
Shapes: Surveying Crypto Protocol Runs∗

Joshua D. Guttman

January 12, 2010

Abstract

Given a cryptographic protocol, and some assumptions, can we present
everything that can happen, subject to these assumptions? The assump-
tions may include: (i) some behavior assumed to have occurred, (ii) some
keys assumed to be uncompromised, and (iii) some values assumed to have
been freshly chosen. An object representing these types of information is
called a skeleton.

The shapes for a skeleton A are the minimal, essentially different exe-
cutions that are compatible with the assumptions in A. The set of shapes
for an A is frequently but not always finite. Given a finite set of shapes
for A, it is evident whether a security goal such as authentication or con-
fidentiality holds for A.

In this paper, we describe a search that finds the shapes, starting from
a protocol and a skeleton A. The search is driven by the challenge-response
patterns formalized in the strand space authentication tests.

We define the framework of skeletons and homomorphisms within
which the search proceeds. We justify the search steps by showing: If
a shape is compatible with the skeleton from which a step starts, then
it is still compatible with at least one skeleton resulting from the step.
Thus, if the search terminates, it will report every shape. We also show
that the shapes are accessible via these search steps: Every shape can be
reached in finitely many search steps.

1 Initial Examples

In this paper, we will develop a search technique for finding out all the minimal,
essentially different executions that are possible in a protocol, starting from
some initial assumptions about behavior. We use this method to determine
counterexamples to authentication and confidentiality properties, when they
are not true. Alternatively, we can establish these properties, when they hold,
in the (common but not universal) case in which the search terminates.

∗This work partly supported by the National Science Foundation, grant number CNS-
0952287. Preliminary versions of some of this material appeared in [6, 5]. That underlying
work was joint with Shaddin Doghmi and Javier Thayer. Parts of that work was funded
by MITRE-Sponsored Research, and parts were funded by the National Security Agency.
Address: guttman@{wpi.edu,mitre.org}.

1

Draft January 12, 2010 2

We will start by carrying out several intuitive analyses, using Blanchet’s
simple example protocol [2]. The remainder of the chapter will formalize these
intuitive analyses and justify the method. Blanchet’s protocol, which we will
call sep, requires an initiator A to generate a fresh symmetric key k, sign and
encrypt it for a chosen responder B, and await reception of a message {|s|}k.1

On the other side, any responder B will await a message containing a signed
and encrypted k, at which point it will select a secret s to transmit encrypted
with k. We represent these two kinds of behavior schematically as shown in
Fig. 1. We call a finite sequence of sends and receives a strand, so the behavior

{|{|k|}sk(A)|}pk(B) {|s|}k

��

{|{|k|}sk(A)|}pk(B)

��

{|s|}k

A

OO

+3 • B +3 •

OO

Figure 1: sep: Blanchet’s Simple Example Protocol

of the initiator or responder in a single local session is a strand. Strands are
written either vertically or horizontally as sequences of nodes connected by
double arrows • ⇒ • etc. We also write n0 ⇒+ n1 when n1 follows n0 on the
same strand, although possibly not immediately.

1.1 A’s Point of View

We start by exploring A’s point of view. We consider the assumption that A
has engaged in one or more steps of a local session of sep, and we consider what
other behavior must occur in any possible execution containing this behavior.

This is the point-of-view principle: A’s point of view is that he knows that
he engaged in these steps of his local session. He would like to infer as much
as possible about what other behavior must have occurred, or could not have
occurred.

The point of view principle is central to protocol analysis. It is largely the
activity of exploring what behaviors are possible, given some initially assumed
behavior. This initial assumed behavior is usually a run of one principal. In
that case, we regard the analysis as telling us what behavior must have occurred
in the distributed system, from the point of view of that principal.

Secrecy of the session key k. Suppose that an initiator A has executed at
least the first node of a session, transmitting a session key k within a message
{|{|k|}sk(A)|}pk(B). Is A guaranteed that an adversary can never obtain the value
k in a form protected by no encryption? The answer is no, in at least two cases.

1Since we frequently refer to sets, we reserve {vs} for set formation. We will write any
encryption in the form {|p|}K where p is the plaintext and K is the key used to prepare it.
We will not distinguish symmetric and asymmetric encryption notationally, but let the key
determine which applies. Thus, when an encryption key and its inverse decryption key are
equal, i.e. K = K−1, then {|p|}K is a symmetric encryption.

Draft January 12, 2010 3

{|{|k|}sk(A)|}pk(B) •oo • koo

non = {pk(B)−1} unique = {k}

Figure 2: Skeleton A0: Disclosure of k?

1. When the key generator chosing k lacks randomness: An adversary may
then generate the candidate keys and (possibly) test which was sent.

Alternatively, the way k was chosen may ensure that it is fresh and
unguessable; we use the term uniquely originating for such a k.

A originates k for this transmission, and any other place it is sent or re-
ceived must then derive in an understandable way from this transmission
or its later transformed forms. An adversary’s generate-and-test would
be a separate point of origination for the same value. Likewise, if a pro-
tocol participant were, by bad luck, to generate the same k for another
run, that would be an additional point of origination for k. A reasonable
cryptographic implementation of sep should ensure that these events are
of negligible likelihood in some suitable sense.

2. When B’s private decryption key pk(B)−1 is compromised: An adversary
can then extract the signed unit from {|{|k|}sk(A)|}pk(B), check the signature,
and extract k.

It is irrelevant whetherB does this (“B is dishonest”) or whetherB’s secret
pk(B)−1 has fallen into the hands of some malicious party. In either case,
B’s private decryption key has been used in a way that is not stipulated
in the protocol definition. Thus, we say that a key is uncompromised if it
is used only in accordance with the protocol under analysis.

In our formalism, a key used contrary to the stipulations of the proto-
col must always originate. Thus, we call an uncompromised key non-
originating.

A strand of the protocol is called a regular strand. Thus, all local behaviors
divide into regular strands and adversary behaviors. We sometimes say that a
principal A is regular if its private keys are used only in regular strands.

Is there any third way that an adversary could obtain the key k?
To answer this question, we will carry out an experiment. We will start

with a diagram (Fig. 2) that represents a transmission of {|{|k|}sk(A)|}pk(B) and
the reception of k, somehow shorn of all cryptographic protection. We call a
node like the right hand node of Fig. 2 a listener node, since it listens, and
hears the value k, thereby witnessing that k has been disclosed. The diagram
also incorporates the assumption that neither case 1 nor case 2 above applies,
i.e. k is uniquely originating and pk(B)−1 is non-originating. We would like to

Draft January 12, 2010 4

discover whether we can embed this diagram into a richer or more informative
diagram that represents a possible execution.

If any enriched version of A0 can occur, then there must be some earli-
est point at which k is transmitted outside of the cryptographic protection of
{|{|k|}sk(A)|}pk(B). If the adversary could use pk(B)−1, this could occur via an
adversary decryption, but the assumption pk(B)−1 ∈ non excludes this. If
the adversary could be lucky enough to re-originate the same k, then this re-
origination would be an earliest transmission unprotected by {|{|k|}sk(A)|}pk(B).
The assumption unique = {k} excludes this. Thus, any earliest transmission of k
outside the form {|{|k|}sk(A)|}pk(B) must be caused by some participant executing
a strand of the protocol.

However, when we examine Fig. 1, we see that a symmetric key is received by
a participant only on the first node of a responder strand. This key however is
not retransmitted; instead, k is used to encrypt the payload s, and the ciphertext
{|s|}k can never lead to the disclosure of k. A principal that already knows k can
use it to obtain s, but a principal that does not yet have information about k
cannot obtain k from {|s|}k. If an adversary can recognize s and has a hypothesis
about the value of k, then it can use the message {|s|}k to check the hypothesis.
However, we will be concerned only with full disclosure, not with a subtler
notion of secrecy that resists hypothesis checking.

We have now exhausted all the possibilities. A0 is a dead end. No enrichment
of A0 can be an execution that can possibly occur. We call it a dead skeleton.

In reaching this conclusion, we have used a principle that will be central to
the search for shapes:

Principle 1.1 (The Nonce Test) Suppose that c ∈ unique, and c is found in
some message received in a skeleton A at a node n1. Moreover, suppose that,
in the message of n1, c is found outside all of a number of encrypted forms
{|t1|}K1 , . . . , {|tj |}Kj

. Then in any enrichment B of A such that B is a possible
execution, either:

1. One of the matching decryption keys Ki
−1 is disclosed before n1 occurs,

so that c could be extracted by the adversary; or else

2. Some regular strand contains a node m1 in which c is transmitted outside
the forms {|t1|}K1 , . . . , {|tj |}Kj

, but in all previous nodes m0 ⇒+ m1, c was
found (if at all) only within the plaintexts t1 . . . tj. Moreover, m1 occurs
before n1.

This says that if c is extracted from the encrypted forms, then, in any possible
execution, either the adversary can do so (Case 1), which we witness by adding
a listener node for a decryption key Ki

−1; or else some regular strand has done
so (Case 2). We have just applied Principle 1.1 in the case where c = k, j = 1,
K1 = pk(B), and t1 = {|k|}sk(A). In this application, Case 1 was excluded by the
assumption pk(B)−1 ∈ non. The behavior described in Case 2 has no instance
in common with any protocol behavior in Fig. 1. Hence the dead end.

Draft January 12, 2010 5

A //

��

t0

• {|s|}koo

non = {pk(B)−1} unique = {k}

Figure 3: Skeleton B; t0 is {|{|k|}sk(A)|}pk(B)

We use the list {|t1|}K1 , . . . , {|tj |}Kj
because a protocol may re-use a nonce

several times. After a nonce has been transmitted inside the encryption {|t1|}K1

and received back inside the encryption {|t2|}K2 , it may be retransmitted inside
the encryption {|t3|}K3 . If it is ever received back in some new form {|t4|}K4 , then
that transformation needs an explanation of one of the two forms mentioned in
Principle 1.1. If it is ever received back with no further encryption, then it can
no longer be reused in this way.

A’s Authentication Guarantee. Suppose that an initiator has executed
a local session of its role in sep. What forms are possible for the execution
as a whole global behavior? In exploring this question, we will make the same
assumptions about non and unique. Thus, we represent this graphically in the
form shown in Fig. 3, where for brevity we write t0 = {|{|k|}sk(A)|}pk(B). We again
ask what explanations could exist for the various nodes, i.e. what enrichment
could elaborate B into a skeleton that represents a possible execution. The first
node requires no explanation, since A transmits {|{|k|}sk(A)|}pk(B) just as the
protocol indicates.

By contrast, the second node, A’s reception of {|s|}k, does require an expla-
nation: Where did {|s|}k come from?

1. Possibly k is disclosed to the adversary, who then prepared the message
{|s|}k. We may test this candidate explanation by adding a listener node
to witness disclosure of the encryption key k.

2. Alternatively, we may add a strand of the protocol, including a node that
transmits {|s|}k. As is evident from Fig. 1, this must be the second node
of a responder strand. However, what values are possible for the other pa-
rameters of the strand, i.e. the names of the initiator and responder in this
session? We will postpone the question by choosing new, unconstrained
values C,D.

This leads us to the two descendants of B, shown as B1,B2 in Fig. 4. We may now
immediately exclude B1. It must be a dead end, because it is an enrichment
of A0 in Fig. 2. If any enrichment of B1 were a possible execution, then it
would be the enrichment of an enrichment of A0, and—since the composition
of enrichments is an enrichment—some enrichment of A0 would be a possible
execution.

Draft January 12, 2010 6

A
t0 //

��

≺ • k←
�

•
{|s|}koo B1

or A
t0 //

��

≺
{|{|k|}sk(C)|}pk(D)// D

��
B2 • �

{|s|}koo •
{|s|}koo

non = {pk(B)−1} unique = {k}

Figure 4: Analysis of B, Step 1; t0 is {|{|k|}sk(A)|}pk(B)

A
t0 //

��

≺ t0 // B

��
• �

{|s|}koo •
{|s|}koo

non = {pk(B)−1} unique = {k}

Figure 5: Analysis of B, Step 2: Its shape B21

Turning to B2, it has an unexplained node, the upper right node nD receiving
{|{|k|}sk(C)|}pk(D). If it happens that C = A and D = B, then nothing further
need be done.

