentheses are
omitted when the context permits.

We represent each TPM command with a separate role that receives a re-
quest, consults and/or changes the state and optionally provides a response. As
shown in Fig. 1, we use m→• and •→m to represent the reception and trans-
mission of message m respectively. Similarly, we use s;◦ and ◦;s to represent
the actions of reading and writing the value s to the state. We write m⇒ n to
indicate that m precedes n immediately on the same strand.

[re-]boot

boot // •
��

[
s //]◦

s0 //

create key

create,s
// •
��
•
{| created,k′,s|}aik //

quote

quote,n
// •
��s // ◦
��
•
{| quote,s,n|}aik //

extend

sess,tpmk,{| esk |}tpmk
// •
��
•
��

sess,sid
//

{| ext,n,sid |}esk // •
��s // ◦

#(n,s)
//

decrypt

dec,{|m|}k′ // •
��{| created,k′,s|}aik // •
��s // ◦
��
• m //

Fig. 1. TPM roles

As noted above, the boot role and the extend role are the only two roles
that alter the state. This is depicted with the single event ;◦; that atomically
reads and then alters the state. The boot role receives the command and resets
any current state s to the known value s0. An alternate version of boot is needed
to ensure that our sequences of state are well-founded. This version has a single
state write event ◦; s0.

6

The extend role first creates an encrypted channel by receiving an encrypted
session key esk which is itself encrypted by some other secured TPM asymmetric
key tpmk. The TPM replies with a random session id sid to protect against
replay. It then receives the encrypted command to extend the value n into the
PCR and updates the arbitrary state s to become #(n, s).

The create key role does not interact directly with the state. It receives the
command with the argument s specifying a state. It then replies with a signed
certificate for a freshly created public key k′ that binds it to the state value s.
The certificate asserts that the corresponding private key k′−1 will only be used
in the TPM and only when the current value of the state is s. This constraint is
leveraged in the decrypt role which receives a message m encrypted by k′ and
a certificate for k′ that binds it to a state s. The TPM then consults the state
(without changing it) to ensure it is in the correct state before performing the
decryption and returning the message m.

Finally, the quote role receives the command together with a nonce n. It
consults the state and reports the result s in a signed structure that binds the
state to the nonce to protect against replay.

Since the quote role puts the state s into a message, and the extend role
puts a message into the state, in our formalization states are the same kind of
entity as messages.

We similarly formalize Alice’s actions. Her access to the TPM state is entirely
mediated via the message-based interface to the TPM, so her role has no state
events. It is displayed in Fig. 2

Alice

•
��

sess,tpmk,{| esk |}tpmk
//

sess,sid
// •
��
•
��

{| ext,n,sid|}esk //

•
��

create,#(obt,#(n,s))
//

{| created,k′,#(obt,#(n,s))|}aik // •
��
•

{|v|}k′ //

Fig. 2. Alice’s role

Alice begins by establishing an encrypted session with the TPM in order to
extend a fresh value n into the PCR. She then has the TPM create a fresh key
that can only be used when the PCR contains the value #(obt,#(n, s)), where
s is whatever value was in the PCR immediately before Alice performed her

7

extend command. Upon receiving the certificate for the freshly chosen key, she
uses it to encrypt her secret v that gives her destination for the night.

The parents may then either choose to further extend the PCR with the
value obt in order to enable the decryption of Alice’s secret, or they can choose
to extend the PCR with the value ref and get a quote of that new value to prove
to Alice that they did not take the other option. The adversary roles displayed
in Fig. 3 constrain what the parents can do.

create

• a //

pair

x // •
��y
// •
��
•

(x,y)
//

sep

(x,y)
// •
��
• x //

��
•

y
//

enc

x // •
��k // •
��
•
{|x|}k //

dec

{|x|}k // •
��k−1
// •
��
• x //

Fig. 3. Adversary roles, where a in the create role must be an atomic message.

It is important to note that, like Alice’s role, the adversary roles do not
contain any state events. Thus the adversary can only interact with the state
via the interface provided by the TPM commands.

We aim to validate a particular security goal of the Envelope Protocol using
the enrich-by-need method. The parent should not be able to both learn the
secret value v and generate a refusal token.

Security Goal 1 Consider the following events:

– An instance of the Alice role runs to completion, with secret v and nonce n
both freshly chosen;

– v is observed unencrypted;
– the refusal certificate {| quote,#(ref,#(n, s)), {|v|}k′ |}aik is observed unen-

crypted.

These events, which we call jointly A0, are not all present in any execution.

3 State-respecting bundles

In this section, we introduce a model of protocol behavior in the presence of
global state; it is new in this paper. It enriches the notion of a bundle, which is
the longstanding strand space formalization of global behaviors [27, 14].

Definition 1 (Bundle). Suppose that Σ is a finite set of strands. Let ⇒ be
the strand succession relation on nodes(Σ). Let →⊆ nodes(Σ) × nodes(Σ) be
any relation on nodes of Σ such that n1 → n2 implies that n1 is a transmission
event, n2 is a reception event, and msg(n1) = msg(n2).
B = (N ,→) is a bundle over Σ iff N ⊆ nodes(Σ), and

8

1. If n2 ∈ N and n1 precedes it on the same strand in Σ, then n1 ∈ N ;
2. If n2 is a reception node, there is exactly one n1 ∈ N such that n1 → n2;

and
3. The transitive closure (⇒ ∪ →)+ of the two arrow relations is acyclic.

B is a bundle of protocol Π iff every strand with nodes in B is either an instance
of a role of Π, or else an instance of one of the adversary roles in Fig. 3.

