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Abstract. We show how to collapse executions of a cryptographic pro-
tocol, when they contain behaviors that we regard as redundant. More-
over, executions containing sufficiently many local runs necessarily con-
tain redundant behaviors, if they have limited numbers of fresh values.
Since precise authentication and secrecy assertions are explicit about
which values must be assumed to be fresh, it follows that these asser-
tions are decidable.

We formalize these notions within the strand space framework, intro-
ducing the notion of a skeleton, a collection of behaviors of the regular
(non-penetrator) participants. Homomorphisms between skeletons ex-
press natural relations relevant to protocol analysis.

1 Introduction

It is accepted that the cryptographic protocol problem is undecidable [3]. To find
decidable subproblems, one may restrict the behaviors of principals to permit
only finitely many runs of the protocol roles, or one may require principals to stop
when they have jointly used up a finite budget of fresh random values (nonces).
These limitations seem artificial, and unmotivated by protocol behavior. Alterna-
tively, one may consider protocols that never send syntactically similar messages
in different situations [1, 10]. Many natural protocols meet this condition, and
other protocols can be adapted to it by adding tags that distinguish encrypted
units generated at different points in the protocol.

However, a question remains whether the original undecidability result is too
pessimistic. Perhaps there exists a class of problems, forming a reasonable set of
goals for protocol analysis to resolve, which is in fact decidable for all crypto-
graphic protocols, regardless of the forms of the messages used in those protocols.
One motivation for the present paper is to answer this question affirmatively.

The paper also has another motivation. This is to introduce the notion
of a skeleton (Definition 3), together with homomorphisms between skeletons
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(Definition 8). A skeleton provides partial information about the regular (non-
penetrator) behavior in some set of possible executions. A homomorphism is an
information-preserving map between skeletons. Skeletons and homomorphisms
form a category, and much protocol analysis can be regarded as an exploration
of properties of this category [2]. In this paper, we use operations on skeletons to
show that if a protocol execution involves many runs of the protocol roles, but
only a small number of nonces, then there is a smaller execution that is equiva-
lent in a certain sense (Theorem 3). It follows that if there is a counterexample
to a formula expressed in a certain fragment of a first order language, then there
is also a counterexample using a limited number of runs of the protocol roles.
Since there are only finitely many essentially different executions of limited size,
the formulas are decidable (Theorem 5). We include proof sketches for most of
the propositions below.

Theorem 4 probably also follows from the limited-nonce decidability results.
Moreover, Theorem 3 owes something to Heather and Schneider’s [6, 7]. How-
ever, the results do not appear to have been known previously, and they flow
naturally from the skeletons-and-homomorphisms method. We offer them as an
introduction to that method, which appears to us more broadly useful [2].

2 Terms, Strands, and Bundles

Terms form a free algebra A, built from atomic terms via constructors. The
atomic terms are partitioned into the types principals, texts, keys, and nonces.
There is an inverse operator defined on keys. Atoms are regarded as indeter-
minates (variables), and are written in italics (e.g. a,Na,K

−1). We assume A

contains infinitely many atoms of each type.
The terms in the algebra A are freely built up from atoms using the oper-

ations of tagged concatenation and encryption. The tags are chosen from a set
of constants written in sans serif font (e.g. tag, call). The tagged concatenation
using tag tag of t0 and t1 is written tag ˆ t0 ˆ t1; there is a distinguished tag
null, and the tagged concatenation using tag null of t0 and t1 is written t0 ˆ t1.
The encryption operator takes a term t and a key K, and yields a term as result
written {|t|}K . In the present formulation the second argument to an encryption
is always an atomic key.

Fix some choice of algebra A for the remainder of this paper. Replacements
are defined to have only atoms in their range.

Definition 1 (Replacement, Application). A replacement is a function α

mapping atoms to atoms, such that (1) for every atom a, α(a) is an atom of the
same type as a, and (2) for every key K, K−1 · α = (K · α)−1.

The application of a replacement α to terms t, written t · α, is defined to be
the homomorphism on terms extending α’s action on atoms. More explicitly, if
t = a is an atom, then a · α = α(a); and:

(tag ˆ t0 ˆ t1) · α = tag ˆ (t0 · α) ˆ (t1 · α)

({|t|}K) · α = {|t · α|}K·α
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We let replacement application distribute through pairing and sets.Thus, (x, y) ·
α = (x · α, y · α), and S · α = {x · α : x ∈ S}. If x 6∈ A is a simple value such as
an integer or a symbol, then x · α = x.

Definition 2 (Strand Spaces). A direction is one of the symbols +,−. A di-
rected term is a pair (d, t) with t ∈ A and d a direction, normally written +t,−t.
(±A)∗ is the set of finite sequences of directed terms.

A strand space over A is a structure containing a set Σ and two mappings: a
trace mapping tr : Σ → (±A)∗ and a replacement application operator (s, α) 7→
s · α such that tr(s · α) = (tr(s)) · α and s · α = s′ · α implies s = s′.

Message transmission has positive direction +, and reception has negative di-
rection −. The conditions ensure that · commutes with tr and that · does not
identify distinct strands.