Otherwise, we may apply Principle 1.1. The value k, having been previously
observed only in the form t0, is now received on nD in a different form, namely
{|{|k|}sk(C)|}pk(D). Since pk(B)−1 ∈ non, case 1 does not apply. We must thus
have a regular strand that receives k only within the encrypted form t0 and
retransmits it outside of t0. However, in analyzing A0, we have already seen
that the protocol contains no such strand.

Thus, we are left with the single case of B2 in which C = A and D = B,
which is the desired execution B21 shown in Fig. 5. The index 21 is meant to
indicate the path along which it was encountered, as the sole child of B2, which
is itself the rightmost child of B. B21 is the sole shape for B: Any execution
compatible with B must contain at least the behavior shown in B21.

We have made use of two additional principles in this analysis. One asserts
that death persists; the other concerns the origin of encrypted messages.

Principle 1.2 If a skeleton A is dead, then so is any enrichment B of A.

We applied Principle 1.2 to discard B1.

Principle 1.3 (The Encryption Test, 1) Suppose that {|t|}K is found in some
message received in a skeleton A at a node n1. Then in any enrichment B of A
such that B is a possible execution, either:

Draft January 12, 2010 7

t0 {|s|}k
��

s

��
A

OO

+3 • •

7→ A
t0 //

��

≺ t0 // B

��

s

��
• �

{|s|}koo •
{|s|}koo •

non = {pk(B)−1} unique = {k, s}

Figure 6: Skeletons C and C21

A
t0 //

��

≺ t0 // B

��
s

��
k

��
• �

{|s|}koo •
{|s|}koo • •�

non = {pk(B)−1} unique = {k, s}

Figure 7: Dead skeleton C211

1. The encryption key K is disclosed before n1 occurs, so that the adversary
could construct {|t|}K from t; or else

2. Some regular strand contains a node m1 in which {|t|}K is transmitted, but
no previous node m0 ⇒+ m1 contains {|t|}K . Moreover, m1 occurs before
n1.

We applied Principle 1.3 to construct skeletons B1,B2, using the instance t = s
and K = k. Case 1 furnished B1 and Case 2 yielded B2. The node n1 is the
later (reception) node of B, and m1 is the lower right transmission node in B2.

We will strengthen Principle 1.3 and combine it in a single form with Princi-
ple 1.1, resulting in the Authentication Test Principle, Theorem 5.5 of Section 5.

Secrecy of s. Can A be sure that the value s remains a secret between A
and B? To test this, we start with an expansion of skeleton B in which there
is also a listener node that observes s shorn of all cryptographic protection, as
shown in the left portion of Fig. 6. The question is only relevant if s is assumed
fresh and unguessable. C is an enrichment of B. Every execution enriching B
must contain at least the structure we found in B21, and it must also contain the
listener node for s. Thus, it must be an enrichment of C21. Now, at this point
we can apply Principle 1.1, instantiating c = s and node n1 being the listener
at the lower right. The index j = 1, and the encrypted form containing s is
{|s|}k. Since k is a symmetric session key, k−1 = k. Since no regular strand of
sep receives a value encrypted by a symmetric key and retransmits that value
in any other form, Case 2 of the principle is vacuous. Thus, we add a listener

Draft January 12, 2010 8

t0 // B 7→ A
{|{|k|}sk(A)|}pk(C)// ≺ t0 // B

sk(A), pk(B)−1 ∈ non

Figure 8: Skeleton D: B’s Point of View, and its shape D1

node for k, witnessing for its disclosure, obtaining C211 in Fig. 7. C211 is dead
as a consequence of Principle 1.2, since C211 certainly enriches the dead skeleton
A0 in Fig. 2.

Thus, sep fulfills its goals, from the point of view of an initiator A.
In the step from C to C21, we used an additional principle:

Principle 1.4 Suppose that B has the shapes S1, . . . ,Si. If C enriches B, then
every execution enriching C is an enrichment of some Sj, where 1 ≤ j ≤ i.

Since B had the single shape C21, we applied Principle 1.4 with i = 1 and S1 =
B21, allowing us to jump right from C to C21. We could also have reconstructed
its contents using several applications of the other principles.

1.2 B’s Point of View

The story is quite different when we turn to the point of view of a responder B.

B’s Authentication Guarantee. Suppose that a responder B has received
a message of the form t0 = {|{|k|}sk(A)|}pk(B). Assuming now, in skeleton D of
Fig. 8, that both A’s private signature key sk(A) and B’s private decryption key
pk(B)−1 are non-originating, what else must have happened in any enrichment
of D that is a possible execution? We may try to apply Principle 1.3 again,
where the encrypted unit {|t|}K is t0 = {|{|k|}sk(A)|}pk(B). However, Case 1 then
requires only that the public encryption key pk(B) of B is available to the
adversary, from which we learn nothing.

We may more profitably apply Principle 1.3 by taking the encrypted unit
{|t|}K to be {|k|}sk(A). Since the key sk(A) is non-originating, Case 1 is vacuous.
Thus, every possible execution must include an enrichment with a regular node
producing {|k|}sk(A). By Fig. 1, this must be the first node of an initiator strand.
We know that the parameter representing the initiator’s name is A, and the
parameter representing the session key has the value k. However, we know
nothing about the remaining parameter appearing in an initiator’s first node,
i.e. the name of the intended responder. Since this value is unconstrained, we
fill it in with some new C, thus obtaining the skeleton D1.

Unfortunately, we cannot collect any more information about the parameter
C, unlike our situation in skeleton B2 (Fig. 4). D1 contains all of the regular
behavior needed for an execution. It is the sole shape for D.

Nothing says that C’s decryption key is uncompromised, so the adversary
can decrypt the outer layer, using the public key pk(B) to re-encrypt {|k|}sk(A)

Draft January 12, 2010 9

{|{|kˆB|}sk(A)|}pk(B) {|s|}k

��

{|{|kˆB|}sk(A)|}pk(B)

��

{|s|}k

A

OO

+3 • B +3 •

OO

Figure 9: sepc: the Simple Example Protocol Corrected

{|{|k ˆB|}sk(A)|}pk(B)// B 7→ A
{|{|k|}sk(A)|}pk(B)// ≺

{|{|k ˆB|}sk(A)|}pk(B)// B

sk(A), pk(B)−1 ∈ non

Figure 10: Skeleton E: B’s Point of View, and its shape E1

in the desired form. Evidently, the session key k may also be disclosed in this
process. Thus, in sep, a responder B does get a guarantee that A initiated a
session with key k. However, since A may have chosen a compromised party C
as partner for that conversation, B cannot count on much, certainly not that k,
or any s encrypted with k, will remain confidential.

1.3 Correcting SEP

Principles 1.1 and 1.3 are central to protocol design [8] as well as to protocol
analysis [6]. In sep, our analysis of B’s guarantee applied Principle 1.3 to the
critical term {|k|}sk(A). Since this term involves only the two parameters k,A,
evidently this cannot force agreement on a particular responder. However, to
force A to agree with B on the responder, it suffices to add B’s name to this
critical term. The resulting protocol sepc takes the form given in Fig. 9. B’s
authentication result is shown in Fig. 10.

If we now add to E1 a listener node for k, and assume k uniquely originating,
the resulting skeleton is an enrichment of A0. Principle 1.2 thus entails that k
cannot be disclosed. When we extend B’s strand to include its second node,
transmitting {|s|}k, it will also lead to the conclusion that s is undisclosed.

Our correction of sep is tighter or more minimal than Blanchet’s [2], where
the signed unit {|kˆAˆB|}sk(A) is used. The occurrence of A is unnecessary
here. Principle 1.3 helped identify exactly the parameters that are needed in a
protocol refinement.

1.4 Goals of this Chapter

So far, we have used Blanchet’s Simple Example Protocol as an example to
illustrate the idea that, from a particular starting point, one can find all of
the minimal, essentially different things that can happen, compatible with that

Draft January 12, 2010 10

starting point. We call the minimal, essentially different executions compatible
with a starting point A its shapes.

This chapter describes a search procedure that finds shapes systematically.
From a starting point A, we take search steps, each of which adds information
to A. We stop when we have enough behavior of the regular (uncompromised)
participants such that—with some activity of the adversary—we could have a
full execution.

Each search step increases information in some way, i.e. it is an enrichment
in the sense we have been using, and which we will formalize in the notion of
homomorphism. Our examples so far have illustrated the three most important
ways to add information. We can add information by adding listener nodes to
witness for the assumption that a value is disclosed (Case 1 of Principles 1.1
and 1.3). We can add information by adding new protocol message receptions
and transmissions that help to explain those that are already present (Case 2
of Principles 1.1 and 1.3). And we can add information by identifying different
parameters, as we identified C and D with A and B respectively, to produce
skeleton B21. When there are different possible ways to explain some one aspect
of existing behavior, the search branches.

We have implemented this search in a tool called cpsa, a Cryptographic
Protocol Shape Analyzer. The core purpose of this chapter is to explain the
theory underlying cpsa. We will say very little about it as software, and we
will take another occasion to describe how a (now very informative) piece of
software was designed to implement this theory.

We prove two main results. They show that the search steps may be viewed
as a process of refinement leading to the shapes:

1. The search steps are sound (Thm. 7.1), in the sense that—when we take
a step—every possible execution compatible with the assumptions before
the step is still compatible on at least one branch after the step.

2. The search steps are complete (Thm. 7.1), in the sense that every shape
is reached by some finite sequence of search steps.

These results do not imply decidability for security goals, since in some cases
the search enumerates an infinite set of shapes. One of these may be a coun-
terexample to a goal, in which case we certainly learn that it is false. However,
if a goal is in fact true, but A has infinitely many shapes, then we do not learn
that it is true at any finite stage.

The shape search is related to Athena [15], which also searched for execu-
tions that extend a given partial description. Athena used a representation that
included adversary behavior as well as regular strands. It also used a more
straightforward backward search, in which the tool seeks all possible transmis-
sion points—whether adversary actions or regular strands—for each component
of a reception node that cannot yet be explained. Athena later incorporated an
early version of the authentication test method (Principles 1.1 and 1.3) to prune
its search [13]. Cremers’s Scyther [4, 3] refined Athena’s ideas, combining them
with the notion of characterization [7], which we describe below in Section 3.3.

Draft January 12, 2010 11

A strength of Scyther is that, unlike our search, it can be made to terminate
in all cases, providing a bounded-session analysis when the unbounded-session
analysis proves too costly. Our work differs in its emphasis on the authen-
tication test method, and in its systematic treatment of enrichment via the
skeletons-and-homomorphisms theory of Section 3.

1.5 Structure of this Chapter

Principles 1.1 and 1.3 have a different character from Principles 1.2 and 1.4.
The former determine the potential explanations for unexplained behavior, and
they drive the form of the search steps. By contrast, the latter are general
observations about skeletons, about enrichments or homomorphisms—as we will
call them—between them, and about executions. We will examine the latter in
Section 3, after introducing the basic strand space terminology in Section 2.

We will then (Section 4) introduce a second example, a modified form of the
Trusted Computing Group’s protocol for constructing certificates for Attestation
Identity Keys [1]. This suggests a strengthened version of Principle 1.3, which
is parallel with Principle 1.1 in form.

In Section 5, we state a combined version of the two principles, and show
that they characterize when a skeleton is an execution (Theorem 5.5). This
in turn suggests a search-oriented version, which allows us to characterize the
process of adding information to discover shapes; we will describe the latter in
Section 6. Finally, the key results about the search process appear in Section 7.

2 Messages, Strands, Protocols

We assume that protocols send and receive values from an algebra of messages
A. We introduce this algebra in two steps. We give an algebra of basic values A0

in Section 2.1, from which we freely generate an algebra of messages by the two
operations of encryption and tupling (Section 2.2). We regard the algebra A0 as
a sample, introduced for the sake of definiteness. The results in the remainder
of this chapter rely only Lemma 2.3, presented in Section 2.3. Any choice of A0

such that the resulting A satisfies Lemma 2.3 is acceptable.
Sections 2.4 and 2.5 define strands and protocols respectively.