Any finite behavior should have these properties, since otherwise some partic-
ipant starts a role of the protocol in the middle, or receives a message no one
sent, or else the (looping) pattern of events is causally impossible. By acyclicity,
every bundle determines a partial ordering �B on its nodes, where n1 �B n2
means that some path of one or more arrows →,⇒ leads from n1 to n2 in B.

We incorporate state transition histories directly into the bundles. To do this,
we enrich the bundles with a new relation ; that propagates the current state
from one event to another. We do this so that our analysis method can work
with a single object that has both message dependencies and state dependencies
within it. We also distinguish between state transitions and state observations.
Transitions need to be linearly ordered if they pertain to a single device, but
many state observations may occur between a single pair of state transitions.
They are like read events in parallel computation: There is no need for con-
currency control to sequentialize their access to the state, as long as they are
properly nested between the right transition events.

This is an advantage of the strand space approach, which focuses on partially
ordered execution models. It is important for enrich-by-need analysis, where the
exponential number of interleavings must be avoided.

Later in this section, we will introduce a model containing a number of tradi-
tional state machines, where we correlate the synchronization nodes with tran-
sitions in their state histories. We make this model more rigorous in Section 3.2,
where we prove an exact match between the state respecting behaviors we use
here and the more traditional model of state machine histories.

3.1 Enriching Bundles with State

We now enrich the bundles to incorporate states, and to propagate them from
node to node, just as transmissions and receptions propagate messages.

The diagrams in Section 2 suggest a way to incorporate state into bundles: We
enrich them so that each state synchronization event is associated with messages
representing states. A transition event is associated with a pair, representing the
pre-state before the transition together with the post-state after it. The pre-
state must be obtained from an earlier synchronization event. The post-state
is produced by the transition, and may thus be passed to later events. We also
now distinguish state observation events; these are associated with a single state,
which is like a pre-state since it is received from an earlier event that produced
it. We also identify initiation events, which initialize a devices state and serve
as the beginning of a state computation history.

9

Initiation nodes ◦; s record the event of creating a new state. We use init s
to indicate an initiation of state to s.

Observation nodes s;◦ record the current state without changing it. We use
obsv s to indicate an observation of state s.

Transition nodes s0;◦;s1 represent the moment at which the state changes
from a specific pre-state to a specific post-state. We use tran (s0, s1) to indi-
cate a state transition with pre-state s0 and post-state s1.

In specifying protocols and their state manipulations, we can use the style illus-
trated in Fig. 1. There, an observation such as the synchronization node in the
quote role, acquires a message on the incoming ; arrow. In this case, it is a
variable s, which is itself a parameter to the role which contributes to the sub-
sequent transmitted message. The decrypt role also has an incoming ; arrow
labeled with s; in this case, the role can proceed to engage in this event only
if the value s equals a previously available parameter acquired in the previous
reception node. The extend role has a transition node, in which any pre-state s
will be updated to a new post-state by hashing in the parameter n.

These pre- and post-state annotations, using parameters that appear else-
where in the roles, determine subrelations of the transition relation associated
with each instance of a role. An instance of the extend role with a particular
value n0 for the parameter n will engage only in state transformations that hash
in that value n0.

Observation events are not strictly necessary; we could model the checking of
a state value as a transition s;◦;s. However, this would require observation
events be ordered in a specific sequence. This violates the principled choice that
our execution model not include unnecessary ordering.

In the Introduction, we defined a protocol to be a finite set of strands called
the roles of the protocol. An enriched protocol Π+ will be a protocol Π enriched
with a classification of its state synchronization events into init, tran, and obsv
nodes, with each of those annotated with messages defining their pre- and post-
states. The regular strands of Π+ are all of the substitution instances of the roles
of Π+, including the instances of the pre- and post-states on the synchronization
nodes.

An enriched bundle uses ; arrows to track the propagation of the state of
each device involved in the behavior. This is not a sufficient model for reasoning
about state, which requires also the two axioms of Defn. 6, but it provides the
objects from which we will winnow the state-respecting bundles.

Definition 2 (Enriched bundles). B+ = (N ,→,;) is an enriched bundle
iff (N ,→) is a bundle, and moreover:

1. n1 ; n2 implies that n1 is an init or tran event and n2 is an obsv or tran
event, and the post-state of n1 equals the pre-state of n2;

2. For each obsv or tran event n2, there exists a unique n1 such that n1 ; n2;
3. The transitive closure (⇒ ∪ → ∪;)+ of the three arrow relations is acyclic.

We refer to the partial order it determines as ≺B+ or ≺ when B+ is clear.

10

Enriched bundles are not a sufficient execution model, however, because they
do not capture what is essentially different about state as compared to messages:
the way that the next transition event consumes a state value, such that it cannot
be available again unless a new transition creates it again. We can see this by
connecting our current set-up to a state-machine model.

3.2 Bundles with Explicit Computations

we introduce a formal model of executions, where protocol behavior drives state
machine executions, as briefly introduced in Section 3. Message transmissions
and receptions occur alongside the state transition histories of zero or more
stateful devices. The message behavior here satisfies the usual bundle properties
for protocol behavior (see Def. 1). Some events do not send or receive messages,
but synchronize with the state of one or more devices. Thus, a bundle together
with a family of state transition histories counts as a possible execution if the
steps of the state transition histories match with the state synchronization events
in the bundle. This model is adapted from our earlier work [15].

When a protocol executes in coordination with devices that maintain state,
the execution must have the structure of a bundle, as far as the message-passing
behavior is concerned, and must also meet the constraints that the devices im-
pose. Each device must undergo a possible state transition history, and each
transition should be caused by something, namely by some state synchroniza-
tion event in the bundle.

Definition 3 (Computations). Let {Di}i∈I be a family of devices, indexed by
some set I. Assume that each device Di has a set of states Sti, with initial state
si0 ∈ Sti and transition relation �i ⊆ Sti×Sti.