Some additional definitions, including the subterm relation @ and the pen-
etrator strands (Definition 16), are in Appendix A. Strands that are not pen-
etrator behaviors are called regular strands. An important consequence of Def-
inition 16 is that penetrator strands are invariant under replacement (Propo-
sition 17). By a node we mean a pair n = (s, i) where i ≤ length(tr(s)); the
direction and term of n are the direction and term of tr(s)(i) respectively. We
prefer to write s ↓ i for the node n = (s, i). The set N of all nodes forms a
directed graph 〈N , (→ ∪ ⇒)〉 together edges n1 → n2 for communication and
n1 ⇒ n2 for succession on the same strand (Definition 15). A bundle is a sub-
graph of 〈N , (→ ∪ ⇒)〉 for which the edges are causally well-founded, expressing
a possible execution (Definition 17).

Proposition 1 (Bundles preserved by replacement). If B is a bundle and
α is a replacement, then B · α is a bundle.

Proof. By Definition 1, B ·α is a graph, and moreover B ·α is isomorphic to B by
the condition (Definition 2) that s ·α = s′ ·α implies s = s′. Moreover, if n ∈ B,
then n · α agrees with it in direction and term(n · α) = term(n) · α. Hence, the
bundle conditions (Definition 17) are met in B · α.

We say that t originates on n (Appendix A, Definition 15) when t is transmitted
at n but was neither received nor transmitted earlier on the same strand. Keys
that originate nowhere in a bundle are definitely uncompromised. They may still
be used in the bundle, because with our definition of subterm (Definition 15,
Clause 1), the encryption key K is not a subterm of {|t|}K , unless it was a
subterm of t. Values that originate at just one node are fresh and suited for use
as nonces or (if uncompromised) as session keys.

Proposition 2. Suppose S is a set of nodes and α is a replacement. (1) If for
all a such that a · α = a0, a is non-originating in S, then a0 is non-originating
in S · α. (2) If there is no a′ 6= a such that a′ · α = a · α, and a is uniquely
originating in S, then a0 = a · α is uniquely originating in S · α.
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Proof. (1) Suppose a0 @ term(n · α) where n is a positive node in S, then
a @ term(n) and by assumption a is non-originating, so a @ term(n′) for some
n′ ⇒∗ n. Thus a0 @ term(n′ · α) and a0 is non-originating.

(2) Omit the node on which a originates, and apply the first assertion.

3 Preskeletons and Skeletons

A preskeleton is potentially the regular (non-penetrator) part of a bundle or
of some portion of a bundle. It is annotated with some additional information,
indicating order relations among nodes, uniquely originating atoms, and non-
originating atoms. We say that an atom a occurs in a set N of nodes if for some
n ∈ N, a @ term(n). A key K is used in N if for some n ∈ N, {|t|}K @ term(n).

Definition 3. A four-tuple A = (N,�, non, unique) is a preskeleton if:

1. N is a finite set of regular nodes; n1 ∈ N and n0 ⇒+ n1 implies n0 ∈ N;
2. � is a partial ordering on N such that n0 ⇒+ n1 implies n0 � n1;
3. non is a set of keys such that K ∈ non implies K does not occur in N, but

either K or K−1 is used in N;
4. unique is a set of atoms such that a ∈ unique implies a occurs in N.

A preskeleton A is a skeleton if in addition:

4′. a ∈ unique implies a originates at no more than one node in N.

We select components of a preskeleton using subscripts. For instance, if A =
(N, R, S, S′), then �A means R and uniqueA means S′. We write n ∈ A to mean
n ∈ NA, and we say that a strand s is in A when at least one node of s is in
A. The A-height of s is the number of nodes of s in A. By Clauses 3 and 4,
uniqueA ∩ nonA = ∅. Bundles correspond to certain skeletons:

Definition 4. Bundle B realizes skeleton A if (1) the nodes of A are precisely
the regular nodes of B; (2) n �A n′ just in case n, n′ ∈ NA and n �B n′; (3)
K ∈ nonA just in case K or K−1 is used in NA but K occurs nowhere in B; (4)
a ∈ uniqueA just in case a originates uniquely in B.

The skeleton of B, written skeleton(B), is the skeleton that it realizes.

If B is a bundle, then there is a unique skeleton that it realizes. By condition
(4), B does not realize A if A is a preskeleton but not a skeleton.

We also want to view realizability more locally. A negative node in a preskele-
ton is realizable when the adversary can derive the message received, using terms
transmitted on earlier positive nodes.

Definition 5 (Penetrator web). Let G = 〈NG, (→G ∪ ⇒G)〉 be a finite
acyclic subgraph of 〈N , (→ ∪ ⇒)〉 such that NG consists entirely of penetra-
tor nodes. G is a penetrator web with support S and result R if S and R are sets
of terms and moreover:
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1. If n2 ∈ NG is negative, then either term(n2) ∈ S or there is a unique n1 such
that n1 →G n2.

2. If n2 ∈ NG and n1 ⇒ n2 then n1 ⇒G n2.
3. For each t ∈ R, either t ∈ S or there is some positive n ∈ NG such that

term(n) = t.

Proposition 3. If B is a bundle and n ∈ B is negative, let G be the set of
penetrator nodes m of B such that m �A n and S the set of terms term(m) for
m regular and positive and m �A n. Then G is a penetrator web with support S
and result {term(n)}.

Definition 6 (Realizable node). If A is a preskeleton and n ∈ A is negative,
then a penetrator web G with support S and result R realizes node n in A if

1. term(n) ∈ R;
2. S ⊂ {term(m) : m �A n and m is positive};
3. a originates in G implies a 6∈ nonA;
4. a originates in G and a originates in A implies a 6∈ uniqueA.