2.1 Algebra of Basic Values

An algebra of basic values A0 is shown in Fig. 11. It is the disjoint union of
infinite sets of nonces, symmetric keys, asymmetric keys, names, and texts. We
also write bkeys for skeys ∪ akeys. The operator sk(a) maps names to signature
keys, which are asymmetric keys. The operator pk(a) maps names to public
encryption keys, also asymmetric keys. The operator ltk(a, b) maps two names
to a symmetric key intended to be shared by them. Nothing in this set up ensures
that a key ltk(a, b), sk(a), or pk(a) is actually uncompromised, i.e. used only in
accordance with some protocol to be chosen later. This terminology simply

Draft January 12, 2010 12

Pairwise disjoint, infinite sets: nonces, skeys, akeys, names, texts
A0 = nonces ∪ skeys ∪ akeys ∪ names ∪ texts

sk : names→ akeys pk : names→ akeys ltk : names× names→ skeys
bkeys = skeys ∪ akeys inv : bkeys→ bkeys

inv(K) is written K−1

(K−1)−1 = K K−1 6= K iff K ∈ akeys

sk(·), pk(·), ltk(·, ·) are injective
sk(·), pk(·), pk(·)−1 have disjoint ranges

Figure 11: Algebra of basic values A0

associates different kinds of keys with principals. Similarly, even though a value
N ∈ nonce, there is no guarantee that in some execution it will be generated
only once. Nonces are simply data values of some particular form. We will
express assumptions about keys being uncompromised or nonces being freshly
chosen using a terminology—“non-originating values” and “uniquely originating
values” to be introduced in Section 2.4. Let

LT0 = rng(pk(·)) ∪ rng(sk(·)) ∪ rng(ltk(·, ·)) and LT = LT0 ∪ (LT0)−1

be the set of long term keys. For K ∈ LT, let owners(K) and owners(K−1) be
the unique {a} or {a, b} for which K = sk(a), K = pk(a), or K = ltk(a, b). The
range of owners(K) covers all of names.

A homomorphism η : A0 → A0 is a map that respect sorts, and acts homo-
morphically on sk(a), pk(a), ltk(a, b), and K−1.

2.2 Message Algebra

We regard protocols as acting on messages chosen from some algebra of messages
A (Fig. 12). We will assume that the members of A are freely generated by
tupling and encryption starting from an algebra A0 of basic values, and a disjoint
infinite set X of untyped variable-like values we call indeterminates. Members of
A are called messages. The encryption operator, written {|t0|}t1 , must definitely
be a free operation, and t0 is the plaintext and t1 is the key. For tupling, we
assume a set of “tags” TAG. When tag ∈ TAG, n ≥ 0, and t1, . . . , tn ∈ A,

X is infinite X,TAG,A0 are pairwise disjoint nil ∈ TAG

A is freely generated from X ∪ A0 by:
enc : A× A→ A tuple : TAG× A∗ → A

which are written (resp.) as: {|t0|}t1 tag t1ˆ . . . ˆtn
nil t0ˆ . . . ˆtn is written as t0ˆ . . . ˆtn

Figure 12: Algebra A, given Basic Values A0, Indeterminates X

Draft January 12, 2010 13

then the tagged tuple tag t1ˆ . . . ˆtn ∈ A. For a distinguished tag nil, we write
nil t0ˆ . . . ˆtn as t0ˆ . . . ˆtn with no visible tag.

Without significantly changing the remainder of this chapter, tupling could
also be replaced somewhat different operations, for instance by a free binary
pairing operation, or by an associative concatenation, or even, with some care,
by an associative commutative operation.

Homomorphisms on the Message Algebra. A homomorphism α =
(η, χ) : A → A consists of a homomorphism η on A0 and a function χ : X → A.
It is defined for all t ∈ A by the conditions:

α(a) = η(a), if a ∈ A0 α({|t0|}t1) = {|α(t0)|}α(t1)

α(x) = χ(x), if x ∈ X α(tag t1ˆ . . . ˆtn) = tag α(t1)ˆ . . . ˆα(tn)

Thus, basic values serve as typed variables, replaceable only by other values of
the same sort, while indeterminates x are untyped “blank slots.” Tags remain
constant under homomorphisms. The parameters params(t) of a message t are
determined inductively:

params(t) = owners(t) if t ∈ LT;
params(K) = {K,K−1} if K ∈ bkeys \ LT;
params(a) = {a} if a ∈ A0 is not a basic key;
params(x) = {x} if x ∈ X;
params(t) =

⋃
i params(ti) if t = tag t1ˆ . . . ˆtn or t = {|t1|}t2 .

Thus, the parameters of any message make up a finite set of basic values and
indeterminates. Moreover, if α, β are homomorphisms that agree on params(t),
then α(t) = β(t). Conversely, in this algebra, if α, β differ on any argument
in params(t), then α(t) 6= β(t). However, in other relevant algebras this may
no longer hold. Finally, the non-parameters are precisely the long-term keys.
Writing

PARAMS = {v : ∃t, v ∈ params(t)},

we have, for all a ∈ A0, a ∈ PARAMS iff a 6∈ LT.
Messages are abstract syntax trees in the usual way:

Definition 2.1 1. Let ` and r be the partial functions where:

t = {|t1|}t2 implies `(t) = t1 and r(t) = t2;
t = tag t1 ˆt2 ˆ . . . ˆtj implies `(t) = t1 and r(t) = t2 ˆ . . . ˆtj;

t ∈ A0 implies `(t) and r(t) are undefined.

2. A path p is a sequence in {`, r}∗. We write cons(f, p) for the sequence
whose first member is f and whose successive elements are those of p. We
write p1

_ p2 for the result of appending p2 to the end of p1.

We regard p as a partial function, where 〈〉 = Id and cons(f, p) = p ◦ f .
When the rhs is defined, we have:

(a) 〈〉(t) = t;

Draft January 12, 2010 14

(b) cons(`, p)(t) = p(`(t)); and

(c) cons(r, p)(t) = p(r(t)).

3. p encounters a key edge in t if p1(t) is an encryption, where p = p1
_

〈r〉 _ p2.

4. t0 is an ingredient of t, written t0 v t, if t0 = p(t) for some p that does
not encounter a key edge in t.

5. t0 appears in t, written t0 � t, if t0 = p(t) for some p.

6. p traverses a member of S in t if p = p1
_ p2, where p1(t) ∈ S and

p2 6= 〈〉.

As an example, consider the message t = {|{|k|}sk(A)|}pk(B); for

p0 = 〈`, `〉, we have k = p0(t). Since p0 does not encounter a key edge, k v
{|{|k|}sk(A)|}pk(B).

p1 = 〈r〉, we have pk(B) = p1(t). However, since p1 encounters a key edge, we
have established only the weaker pk(B)� {|{|k|}sk(A)|}pk(B).

p2 = 〈`, r〉, we have sk(A) = p2(t). Since p1 again encounters a key edge, we
have only sk(A)� {|{|k|}sk(A)|}pk(B).

In {|s|}k, only the path 〈r〉 leads to k. Hence, k � {|s|}k but k 6v {|s|}k. Since
〈`〉 leads to s, s v {|s|}k.

2.3 Properties of Homomorphisms

This A and its finitely generated homomorphisms (which we will focus on hence-
forth) have a number of properties we will rely on.

Definition 2.2 1. A parameter v ∈ PARAMS is a source parameter of a
homomorphism α if α(v) 6= v; w ∈ PARAMS is a target parameter if for
some source parameter v, w � α(v).

2. A homomorphism α is finitely generated iff it has finitely many source
parameters. In this case it has finitely many target parameters, also.

3. Messages v, w ∈ A have a common instance iff α(v) = α(w) for some α.

4. A homomorphism α is an isomorphism on A, or a renaming, iff there
exists a β such that β ◦α is the identity. We say that α, α′ are isomorphic
if for some renaming ι, ι ◦ α = α′.

5. If α and γ are finitely generated, and there exists a β such that γ = β ◦α,
then we say that γ is at least as specific as α, and write α ≤s γ.

Draft January 12, 2010 15

If ι is a finitely generated isomorphism, then we may regard it as a disjoint
union of two functions. One is a permutation π of the source parameters of ι;
π has no fixed points and maps finitely many basic values to basic values of the
same sort, and finitely many indeterminates to indeterminates. The second is
simply the identify function on the remaining basic values and ideterminates.
Indeed, any function of this form is an isomorphism.

Hence, being isomorphic is an equivalence relation on finitely generated ho-
momorphisms. It is reflexive and transitive because the identity is an isomor-
phism, and because isomorphisms are closed under composition. For symmetry,
reason as follows. If α, β are finitely generated, and β = ι ◦ α, then ι is finitely
generated. Thus, ι is the disjoint union of a finite permutation π and an identity
function. Thus, building ι′ using π−1 and the same identity function, α = ι′ ◦β.

A preorder means a reflexive, transitive relation.

Lemma 2.3 1. ≤s is a preorder on finitely generated homomorphisms, and
α ≤s γ ≤s α implies that α and γ are isomorphic. Hence, ≤s is a partial
order on isomorphism classes.

2. When, for finitely generated α, β, γ, we have γ = β ◦ α = β′ ◦ α, then
β(a) = β′(a) for all a ∈ rng(α). Thus, the choice of β in Def. 2.2,
Clause 5 is unique on rng(α).

3. For any finitely generated γ, the set {α : α ≤s γ} contains only finitely
many non-isomorphic members.

Lemma 2.4 1. Assume v, w ∈ A have a common instance. There exists a
finitely generated γ which is a most general unifier of v and w. That is,
γ(v) = γ(w), and whenever γ′(v) = γ′(w), then γ ≤s γ′.

2. Let v = α(u) and w = β(u), where α, β are finitely generated. Then α, β
have a most specific common generalization γ for u. That is, there is a
finitely generated γ such that:

(a) For some α1, v = (α1 ◦ γ)(u),

(b) For some β1, w = (β1 ◦ γ)(u), and

(c) if γ′ satisfies Clauses 2a–2b, then γ′ ≤s γ.

By Clause 1, there is a most general simultaneous unifier γ for the sequences
r1, . . . , rk and t1, . . . , tk if any α simultaneously unifies each message of the first
sequence with the corresponding message in the second. By Clause 3, ≤s (on
finitely generated homomorphisms) is a well-founded partial order, to within
isomorphism. A fortiori, {β : α ≤s β ∧ β ≤s γ} is finite for finitely generated γ.

Lemma 2.3 gives our central assumptions on the algebra. We believe that
any algebra satisfying Lemma 2.3, and having a free encryption, and a tupling
operator—or a pairing, concatenation, or multiset operation that is otherwise
free—will satisfy the remaining results in this chapter.

With algebras where a finite set of unifiers cover the common instances of
any two messages, in place of Clause 1, and a finite set of homomorphisms

Draft January 12, 2010 16

replace the most specific common generalization of Clause 2, we believe that an
easily adjusted version of our method is usable.

By contrast, in algebras with an operation like exclusive-or, which may be
applied to tuples or encryptions rather than just basic values, and is subject to
equational laws, other entirely new ideas are required.

2.4 Strands and Origination

A single local session of a protocol at a single principal is a strand, containing
a linearly ordered sequence of transmissions and receptions that we call nodes.
A transmission of message t is a directed term +t, and a reception of message
t is a directed term −t.

We write s ↓ i for the ith node on strand s, using 1-based indexing. We
write n⇒ m when n,m are successive nodes on the same strand, i.e. when for
some s, i, n = s ↓ i and m = s ↓ i+ 1. ⇒+ is the transitive closure of ⇒. We
write msg(n) for the message sent or received on the node n.

Origination. A message t0 originates at a node n1 if (1) n1 is a transmission
node; (2) t0 v msg(n1); and (3) whenever n0 ⇒+ n1, t0 6v msg(n0). Thus,
t0 originates when it was transmitted without having been either received or
transmitted (as an ingredient) previously on the same strand.

Values assumed to originate only on one node in an execution—uniquely
originating values—formalize the idea of freshly chosen, unguessable values.
Values assumed to originate nowhere may be used to encrypt or decrypt, but
are never sent as message ingredients. They are called non-originating values.
For a non-originating value K, K 6v t for any transmitted message t. However,
K � {|t0|}K v t possibly, which is why we distinguish v from �.

As an example, our comment in applying Principle 1.3 to Fig. 2 that k is
not retransmitted by any strand that has received it is meant in the sense of v.
We never have k v msg(n) if n is a transmission node, and for some reception
node m, m⇒+ n and k v msg(m). However, we may have k � msg(n), which
is harmless because it does not contribute to disclosure of k.