1. A state transition history or computation for Di is a finite sequence of states
C = 〈s0, s1, . . . , s`〉 starting with the initial state s0 = si0 and, for every j, if
0 ≤ j < `, then sj �i sj+1.

2. A {Di}i∈I -family of computations is a family {Ci}i∈I indexed by the same
set I such that each Ci is a computation for Di.

A correlation is a function that offers a synchronization node in a bundle to
match each step in a computation in some family.

Definition 4 (Correlations). Let B be a bundle, with synchronization nodes
sync(B), and let {Ci}i∈I be a {Di}i∈I-family of computations.

A position p = i, j for {Ci}i∈I is a pair such that i ∈ I and 0 < j < length(Ci).
Let Pos be the set of all positions for {Ci}i∈I .

A correlation φ : Pos→ sync(B) is a function from positions in the computa-
tion family to synchronization nodes of the bundle and such that:

1. ran(φ) = sync(B), i.e. φ is surjective onto the synchronization nodes; and
2. φ is consistent with the bundle ordering ≺B: i.e. let R(n, n′) mean that there

exist i, j, k with j < k, n = φ(i, j), and n′ = φ(i, k), and require:

(≺B ∪R)+ is acyclic.

11

A correlation φ is injective iff φ(i, j) = φ(i′, j′) implies i = i′ and j = j′.

In general, the same node n may synchronize with positions in several different
computations Ci; an injective correlation does not exercise this possibility.

Typically, one would like to correlate nodes and state transitions more tightly,
so that each synchronization node in a role causes a specific type of transition.
In this context, a “type” of transition simply means a subset of the transition
relation. The subset can also depend on the parameter values for the node in
question. The set T of pairs

{n, σ : n ∈ sync(Π),

substitution σ assigns values to the parameters of ρ}

indexes a family of subrelations Rn,σ of a transition relation �:

Rn,σ ⊆ �.

We also write the subrelations in the form �n,σ in our model of execution:

Definition 5 (Execution). Let B be a Π-bundle; let {Ci}i∈I be a {Di}i∈I-
family of computations; and let φ be a correlation between them. For each i ∈ I,
let �

n,σ
i be a family of subrelations of �i.

(B, {Ci}i∈I , φ) is a Π,�i-execution acting on the devices {Di}i∈I , subject to the
subrelations �

n,σ
i , iff for every n′ ∈ sync(B), if:

1. n′ = σ(n) is an instance of role node n under substitution σ;
2. n′ = φ(i, j);
3. Ci = 〈s0, s1, . . . , s`〉;

then sj−1 �
n,σ
i sj.

This gives a fairly general model of how the events in a protocol execution can
drive the transitions of a family of devices. As discussed in our previous [15], it
accounts both for events in which the protocol execution receives information
out of the state and also for events in which the protocol execution deposits in-
formation into the state. There are two main changes here vis-a-vis [15]. First, we
allow many devices to have separate state histories. Second, we omit the “labels”
that were attached to synchronization nodes there, instead using the subrelations
�
n,σ
i to correlate specific protocol events with types of state transition.

Each enriched protocol Π+ determines a type of state machine. Its states
(included in the set of messages) are all pre-states and post-states of the syn-
chronization nodes of all instances of the roles of Π+. A state machine has a set
of initial states. In the state machine determined by Π+, the initial states are
the states σ(s) such that some role ρ ∈ Π+ has an initiation event init s, and σ
is a substitution determining an instance of ρ.

The state machine determined by Π+ has the state transition relation �

consisting of all pairs of states (s1, s2) where

s1 � s2 iff there exists a state transition node of Π+ with pre-state t1 and post-
state t2 and a substitution σ, such that s1 = σ(t1) and s2 = σ(t2).

12

(1) ◦

����
tran = tran

(2) ◦

����

obsv ≺ tran

Fig. 4. State-respecting semantics. (1) State produced (either from a tran or init event)
cannot be consumed by two distinct transitions. (2) Observation occurs after the state
observed is produced but before that state is consumed by a subsequent transition.

A state history or computation is a finite or infinite sequence of states s0, s1, . . .
that starts with an initial state s0, and, for every i, if si+1 is defined then si�si+1.

The enriched bundles are not a sufficient model for reasoning about state,
because there are enriched bundles that do not correspond to any execution in
this sense. We will illustrate this in Section 4.

3.3 Our Axioms of State

The initiation and transition events are meant to describe the sequence of states
that a device passes through. The notion of bundle says nothing about the “out-
degree” of an event. A message transmission event can satisfy more than one
message reception. However, a state event (initiation or transition) can satisfy
at most one state transition event.

Observations must occur in a constrained place in the sequence of states.
They acquire an incoming ; arrow from a transition or an initiation. Any such
observation occurs before a subsequent change in the state.

These two principles—that transitions do not fork, and observations must
precede a transition that consumes their state—motivate our execution model.
They are illustrated in Fig. 4.

Definition 6 (State-respecting bundle). Let B+ = (N ,→,;) be an en-
riched bundle with precedence order ≺. B+ is state-respecting if and only if:

1. if n; n0 and n; n1, where n0 and n1 are tran events, then n1 = n0;
2. Let the relation ≺+ be the smallest transitive relation including ≺ such that

whenever n0 is an obsv and n1 is a tran, then

n; n0 and n; n1 implies n0 ≺+ n1. (2)

Then ≺+ is acyclic.

We call Clause 1 the No State Split Principle. Clause 2 is the Observation Or-
dering Principle.

These two axioms are adequate to provide a model of state. In particular,
we now prove that the executions in the sense we formalize there correspond
exactly to the state-respecting bundles of Def. 6.