Node n is realizable in A if there is a penetrator web G that realizes it.

Proposition 4. If B is a bundle with n ∈ B negative, then there is a subgraph
Gn of B such that Gn realizes n in skeleton(B).

Skeleton A is realizable if and only if every negative n ∈ A is realizable in A.

Proof. The first assertion follows from Proposition 3. The second assertion holds
(left-to-right) by the previous assertion. Right-to-left, it follows by taking the
union of the penetrator webs, identifying any minimal penetrator M,K-nodes
originating the same term.

This last assertion holds only for skeletons A, because a non-skeleton is never
realizable. Inspired by Proposition 2, we define:

Definition 7. A replacement α respects origination in A just in case (1) for
all a, a′, if a ∈ nonA and a · α = a′ · α then a′ ∈ nonA; and (2) for all a, a′, if
a ∈ uniqueA and a · α = a′ · α, then a = a′.

If α is injective, then it respects origination. By Proposition 17, being a pene-
trator web is invariant under replacement. Using Definitions 5 and 7, we have:

Proposition 5. If n is realizable in preskeleton A and α respects origination
in A, then n · α is realizable in A · α. If skeleton A is realizable and α respects
origination, then A · α is realizable.

Proposition 6. It is decidable whether node n is realizable in skeleton A. Hence,
it is decidable whether A is realizable.

Proof. If A is realizable, then there is a normal bundle B that realizes it [5].
Thus, when n ∈ A is realizable, we will use only subterms of {term(m) : m �A

n and m positive} ∪ {term(n)}, of which there are only finitely many.
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Proposition 6 is well-known, e.g. [8], with a stronger form, where replacements
may carry variables to terms, not just atoms. Whether A may be embedded in
a realizable skeleton A

′ is a different matter; it is undecidable [3] for definitions
such as our Definition 9.

4 Collapsing Skeletons

We show next how to collapse preskeletons without destroying realizability.
When α unifies two strands s, s′ in A, and α respects origination in A, then
we can equate s · α with s′ · α in A · α. Identifying them, while leaving other
strands distinct, yields a realizable preskeleton A

′, if A was realizable.
These operations on preskeletons use homomorphisms in the following sense.

Definition 8. Let A0,A1 be preskeletons, α a replacement, φ : NA0
→ NA1

.
H = [φ, α] is a homomorphism if

1. term(φ(n)) = term(n) · α for all n ∈ A0

1′. m⇒ φ(n′) iff m = φ(n) where n⇒ n′

2. n �A0
m implies φ(n) �A1

φ(m)
3. nonA0

· α ⊂ nonA1

4. unique
A0

· α ⊂ unique
A1

We write H : A0 7→ A1 to mean that H is a homomorphism from A to A
′.

When a ·α = a ·α′ for every a used or uttered in dom(φ), then [φ, α] = [φ, α′];
i.e., [φ, α] is the equivalence class of pairs under this relation.

When a homomorphism identifies nodes, only one of them needs to be realizable:

Proposition 7. Let A,A′ be preskeletons, and let H = [φ, α] : A 7→ A
′, where α

respects origination in A. (1) If there exists any n ∈ A such that n is realizable
in A and φ(n) = m, then m is realizable in A

′.
(2) Suppose A

′ is a skeleton. If for every m ∈ A
′ there exists an n ∈ A such

that n is realizable in A and φ(n) = m, then A
′ is realizable.

Proof. (1) holds by Proposition 5. (2) holds by (1) and Proposition 4.

We recall that any partial order ≤ (or indeed any reflexive, transitive relation)
can be regarded as a graph G, in which there is an edge x ⇀ y just in case x ≤ y

and for all z, x ≤ z ≤ y implies x = z or z = y. When we say that a node n
immediately precedes m in A, we mean that n ⇀ m in the graph G(A) generated
from �A. In G(A), there may not be an arrow n0 ⇀ n1 when n0 ⇒ n1; this
happens in case n0 is positive, n1 is negative, and there is at least one node m
not on this strand such that n0 �A m �A n1. If A = skeleton(B), this is the only
case in which n0 ⇒ n1 but there is no arrow n0 ⇀ n1 in G.

An edge n0 ⇀ n1 in G(A) is removable when n0 6⇒ n1; homomorphisms
cannot change the strand structure between nodes, but they can enrich the order
to add back any removable edge. We call a homomorphism H = [id, id] : A 7→ A

′

an order enrichment when NA = NA′ , nonA = nonA′ , and uniqueA = uniqueA′ .
Hence, the only possible difference is that �A′ may extend �A.
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Proposition 8. Suppose that A
′ is a preskeleton and S is a set of removable

edges in G(A′). There is a preskeleton A and an order enrichment H : A 7→ A
′

such that G(A′) \ S = G(A).

Theorem 1. Suppose that s0, s1 have heights h0, h1 (resp.) in the preskeleton
A

′, with h0 ≤ h1, and suppose that for all j ≤ h0, term(s0 ↓ j) = term(s1 ↓ j)
with the same direction. There exist A,A′′, an order enrichment H : A 7→ A

′,
and a homomorphism H ′′ = [φ, id] : A 7→ A

′′ such that:

1. There is a set S containing only removable edges n ⇀ m for which m lies
on s0 or s1 and G(A′) \ S = G(A);

2. φ is surjective; nonA′′ = nonA′ ; unique
A′′ = unique

A′ ;
3. φ(n) = n unless n = s0 ↓ j, for some j with 1 ≤ j ≤ h0;
4. φ(s0 ↓ j) = s1 ↓ j, for all j with 1 ≤ j ≤ h0.