We say that n is the origin of t0 in a set of nodes S if (1) n ∈ S, (2)
t0 originates at n, and (3) t0 originates at no other node in S. It is uniquely
originating in S if for some n, n is the origin of t0 in S.

We say that t0 is non-originating in S if there is no n ∈ S such that t0 v
msg(n). Evidently, if there is any n ∈ S such that t0 v msg(n), then any full
execution extending S will have to provide an origin for t0.

Principals and Other Parameters. We extend the notion of parameters
from messages to nodes and strands cumulatively. Suppose that s is a strand of
length `, and i ≤ `; then

params(s ↓ i) =
⋃

0<j≤i

params(msg(s ↓ j)),

and params(s) = params(s ↓ `). Thus, the parameters to a node are those
potentially varying arguments which can affect the messages that have been

Draft January 12, 2010 17

sent or received up to and including that node. A strand s has only finitely
many parameters, and any two homomorphisms that agree on those parameters
will have the same action on messages sent and received along s.

In the model we use in this paper, there is no relevant entity acting as
a principal. There are only names, and these names serve as parameters to
some strands. Names are also associated with keys via the functions ltk(·, ·),
pk(·), sk(·). Thus, although informally we view several strands as being ongoing
activities of a single principal at a particular time, in the model, there are only
strands that share a particular name parameter and use the keys associated
with that parameter. When a protocol may manipulate some long-term state
belonging to the principals executing it, then we work in a richer model [10].

2.5 Protocols

A protocol Π is a finite set of strands, called the roles of Π, together with some
constraints on unique and non-origination. We assume that every protocol Π
contains the listener role Lsn[x], which consists of a single reception node x→ •.
Instances of this listener role have already appeared in Figs. 2, 4, 6–7.

The constraints on origination for roles, which we will describe more specif-
ically later, may be used to ensure that a particular role always contributes a
uniquely originating value to an execution, as for instance a session key server
may be trusted always to choose a fresh and unguessable session key. They may
also be used to ensure that a particular role always involves a non-originating
key. For instance, a protocol may ensure that the certificate authority role al-
ways uses a non-originating signing key. In modeling sep, role origination con-
straints were not needed; we assumed only that particular values in a skeleton
were non-originating or uniquely originating. There was no need to assume that
every time we added a strand, some parameters to it would satisfy origination
constraints.

Indeterminates represent syntactically unconstrained messages received from
protocol peers, or passed down as parameters from higher-level protocols. Thus,
we require an indeterminate to be received as an ingredient before appearing in
any other way:

If n1 is a node on ρ ∈ Π, with an indeterminate x� msg(n1),

then ∃n0, n0 ⇒∗ n1, where n0 is a reception node and x v msg(n0).

As an example, the two strands shown in Fig. 1 are the roles of sep. Our
analysis of sep did not rely on any origination constraints. Finally, it can be
seen that if s were an indeterminate, then the responder role violates the prin-
ciple that indeterminates are received before appearing in any other way. We
instead interpret s as a basic value. This requirement is related to the require-
ment in constraint-solving approaches—originating with [12]—that variables in
constraint sequences always appear first on the right-hand side of a constraint.
The right hand sides represent message receptions, where the adversary must
generate some instance of the constraint, and may select a value for the variable
that makes this possible.

Draft January 12, 2010 18

3 Skeletons, and Homomorphisms

A skeleton A consists of (possibly partially executed) regular strands, i.e. a finite
set of nodes, nodes(A), with two additional kinds of information:

1. A partial ordering �A on nodes(A);

2. Finite sets uniqueA, nonA of basic values assumed uniquely originating and
respectively non-originating in A.

More formally:

Definition 3.1 A four-tuple A = (nodes,�, non, unique) is a preskeleton if:

1. nodes is a finite set of regular nodes; moreover, for all n1 ∈ nodes, if
n0 ⇒+ n1 then n0 ∈ nodes;

2. � is a partial ordering on nodes such that n0 ⇒+ n1 implies n0 � n1;

3. non is a finite set of basic keys, and

(a) ∀K ∈ non, ∀n ∈ nodes, K 6v msg(n); and

(b) ∀K ∈ non, ∃n ∈ nodes, either K � msg(n) or K−1 � msg(n);

4. unique is a finite set of basic values, and ∀a ∈ unique, ∃n ∈ nodes s.t. a v
msg(n).

A preskeleton A is a skeleton if in addition:

5. for all a ∈ unique, if a originates at n0 ∈ nodes, then

(a) a originates at no other node n1 ∈ nodes; and

(b) if a v msg(n1) where n1 ∈ nodes, then n0 � n1.

The parameters of A form the union: params(A) =
⋃
n∈nodes(A) params(n).

All of the “skeletons” in Figs. 2–10 are skeletons, except that sometimes we
have cheated on Clause 5b. Namely: In Fig. 2, the left hand node should
precede the right hand node. In Fig. 6, the second skeleton C21 should have
the node transmitting {|s|}k precede the listener node for s. In Fig. 7, the node
transmitting t0 should also precede the listener for k.

An object that violates Clause 3 cannot be enriched into one that satisfies it.
By contrast, a preskeleton that violates Clause 5a or Clause 5b may sometimes
be enriched to form a skeleton. In particular, it may be possible to map two
nodes, at both of which some a ∈ unique originates, to a single node originating
it, thereby satisfying Clause 5a. Likewise, we may be able to add edges to the
ordering �, while preserving its acyclicity, so as to satisfy Clause 5b. This is
easily done for the non-skeletons in Figs. 2, 6, and 7.

Draft January 12, 2010 19

3.1 Realized Skeletons

A skeleton is realized if its strands can really happen, independent of any other
regular behavior. In a realized skeleton, the regular behavior present in the
skeleton is combined with some adversary behavior, in a way that explains
how each message received by a regular node could have been generated by
that time. In particular, the skeleton’s assumptions about non-origination and
unique origination must not be violated by the adversary behavior.

Penetrator Webs. We represent the actions of the adversary by means of
strands of certain special forms. These originate basic values or indeterminates;
compose and transmit a tuple, having received its components; separate and
transmit the components of a tuple, having received the tuple; encrypt and
transmit a ciphertext, having received an encryption key and a plaintext; and
decrypt and transmit a plaintext, having received the matching decryption key
and a ciphertext:

Definition 3.2 An adversary strand has any of the following forms:

Ma: 〈+a〉 where a is basic valueic Mg: 〈+g〉 where g is an indeterminate
C: 〈−g ⇒ · · · ⇒ −h⇒ +tag gˆ . . . ˆh〉

S: 〈−tag gˆ . . . ˆh⇒ +g ⇒ · · · ⇒ +h〉
E: 〈−K ⇒ −h⇒ +{|h|}K〉 D: 〈−K−1 ⇒ −{|h|}K ⇒ +h〉

Because an adversary uses a key only by means of E and D strands, it can use
a key only if it receives that key value. Since every value that is received must
have been originated, it follows that an adversary can never use a non-originating
value. This justifies our use of “non-originating” to model “uncompromised.”

The adversary can link together a number of strands, forming an “adversary
web” that accomplishes some compound task.

Definition 3.3 (Adversary web, derivable) Let G = 〈NG, (→G ∪ ⇒G)〉 be
a finite acyclic graph, where (i) n0 ⇒ n1 only if n0, n1 are successive nodes on
an adversary strand; and (ii) n → m only if n is a transmission node, m is
a reception node, and msg(n) = msg(m). G is an adversary web with support
Sspt and result R if Sspt and R are sets of messages and moreover:

1. If n2 ∈ NG is a reception node, then either msg(n2) ∈ Sspt or there is a
unique n1 such that n1 →G n2.

2. If n2 ∈ NG and n1 ⇒ n2 then n1 ⇒G n2.

3. For each t ∈ R, either t ∈ Sspt or for some positive n ∈ NG, msg(n) = t.

If V is a set of basic values, then term t1 is derivable from Sspt avoiding V if
there is a web G with support SG ⊆ Sspt and t1 ∈ RG, where no basic value in
V originates on a penetrator strand in G.

This suggests the criterion for when a skeleton A represents a possible execution.
A is a possible execution if, for each reception node n, there exists an adversary

Draft January 12, 2010 20

web deriving msg(n) using messages transmitted earlier in A, and avoiding basic
values constrained by nonA and uniqueA. However, if a ∈ uniqueA, but it does
not originate on any node in A, then it is in fact unconstrained: It can originate
just once, but on an adversary Ma node, after which the adversary can use it as
much as necessary. The constrained values in uniqueA are those that originate
on a regular node of A.

Definition 3.4 (Realized) A basic value a is to be avoided in A if a ∈ nonA,
or if a ∈ uniqueA and there exists n ∈ nodesA such that a originates on n.

A reception node m ∈ nodesA is realized in A if msg(m) is derivable from

{msg(n) : n ≺A m and n is a transmission node}

avoiding the set of basic values to be avoided in A.
A is realized if it is a skeleton and every reception node m ∈ nodesA is

realized in A.

We have been saying informally that A represents a possible execution, and we
now stipulate that this means that A is realized. The adversary webs explain
how the adversary can generate values that will satisfy each reception node in
A.

Realized skeletons from Section 1 include B11 and D11. In the case of B11, the
adversary web needed to “explain” its two reception nodes are each the empty
web, since each reception node has a message that has already been transmitted
on an earlier node. However, D11 requires an adversary web that decrypts
{|{|k|}sk(A)|}pk(C) using the decryption key pk(C)−1, and then re-encrypts with
the public key pk(B), neither of which is to be avoided in D11. Skeleton E11 is
again realized, using the empty adversary web.

By an old result [16, Lemma 2.9]:

Lemma 3.5 If every node m ∈ nodesA is realized in the preskeleton A, then
Definition 3.1, Clause 5b is satisfied in A.

It is in fact easy to check whether there is an adversary web G that derives
msg(m) from {msg(n) : n ≺A m and n is a transmission node}. This is be-
cause we can always assume that the web is in normal form in the Prawitz-
like sense [14] that a constructive adversary strand never precedes a destructive
one [11].

3.2 Homomorphisms

The notion of enrichment used earlier will be formalized as a kind of homo-
morphism among skeletons, or more generally preskeletons. A (pre)skeleton
homomorphism has two components. One is a homomorphism α on the under-
lying algebra A, which says how to transform the messages sent and received
on nodes of the source (pre)skeleton to messages sent and received on the tar-
get (pre)skeleton. The other component is a map φ from nodes of the source

Draft January 12, 2010 21

(pre)skeleton to nodes of the target (pre)skeleton. The most important con-
dition is that msg(φ(n)) = α(msg(n)). That is, the message sent or received
on the target node should be α applied to the message sent or received on the
source node. A homomorphism’s target may contain additional nodes not of
the form φ(n).

Definition 3.6 Suppose A,B are preskeletons, α is a homomorphism on A, and
φ : nodesA → nodesB. H = [φ, α] is a homomorphism if

1. For all s, i, if s ↓ i ∈ A then there is an s′ s.t. for all j ≤ i, φ(s ↓ j) =
s′ ↓ j;

2. For all n ∈ A, msg(φ(n)) = α(msg(n));

3. n and φ(n) agree in direction, either transmission + or reception −;

4. n �A m implies φ(n) �B φ(m);

5. α(nonA) ⊆ nonB;

6. α(uniqueA) ⊆ uniqueB;

7. If a ∈ uniqueA and a originates at n ∈ nodesA, then α(a) originates at
φ(n).

We write H : A 7→ B when H is a homomorphism from A to B. When α, α′

agree on params(A), then [φ, α] = [φ, α′]; i.e., [φ, α] is the equivalence class of
pairs under this relation.

We sometimes write φH and αH to refer to a φ and α such that H = [φ, α].
H is an inclusion map if φH is the identity function. In this case, αH is also

the identity, i.e. H = [φH , Id]. A is a subskeleton of B if there is an inclusion
H : A 7→ B.

We regard the finitely generated homomorphism α0 which is the identity for all
v 6∈ params(A) as the canonical representative of [φ, α]. Thus, henceforth, we
will assume that the message homomorphism α in [φ, α] is finitely generated.