13

3.4 Relating State-Enriched Bundles to Executions

The extended protocols Π+ and state-respecting bundles relate easily to the
B, C, φ model.

We now define a single transition system in terms of the state synchronization
nodes of Π+, i.e. a transition system that controls all of the devices Di. If a node
n on a role of Π+ is an

Initiation node n = ◦; t, then �n,σ is the singleton relation {〈s0, σ(t)〉}.
Observation node n = t;◦, then �n,σ is the singleton {〈σ(t), σ(t)〉}, in which

the post-state is unchanged.
Transition node n = t0;◦; t1, then �n,σ is the singleton {〈σ(t0), σ(t1)〉}.

Then the transition relation �(Π+) for all devices Di is defined to be the union⋃
n,σ

�n,σ,

taking the union over all synchronization nodes n ∈ sync(Π+), and all substi-
tutions σ. We shall consider executions relative to the family of subrelations
�n,σ.

If Π+ is an extended protocol, let fgt(Π+) result from it by forgetting the
pre- and post-state annotations on the synchronization nodes. We will refer to
a node on some role ρ ∈ fgt(Π+) as an init, obsv, or tran node of fgt(Π+) if it
results from a node of the same kind in Π+ by forgetting.

If B+ = (N ,→,;) is an enriched bundle for Π+, then fgt(B+) is the Π-
bundle (N ′,→′) where N ′ results from N by forgetting the pre- and post-state
annotations on the synchronizations, and →′ relates two nodes in N ′ iff →
related their preimages in N .

Lemma 1. Given an extended protocol Π+, let Π = fgt(Π+) and � = �(Π+).
Let B, {Ci}i∈I , φ be a Π,�-execution, with injective φ.

There exists a state-respecting bundle B+ of Π+ such that fgt(B+) = B.

Proof. Suppose that B, {Ci}i∈I , φ is an execution. For each synchronization node
in B, we must decorate it with pre- and post-states (depending on its kind) from
{Ci}i∈I and ; arrows, obtaining a state-respecting bundle B+. It will then be
immediate that fgt(B+) = B, since we will only add arrows and annotations that
fgt discards.

The correlation φ tells us how to decorate the nodes. Since φ is surjective
onto sync(B), every n ∈ sync(B) will be annotated. Since φ is injective, there is
no risk of conflict between two different computation steps.

Construction: We consider each computation Ci and work recursively on steps
j, where 0 < j < length(Ci), within Ci.

In the base case, when j = 1, we know that the preceding value was the initial
state s0; by the decomposition of � into subrelations, we know that φ(i, 1) is an
instance of an initiation node of Π. Thus, we decorate φ(i, 1) with init (Ci(1)).

14

Suppose, for the step case, that j > 1. We need now to decorate φ(i, j) with
a pre-state and possibly post-state, and we need to provide it with an incoming
; arrow.

For the ; arrow, if φ(i, j − 1) is an initiation or transition node, we add an
arrow φ(i, j − 1) ; φ(i, j). If φ(i, j − 1) is an observation node, then it has an
incoming arrow from some n1 ; φ(i, j−1), and we add an arrow from the same
n1 ; φ(i, j).

If φ(i, j) is an instance of an observation node of Π, by the decomposition
of � into subrelations, we know that Ci(j − 1) = Ci(j). We decorate φ(i, j) with
obsv (Ci(j)). If instead φ(i, j) is not an instance of any observation nodes of Π,
we decorate φ(i, j) with tran (Ci(j − 1), Ci(j)).

Invariants: Our construction maintains the following invariants:

1. Whenever n1 ; n2, the post-state of n1 is well-defined, the pre-state of n2
is well defined, and the two states are equal.

2. Every ; arrow points from φ(i, j) to φ(i, k) where j < k and the first
arguments are equal.

3. If φ(i, j) ; φ(i, k), then j is the largest j′ < k such that φ(i, j′) is an init or
tran node and the post-state of φ(i, j′) equals the pre-state of φ(i, k).

4. The set of indices {k : φ(i, j) ; φ(i, k)} of ; successors of φ(i, j) forms an
interval [j + 1, `]; if j < k < `, then φ(i, k) is an obsv node.

Invariant 3 helps us to infer that invariant 4 holds.

B+ is state-respecting: By invariant 1, Clause 1 of Def. 2 is satisfied. In the
construction, if n = φ(i, j) and n is not an init node, then j 6= 1, so n obtains
a single incoming ; arrow. So Clause 2 is satisfied. Moreover, by Clause 2 of
Def. 4, (→ ∪ ⇒ ∪;)+ is acyclic.

Thus, the resulting B+ is an enriched bundle. We must now show that it
satisfies the two axioms of state in Def. 6.

Suppose then that n ; n1 and n ; n2 forms a state-split, where n1, n2 are
distinct tran-nodes. By surjectiveness and invariant 2, n = φ(i, j), n1 = φ(i, k),
and n2 = φ(i, k′), where j < k, k′. By symmetry, we may assume j < k < k′.
But then by invariant 4, φ(i, k) is an obsv node contrary to assumption. Thus
the No State Split Principle (Def. 6, Clause 1) is satisfied.

Turning to Clause 2, the Observation Ordering Principle, consider the set S
of pairs n0, n1 such that n0 is an obsv node, n1 is a tran node, and for some n,
n; n0 and n; n1. Then for each such pair, by invariant 4, we have n = φ(i, j),
n0 = φ(i, k), n1 = φ(i, k′) where j < k < k′. Therefore, we have S ⊆ R for the
R in Clause 2 for the correlation φ (Def. 4). Thus, acyclicity follows. ut

Lemma 2. Given an extended protocol Π+, let Π = fgt(Π+) and � = �(Π+).
Let B+ be a state-respecting bundle of Π+.

There exists a Π,�-execution fgt(B+), {Ci}i∈I , φ with φ injective.