If A
′′ satisfies (1)–(4) and n ∈ A

′ is realizable in A
′, then φ(n) is realizable in

A
′′.

Proof. Consider any path p through G(A′) leading from s0 ↓ j to s1 ↓ j (as in
Figure 1), or vice versa; let s be the strand at which p ends. There is an edge
n ⇀ s ↓ j′ such that j′ ≤ j, n does not lie on s, and no node of s precedes n
along p. Let S be the set of all such edges. Hence G(A′)\S remains acyclic, even
when each s0 ↓ j is identified with s1 ↓ j.

Let NA′′ be the subset of NA of A not lying on s0. Let nonA′′ = nonA′ and
uniqueA′′ = uniqueA′ ; let �A′′ be �A restricted to NA′′ . Define φ by (2,3).

When i = 1, 2 and si ↓ j is negative, there is a penetrator web Gi,j with
result term(si ↓ j), since A

′ is realizable. The support of the Gi,j contains only
terms on earlier positive nodes n. By acyclicity of A

′, for a given j, at most one
of si ↓ j and si′ ↓ j precedes the other; say (e.g.) s1 ↓ j does not precede s0 ↓ j.

Hence, G0,j ’s support does not contain nodes n such that s1 ↓ j �A′ n. So,
web G0,j is still supported in A, and thus term(s0 ↓ j) is realizable in A. Since
the replacement id respects origination, Proposition 7 shows (4).

Corollary 2. Let A
′ be a preskeleton containing nodes of the strands s0, s1 up

to heights h0, h1 (resp.) with h0 ≤ h1. Let α respect origination for A
′ and unify

s0, s1 up to h0, i.e.

term(s0 ↓ j) · α = term(s1 ↓ j) · α

with the same direction, for each j with 1 ≤ j ≤ h0. Then A
′ is an order

enrichment of some A such that H ′′ = [φ, α] : A 7→ A
′′ where

1. There is a set S containing only removable edges n ⇀ m for which m lies
on s0 or s1 and G(A′) \ S = G(A);

2. φ is surjective; nonA′′ = nonA′ · α; uniqueA′′ = uniqueA′ · α;
3. φ is injective for nodes not lying on s0, s1;
4. φ(s0 ↓ j) = φ(s1 ↓ j) for all j ≤ h0.

If A
′′ satisfies (1)–(4) and n ∈ A

′ is realizable in A
′, then φ(n) is realizable in

A
′′.

Proof. Apply first Proposition 5 and then Theorem 1.
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s0 ↓ j

s0 ↓ 1 s1 ↓ 1

n

s1 ↓ j

m

Fig. 1. Removing edge n ⇀ m

5 Protocols

Here we introduce the notion of protocol. We prove that if a protocol has a large
realizable skeleton using only a small number of non-originating and uniquely
originating values, then the skeleton can be collapsed into a smaller skeleton
(Theorem 3). For a class of security goals, the smaller skeleton satisfies the same
goals as the larger skeleton; we show this in Propositions 12, 16. Since there are
only finitely many essentially different skeletons of limited size (Proposition 15),
a class of formulas of this language are decidable (Theorem 5).

Definition 9 (Protocol). A protocol Π consists of (1) a finite set of strands
called the roles of Π ; (2) for each role r ∈ Π , two sets of atoms nr, ur giving
origination data for r; and (3) a number of key function symbols, and for each
role r a set of 0 or more key constraints, i.e. equations involving these function
symbols and atoms occurring in r. The regular strands of Π , written ΣΠ , are
all strands s with tr(s) = tr(r · α) for some role r ∈ Π .

The origination data nr, ur gives values mentioned in r that should be assumed
to be non-originating or uniquely originating (respectively) whenever role r is
executed. The key constraints give a way to ensure that different parameters are
compatible across different strands in the same skeleton or bundle. For instance,
one wants to assume that if the same principal executes the same role twice,
then it is using the same private decryption key in both runs. In particular, if
the principal uses a non-originating private key in one run, then its private key in
other runs is also non-originating. The key functions may be assumed injective;
an attack that relies on two different principals having chosen the same private
key (for instance) has negligible probability of success.
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Definition 10 (Skeleton, bundle of a protocol). The key constraints of A

are the formulas φ · α such that φ is a key constraint for some role r with r · α
in A. A is a skeleton for protocol Π if

1. the strands of A belong to ΣΠ ;
2. if a ∈ nr and a · α is used on a node of r · α in A, then a · α ∈ nonA;
2′. if a ∈ ur and a · α occurs in a node of r · α in A, then a · α ∈ uniqueA; and
3. There is a interpretation of the key function symbols by injective functions

satisfying all of the key constraints of A.

A bundle B is a bundle for Π if skeleton(B) is a skeleton for Π .