The condition on origination in Clause 7 avoids the degeneracy in which a
point of origination is destroyed for some basic value a ∈ uniqueA. We stipulate
that such degenerate maps are not homomorphisms.

Lemma 3.7 If A is a preskeleton, then the identity IdA : A 7→ A. If H : A 7→ B
and J : B 7→ C, then J ◦H : A 7→ C. Thus, skeletons and homomorphisms form
a category.

Section 1 incorporates many examples of homomorphisms, starting with an
absence of homomorphisms. The deadness of Fig. 2 asserts that there are no
homomorphisms from A0 whose target skeleton is realized. Figs. 3–4 illustrate a
pair of homomorphisms B 7→ B1 and B 7→ B2. In each of these homomorphisms,
B is included into a larger skeleton: the message homomorphism α is the identity
and the node map φ is the identity in each case. The homomorphism B1 7→ B11

Draft January 12, 2010 22

•
{|{|k|}sk(A)|}pk(C) // •

{|{|k|}sk(D)|}pk(C)// 7→ •
{|{|k|}sk(A)|}pk(B) //

Figure 13: A non-injective homomorphism A1 7→ A2

is a bit more interesting, since its message homomorphism maps the names A,C
to A and B,D to B. Its node map is surjective. By composition, we also have
a homomorphism B 7→ B11.

The homomorphism C 7→ C21 is an embedding, with a second embedding
C21 7→ C211, and similar maps D 7→ D1 and E 7→ E1. We have not yet illustrated
any case in which φ is non-injective. Fig. 13 is an artificial but simple example.
A message homomorphism mapping A,D to the same value permits the two
transmission nodes of A1 to be identified in the target A2. In this case, A,D are
mapped to A, and C to B, but in fact the choice of target values is arbitrary.
A renaming could change them to any other pair of distinct values, producing
an isomorphic result.

In Fig. 13, there are also two homomorphisms H1, H2 in the opposite, right-
to-left direction. One of them, say H1, renames B to C and maps the single
node of A2 to the left-hand node of A1. The other homomorphism H2 renames
B to C and also renames A to D; it maps the single node of A2 to the right-hand
node of A1. These homomorphisms are, however, not essentially different. A1

has a non-trivial automorphism J , i.e. an isomorphism to itself. This is the map
that interchanges the two nodes, while mapping A to D and D to A. In fact,
H2 = J ◦H1, i.e. H1 and H2 differ by an isomorphism.

3.3 Describing Executions

An execution means a realized skeleton. We regard each skeleton A as describing
a set of executions. This is the set of realized homomorphic images of A.

A dead skeleton describes the empty set of executions. A realized skeleton
describes a set of executions that includes itself. A skeleton that is neither dead
nor realized describes a non-empty set that does not include itself.

Definition 3.8 A is a dead skeleton if for every homomorphism H : A 7→ B, B
is not realized.

Lemma 3.9 If A is dead and H : A 7→ B, then B is dead.

Proof: If J : B 7→ C, then J ◦H : A 7→ C, so C is not realized. ut

This lemma formalizes Principle 1.2.
Any non-dead skeleton A describes an infinite set of executions. Since A

is non-dead, it has at least one homomorphism H : A 7→ B with B realized.
Moreover, we can always take the disjoint union 2B = B ∪ B′ of the realized
skeleton B with a renaming B′ of itself. If the renaming is chosen to use new

Draft January 12, 2010 23

values that do not to overlap with the original ones, the disjoint union 2B =
B ∪ B′ will again be a realized skeleton. Clearly, we can again rename 2B to
(2B)′, taking a union to obtain 4B = 2B∪ (2B)′. We can repeat this process ad
infinitum.

Since the set of realized skeletons contains so many members, we would like
to focus on compact but informative ways to characterize this set. If A is a
skeleton, then a characterization for A is a set of homomorphisms C such that:

1. If H ∈ C, then H : A 7→ B where B is realized; and

2. If J : A 7→ C where C is realized, then J = K ◦ H for some H ∈ C and
some homomorphism K.

cpsa’s goal is, given a “starting point” A, to compute a characterization for A.
However, a key choice was to decide which characterization to select. For

instance, one would prefer an algorithm that produces finite characterizations
rather than infinite ones when possible. However, there is another consideration.
Fig. 13 illustrates that we may have a situation where A1 7→ A2 7→ A1; so should
we then prefer the larger skeleton A1 or the smaller skeleton A2?

We have opted for the smaller skeleton A2. Why? Homomorphisms that are
not surjective may not be interesting. For instance, recall the realized skeletons
A, 2A, 4A, . . . we mentioned immediately after Lemma 3.9. There are homomor-
phisms from B to each later member of the sequence, and they are not surjective,
but the later members of the sequence do not tell us anything new. However,
a non-injective homomorphism such as the one in Fig. 13 says something inter-
esting, namely that two different events could be identified. For this reason, we
define:

Definition 3.10 1. H = [φ, α] : A 7→ B is node-injective iff φ is an injective
function φ : nodes(A)→ nodes(B).

2. H ≤n J iff for some node-injective K, J = K ◦H.

3. A set C is a node-injective characterization for A iff

(a) If H ∈ C, then H : A 7→ B where B is realized; and

(b) If J : A 7→ C where C is realized, then H ≤n J for some H ∈ C.

For brevity, we will write characterization for node-injective characteriza-
tions from now on.

4. C ≤n C′ iff for every H ∈ C, there exists a J ∈ C′ such that H ≤n J .

5. min(C) = {H ∈ C : ∀J ∈ C, J ≤n H implies H ≤n J}.

cpsa’s goal is in fact, given an A, to compute the minimum characterization
for A. Here, the uniqueness in the words “the minimum” is meant to within
isomorphism. We will write C ∼ C′ iff every H ∈ C is isomorphic to some H ′ ∈ C′
and vice versa. Then:

Draft January 12, 2010 24

Lemma 3.11 1. If H : A 7→ A is node-injective, then H is an isomorphism
from A to itself.

2. If H ≤n J ≤n H, then there is an isomorphism I such that I ◦ H = J .
Hence, ≤n is a partial order (to within isomorphism).

3. The relation ≤n is well founded (to within isomorphism).

4. {H : H : A 7→ B ∧ B is realized} is a characterization for A.

5. min(C) is a non-empty characterization for A if C is.

6. If C, C′ are characterizations for A, min(C) ∼ min(C′).

Proof:

1. If H = [φ, α] : A 7→ A is injective, then by the finiteness of nodes(A), φ is
a bijection and does not introduce new pairs into the ordering. That is,
φ(n) � φ(m) implies n � m.

So we must show next that the message algebra homomorphism α is in-
vertible. However, by Lagrange’s theorem, there is a k such that the kth

iterate φk of φ is the identity. If k = 1, then α is the identity. If k = j+ 1,
then the jth iterate αj of α inverts α.

2. If H≤nJ≤nH, then we have J = G1◦H and H = G2◦J , where G1, G2 are
node-injective. Hence G2 ◦G1 is a node-injective homomorphism from the
target of H to itself. By Clause 1, G2◦G1 has an inverse F , i.e. F ◦(G2◦G1)
is the identity. Thus, by associativity of composition, F ◦G2 is the desired
inverse to G1.

3. Let . . .Kj+1≤n Kj≤n . . .K0 be an infinite descending chain of homomor-
phisms in the ≤n ordering, as in the following diagram, where each Hi is
nodewise injective:

A:
Kj+1

||zzzzzzzz _

Kj

��

�

K1
((PPPPPPPPPPPPPPP�

K0

**UUUUUUUUUUUUUUUUUUUUUUU

. . . �
Hj+1

// Bj+1
�
Hj

// Bj � // . . . �
H1

// B1
�
H0

// B0

We want to ensure that all but finitely many of the Hi are isomorphisms.
By Lemma 2.3, Clause 3, all but finitely many of the αKi are isomorphic
to each other, hence all but finitely many of the αHi are isomorphisms.
For convenience, assume that all αHi

with i > N0 are the identity. Thus,
all of the Hi for i > N0 are inclusion maps. But by finiteness of skeletons,
all but finitely many must be the identity.

4. Clause 3a of Def. 3.10 is immediate. Clause 3b holds because J ≤n J .

Draft January 12, 2010 25

5. Non-emptiness of min(C) follows from well-foundedness. Observe that if
H ∈ C \min(C), then there is some J ∈ min(C) such that J ≤n H. Since C
is a characterization, for any K : A 7→ C with C realized, there is a H ∈ C
such that H ≤n K. If H 6∈ min(C), then there is some J ∈ min(C) with
J ≤n H ≤n K, so J ≤n K. Thus, min(C) is a characterization.

6. If either C or C′ is empty, then so is the other (i.e. A is dead); in this case
the result is immediate.

Assume both non-empty. Since min(C) is a characterization, for every
J ∈ min(C′) there is a H ∈ min(C) such that H ≤n J . Since min(C′) is
a characterization, there is also a K ∈ min(C′) such that K ≤n H ≤n J .
By the definition of min, J ≤n K. Hence H,J differ by an isomorphism.
Symmetry of min(C),min(C′) completes the proof.

ut

This establishes that the cpsa goal, to compute the minimum characterization,
is well-defined.

Definition 3.12 The shapes for a skeleton A are the members of the nodewise
minimum characterization for A.

The shapes for any skeleton A form a well-defined set, since we may apply
Lemma 3.11, Clauses 5–6 to the characterization C containing all homomor-
phisms from A to realized skeletons. If A is dead, this set is empty. We may
now justify Principle 1.4 directly from the definitions.

Lemma 3.13 Suppose A has shapes C. Suppose H : A 7→ B, and J : B 7→ D
where D is realized. There is some K : A 7→ S with K ∈ C, and some node-
injective L : S 7→ D such that J ◦H = L ◦K.

3.4 The Hull of a Preskeleton

Suppose A is a preskeleton but not a skeleton. Then there is some a ∈ uniqueA
which either originates at two or more nodes (Def. 3.1, Clause 5a), or else a is an
ingredient in some node that does not follow the origin of a. In this subsection,
we describe how to “fix” those situations, when they can be fixed. There is a
single, canonical, most general way to do so.

A map f is universal in some set of maps F if f ∈ F and, for every f ′ ∈ F ,
there is exactly one g such that f ′ is of the form f ′ = g ◦ f .

Lemma 3.14 Suppose A,B are preskeletons, with H : A 7→ B.

1. If γ ≤s αH , then there is a B0 and a G : A 7→ B0 such that G is universal
among all homomorphisms K with source A where γ ≤s αK .

2. Suppose that �A⊆�1 and φH(�1) ⊆�B. Then there is a B0 and a G : A 7→
B0 such that G is universal among all homomorphisms K : A 7→ B1 where
φK(�1) ⊆�B1 .

Draft January 12, 2010 26

3. If φH(n0) = φH(n1) for n0, n1 ∈ nodes(A), then there is a B0 and a
G : A 7→ B0 such that G is universal among all homomorphisms from A
which identify n0 and n1.

Proof:

1. Define nodes(B0) by applying γ to each strand s that contributes to A, and
let ψ be the bijection that maps each node s ↓ i ∈ nodes(A) to γ(s) ↓ i.
Let �B0= ψ(�A), nonB0 = γ(nonA), and uniqueB0

= γ(uniqueA).

Then B0 is a preskeleton unless Def. 3.1, Clause 3a fails. However, if
a v msg(n) ∈ nodes(B0) but a ∈ γ(nonA), then this property is preserved
under composition. Thus, since γ ≤s αH , and B satisfies Clause 3a, so
does B0.

Moreover, [ψ, γ] is a homomorphism unless Def. 3.6, Clause 7 fails. How-
ever, if a originates on s ↓ i, but γ(a) v msg(ψ(s ↓ j)) for j < i, then
α(a)H v msg(φH(s ↓ j)), contradicting the assumption that H is a homo-
morphism.

2. Define B0 to be the same as A, except that the ordering is �1. This
ordering is acyclic because its image under φH is acyclic.

3. We may suppose that n0 = s0 ↓ i and n1 = s1 ↓ i, since if the two
nodes lie at different indices, no homomorphism can identify them. Then
the messages msg(s0 ↓ 1), . . . ,msg(s0 ↓ i) are simultaneously unifiable
with msg(s1 ↓ 1), . . . ,msg(s1 ↓ i), since αH equates them. Let γ be
their simultaneous m.g.u. Apply Clause 1 to this γ, obtaining G0 =
[ψ0, γ] : A 7→ B0.