Proof. Determining I and partitioning the nodes. By well-founded in-
duction, for every synchronization node n1, there exists an initiation node n0

15

such that n0 ;∗ n1. By Def. 2, Clause 1, if n0 is an initiation node, then
for all n, n 6; n0. By induction and the uniqueness in Def. 2, Clause 2, there
is exactly one initiation node n0 such that n0 ;∗ n1. Define the index set
I = {n0 ∈ sync(B+) : n0 is an init}. Now, the I-indexed family of sets of nodes:

P = { {n1 : n0 ;∗ n1} }n0∈I

is a partition of the synchronization nodes indexed by init nodes.
Consider now an init node n0 and the partition element Pn0

of P where

Pn0 = {n1 : n0 ;∗ n1}.

We will show how to construct a computation Cn0
and a piece of the correlation

λj . φ(n0, j) that will cover Pn0
.

Ordering the nodes. First, consider the tran, init nodes in Pn0 . We claim that
they are linearly ordered by ;+. For otherwise, let n1, n2 be distinct incompara-
ble nodes under ;+. By the definition of Pn0

, n1 6= n0 6= n2, since n0 is related
to every node in Pn0

. Thus, n1, n2 are tran nodes. By well-foundedness, we may
assume that n1, n2 are each chosen to be a ;+-minimal pair of incomparable
tran nodes in Pn0 . Since n1 is an tran node, it has a predecessor n′1. By mini-
mality, either n′1 ;+ n2 or else n2 ;+ n′1. But the latter implies n2 ;+ n1, so
in fact n′1 ;+ n2. By minimality of n2, n′1 ; n2. So n′1 ; n1 and n′1 ; n2,
contradicting the No State Split Principle.

So tran, init nodes in Pn0 are linearly ordered by ;+.
Consider any pair of adjacent tran, init nodes n1 ; n2. Let O be the set of

obsv nodes no such that n1 ; no. O ∪ {n1, n2} are partially ordered by ≺+

since B+ satisfies the Observation Ordering Principle. Let n1, o1, . . . , ok, n2 be
any linearization of this set compatible with ≺+.

Applying this throughout Pn0
, we obtain a sequence 〈n0, . . . , n`〉 containing

all the nodes of Pn0 , where the sequence ordering extends the ≺+ ordering.

Defining Cn0
and λj . φ(n0, j). We now define Cn0

and the n0 slice of φ by
stipulating:

1. Cn0
(0) = s0, the initial state;

2. Cn0(j + 1) is the post-state of nj if it has a post-state, and the pre-state of
nj if it is an obsv node;

3. φ(n0, j + 1) = nj for all j where 0 ≤ j < length(Cn0
).

Now by the definition of 〈n0, . . . , n`〉, φ satisfies the order constraint (Clause 2),
and the other clauses for correlations are immediate; moreover, φ is injective
because the λj . φ(n0, j) are disjoint for different partition classes Pn0

. The triple
fgt(B+), {Ci}i∈I , φ is an execution of Π,�(Π+), by the definition of �(Π+). ut

3.5 Enrich-by-need for stateful protocols

In order to analyze stateful protocols with respect to state-respecting bun-
dles (Def. 6), we adapted the Cryptographic Protocol Shapes Analyzer (cpsa)

16

which performs automated protocol analysis with respect to (traditional) bun-
dles (Def. 1). cpsa uses the enrich-by-need method as described in the Intro-
duction. That is, it progressively extends an execution fragment A into a set of
execution fragments {Bi}. The extending occurs only as needed, namely, when
the execution fragment does not contain enough information to fully describe a
bundle. For message-only protocols, extending is necessary exactly when a mes-
sage received at node n cannot be derived by the adversary using previously sent
messages as inputs to a web of adversary strands.

We adapted cpsa in several ways to account for the properties of state syn-
chronization nodes in state-respecting bundles. First, we added state synchro-
nization nodes to the internal data structures of the tool. We then augmented
the tool to recognize that extending is necessary when a state synchronization
node n has pre-state s, but there is no node n0 with post-state s such that
n0 ; n. Finally, we implemented the corresponding rules for extending execu-
tion fragments by adding state synchronization nodes that supply the necessary
state. In doing so, we experimented with two versions, one works for enriched
bundles that need not satisfy the two axioms from Def. 6, and one which en-
forces these axioms. This former version allow us to perform analyses that lead
to bundles satisfying Def. 2 which do not correspond to any executions of the
state-machine model. The latter eliminates these ersatz results.

One advantage to the use of state-respecting bundles is that it allowed us to
integrate an analysis of the stateful part of the protocol in a modular fashion.
Our implementation did not require us to alter any of the code that extends the
message passing portion of protocols. We thus provide a clean separation of the
two distinct aspects of stateful protocols in an integrated whole.

The next section explores several examples that demonstrate the results of
these two versions and hopefully provide some intuition about why the two
axioms of state are necessary.

4 Analysis of the Envelope Protocol

The two conditions of Def. 6 identify the crucial aspects of state that distinguish
state events from message events. They axiomatize necessary properties of state
that are not otherwise captured by the properties of enriched bundles. In order
to give the reader some intuition for these properties, we present several analyses
of the Envelope Protocol in this section. We begin by contrasting two analyses;
one is based on enriched bundles that only satisfy Definition 2, while the other
is based on state-respecting bundles that also satisfy Definition 6

Enriched vs. state-respecting bundles. Recall that the Envelope Protocol
was designed to satisfy Security Goal 1. That is, there should be no executions
in which (1) Alice completes a run with fresh, randomly chosen values for v
and n, (2) v is available unencrypted on the network, and (3) the refusal cer-
tificate Q is also available on the network. Whether we use enriched bundles or
state-respecting bundles as our model of execution, the analysis begins the same

17

way. The relevant fragment of the point at which the two analyses diverges is
depicted in Fig. 5. The reader may wish to refer to the figure during the follow-
ing description of the enrich-by-need process. The first three steps describe how
we infer the existence of the top row of strands from right to left. The last two
steps explain how we infer the strands in the bottom row from left to right.

alice

��

extend

��

extend

��

decrypt

��

• ···n··· //

��

•
��
◦ //

∗

��

◦ // ◦

��
quote

��

extend

��

• v //

• // •
��
◦
��

◦oo

•
Q

oo

Fig. 5. A crucial moment in the cpsa analysis of the Envelope Protocol, demonstrating
the importance of our first axiom of state.