We will assume that each protocol Π has two listener roles. A listener role is a
regular strand with a single negative node, where the term received is a single
atom. It records the fact that this atom is available on its own, unprotected by
encryption, disclosed to the penetrator. HearNonce[N ] records the disclosure of
nonce N via trace 〈−N〉; HearKey[K] records the disclosure of key K via trace
〈−K〉. We refer to a reduction when the situation in Corollary 2 holds:

Definition 11 (Reduction). A
′ reduces to A

′′ via α in one step, which we
write R(A′,A′′, α), when there exist A, s0, s1, h0, h1, φ such that

1. s0, s1 have A
′-heights h0, h1 (resp.) with h0 ≤ h1, α respects origination for

A
′ and unifies terms on s0, s1 up to h0 (with matching direction);

2. A
′ is an order enrichment of A and H ′′ = [φ, α] : A 7→ A

′′;
3. φ is surjective; nonA′′ = nonA′ · α; unique

A′′ = unique
A′ · α;

4. φ is injective for nodes not lying on s0, s1; and
5. φ(s0 ↓ j) = φ(s1 ↓ j) for all j ≤ h0.

A0 reduces to Ak via α when k = 1 and A0 and A1 are isomorphic, or α = α0 ◦
· · · ◦ αk−1, and R(Ai,Ai+1, αi) for each 0 ≤ i < k. We write this R∗(A′,A′′, α).

Proposition 9. If A0 reduces to A` and A0 is realizable, then A` is realizable.

Theorem 3. Let Π be a protocol with i roles, each of which has at most j
parameters. Let A0 be a realizable skeleton for Π in which the number of non-
originating and uniquely originating values is k, i.e. |nonA0

∪ unique
A0
| = k.

Then R∗(A0A`, α) for some realizable A` with at most i(jk+1) strands.

Proof. Since there are at most k atoms in nonA′ ∪ unique
A′ of any one type, there

are at most k + 1 values of this type that cannot be unified by a replacement
that respects origination for A

′. Since each role r ∈ Π has at most j parameters,
there are at most jk+1 strands of role r that cannot be unified by a replacement
respecting origination for A

′. As Π contains i roles, there are at most i(jk+1)
strands such that no two can be unified by a replacement respecting origination
for A

′. Thus, as long as A
′ contains more than this number of strands, we may

apply Corollary 2 to obtain a smaller one, preserving realizability.

Applying the ideas of [3], it is undecidable, given a protocol Π , whether a par-
ticular parameter of a role r ∈ Π remains secret. That is, given Π , r ∈ Π , and
a, is there a bundle B for Π containing a strand s = r · α up to its full height,
and a node n ∈ B such that term(n) = a ·α? Theorem 3 tells us that in the hard
choices of Π , the number of values in |non ∪ unique| increases beyond any k.
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6 Security Goals

By Theorem 3, a workable strategy for determining whether a protocol has
realizable skeletons of a particular kind is to ensure that unique and non grow
far more slowly than the number of strands. In particular, this will be true if
for all roles r ∈ Π , nr = ur = ∅. We say that Π does not impose origination
assumptions if this is true.

Is there is any value to protocols that impose no origination assumptions?
No interesting conclusions follow if there are no assumptions whatever about
origination, but these assumptions need not be imposed by the protocol itself.
We may instead define the protocol with nr = ur = ∅, while considering only
bundles in which certain values are uniquely originating or non-originating. For
instance, in the case of the Needham-Schroeder-Lowe protocol, one can prove [5],
letting Π be a representation with nr = ur = ∅:

Let B be a bundle for Π with s ∈ NSResp[A,B,Na, Nb] of B-height 3.
AssumeK−1

A is non-originating;Nb is uniquely originating; andNa 6= Nb.
Then B contains an s′ ∈ NSInit[A,B,Na, Nb] with B-height 3.

The public keys KA,KB do not appear here as independent parameters, because
they are given by a key function of the principal. By contrasting, the result from
the initiator’s point of view makes a slightly different assumption:

Let B be a bundle for Π with s ∈ NSInit[A,B,Na, Nb] of B-height ≥ 2.
Assume K−1

A ,K−1
B is non-originating and Na is uniquely originating.

Then B contains an s′ ∈ NSResp[A,B,Na, Nb] with B-height ≥ 2.

Here it is necessary to assume both private keys K−1
A ,K−1

B are uncompromised.
Results of this form are more informative than results where nr 6= ∅ or

ur 6= ∅: one learns that a protocol correctness goal depends only on specific keys
or nonces. Neither authentication result depends on the freshness of the other
party’s key. If instead we were to set ur = {Nb} for the responder role and
ui = {Na} for the initiator role, then this distinctions would be lost: then any
bundle containing s, s′ would actually have both Na andNb uniquely originating.

Putting parameters in nr, ni for non-origination is trickier. If the initiator’s
role has ni = {K−1

A ,K−1
B }, then a responder C is trusting the initiator A to

connect only with regular parties B. This assumption, suggested in [9], makes
the protocol valid [4, Section 3.12], but is unreasonable in many environments.
Hence, explicit style security goals are more flexible, more informative, and in
fact more decidable than properties of protocols imposing origination assump-
tions.

Both authentication and secrecy goals are universally quantified implications,
with premises conjoined from formulas of the form:

roles a strand of a particular role and given parameters has B-height j;
origination a parameter is uniquely originating or non-originating in B;
inequality two parameters are not equal.
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The conclusions take forms including:

authentication some strand of a given role with parameters shared with the
premises has B-height k; other parameters may be existentially bound.

nondisclosure no regular strand sharing parameters with the premises has B-
height k; the remaining parameters may be universally bound.