By Clause 2, we may extend the ordering �B0 so that s0 ↓ j precedes
(succeeds) every node that s1 ↓ j precedes (succeeds), and vice versa.

We now construct B1 by selecting the strand γ(s0). Let ψ1 extend ψ0 by
mapping the nodes s1 ↓ j to s0 ↓ j, discarding the unnecessary nodes.
G1 = [ψ1, γ] is the desired homomorphism.

ut

Lemma 3.14 is used in the next proof. However, it is also used repeatedly in
the proofs of Section 7.

Lemma 3.15 (Hull) Let A be a preskeleton with H : A 7→ B. If B is a skeleton,
then there is a skeleton B0, and a GA : A 7→ B0, such that GA is universal among
all homomorphisms from A to skeletons.

Proof: If A is a preskeleton but not a skeleton, then there is a counterexample
either to Def. 3.1, Clause 5a or else to Def. 3.1, Clause 5b. In the first case,
there are two nodes n0, n1 at both of which the same a ∈ uniqueA originates.
By Def. 3.6, Clause 7, αH(a) originates at φH(n0) and at φH(n1). Since B is a
skeleton, φH(n0) = φH(n1). Thus, we may apply Lemma 3.14, Clause 3.

Draft January 12, 2010 27

In the second case, for some a ∈ uniqueA, a v msg(n1) but with the origin
n0 of a, n0 6�A n1. In this case, we apply Lemma 3.14, Clause 2.

If the result of a step is not a skeleton, we iterate; however, we must termi-
nate: At each step of the first kind, we reduce the number of nodes. At each
step of the second kind, we reduce the number of incomparable nodes. ut

Definition 3.16 The hull of A, written hull(A), is the universal map GA given
in Lemma. 3.15, when it exists.

We write hullα(·) for the partial map that carries any skeleton A to the
homomorphism hull(α(A)).

We sometimes use the word hull to refer also to the target B0 of GA.2

4 Attestation Identity Protocol

In Section 1, we examined sep to extract a number of search principles. Of these,
some concerned the structure of the search, which we have now formalized in
Section 3. The two remaining principles—Principles 1.1 and 1.3—concern the
individual steps in the search process. Unfortunately, however, Principle 1.3 is
not yet strong enough to be complete. As formulated, it does not cover all the
transformations that protocols apply to encrypted units. Instead, it covers only
the most fundamental transformation, the act of creating the encrypted unit in
the first place.

In this section, we will examine a second example, the Trusted Comput-
ing Group’s protocol for generating certificates for “Attestation Identity Keys”
(AIKs) [1]. These signature keys are intended to be resident within a Trusted
Platform Module (TPM), and never to leave that device. However, the inten-
tion is that the certificate for an AIK public signature verification key K ensures
that the private signature part K−1 is resident in some TPM, without allowing
the recipient to determine which one. They provide, thus, anonymous assurance
that signatures were prepared within some TPM.

The party that prepares certificates on AIKs is called a privacy certificate au-
thority. It will prepare a certificate for any key K presented in a well-formatted
message. So how does it ensure that the private part K−1 is TPM-resident? It
encrypts the certificate aic using a public encryption key EK. That key is accom-
panied by a certificate from the TPM’s manufacturer saying that the matching
decryption key EK−1 is itself a long-term TPM-resident value. The TPM is
designed to liberate the AIK certificate from this encryption only if the TPM
holds the signature key that matches the verification key in the certificate.

The protocol itself is shown in Fig. 14 in slightly modified form. We will
associate some non-origination assumptions with the PCA role in this protocol.
First, when the PCA accepts an endorsement key certificate {|ekc MFˆEK|}sk(MF),
it must check that the signing key is known to be the signature key of a recog-
nized manufacturer. We model this by adding sk(MF) to the keys assumed to be

2The hull idea is due to Javier Thayer, as was the first proof of Lemma 3.15.

Draft January 12, 2010 28

xˆ ekc // TPM

��
•
��

I ˆK ˆxˆ ekc // I ˆK ˆxˆ ekc // PCA
��

•
��

{|aic|}EKoo •
{|aic|}EKoo

•aicˆkeyrecoo

STORE

aicˆkeyrec // •

ekc = {|ekc MFˆEK|}sk(MF) aic = {|aic I ˆK ˆx|}sk(PCA)

keyrec = {|aikrec K,K−1|}SRK

Figure 14: Modified Anonymous Identity Protocol MAIP

non-originating. Second, the point of the ekc is to vouch that the private part
EK−1 is TPM-resident, and therefore used only in accordance with the rules.
Hence, we also add EK−1 to the keys assumed to be non-originating.

In MAIP, there are two central transformations. The job of constructing
and emitting an aic is one “transformation,” which can be performed only by
the privacy certifying authority. However, it is equally essential to the working
of the protocol, that the PCA emits the aic only encrypted, and in such a way
that the aic can be decrypted and transmitted in usable form only by a genuine
TPM.

Of these two transformations, the first is certainly an instance of Princi-
ple 1.3. The value {|aic I ˆK ˆx|}sk(PCA) is emitted, without having been con-
tained as an ingredient of any previous node. Thus, if we assume that the
signature key of PCA is uncompromised, any execution containing an instance
of the STORE role must also contain an matching instance of the PCA role, as
shown in Fig. 15. Observe that in A1 we have added sk(MF),EK−1 to the keys
assumed non-originating, in accord with the origination constraint we associated
with the TPM role.

The TPM’s transformation to free the aic from its encryption is not an
instance of Principle 1.3. The digitally signed unit must be received before
being retransmitted. Thus, Principle 1.3, Clause 2 cannot apply. Moreover,
Principle 1.1 does not apply. The AIK K may be a freshly chosen value, but it
has already been transmitted outside all encryptions at the time that the PCA
receives it. So Principle 1.1 implies nothing.

What we need here is an analog to Principle 1.1, but applying to encryptions
rather than to fresh values. It needs one additional case, to cover the possibility
that the adversary could independently generate the encryption. Thus, it would
take the form:

Draft January 12, 2010 29

aicˆkeyrec// •

A0

7→ I ˆK ˆxˆ ekc // PCA

��
A1 •

{|aic|}EKoo

aicˆkeyrec// •

non(A0) = {sk(PCA)} non(A1) = {sk(PCA), sk(MF),EK−1}

Figure 15: PCA Analysis, step 1 (Point of view: Store)

Principle 4.1 (The Encryption Test) Suppose that e = {|t|}K , is an en-
cryption, and e is found in some message received in a skeleton A at a node n1.
Moreover, suppose that, in the message of n1, e is found outside all of a number
of encrypted forms {|t1|}K1 , . . . , {|tj |}Kj . Then in any enrichment B of A such
that B is a possible execution, either:

1. One of the matching decryption keys Ki
−1 is disclosed before n1 occurs,

so that e could be extracted by the adversary; or else

2. The encryption key K is disclosed before n1 occurs, so that the adversary
could construct e = {|t|}K from t; or else

3. Some regular strand contains a node m1 in which e is transmitted outside
the forms {|t1|}K1 , . . . , {|tj |}Kj

, but in all previous nodes m0 ⇒+ m1, e was
found (if at all) only within the plaintexts t1 . . . tj. Moreover, m1 occurs
before n1.

We may apply this principle to the encryption e = {|aic I ˆK ˆx|}sk(PCA), with
the single encrypted form {|aic|}EK. If we assume that the signature key sk(PCA)
is uncompromised, as well as the TPM-resident value EK−1, then the first two
disjuncts are inapplicable, and we are left with the regular TPM strand that
transforms the aic from the form {|aic|}EK to aic.

We may observe, finally, that Principle 1.3 is a special case of Principle 4.1.
If j = 0 in the list of encrypted forms {|t1|}K1 , . . . , {|tj |}Kj —so that this is
the empty list—then the first disjunct is unsatisfiable. Moreover, in the last
disjunct, no earlier occurrences of e are permitted. Hence, the old principle is
nothing but the j = 0 case.

Indeed, now Principles 1.1 and 4.1 are in essentially the same form. The only
differences are that (1) the “critical ingredient” is a uniquely originating basic
value c in Principle 1.1 and an encryption e = {|t|}K in Principle 4.1, and (2)
the possibility that K becomes compromised is relevant only in Principle 4.1.

Draft January 12, 2010 30

I ˆK ˆxˆ ekc// PCA

��
A1 •

{|aic|}EKoo

aicˆkeyrec// •

7→ // TPM

��
•

��

// � // PCA

��
•

��

�
{|aic|}EKoo •

{|aic|}EKoo

•aicˆkeyrecoo A2

aicˆkeyrec // •

Figure 16: PCA Analysis, step 2 (Point of view: Store)

5 The Authentication Tests

We regard Principles 1.1 and 4.1 as specifying how certain tests can be solved.
In each one, the critical value c or e is found only inside a number of encryptions
S = {{|t1|}K1 , . . . , {|tj |}Kj

}, and is subsequently received at node n1 outside of
these forms S. The test is to explain how it is extracted from S. We call S the
escape set, since the critical value does escape from it; indeed, it has done so
before being received at n1.

The solutions are of two kinds: Either a key is compromised, so the ad-
versary can create an occurrence of c outside S, or else a regular strand has a
transmission node m1 which transmits c or e outside S, although earlier nodes
on the same strand contained the critical value only within S (if at all). Since
there are only finitely many roles in Π, unification on their nodes can find all
candidates for regular solution nodes m1. We formalize “being contained within
S” as follows:

Definition 5.1 Let S be a set of encryptions. A message t0 is found only within
S in t1, written t0 �S t1, iff for every path p such that p(t1) = t0, either (1) p
traverses a key edge or else (2) p traverses a member of S before its end.

Message t0 is found outside S in t1, written t0 †S t1, iff not (t0 �S t1).

Equivalently, t0 †S t1 iff for some path p, (1) p(t1) = t0, (2) p traverses no key
edge, and (3) p traverses no e ∈ S before its end. Thus, t0 v t1 iff t0 †∅ t1.

For instance, let t0 = {|{|k|}sk(A)|}pk(B), and let S0 = {t0} and S1 = {{|k|}sk(A)};
because the sole path 〈`, `〉 to k in t0 traverses first t0 and then {|k|}sk(A),

k �S0 t0 and k �S1 t0.

Draft January 12, 2010 31

We used S0 and S1, respectively, in Section 1.1, when we considered A’s point
of view in sep, and in Section 1.2, considering B’s point of view. Moreover, for
every S, k �S {|s|}k, because the only path to k traverses a key edge. However,
{|k|}sk(A) †∅ t0.

Taking key examples from MAIP next, we have

aic †∅ aic and aic †∅ {|aic|}EK but aic �S2 {|aic|}EK

where S2 = {{|aic|}EK}. We formalize tests using cuts:

Definition 5.2 Cut(c, S,A), the test cut for c, S in A, is defined if c is a basic
value or an encryption, S is a set of encryptions, and ∃n1 ∈ nodes(A) such that
c †S msg(n1). In this case,

Cut(c, S,A) = {n ∈ nodes(A) : ∃m, m �A n ∧ c †S msg(m)}.

Thus, in Fig. 2, again letting {{|{|k|}sk(A)|}pk(B)} = S0,

Cut(k, S0,A0) = { • k←},

i.e. the listener node at the right. In Fig. 3, the cut consists of the lower node:

Cut({|s|}k, ∅,B) = { • {|s|}k← }.

In Fig. 4, for both skeletons B1 and B2, we were interested in the test Cut(k, S0,Bi).
In Figs. 6–7, it is Cut(s, S3,Ci), with S3 = {{|s|}k}. The cuts driving the MAIP
analysis, shown in Figs. 15–16, are (with S2 = {{|aic|}EK}):

Cut(aic, ∅,A0) and Cut(aic, S2,A0).

Definition 5.3 Q = Cut(c, S,A) is solved if for every �A-minimal m1 ∈ Q:

1. either m1 is a transmission node;

2. or there is a listener node m = Lsn[K] with m ≺A m1, and either

(a) c = {|t0|}K , or else

(b) for some {|t0|}t1 ∈ S, K = t−1
1 is the corresponding decryption key.