1. The presence of v in unencrypted form implies the existence of a decrypt

strand to reveal it.
2. The decrypt strand requires the current state to be #(obt,#(n, s)), so our

new principle of state explanation implies the existence of an extend strand
with input value obt.

3. This newly inferred extend strand, in turn must have its current state
#(n, s) explained which is done by another extend strand that receives the
value n from Alice.

4. The presence of the quoted refusal token Q implies the existence of a quote

strand to produce it.
5. The quote strand requires the state to be #(ref,#(n, s)), which allows us

to infer the third extend strand.

At this point in the analysis, the underlying semantics of bundles begins to
matter. Our analysis still must explain how the state became #(n, s) for this
last extend strand. If we use enriched bundles that do not satisfy Definition 6,
then we may re-use the extend strand inferred in Step 3 as an explanation. This
would cause us to add a ; arrow between these two state events (along the
dotted arrow ∗ of Fig. 5) forcing us to “split” the state coming out of the earlist
extend strand. Further steps allow us to discover an enriched bundle compatible
with our starting point, contrary to Security Goal 1. Importantly, however, all

18

enriched bundles that extend the fragment with the split state are non-state-
respecting.

If, on the other hand, we only allow state-respecting bundles, Condition 1 of
Definition 6 does not allow us to re-use the extend strand inferred in Step 3 to
explain the state found on the strand of Step 5. Instead, we are forced to infer yet
another extend strand that receives Alice’s nonce n. However, since Alice uses
an encrypted session that provides replay protection, the adversary has no way
to return the TPM state to #(n, s). Thus, although there are enriched bundles
that violate Security Goal 1, there are no state-respecting bundles that do so.

A flawed version. We also performed an analysis of the Envelope Protocol,
removing the assumption that Alice’s nonce n is fresh, to demonstrate our state-
respecting variant’s ability to automatically detect attacks. The analysis pro-
ceeds similarly; as in the previous analysis we decline to add a ; arrow along
∗ thanks to our stateful semantics. However, the alternative possibility that a
fresh extend strand provides the necessary state proves to work out. Because n
is not freshly chosen, the parent can engage in a distinct extend session with
the same n.

Note that our analysis does not specify that s = s0, where s is the state of
the PCR when first extended. For the case where s = s0, the attack is to reboot
the TPM after obtaining one value (either the refuse token or Alice’s secret),
re-extend the boot state with n, and then obtain the other. More generally, as
long as s is a state that the parent can induce, a similar attack is possible.

4.1 The Importance of Observer Ordering

The Envelope Protocol example demonstrates the crucial importance of captur-
ing our first axiom of state correctly. The second axiom, involving the relative
order of observations and state transition, is no less crucial to correct under-
standing of stateful protocols.

Another example protocol, motivated by a well-known issue with PKCS #11
(see, e.g. [9]), illustrates the principle more clearly. Suppose a hardware device
is capable of producing keys that are meant to be managed by the device and
not learnable externally. If the device has limited memory, it may be necessary
to export such a key in an encrypted form so the device can utilize external
storage.

Thus, device keys can be used for two distinct purposes: for encryption /
decryption of values on request, or for encrypting internal keys for external
storage. It is important that the purpose of a given key be carefully tracked, so
that the device is not induced to decrypt one of its own encrypted keys.

Suppose that for each key, the device maintains a piece of state, namely, one
of three settings:

– A wrap key is used only to encrypt internal keys.
– A decrypt key may be used to encrypt or decrypt.
– An initial key has not yet been assigned to either use.

19

If a key in the wrap state can later be put in the decrypt state, a relatively
obvious attack becomes possible: while in the wrap state, the device encrypts
some internal key, and later, when the key is in the decrypt state, the device
decrypts the encrypted internal key.

However, if keys can never exit the wrap state once they enter it, this attack
should not be possible. If we were to represent this protocol within cpsa, we
would include the following roles:

– A create key role that generates a fresh key and initializes its state to initial

– A set wrap role that transitions a key from initial or decrypt to wrap.

– A set decrypt role that transitions a key from initial to decrypt.

– A wrap role in which a user specifies two keys (by reference), and the device
checks (with an observer) that the first is in the wrap state and if so, then
encrypts the second key with the first and transmits the result.

– A decrypt role in which a user specifies a key (by reference) and a ciphertext
encrypted under that key, and the device checks (with an observer) that
the key is in the decrypt state and if so, then decrypts the ciphertext and
transmits the resulting plaintext.

init

��

set decrypt

��

set wrap

��

wrap

��
◦ // ◦ //

''

◦ // ◦

��
decrypt

��

•

{|k2|}k1vv•
��
◦
��

^^

•
k2 //

Fig. 6. Observer ordering example

Note that the attack should not be possible. However, the bundle described in
Fig. 6 is a valid bundle, and fails to be state-respecting only because of our axiom
about observers. Our second axiom induces an ordering so that the observer in
the decrypt strand occurs before the following transition event in the set wrap

strand. The induced ordering is shown in the figure with a single dotted arrow;
note the cycle among state events present with that ordering that is not present
without it.