A secrecy goal is a non-disclosure goal in which the regular strand is a listener
strand (see Section 5) and k = 1. Other nondisclosure goals might state (e.g.)
that there is no strand with parameter p (indicating a regular principal) and
nonce n; this would express that the protocol cannot disclose n to p. We will
show that these formulas are decidable (Corollary 5).

We formalize these security goals in a first order language. The structures
(interpretations) for this language are realizable skeletons. For each role r ∈ Π ,
let the distinct atoms occurring in r be a

r, i.e. the atoms ar
1, . . . , a

r
k for some

k. A role r has length `, written length(r) = `, if tr(r) is a sequence of length
`. In the language LΠ that we will define, variables range over atoms, and an
interpretation is specified by giving a realizable skeleton. There are predicates
saying that an atom is uniquely or non-originating, and predicates saying that
the skeleton has a strand of role r with height at least m, for each r ∈ Π and m
less than its length.

Definition 12. The language LΠ for protocol Π is the first order language
with equality and the propositional constants truth and falsehood, the predicates
nonp(x) and uniquep(x), and for each r,m where r is a role in Π and m ≤
length(r):

φr
m(x1, . . . , xk) a predicate with k arguments if a

r contains k atoms.

The set of variables occurring free in a formula ψ is fv(ψ).

Thus, the number of non-logical predicates contained in LΠ is 2+
∑

r∈Π length(r).
If σ(y) = σ′(y) whenever y is a variable other than x, σ is an x-variant of σ′:

Definition 13. An LΠ -skeleton structure (or simply a structure) M = (A, σ)
is a realizable skeleton A and an assignment mapping variables x to atoms a.

M satisfies φr
m(x1, . . . , xk) if A contains a strand s of A-height m such that

tr(s) = tr(r·α), where ar
i ·α = σ(xi) for each i. M satisfies nonp(x) if σ(x) ∈ nonA,

and it satisfies uniquep(x) if σ(x) ∈ uniqueA.
Satisfaction for compound formulas is classical; for instance, (A, σ) |= ∀x . ψ

if for every x-variant σ′ of σ, (A, σ′) |= ψ.

7 Formulas Preserved under Reductions

Proposition 10. Let ψ be a formula of LΠ , and let M = (A, σ) be a structure.
It is decidable whether M satisfies ψ.
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Proof. By induction on the structure of ψ. In the case of the quantifiers, observe
that if the set of atoms mentioned (whether occurring as subterms or used as
keys) in A is S, and there are k variables occurring free in ψ, there are essentially
at most |S| + k + 1 relevantly different choices for a variable x bound by the
outermost quantifier. It takes a value in S, or equals one of the k free variables,
or neither.

Two structures are elementary equivalent for a (first order) language if they
satisfy the same formulas of the language. For “reduction,” see Definition 11.

Proposition 11. Suppose that

A = (N,�, non, unique) and A
′ = (N′,�′, non, unique)

have the same non and unique, and A
′ reduces to A in one step via the identity

replacement id. For every σ, (A, σ) and (A′, σ) are elementary equivalent for LΠ .

Proof. For every σ, (A, σ) and (A′, σ) satisfy the same open atomic formulas.
The property is preserved under propositional connectives, and because it holds
for all σ, it is preserved under quantification.

Revise me, please. What if α is not the identity, because it maps some atoms to
the same result? Do we know that a reduction via such an α preserves anything?
In this section we will consider what follows for formulas that are preserved by
reasonable reductions. In the next section, we will identify a class of formulas,
sufficient to express the kinds of security goals described in Section 6, that are
in fact preserved by these reductions. These are certain closed formulas of the
form

∀x1, . . . , xk . H ⊃ C

where H is a quantifier-free formula that may use all the predicates of LPi.
C ∈ LΠ by contrast may contain quantifiers, but the quantified body is an
atomic formula, and specifically a role predicate φr

m(x1, . . . , xk).

We are only interested in reductions that are “well-behaved” on nonA, uniqueA,
and σ(fv(C)), the image, under σ, of the set of free variables of the formula C
to be preserved.

Definition 14 (Well-behaved reductions). A reduction from A to A
′ via α

is well-behaved for a set of atoms X , written W∗
X(A,A′, α), iff R∗(A,A′, α) and

(1) α is a bijection between nonA and nonA′ ; (2) α is a bijection between unique
A

and uniqueA′ ; and (3) for all a ∈ X , a · α = b · α implies b = a.

C ∈ L0
Π is preserved under well-behaved reductions if W∗

X (A,A′, α) implies
(A, σ) |= C if and only if (A′, σ ◦ α) |= C.

Proposition 12. If H ∈ LΠ is quantifier-free, then H is preserved under well-
behaved reductions.
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Proof. For convenience, suppose that H is written using ∨ and ∧, where de
Morgan’s laws have been used to push negations inwards; i.e., whenever ¬ψ is
a subformula of H , then ψ is an atomic formula. We argue by induction on the
structure of H . Atomic formulas are preserved all reductions; negated atoms
nonp(x) and respectively uniquep(x) are preserved by clauses (1,3) and respec-
tively (2,3) of the definition; and negated role predicates and negated equalities
are preserved by clause (3). The induction through ∨ and ∧ is immediate.

When V is a set of variables, let us write σ∼V σ
′ to mean that σ and σ′ differ on

V by a bijective replacement; i.e., there is a replacement α that α(σ(v)) = σ′(v)
for all v ∈ V, and α is a bijection on all atoms.