The cut Cut(c, S,A) is a test if it is unsolved. A solution to a cut is a trans-
mission or listener node satisfying the clauses above.

In skeleton A0 there is no way to add a solution to Cut(k, S0,A0), and this
showed that A0 is dead. Or to be more precise, in any homomorphic image of
A0, the image of Cut(k, S0,A0) remains unsolved.

The solution to Cut(k, S0,B1) is an instance of Clause 2a, while the solution
to Cut(k, S0,B2), it is an instance of Clause 1.

The solutions to the MAIP cuts Cut(aic, ∅,A0) and Cut(aic, S2,A0) are both
instances of Clause 1; these solutions are added to form A1 and A2, resp.

Adversary webs (Def. 3.3) can derive messages iff the cuts are solved:

Draft January 12, 2010 32

Lemma 5.4 Let n be a reception node in A. The following are equivalent:

1. There exists no adversary web G deriving msg(n) from

{msg(m) : m is a transmission node ∧m ≺A n}

avoiding the set nonA ∪ (uniqueA ∩ {a : a originates at some n ∈ A}).

2. Node n is �A-minimal in some well-defined, unsolved Cut(c, S,A).

Proof: By [5, Props. 2–4]. ut

Theorem 5.5 (Authentication Test Principle) 1. If every cut in A that
is well-defined is solved, A is realized.

2. If A is realized, then A has an extension A′, obtained by adding only
listener nodes, in which every well-defined cut is solved.

Proof: 1. Immediate from Lemma 5.4, Clause 1 implies Clause 2.
2. Since A is realized, for each reception node n ∈ nodes(A), there is an ad-
versary web G deriving msg(n) from preceding transmission nodes. Build A′
by adding—for each message t used as a key on an encryption or decryption
strand in G—a listener node ` for t, where ` ≺A′ n and (for all m) m ≺A′ n
implies m ≺A′ `. By construction, all of these listeners are derivable, since the
adversary has in fact derived them in G.

Now apply Lemma 5.4, Clause 2 implies Clause 1 to A′. ut

6 Steps in the Search

Theorem 5.5, the Authentication Test Principle, describes what must be true
at the end of the search, when we have reached a realized skeleton, namely that
all the cuts are solved (modulo adding listener nodes). In this section, we “read
off” what must happen step by step during the cpsa search. At each moment
we are considering some skeleton A, and Theorem 5.5 tells us that we must take
a step if A has some well-defined but unsolved cut Cut(c, S,A). Thus, each step
is taken in response to an unsolved cut.

There are three possible types of steps.

1. We may destroy the test Cut(c, S,A), rather than solving it.

The step from B2 to B21 in Figs. 4–5 is an example. In Fig. 4 the cut
Cut(k, {{|k|}sk(A)},B2) is well-defined, and its minimum node is the upper
right node, i.e. D’s first step that receives {|{|k|}sk(C)|}pk(D). The session
key k is previously found only within {{|k|}sk(A)}. By applying the α that
maps [C 7→ A,D 7→ B], we destroy this cut; α leaves k and t0 unchanged,
but there is no node in which k is found outside of {t0} in B21.

There is a second way to destroy a test. Suppose that a reception node
n1 is minimal in Cut(c, S,A). If there is a transmission node m1 in A such

Draft January 12, 2010 33

that c †S msg(m1), but n1 6≺A m1, then we may be able to add the pair
(m1, n1) to the ordering to destroy the test.

In the first case, the cut no longer needs to be solved, because it is no
longer well-defined. In the second case, it no longer needs to be solved
because n1 is now no longer minimal in the cut.

2. We may add a regular transmission node m1 that will satisfy Clause 1 of
Def. 5.3. It must satisfy c †S msg(m1), but it must be minimal in the cut,
so in particular if m0 ⇒+ m1, then c �S msg(m0).

The step from B to B2 in Figs. 3–4 is of this kind. So is the step from D
to D1 in Fig. 8. Both steps in our analysis of MAIP are of this kind.

The absence of steps is also important. Since in sep k �S {|s|}k, for every
S, the transmissions provided by the protocol do not free k from t0. This
helps to ensure the deadness of A0 in Fig. 2.

3. We may add a listener strand that will satisfy Clause 2 of Def. 5.3. It may
add either a listener strand for a key that is the decryption key K−1 for
some {|t|}K ∈ S, or else the encryption key K when c = {|t|}K .

The step from B to B1 is of this kind (Figs. 3–4).

In some cases the key K may be assumed non-originating in the skeleton,
and then the step is impossible, since the resulting object would not satisfy
the definition for a preskeleton (Def. 3.1, Clause 3a).

6.1 Sketch of Search Algorithm

How do we search for shapes, starting with a skeleton A0? At any point in the
search, we have a set F of homomorphisms—all with source A0—that have been
encountered, but not yet explored. Initially, we have the identity homomorphism
of A0: F = {IdA0}. We also have a set S of candidate shapes, initially empty.

If F = ∅, then we are done, and return S. Otherwise, select and remove any
H : A0 7→ A1 ∈ F .

If A1 is realized, and J 6≤nH for any J ∈ S, then we add H to S. We
discard any J ∈ S for which H ≤n J . If A1 is not realized, then it has at
least one unsolved test cut. If it has several, we may choose any one, since
whichever unsolved test we choose, it must be solved or destroyed. If this cut
has no solution, then A1 is dead, and we discard H. If this cut has a number
of potential solutions, we construct a finite number of maximally general steps
for that cut, placing them into F .

We now explain how to select a test (Section 6.2), and how to select maxi-
mally general steps to solve that test (Sections 6.3–6.6).

6.2 Selecting a Test

If A1 is not realized, then it has unrealized reception nodes; let n1 be any one of
them. There is an unsolved cut Cut(c, S,A1) of which n1 is a minimal member.

Draft January 12, 2010 34

Since c †S msg(n1), c v msg(n1). We consider each of the basic values and
encryptions c such that c v msg(n1).

For each such c, we find the relevant S by examining every n0 ≺A1 n1. For
each path p such that p(msg(n0)) = c and p encounters no key edge, we collect
the topmost encryption e such that p traverses e before reaching c. If there is
no such e, then c is discarded. We let S be the set of these e.

If c †S msg(n1), then Cut(c, S,A1) is unsolved. Otherwise c is discarded.
This process must deliver at least one c, S pair for n1. The set S consists of
encryptions that were ingredients in messages of A1, so S is finite.3

6.3 Destroying a Test, 1

Suppose Cut(c, S,A1) is unsolved, and—for ease of exposition—it has a single
minimal node n1. We consider now the first way to destroy the test, in which
we find message homomorphisms α such that α(c) �α(S) α(msg(n1)).

By the definition, there are some paths p1, . . . , pi each pj of which leads to c
in msg(n1), but pj does not encounter a key edge, nor traverse any encryption
in S. To destroy the cut, we must find a message homomorphism α such that
each path to α(c) in α(msg(n1)) either encounters a key edge, or traverses a
member of α(S).

We do so via unification. That is, for each pj , there is a set Ej = {ej1, . . . , ejk}
which are the encryptions that pj does traverse. We must (simultaneously) unify
some ej` with some member of S, for each j ≤ i. There are at most (|S| · |Ej |)
most general ways to succeed for path pj , and hence at most (|S| · |Ej |)i ways
to succeed for all paths.4

The unification ensures that any message homomorphism that destroys the
cut is at least as specific as one of the resulting message homomorphisms α.
However, α(msg(n1)) may have occurrences of α(c) at new paths besides the
original p1, . . . , pi. In this case, we repeat the unification for the new paths to
obtain 0 or more refinements of α that successfully destroy the cut.

Since each success furnishes a unifier α, we have a set of homomorphisms
Jα : A1 7→ α(A1) which destroy the cut in maximally general ways. The latter
means that (1) Cut(α(c), α(S), Jα(A1)) is not well-defined, and, moreover, (2) if
Cut(β(c), β(S), β(A1)) is not well-defined, then α ≤s β for one of the α we have
computed. Since α(A1) may not be a skeleton, but only a preskeleton, we will
use the hull operation later.

6.4 Destroying a Test, 2

Turning to the second way to destroy a test, consider the transmission nodes

V = {m1 : m1 is a transmission node ∧ n1 6≺A1
m1}.

Suppose that α(c) †α(S) α(msg(m1)). Suppose also that m1 is the first node
along its strand for which this is true; that is, suppose that m0 ⇒+ m1 implies

3John Ramsdell devised this process for selecting a test.
4John Ramsdell devised this repeated unification. It is used again in Section 6.5.

Draft January 12, 2010 35

α(c) �α(S) α(msg(m0)). Then, possibly enriching the ordering of A1 so that
m1 ≺ n1, and applying α, we obtain for each such m1 ∈ V a preskeleton B and
a map Jα : A1 7→ B.

6.5 Solutions with a Regular Transmission

Suppose that Cut(c, S,A1) is well-defined but unsolved, with a minimal reception
node n1 ∈ Cut(c, S,A1). A transmission node m1 can solve some refinement of
the cut if it will be minimal in some Cut(α(c), α(S), α(A1)). Then m1 must be
of the form α(ρ ↓ i) for some role ρ ∈ Π, and α(c) †α(S) msg(m1). Moreover,
since we will choose m1 to be the earliest solution, α(c) �α(S) msg(m0) for all
m0 ⇒+ m1.

We may again rely on repeated unification. Consider every transmission
node ρ ↓ i, and each path p that does not encounter a key edge in msg(ρ ↓ i). If
c is unifiable with p(msg(ρ ↓ i)), then let α be the most general unifier. Consider
now each ρ ↓ j with j < i, and consider all p′ such that p′(α(msg(ρ ↓ j))) = α(c).
We want to arrange that each such p′ traverses a member of α(S). We may refine
α to a (possibly empty) set of most general β such that β(c) �β(S) β(msg(ρ ↓ j))
using the same repeated unification as in Section 6.3.

For this set of successful β, we have the transmission nodes β(ρ ↓ i) = m1 as
the most general solutions under Def. 5.3, Clause 1. For each such β, we build
a new preskeleton B by adding the node m1 to β(A1); we enrich the ordering so
that m1 ≺B n1. The message homomorphism β determines a homomorphism
Jβ : A1 7→ B.

6.6 Solutions that Listen for a Key

The solutions under Def. 5.3, Clause 2 are computed directly from the form
of c and S. In particular, for each K−1 such that some {|t|}K ∈ S, where

K−1 6∈ nonA1 , we build a solution B containing a listener strand K−1

→ • = m1.
We extend the ordering so that m1 ≺B n1, for each n1 which is �A1 -minimal in
Cut(c, S,A1). If c = {|t|}K , another solution is the skeleton with listener strand
K→ • = m1 added, assuming that K 6∈ nonA1 . For each of these solutions B, we
have an embedding JB of A1 into B.

6.7 The Cohort of Solutions

Each of the three types of solutions yields 0 or more potential solutions Bi for
Cut(c, S,A1). Each solution consists of a target preskeleton Bi, together with a
homomorphism Ji : A1 7→ Bi. We now apply the hull operation to all of the Ji,
collecting the successful results as a set J of homomorphisms.

The set J is the cohort of solutions for Cut(c, S,A1).
If J is the empty set, then we have discovered that A1 is dead: It contains

a cut that cannot be solved. Otherwise, the result of the step is to augment the

Draft January 12, 2010 36

set F of homomorphisms still to be considered by adding the set

{J ◦H : J ∈ J },

where H is the homomorphism we chose originally—and removed from F—to
start this step.

7 Soundness and Completeness of the Search

In this section, we prove two central facts about the search for shapes. The first
(Thm. 7.1) says that a step never discards any homomorphisms that lead to
realized skeletons. We also regard this as showing the following. Suppose:

1. CA is a characterization for A

2. J is a cohort for A;

3. For each J : A 7→ Aj with J ∈ J , Cj is a characterization for Aj .

Then
min(CA) ∼ min({H ◦ J : J ∈ J ∧H ∈ Cj}).

The second result, Thm. 7.2, says that—modulo a little bookkeeping—one can
view any homomorphism to a realized skeleton as consisting of a finite sequence
of steps. The bookkeeping may include a nodewise injective homomorphism at
the end, and also a surjective map at the beginning that may identify strands.