20

5 Related Work

The problem of reasoning about protocols and state has been an increasing focus
over the past several years. Protocols using TPMs and other hardware security
modules (HSMs) have provided one of the main motivations for this line of work.

A line of work was motivated by HSMs used in the banking industry [18, 28].
This work identified the effects of persistent storage as complicating the security
analysis of the devices. There was also a strong focus on the case of PKCS #11
style devices for key management [5, 6, 12]. These papers, while very informa-
tive, exploited specific characteristics of the HSM problem; in particular, the
most important mutable state concerns the attributes that determine the usage
permitted for keys. These attributes should usually be handled in a monotonic
way, so that once an attribute has been set, it will not be removed. This justifies
using abstractions that are more typical of standard protocol analysis.

In the TPM-oriented line of work, an early example using an automata-based
model was by Gürgens et al. [13]. It identified some protocol failures due to the
weak binding between a TPM-resident key and an individual person. Datta
et al.’s “A Logic of Secure Systems” [8] presents a dynamic logic in the style
of PCL [7] that can be used to reason about programs that both manipulate
memory and also transmit and receive cryptographically constructed messages.
Because it has a very detailed model of execution, it appears to require a level of
effort similar to (multithreaded) program verification, unlike the less demanding
forms of protocol analysis.

Mödersheim’s set-membership abstraction [21] works by identifying all data
values (e.g. keys) that have the same properties; a change in properties for a given
key K is represented by translating all facts true for K’s old abstraction into
new facts true of K’s new abstraction. The reasoning is still based on monotonic
methods (namely Horn clauses). Thus, it seems not to be a strategy for reasoning
about TPM usage, for instance in the Envelope Protocol.

Guttman [15] developed a theory for protocols (within strand spaces) as
constrained by state transitions, and applied that theory to a fair exchange pro-
tocol. It introduced the key notion of compatibility between a protocol execution
(“bundle”) and a state history. This led to work by Ramsdell et al. [23] that
used cpsa to draw conclusions in the states-as-messages model. Additional con-
sequences could then be proved using the theorem prover PVS [22], working
within a theory of both messages and state organized around compatibility.

A group of papers by Ryan with Delaune, Kremer, and Steel [10, 11], and with
Arapinis and Ritter [2] aim broadly to adapt ProVerif for protocols that interact
with long-term state. ProVerif [4, 1] is a Horn-clause based protocol analyzer with
a monotonic method: in its normal mode of usage, it tracks the messages that
the adversary can obtain, and assumes that these will always remain available.
Ryan et al. address the inherent non-monotonicity of adversary’s capabilities by
using a two-place predicate att(u,m) meaning that the adversary may possess m
at some time when the long-term state is u. In [2], the authors provide a compiler
from a process algebra with state-manipulating operators to sets of Horn clauses
using this primitive. In [11], the authors analyze protocols with specific syntactic

21

properties that help ensure termination of the analysis. In particular, they bound
the state values that may be stored in the TPMs. In this way, the authors verify
two protocols using the TPM, including the Envelope Protocol.

Meier, Schmidt, Cremers, and Basin’s tamarin prover [20] uses multiset rewrit-
ing (MSR) as a semantics in which to prove properties of protocols. Since MSR
suffices to represent state, it provides a way to prove results about protocols
with state. Künnemann studied state-based protocol analysis [19] in a process
algebra akin to StatVerif, which he translated into the input language of tamarin
to use it as a proof method. Curiously, the main constructs for mutable state
and concurrency control (locking) are axiomatized as properties of traces rather
than encoded within MSR (see [19, Fig. 10]).

Our work. One distinguishing feature of this work is our extremely simple
modification to the plain message passing semantics to obtain a state-respecting
model. These are the two Axioms 1–2 in Def. 6. We think it is an attractive
characteristic of the strand space framework that state reflects such a clean
foundational idea. Moreover, this foundational idea motivated a simple set of
alterations to the enrich-by-need tool cpsa.

6 Protocol Security Goals

The enrich-by-need analysis performed in our enhanced version of cpsa is fully
compatible with the language of goals found in previous work such as [26]. The
goal language is based on two classes of predicates: role-related predicates that
relate an event or parameter value to its use within a specific protocol role, and
predicates that are protocol-independent and describe important properties of
bundles. The latter includes the ordering of events as well as assumptions about
freshly chosen values and uncompromised keys. Both classes of predicates apply
within state-respecting bundles in a natural way. The role-related predicates are
sensitive only to the position of an event in the sequence of events of a role, and
to the choice of parameter values in that instance of the role. Indeed, nodes that
represent state transitions or observations are handled in exactly the same way,
since they have positions in the role and parameter values in just the same way
as the message transmission and reception events.

Thus, the state-respecting version of cpsa can verify formulas expressing
security goals in exactly the same way as the previous version, and with the
same semantic definitions.

Conclusion. In this paper, we have argued that cpsa—and possibly other for-
malized protocol analysis methods—can provide reliable analysis when protocols
are standardized, even when those protocols are manipulating devices with long-
term state. A core idea of the formalization are the two axioms of Def. 6, which
encapsulate the difference between a message-based semantics and the state-
respecting semantics.

22

References

1. Mart́ın Abadi and Bruno Blanchet. Analyzing security protocols with secrecy types
and logic programs. Journal of the ACM, 52(1):102–146, January 2005.

2. Myrto Arapinis, Eike Ritter, and Mark Dermot Ryan. Statverif: Verification of
stateful processes. In Computer Security Foundations Symposium (CSF), pages
33–47. IEEE, 2011.

3. Myrto Arapinis, Mark Ryan, and Eike Ritter. StatVerif: Verification of stateful
processes. In IEEE Symposium on Computer Security Foundations. IEEE CS Press,
June 2011.