Proposition 13. If V is finite, then there is an integer M such that: any set
S of variable assignments in which σ ∼V σ

′ implies σ = σ′ for all σ, σ′ ∈ V has
cardinality |S| ≤M .

Hence, for finite V, there is a finite maximal set SV such that σ, σ′ ∈ SV and
σ ∼V σ

′ implies σ = σ′.

Proof. If σ and σ′ agree on the type of atom assigned to each variable in V, and
they agree on when two variables have the same atom assigned, then σ ∼V σ

′.
There are only finitely many ways to avoid these kinds of agreement for finite V.

Proposition 14. Let ψ be a formula of LΠ with fv(ψ) ⊂ V, and let M = (A, σ)
be a structure. There is A

′ isomorphic to A and σ′ ∈ SV such that M |= ψ just
in case (A′, σ′) |= ψ.

Proof. Choose α such that σ differs from σ′ ∈ SV by the bijective α, and let
A

′ = A · α.

When R∗(A0,A`, α), then W∗
X(A0,A`, α) will mean that either A0 and A` are iso-

morphic, or else α = α0◦. . . α`−1 and for each i from 0 to `−1, WXi
(Ai,Ai+1, αi),

where we let X0 = X and Xi+1 = Xi · αi. A set S of realizable skeletons is X-
irreducible if whenever A,A′ ∈ S and W∗

X (A,A′, α), then A = A
′.

Proposition 15. If X,Y, Z are finite sets of atoms, there is an integer M such
that the following holds. Whenever S is an X-irreducible set of realizable skele-
tons in which A ∈ S implies nonA = Y and uniqueA = Z, then |S| ≤M .

Hence, for any finite Y, Z, there is a finite maximal X-irreducible set of
realizable skeletons A with nonA = Y, uniqueA = Z; we refer to this set as IX,Y,Z .
IX,Y,Z is computable.

Proof. As in the proof of Theorem 3, there are only finitely many strands no
two of which are unifiable by α such that α is injective on X and bijective for
non, unique. In particular, there are i(jk+x+1), where i, j, k are as before and
x = |X |. If the longest role of length `, then there are at most (i(jk+x+1))`

choices which nodes to include in a skeleton, and thus only a finite number of
choices of ordering.
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In this way, we generate a sufficiently big set of skeletons. We may discard
all skeletons from this set that are not realizable, since realizability is decidable
(Proposition 6). We next discard any skeleton with an X-well-behaved reduction
to an earlier skeleton. The result will be a maximal X-irreducible set. Hence,
IX,Y,Z is a computable set.

There is arbitrariness in the choice of IX,Y,Z , in the sense that there are different
sets that fulfill the conditions. However, if I, I ′ are two such sets, and A ∈ I
but A 6∈ I ′, then A has an X-well-behaved reduction to some member of I ′.

Theorem 4. Suppose that Π imposes no origination constraints. Satisfiability
and validity are decidable for closed security goals

∀y1, . . . , yn . H ⊃ C

where H ∈ LΠ is quantifier-free, and C ∈ L0
Π is preserved under well-behaved

reductions.

Proof. Suppose that ∀y1, . . . , yn . H ⊃ C is a formula of the form shown, and
let ψ = H ⊃ C, where V = fv(ψ) ⊂ {y1, . . . , yn}. Let NV be the set of variables
x such that nonp(x) occurs at least once in H . Let UV be the set of variables x
such that uniquep(x) occurs at least once in H . Let SV be a finite maximal set
of variable assignments such that σ, σ′ ∈ SV and σ ∼V σ

′ implies σ = σ′, as in
Proposition 13.

Choose any σ ∈ SV. Let X = σ(V), and choose any Y ⊂ σ(NV) and
Z ⊂ σ(UV); there are only finitely many choices. For each choice, IX,Y,Z as in
Proposition 15 is finite. Thus, there are finitely many M = (A, σ) with σ ∈ SV

and A ∈ IX,Y,Z for some X,Y, Z constructed using σ. Call this finite set of
structures A.

We would like to show that for any structure (A0, σ0), there is a structure
(A3, σ3) ∈ A such that (A3, σ3) |= ψ if and only if (A0, σ0) |= ψ. By Proposi-
tion 14, we may replace (A0, σ0) by (A1, σ1) with σ1 ∈ SV and (A0, σ0) |= ψ if
and only if (A1, σ1) |= ψ. Define Y2 = nonA1

∩ σ1(NV), Z2 = uniqueA1
∩ σ1(UV),

σ2 = σ1, and
A2 = (NA1

,�A1
, Y2, Z2).

We must check that (A2, σ2) |= ψ if and only if (A1, σ1) |= ψ. But ψ is H ⊃ C,
and (A2, σ2) |= C if and only if (A1, σ1) |= C, because C ∈ L0

Π . In fact, restricted
to the vocabulary of L0

Π , (A2, σ2) is the same model as (A1, σ1); they differ only
on unique and non, which are not expressed in L0

Π .
Since H is quantifier-free, its truth value in any model (A, σ) depends only on

σ, not on the variants of σ. Whenever nonp(x) occurs in H , (A2, σ2) |= nonp(x) if
and only if (A1, σ1) |= nonp(x), and likewise for uniquep(x). Thus, (A2, σ2) |= H

if and only if (A1, σ1) |= H .
So (A2, σ2) and (A1, σ1) agree on both C and H , and hence on ψ.
If A2 6∈ Iσ2(V),Y2,Z2

, then by maximality, there is a σ2(V)-preserving reduction
of A2 to some member A3 ∈ Iσ2(V),Y2,Z2

. By assumption, this reduction leaves
the truth-value of C unchanged. By Proposition 12, it leaves the truth value of
H unchanged. Thus it leaves the truth value of ψ unchanged.
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Proposition 16. If C ∈ L0
Π has the form ∃x1, . . . , xk . φr

m(y), where the xi

may appear in y, then C is preserved under well-behaved reductions.