Theorem 7.1 (Search Soundness) Suppose that H : A 7→ C, where C is re-
alized, and let J be the cohort of solutions for the unsolved test Cut(c, S,A).
There is a J : A 7→ B with J ∈ J and a K : B 7→ C such that H = K ◦ J .

Proof: Let n1 be an unsolved, �A-minimal member of Cut(c, S,A). Since C is
realized, Q = Cut(αH(c), αH(S), αH(A)) is either undefined or solved.

If Q is undefined, then we apply the first type of test destruction, as in Sec-
tion 6.3. Indeed, since φH(n1) is not in Q, some member of αH(S) is traversed
on each path p that does not encounter a key edge. Choose p to be a path such
that p(msg(n1)) = c but p traverses no member of S, and let p1 be the shortest
proper subpath of p such that p1(αH(msg(n1))) = αH(e) for e ∈ S. Let γ be
the m.g.u. of p1(msg(n1)) and e. By Lemma 3.14, Clause 1, there is a universal
homomorphism G such that γ ≤s αG. Repeating this process with all such p,
we obtain a step satisfying the constraints in Section 6.3.

Assume next that Q = Cut(αH(c), αH(S), αH(A)) is solved in C, and there
is a transmission node of the form

m = φH(m1) where m1 ∈ nodes(A) and αH(c) †αH(S) msg(m).

In this case, we have a step according to Section 6.4, as we see again using
Lemma 3.14, Clause 1, and if m1 6�A n1, we also use Lemma 3.14, Clause 2.

Draft January 12, 2010 37

A � H //
_

K

��

B

A0
�

J1

//%

L0

22eee A1
�

J2

//'
L1

33ggggggggggggggggggggggggggggggg . . . �
Jk

// Ak �
Jk+1

//
4 Lk

::ttttttttttt
Ak+1

_
L

OO

Figure 17: Steps Ji and nodewise-injective Li

Assume next that there is a transmission node

m ∈ nodes(C) where αH(c) †αH(S) msg(m), but m 6∈ φH(nodes(A)).

In this case, we have a step according to Section 6.5, where we use Lemma 3.14,
Clause 1, to justify any non-trivial message homomorphism.

Otherwise, there is a listener node ` for some decryption key inverting an
encryption key used in αH(S), or for the encryption key used in αH(c). This is
the image of a key that may be added in a step according to Section 6.6.

Thus, in all cases, H factors through some step. ut

Observe, in this proof, that if a step introduces a node n, and φK(m) lies on the
same strand as some φK(n), then already in B, m and n lie on the same strand.
No two different strands already present in B are identified in C. Thus, if H is
node-injective, so is the “continuation” homomorphism K. In formulating the
next theorem, we rely on Thm. 5.5, Clause 2, to justify the assumption that in
B every well-defined cut is solved.

Theorem 7.2 (Search Completeness) Suppose that H : A 7→ B, where ev-
ery well-defined cut in B is solved. Then there are:

1. A surjective K : A 7→ A0;

2. A sequence of steps J1, . . . Jk+1 such that each Ji+1 : Ai 7→ Ai+1 belongs
to the cohort for some test Cut(c, S,A)i; and

3. a node-injective L : Ak+1 7→ B

such that H = L ◦ Jk+1 ◦ . . . ◦ J1 ◦K.

Proof: First, we defineK to be the universal homomorphism (using Lemma 3.14,
Clause 3 repeatedly) that identifies any pair m,n ∈ nodes(A) if φH(m) = φH(n).
Let A0 be the target of K. The universality of K implies that H factors
(uniquely) through K, i.e. H = L0 ◦ K for some L0. By the definition of
K, L0 is nodewise injective.

We will define a finite sequence of steps J1, . . . , Jk+1, and refer to the target
of Ji as Ai. We do this in such a way that there is always a nodewise injective
Li : Ai 7→ B, as in Fig. 17.

Draft January 12, 2010 38

At each step, given J1, . . . , Ji, if Ai is not realized, then we can apply
Thm. 7.1 to the map Li : Ai 7→ B. We thus split Li into a step Ji+1 and a
“continuation” homomorphism Li+1. By the remark after the last proof, Li+1

is again node-injective.
By node-injectiveness of the Li, the cardinalities of nodes(Ai), of �Ai

, of
nonAi , and of uniqueAi

are non-decreasing. By the finiteness of B, only finitely
many such Ai can differ in any of these cardinalities.

Moreover, by Lemma 2.3, Clause 3, there are finitely many non-isomorphic
β ≤s αL0 . In particular, since αJi

◦ . . . ◦ αJ1 ≤s αL0 , there are only finitely
many steps possible. Hence, the process terminates with a Ak+1 containing no
further unsolved cuts, and we let L = Lk+1. ut

Conclusion. We have presented here the theory underlying cpsa, the Cryp-
tographic Protocol Shape Analyzer. We will write more specifically about the
design and implementation of cpsa elsewhere.

We believe that the Authentication Test Principle is central to cryptographic
protocols. Indeed, already in our first paper about the tests, we pointed out that
they provide very strong heuristics to guide cryptographic protocol design [11].
We also illustrated a systematic protocol design process, which led to a protocol
achieving goals akin to the Secure Electronic Transaction protocol, organized
by reference to the tests [8]. Moreover, we have recently used the tests to
justify a criterion for when combining a protocol with new behaviors preserves
all security goals met by the original protocol [9]. We hope to develop the theory
we have just described to provide a systematic set of protocol transformations
that preserve security goals. This appears likely to provide rigorous techniques
to replace the heuristics that protocol designers currently use.

Acknowledgments. Thanks especially to Shaddin Dughmi, John D. Rams-
dell and F. Javier Thayer, who contributed enormously to developing these ideas
and making them work. Shaddin Dughmi (a.k.a. Doghmi) wrote the earliest
version of cpsa. John Ramsdell is the author of the current version.

Moses Liskov, Leonard Monk, and Paul Rowe helped bring clarity to the
presentation. Jonathan Herzog helped work out the original strand space ideas.

References

[1] Boris Balacheff, Liqun Chen, Siani Pearson, David Plaquin, and Graeme
Proudler. Trusted Computing Platforms: TCPA Technology in Context.
Prentice Hall PTR, Upper Saddle River, NJ, 2003.

[2] Bruno Blanchet. Vérification automatique de protocoles cryptographiques:
modèle formel et modèle calculatoire. Automatic verification of security pro-
tocols: formal model and computational model. Mémoire d’habilitation à
diriger des recherches, Université Paris-Dauphine, November 2008.

[3] Cas J.F. Cremers. Unbounded verification, falsification, and characteriza-
tion of security protocols by pattern refinement. In ACM Conference on

Draft January 12, 2010 39

Computer and Communications Security (CCS), pages 119–128, New York,
NY, USA, 2008. ACM.

[4] C.J.F. Cremers. Scyther - Semantics and Verification of Security Protocols.
Ph.D. dissertation, Eindhoven University of Technology, 2006.

[5] Shaddin F. Doghmi, Joshua D. Guttman, and F. Javier Thayer. Complete-
ness of the authentication tests. In J. Biskup and J. Lopez, editors, Euro-
pean Symposium on Research in Computer Security (ESORICS), number
4734 in LNCS, pages 106–121. Springer-Verlag, September 2007.

[6] Shaddin F. Doghmi, Joshua D. Guttman, and F. Javier Thayer. Search-
ing for shapes in cryptographic protocols. In Tools and Algorithms for
Construction and Analysis of Systems (TACAS), number 4424 in LNCS,
pages 523–538. Springer, March 2007. Extended version at URL:http:
//eprint.iacr.org/2006/435.

[7] Shaddin F. Doghmi, Joshua D. Guttman, and F. Javier Thayer. Skele-
tons, homomorphisms, and shapes: Characterizing protocol executions. In
M. Mislove, editor, Proceedings, Mathematical Foundations of Program Se-
mantics, April 2007.

[8] Joshua D. Guttman. Authentication tests and disjoint encryption: a design
method for security protocols. Journal of Computer Security, 12(3/4):409–
433, 2004. Extended version of “Security Protocol Design via Authentica-
tion Tests,” CSFW 2002.

[9] Joshua D. Guttman. Cryptographic protocol composition via the authen-
tication tests. In Luca de Alfaro, editor, Foundations of Software Science
and Computation Structures (FOSSACS), number 5504 in LNCS, pages
303–317. Springer, March 2009.

[10] Joshua D. Guttman. Fair exchange in strand spaces. In M. Boreale and
S. Kremer, editors, SecCo: 7th International Workshop on Security Issues
in Concurrency, EPTCS. Electronic Proceedings in Theoretical Computer
Science, Sep 2009.

[11] Joshua D. Guttman and F. Javier Thayer. Authentication tests and the
structure of bundles. Theoretical Computer Science, 283(2):333–380, June
2002. Conference version appeared in IEEE Symposium on Security and
Privacy, May 2000.

[12] Jonathan K. Millen and Vitaly Shmatikov. Constraint solving for bounded-
process cryptographic protocol analysis. In 8th ACM Conference on Com-
puter and Communications Security (CCS ’01), pages 166–175. ACM, 2001.

[13] Adrian Perrig and Dawn Xiaodong Song. Looking for diamonds in the
desert: Extending automatic protocol generation to three-party authen-
tication and key agreement protocols. In Proceedings of the 13th IEEE

Draft January 12, 2010 40

Computer Security Foundations Workshop. IEEE Computer Society Press,
July 2000.

[14] Dag Prawitz. Natural Deduction: A Proof-Theoretic Study. Almqvist and
Wiksel, Stockholm, 1965.

[15] Dawn Xiaodong Song. Athena: a new efficient automated checker for secu-
rity protocol analysis. In Proceedings of the 12th IEEE Computer Security
Foundations Workshop. IEEE Computer Society Press, June 1999.

[16] F. Javier Thayer, Jonathan C. Herzog, and Joshua D. Guttman. Strand
spaces: Proving security protocols correct. Journal of Computer Security,
7(2/3):191–230, 1999.

Draft January 12, 2010 41

Contents

1 Initial Examples 1
1.1 A’s Point of View . 2
1.2 B’s Point of View . 8
1.3 Correcting SEP . 9
1.4 Goals of this Chapter . 9
1.5 Structure of this Chapter . 11

2 Messages, Strands, Protocols 11
2.1 Algebra of Basic Values . 11
2.2 Message Algebra . 12
2.3 Properties of Homomorphisms . 14
2.4 Strands and Origination . 16
2.5 Protocols . 17

3 Skeletons, and Homomorphisms 18
3.1 Realized Skeletons . 19
3.2 Homomorphisms . 20
3.3 Describing Executions . 22
3.4 The Hull of a Preskeleton . 25

4 Attestation Identity Protocol 27

5 The Authentication Tests 30

6 Steps in the Search 32
6.1 Sketch of Search Algorithm . 33
6.2 Selecting a Test . 33
6.3 Destroying a Test, 1 . 34
6.4 Destroying a Test, 2 . 34
6.5 Solutions with a Regular Transmission 35
6.6 Solutions that Listen for a Key . 35
6.7 The Cohort of Solutions . 35

7 Soundness and Completeness of the Search 36

List of Figures

1 sep: Blanchet’s Simple Example Protocol 2
2 Skeleton A0: Disclosure of k? . 3
3 Skeleton B; t0 is {|{|k|}sk(A)|}pk(B) . 5
4 Analysis of B, Step 1; t0 is {|{|k|}sk(A)|}pk(B) 6
5 Analysis of B, Step 2: Its shape B21 6
6 Skeletons C and C21 . 7
7 Dead skeleton C211 . 7
8 Skeleton D: B’s Point of View, and its shape D1 8
9 sepc: the Simple Example Protocol Corrected 9
10 Skeleton E: B’s Point of View, and its shape E1 9
11 Algebra of basic values A0 . 12

Draft January 12, 2010 42

12 Algebra A, given Basic Values A0, Indeterminates X 12
13 A non-injective homomorphism A1 7→ A2 22
14 Modified Anonymous Identity Protocol MAIP 28
15 PCA Analysis, step 1 (Point of view: Store) 29
16 PCA Analysis, step 2 (Point of view: Store) 30
17 Steps Ji and nodewise-injective Li . 37