4. Bruno Blanchet. An efficient protocol verifier based on Prolog rules. In 14th
Computer Security Foundations Workshop, pages 82–96. IEEE CS Press, June
2001.

5. Véronique Cortier, Gavin Keighren, and Graham Steel. Automatic analysis of the
security of xor-based key management schemes. In Tools and Algorithms for the
Construction and Analysis of Systems, pages 538–552. Springer, 2007.

6. Véronique Cortier and Graham Steel. A generic security api for symmetric key
management on cryptographic devices. In Computer Security–ESORICS 2009,
pages 605–620. Springer, 2009.

7. Anupam Datta, Ante Derek, John C. Mitchell, and Dusko Pavlovic. A deriva-
tion system and compositional logic for security protocols. Journal of Computer
Security, 13(3):423–482, 2005.

8. Anupam Datta, Jason Franklin, Deepak Garg, and Dilsun Kaynar. A logic of
secure systems and its application to trusted computing. In Security and Privacy,
2009 30th IEEE Symposium on, pages 221–236. IEEE, 2009.

9. Stéphanie Delaune, Steve Kremer, and Mark D. Ryan. Composition of password-
based protocols. In Proceedings of the 21st IEEE Computer Security Foundations
Symposium (CSF’08), pages 239–251. IEEE Computer Society Press, June 2008.

10. Stéphanie Delaune, Steve Kremer, Mark D Ryan, and Graham Steel. A formal
analysis of authentication in the TPM. In Formal Aspects of Security and Trust,
pages 111–125. Springer, 2011.

11. Stéphanie Delaune, Steve Kremer, Mark D. Ryan, and Graham Steel. Formal anal-
ysis of protocols based on TPM state registers. In IEEE Symposium on Computer
Security Foundations. IEEE CS Press, June 2011.

12. Sibylle Fröschle and Nils Sommer. Reasoning with past to prove PKCS# 11 keys
secure. In Formal Aspects of Security and Trust, pages 96–110. Springer, 2011.

13. Sigrid Gürgens, Carsten Rudolph, Dirk Scheuermann, Marion Atts, and Rainer
Plaga. Security evaluation of scenarios based on the TCG’s TPM specification. In
Computer Security–ESORICS 2007, pages 438–453. Springer, 2007.

14. Joshua D. Guttman. Shapes: Surveying crypto protocol runs. In Veronique Cortier
and Steve Kremer, editors, Formal Models and Techniques for Analyzing Security
Protocols, Cryptology and Information Security Series. IOS Press, 2011.

15. Joshua D. Guttman. State and progress in strand spaces: Proving fair exchange.
Journal of Automated Reasoning, 48(2):159–195, 2012.

16. Joshua D. Guttman. Establishing and preserving protocol security goals. Journal
of Computer Security, 22(2):201–267, 2014.

17. Joshua D. Guttman, Moses D. Liskov, John D. Ramsdell, and Paul D. Rowe.
Formal support for standardizing protocols with state (extended version). Arxiv,
sep 2015. Available at.

23

18. Jonathan Herzog. Applying protocol analysis to security device interfaces. IEEE
Security & Privacy, 4(4):84–87, 2006.

19. Steve Kremer and Robert Künnemann. Automated analysis of security protocols
with global state. In IEEE Symposium on Security and Privacy, pages 163–178,
2014.

20. Simon Meier, Benedikt Schmidt, Cas Cremers, and David A. Basin. The tamarin
prover for the symbolic analysis of security protocols. In Computer Aided Verifi-
cation (CAV), pages 696–701, 2013.

21. Sebastian Mödersheim. Abstraction by set-membership: verifying security proto-
cols and web services with databases. ACM Conference on Computer and Com-
munications Security, pages 351–360, 2010.

22. S. Owre, J. M. Rushby, , and N. Shankar. PVS: A prototype verification system.
In Deepak Kapur, editor, 11th International Conference on Automated Deduction
(CADE), volume 607 of Lecture Notes in Artificial Intelligence, pages 748–752,
Saratoga, NY, June 1992. Springer-Verlag. http://pvs.csl.sri.com.

23. John D. Ramsdell, Daniel J. Dougherty, Joshua D. Guttman, and Paul D. Rowe.
A hybrid analysis for security protocols with state. In Integrated Formal Methods,
pages 272–287, 2014.

24. John D. Ramsdell and Joshua D. Guttman. CPSA: A cryptographic protocol
shapes analyzer, 2009. http://hackage.haskell.org/package/cpsa.

25. John D. Ramsdell, Joshua D. Guttman, Jonathan K. Millen, and Brian O’Hanlon.
An analysis of the CAVES attestation protocol using CPSA. MITRE Technical
Report MTR090213, The MITRE Corporation, December 2009. http://arxiv.

org/abs/1207.0418.
26. Paul D. Rowe, Joshua D. Guttman, and Moses D. Liskov. Measuring protocol

strength with security goals. Submitted to IJIS in the SSR 2014 special issue. Avail-
able at http://web.cs.wpi.edu/~guttman/pubs/ijis_measuring-security.pdf,
April 2015.

27. F. Javier Thayer, Jonathan C. Herzog, and Joshua D. Guttman. Strand spaces:
Proving security protocols correct. Journal of Computer Security, 7(2/3):191–230,
1999.

28. Paul Youn, Ben Adida, Mike Bond, Jolyon Clulow, Jonathan Herzog, Amerson
Lin, Ronald Rivest, and Ross Anderson. Robbing the bank with a theorem prover.
In Security Protocols Workshop, 2007. Available at http://www.cl.cam.ac.uk/

techreports/UCAM-CL-TR-644.pdf.

24