If C ∈ L0
Π has the form ∀x1, . . . , xk . ¬(φr

m(y)), where the xi may appear in
y, then C is preserved under well-behaved reductions.

Proof. Suppose ∃x1, . . . , xk . φ
r
m(y) is true in (A, σ). Let a

r be the atoms occur-
ring in r. Then σ has an x-variant σ′ such that A contains a strand s such that
tr(s) = tr(r · α0), where ar

i · α0 = σ(xi) for each i. A well-behaved reduction to
A

′ via α maps s to some strand s′ of A
′-height ≥ m. The strand s′ ensures that

∃x1, . . . , xk . φ
r
m(y) is true in (A′, σ ◦ α).

Conversely, if ∃x1, . . . , xk . φ
r
m(y) is true in (A′, σ ◦α), there is such a strand

s′ in A. By the injectiveness of α, any preimage of s′ will be a strand s of role
r with suitable parameters; at least one of them is of A-height ≥ m, as φ is
surjective.

Universally quantified negative formulas are symmetrical.

Corollary 5. If Π imposes no origination constraints, then authentication and
non-disclosure goals for Π are decidable.

It seems likely that a version of this result also containing ordering (recency)
will also be true, with a version of Theorem 1 (and of the notion of reduction)
that preserves some of the ordering of A

′.

8 Conclusion

We have studied skeletons and preskeletons, and the homomorphisms that relate
them. Our main result is that a class of formulas of a first order language LΠ are
decidable for protocols Π without origination assumptions. The bulk of concrete
protocol analysis may be carried out using these formulas, or their enrichments
containing ordering information.

The category of skeletons under homomorphisms is useful for other rea-
sons [2]. It motivates a practical algorithm for protocol analysis, to find out
just what can happen when a protocol is executed. This algorithm may be used
whether Π makes origination assumptions or not, although it is not guaranteed
to terminate in the former case. However, many protocols may be shown to
have a single possible shape that all realizable skeletons share, and many others
have a small finite number of shapes; protocol analysis may be automated by
generating this set and observing what is true in it. This gives an efficient way
to answer questions about protocols, unlike the one embedded in the proofs of
Theorems 4.
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A Additional Strand Notions

Definition 15. Fix a strand space Σ:

1. The subterm relation @ is the smallest reflexive, transitive relation such that
t @ {|g|}K if t @ g, and t @ g ˆ h if either a @ g or a @ h.
(Hence, for K ∈ K, we have K @ {|g|}K only if K @ g already.)

2. There is an edge n1 → n2 iff term(n1) = +t or +c t and term(n2) = −t or
−a t for t ∈ A. n1 ⇒ n2 means n1 = s ↓ i and n2 = s ↓ i+ 1 ∈ N .
n1 ⇒∗ n2 (respectively, n1 ⇒+ n2) means that n1 = s ↓ i and n2 = s ↓ j ∈
N for some s and j ≥ i (respectively, j > i).

3. Suppose I is a set of terms. The node n ∈ N is an entry point for I iff
term(n) = +t for some t ∈ I , and whenever n′ ⇒+ n, term(n′) 6∈ I . t
originates on n ∈ N iff n is an entry point for I = {t′ : t @ t′}.

4. A term t is uniquely originating in S ⊂ N iff there is a unique n ∈ S such
that t originates on n, and non-originating if there is no such n ∈ S.
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Definition 16. A penetrator strand is an s where tr(s) is one of:

Mt: 〈+a〉 where a is a text, principal name, or nonce
KK : 〈+K〉 where K is a key
Cg,h: 〈−g, −h, +(tag ˆ g ˆ h)〉
Sg,h: 〈−(tag ˆ g ˆ h), +g, +h〉
Eh,K : 〈−K, −h, +{|h|}K〉
Dh,K : 〈−K−1, −{|h|}K , +h〉

If s is a penetrator strand, s ↓ j is a penetrator node; otherwise it is regular.

Proposition 17. If s is a penetrator strand of kind M, K, C, etc., and α is a
replacement, then s · α is a penetrator strand of the same kind, M, K, C, etc.

Definition 17 (Bundles). Let B = 〈NB, (→B ∪ ⇒B)〉 be a finite acyclic sub-
graph of 〈N , (→ ∪ ⇒)〉. B is a bundle if:

1. If n2 ∈ NB is negative, there is a unique n1 such that n1 →B n2.
2. If n2 ∈ NB and n1 ⇒ n2 then n1 ⇒B n2.

The height of a strand s in B is the largest i such that s ↓ i ∈ NB. The bundle
ordering on B is the smallest reflexive, transitive relation �B such that n1 →B n2

implies n1 �B n2, and n1 ⇒B n2 implies n1 �B n2.

By acyclicity and finiteness, we have:

Proposition 18. If B is a bundle, �B is a well-founded partial order.


